
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Linear structure of bipartite permutation graphs

and the longest path problem

Author(s) Uehara, Ryuhei; Valiente, Gabriel

Citation Information Processing Letters, 103(2): 71-77

Issue Date 2007-07-16

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/7873

Rights

NOTICE: This is the author’s version of a work

accepted for publication by Elsevier. Changes

resulting from the publishing process, including

peer review, editing, corrections, structural

formatting and other quality control mechanisms,

may not be reflected in this document. Changes

may have been made to this work since it was

submitted for publication. A definitive version

was subsequently published in Ryuhei Uehara,

Gabriel Valiente, Information Processing Letters,

103(2), 2007, 71-77,

http://dx.doi.org/10.1016/j.ipl.2007.02.010

Description

Linear Structure of Bipartite Permutation

Graphs and the Longest Path Problem

Ryuhei Uehara ∗

School of Information Science, JAIST, Ishikawa 923-1292, Japan

Gabriel Valiente 1

Department of Software, Technical University of Catalonia, E-08034 Barcelona

Abstract

The class of bipartite permutation graphs is the intersection of two well known graph
classes: bipartite graphs and permutation graphs. A complete bipartite decomposi-
tion of a bipartite permutation graph is proposed in this note. The decomposition
gives a linear structure of bipartite permutation graphs, and it can be obtained in
O(n) time, where n is the number of vertices. As an application of the decompo-
sition, we show an O(n) time and space algorithm for finding a longest path in a
bipartite permutation graph.

Key words: Bipartite permutation graphs; Graph decomposition; Linear time
algorithms.

1 Introduction

A large number of graph classes have been recently proposed, and the com-
plexity of hard problems over these graph classes has been thoroughly investi-
gated [2,11], motivated by the fact that some hard problems become efficiently

∗ Corresponding author. Fax: +81-761-51-1149.
Email addresses: uehara@jaist.ac.jp (Ryuhei Uehara),

valiente@lsi.upc.edu (Gabriel Valiente).
1 Partially supported by Spanish CICYT project GRAMMARS (TIN2004-07925-
C03-01) and by the Japan Society for the Promotion of Science through Long-
term Invitation Fellowship L05511 for visiting JAIST (Japan Advanced Institute of
Science and Technology).

Preprint submitted to Information Processing Letters 29 December 2006

solvable when restricted to particular graph classes. This is a very common
approach to solve realistic hard problems; for example, the class of interval
graphs was first studied by a molecular biologist, and it turned out that many
hard problems can be solved efficiently on these graphs [5, Chapter 8]. On the
other hand, from the graph theoretic point of view, these algorithms reveal
and make use of graph theoretical properties of the graph classes.

In this note, we focus on the class of bipartite permutation graphs. A graph
is a bipartite permutation graph if it is a bipartite graph and a permutation
graph. This class was investigated by Spinrad, Brandstädt, and Stewart [12],
and some applications were also investigated by Lai and Wei [8].

We first introduce a new notion of complete bipartite decomposition of a bi-
partite permutation graph. Intuitively, a bipartite permutation graph can be
decomposed into an alternating sequence of complete bipartite graphs and
independent sets. In the decomposition, two complete bipartite graphs are
joined only if they are consecutive. Hence this decomposition allows us to ap-
ply dynamic programming techniques to problems on bipartite permutation
graphs. The decomposition can be computed in O(n) time for any given bi-
partite permutation graph, where n is the number of vertices. (We note that
a bipartite permutation graph has a simple representation taking only O(n)
space, and hence we assume that it is given in such a compact representation.)

In [3], Brandstädt and Lozin gave a similar characterization of bipartite permu-
tation graphs, which from a graph theoretic point of view is a sequence of chain
graphs. Each chain graph can be obtained by merging two consecutive graphs
(a complete bipartite graph and an independent set) in our decomposition.
Hence our result also gives a linear time algorithm for their characterization.

As an application of the decomposition, we give an O(n) time and space algo-
rithm for finding a longest path in a bipartite permutation graph. The longest
path problem is one of the most basic problems, and it seems to be harder
than the Hamiltonian path problem. The main difficulty of the longest path
problem compared to the Hamiltonian path problem is the difference between
“all vertices” and “the maximum number of vertices.” For the Hamiltonian
path problem, we try to join all vertices, and halt if it is impossible. On the
other hand, for the longest path problem, we have to choose the best vertex
in each case. The computation of the best choice is hard in general; even if
we know that a given graph has a Hamiltonian path, it is impossible to find
a path of length n − nε for any ε > 0 in polynomial time unless P = NP [6].
It is well known that the Hamiltonian path problem is already hard; it is NP-
complete for a chordal bipartite graph [10]. Hence there are few polynomial
time algorithms for the longest path problem except on trees and some small
graph classes [13]. For example, the complexity of the longest path problem
for the class of biconvex graphs, which properly contains the class of bipar-

2

tite permutation graphs, is still open [13]. We show an O(n) time and space
algorithm for finding a longest path in a bipartite permutation graph, which
improves the previously known O(n + m) time and space algorithm [13].

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set NG(v) =
{u ∈ V | {u, v} ∈ E}, and the degree of a vertex v is |NG(v)| and it is
denoted by degG(v). For a vertex subset U of V , we denote by NG(U) the set
{v ∈ V | v ∈ N(u) for some u ∈ U}. If no confusion can arise we will omit
the index G. A vertex set I is called independent set if G contains no edges
between any pair of vertices in I.

For a graph G = (V, E), a sequence of distinct vertices v1, v2, . . . , v` is a path,
denoted by (v1, v2, . . . , v`), if {vj, vj+1} ∈ E for each 0 < j < `. The length of a
path P is the number of vertices on the path, and it is denoted by |P |. In this
note, we sometimes deal with a path P as a vertex set; hence we define the
length of a path by the number of vertices, and |P | always denotes a number
of vertices. The longest path problem is to find a path of maximum length.

A graph G = (V, E) is bipartite if V can be partitioned into two sets X and Y
such that every edge joins a vertex in X and another vertex in Y . A bipartite
graph G = (X, Y, E) is said to be complete if each vertex in X is adjacent to
all vertices in Y .

A graph G = (V, E) with |V | = {v1, v2, . . . , vn} is said to be a permutation
graph if there is a permutation σ over {1, 2, . . . , n} such that {vi, vj} ∈ E
if and only if (i − j)(σ−1(i) − σ−1(j)) < 0. Intuitively, each vertex v in a
permutation graph corresponds to a line `v joining two points on two parallel
lines L1 and L2, which is called line representation. Then, two vertices v and
u are adjacent if and only if the corresponding lines `v and `u are crossing.
Vertex indices give the ordering of the points on L1, and the permutation of
the indices gives the ordering of the points on L2. When a permutation graph
is bipartite, it is said to be a bipartite permutation graph.

Hereafter, we sometimes identify the vertex v and the corresponding line `v

and denote it by v in the line representation. In this paper, a given bipartite
graph is denoted by G = (X,Y, E), with nx = |X|, ny = |Y |, and n = nx +ny.

Let G = (X, Y, E) be a bipartite permutation graph. Then, no line x in X in-
tersects any other line x′ in X. Hence, we order vertices x1, x2, . . . , xnx from left
to right. We also order vertices y1, y2, . . . , yny from left to right. In this paper,
we use the standard random-access machine (RAM) model of computation

3

L2

L1x1 x2

z

xnx y1 y2 yny

Ly Rx

Fig. 1. A chain graph

(see, e.g., [4]); each simple operation takes 1 time step, the time complexity is
measured by the number of operations, and the space complexity is measured
by the number of required memory cells. Especially, it stores and reads each
datum in a memory cell in O(1) time and space, even if it requires O(log n)
bits. Under the RAM model, a bipartite permutation graph G = (X, Y, E)
can be represented in O(n) space by storing the vertex orderings on L1 and
L2. We use two arrays L1 and L2, which correspond to the lines L1 and L2.
For each i = 1, 2 and j = 1, 2, . . . , n, Li(j) stores

(1) a flag that indicates if the endpoint belongs to X or to Y ,
(2) the index of the element in X or Y , and
(3) the pointer to the other endpoint on L3−i.

We sometimes say u < v on L1 if the endpoint of u on L1 is to the left of the
endpoint of v. For a point p (not necessarily endpoint) on L1, we also make
an abuse of notation and denote by u < p on L1 that the endpoint of u on L1

is to the left of point p.

A bipartite graph G = (X, Y, E) is called chain graph if the vertices can be
linearly ordered by inclusion; namely, N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xnx) and
N(yny) ⊆ · · · ⊆ N(y2) ⊆ N(y1) [7,14]. It is known that any chain graph is
a bipartite permutation graph, and its linear orderings over X and Y can be
computed in O(n) time [13, Lemma 7] 2 .

Lemma 1 Let G = (X,Y, E) be a connected chain graph with N(x1) ⊆
N(x2) ⊆ · · · ⊆ N(xnx) and N(yny) ⊆ · · · ⊆ N(y2) ⊆ N(y1). Then, it has
a line representation such that (Fig. 1); (1) x1 < x2 < · · · < xnx < y1 <
y2 < · · · < yny on L1, and (2) y1 < x1 and yny < xnx on L2. Conversely, if a
graph G has a line representation satisfying conditions (1) and (2), then G is
a connected chain graph.

PROOF. From the linear orderings over X and Y , we have that N(x1) =
{y1, y2, . . . , yi1}, N(x2) = {y1, y2, . . . , yi2}, . . . , N(xnx) = {y1, y2, . . . , yinx

} for

2 In [13], a bipartite permutation graph is called proper biconvex graph, and a chain
graph is called linearly included biconvex graph.

4

L2

L1

x1

xiy1

yj

Fig. 2. Induced complete bipar-
tite graph

L2

L1

Ki Ji Ki+1

Fig. 3. Isolated vertices Ji be-
tween Ki and Ki+1

some i1 6 i2 6 · · · 6 inx . A symmetric relationship can be obtained for Y .
Then, we can construct the line representation with the condition (1). The
connectedness of G implies (2). The converse direction is easy. 2

3 Complete Bipartite Decomposition

In this section, we introduce a new decomposition of a connected bipartite
permutation graph G = (X, Y, E). We first observe that {x1, y1} ∈ E, since G
is connected. We have the following lemma.

Lemma 2 For a bipartite permutation graph G = (X, Y, E), N(x1) ∪ N(y1)
induces a complete bipartite graph.

PROOF. Let yj be any vertex in N(x1) and xi be any vertex in N(y1). Since
xi and yj are located on the right side of x1 and y1, respectively, the only pos-
sible arrangement of these vertices on L1 is x1, xi, y1, yj, and the arrangement
of the vertices on L2 is y1, yj, x1, xi. (See Fig. 2.) Hence, we have {xi, yj} ∈ E,
which completes the proof. 2

Let K1 be the complete bipartite graph induced by N(x1) ∪ N(y1). Assume
that we remove all vertices in K1 (and incident edges) from G, and the re-
sulting graph is not connected. In this case, if two connected components
G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2) are such that X1 6= ∅, Y1 6= ∅,
X2 6= ∅, and Y2 6= ∅, we have a contradiction; it is easy to see that K1 cannot
connect G1 and G2 if G is a bipartite permutation graph. Hence, the resulting
graph can be disconnected only if either X1 = ∅ or Y1 = ∅. (See Fig. 3). In this
case, we call the (maximal) set of independent vertices which appears leftmost
in the line representation isolated vertices.

Here, we define the complete bipartite decomposition of a bipartite permutation
graph as follows: First, we define K1 as the complete bipartite graph induced
by N(x1) ∪ N(y1). Then, we remove K1 from G. We next let J1 be the set

5

of isolated vertices, and remove it from G. Finally, we repeat this process
until G becomes empty. (Thus, the decomposition ends with either a complete
bipartite graph or some isolated vertices.) The sequence of complete bipartite
graphs K1, K2, . . . with sets J1, J2, . . . of isolated vertices is called complete
bipartite decomposition of G. We note that we will not deal with an isolated
vertex as a complete bipartite graph. Hence, each complete bipartite graph
Ki satisfies Ki ∩ X 6= ∅ and Ki ∩ Y 6= ∅ 3 .

In each complete bipartite graph, the first chosen pair of vertices in X and Y
is called the pair of leftmost vertices. That is, the leftmost vertices in Ki are
the vertices with the smallest indices in X and Y , respectively. Similarly, the
vertices with the largest indices in Ki are called rightmost vertices.

Theorem 3 Given a bipartite permutation graph G = (X, Y, E), the complete
bipartite decomposition of G can be obtained in O(n) time.

PROOF. We first find K1 in O(1) time. Let xi = max{N(y1)} and yj =
max{N(x1)}. We note that max{N(xi)} > yj and max{N(yj)} > xi. Then,
there are no isolated vertices between K1 and K2 if max{N(xi)} > yj and
max{N(yj)} > xi. On the other hand, for example, if max{N(xi)} = yj and
max{N(yj)} > xi, we have a sequence of isolated vertices xi+1, . . . , xk−1, where
xk = min{N(yj+1)}. (We note that even in this case, there are no isolated
vertices when xk = xi+1.) When max{N(xi)} = yj and max{N(yj)} = xi,
we have i = nx and j = ny. Hence, we can find all isolated vertices between
K1 and K2 in O(1) time. Repeating this process, we can obtain the complete
bipartite decomposition of G. Each vertex is touched O(1) times and hence,
the algorithm runs in O(n) time. 2

In a complete bipartite decomposition of G, we say two graphs K and K ′

(which may be isolated vertex sets) overlap if there is an edge in G that joins
one vertex in K and another vertex in K ′.

Lemma 4 Let K1, K2, . . . , Kk with J1, J2, . . . , Jk be the complete bipartite de-
composition of a connected bipartite permutation graph G = (X,Y, E). Then
(1) Ki and Ki+1 overlap for 1 6 i < k, and (2) Ki does not overlap with Ji+1,
and hence Ki+2, for 1 6 i < k − 1.

PROOF. (1) Suppose Ki and Ki+1 do not overlap for some i. Since G is
connected, there exists some graph that joins Ki and Ki+1. First suppose Kj

joins them. Then, we have j < i. Without loss of generality, we assume that
the rightmost vertex y in Kj ∩ Y joins Ki and Ki+1. In other words, y is

3 We sometimes deal with a graph as a vertex set if no confusion can arise.

6

adjacent to the rightmost vertex x in Ki ∩ X and the leftmost vertex x′ in
Ki+1 ∩ X. By definition, Ki ∩ Y 6= ∅. Hence, there is a vertex y′ in Ki ∩ Y .
Since j < i, it must be y < y′. However, in this case, vertex y′ is also adjacent
to x and x′, which is a contradiction. Next, suppose Jj joins Ki and Ki+1.
Without loss of generality, assume Jj ∩X = ∅. If j 6= i, Jj cannot join Ki and
Ki+1. Hence, j = i. Let y be the rightmost vertex in Jj adjacent to Ki ∩ X.
Then, y has to intersect the leftmost vertex in Ki+1∩X, since Jj joins Ki and
Ki+1. However, by

(2) Suppose Ki overlaps with Ji+1. Without loss of generality, we assume that
the rightmost vertex y in Ki∩Y is adjacent to the leftmost vertex x in Ji+1∩X.
Let y′ be the leftmost vertex in Ki+1. Then, y′ is adjacent to x. By definition,
this implies x is in Ki+1 ∩ X, which is a contradiction. 2

Hereafter, we assume that each vertex v knows if it is in either Ki or Ji, and
the index i. We also denote by Gi = (Xi, Yi, Ei) the subgraph of G (vertex)
induced by Ki ∪ Ji.

Theorem 5 Graph Gi is a chain graph for each i.

PROOF. If Ji = ∅, Gi = Ki is a complete bipartite graph, and is thus a chain
graph. Without loss of generality, we assume that i = 1, X1 = {x1, x2, . . . , xa},
Y1 = {y1, y2, . . . , yb}, and J1 = {yb+1, yb+2, . . . , yb+c} for some a, b, c > 0. Then,
it is easy to see that x1 < x2 < · · · < xa < y1 < y2 < · · · < yb < yb+1 < yb+2 <
· · · < yb+c on L2, and y1 < x1 and yb+c < xa on L1. By Lemma 1, the theorem
holds. 2

We note that Theorem 5 immediately gives another proof of the characteriza-
tion by chain graphs by Brandstädt and Lozin [3, Theorem 1]; their indepen-
dent sets D0, D1, . . . , Dq correspond to X1, Y1, X2, Y2, . . . in our notation.

4 Longest Path in a Bipartite Permutation Graph

The main result in this section is the following.

Theorem 6 A longest path in a connected bipartite permutation graph G =
(X,Y, E) can be found in O(n) time.

We remind that X = {x1, x2, . . . , xnx} and Y = {y1, y2, . . . , yny} are ordered
from left to right. The following lemma allows us to use dynamic programming
techniques for finding a longest path in a bipartite permutation graph.

7

Lemma 7 [13] There is a longest path P of a bipartite permutation graph G
such that the vertices on P are ordered according to the orderings over X and
Y . That is, if P contains vertices xi1 , xi2 , xi3 , . . . in X in this order, we have
i1 < i2 < i3 < · · ·, and similarly for Y .

Hereafter, we consider four candidates for a longest path P , which starts from
a vertex in X or Y , and ends at a vertex in X or Y . We denote them by PXX ,
PXY , P Y X , and P Y Y ; that is, P ST is a longest path among the set of paths
starting from a vertex in S and ending at a vertex in T , and the vertices are
ordered according to the ordering over X and Y . Clearly, a longest path is
given by the longest one among all these paths. We first consider chain graphs,
before dealing with general bipartite permutation graphs.

4.1 Longest Path in a Chain Graph

We consider a linear time algorithm for finding a longest path in a chain graph.
Let G = (X, Y, E) be a connected chain graph with the line representation of
Lemma 1. We moreover assume that each endpoint on L2 corresponds to a
distinct integer point in [1..n]. Let z be any integer point on L2. Then, for each
z, we define a 4-tuple f(z) = (Lx, Ly, Rx, Ry) as follows: Lx is the number of
vertices x in X with x 6 z on L2, Ly is the number of vertices y in Y with
y 6 z on L2, Rx is the number of vertices x in X with z < x on L2, and Ry

is the number of vertices y in Y with z < y on L2. (See Fig. 1.) Clearly, we
have Lx + Rx = nx and Ly + Ry = ny. We also have the following remark.

Remark 8 (1) f(0) = (0, 0, nx, ny) and f(nx + ny) = (nx, ny, 0, 0). (2) Let
f(i) = (a, b, c, d). Then, f(i + 1) = (a + 1, b, c− 1, d) if i + 1 is the endpoint of
a vertex x in X, and f(i + 1) = (a, b + 1, c, d− 1) if i + 1 is the endpoint of a
vertex y in Y .

We here show a linear time algorithm for finding a longest path PXY in G.
Let P be a longest path starting from a vertex in X and ending at a vertex
in Y . Assume that the second vertex in P is y with y1 < y. Then, since
N(y) ⊆ N(y1), we can replace y by y1. Repeating this process, the vertices
in P ∩ Y are y1, y2, . . . in this order. Similarly, the vertices in P ∩ X are
. . . , xnx−1, xnx in this order. Hence, letting w be the maximum value such that

yw intersects xnx−w, we have
∣∣∣PXY

∣∣∣ = 2w. Now, let zmax be the endpoint of yw

on L2. Then, we have f(zmax) = (nx −w,w, w, ny −w). Moreover, we can see
that for any z with f(z) = (a, b, c, d), w > min{b, c}. Hence, by Remark 8, we
have the linear time procedure in Algorithm 1 for computing the length of a
longest path in a chain graph.

Hence, we immediately have the following result.

8

Algorithm 1: Longest path in a chain graph

Input : A chain graph G = (X, Y, E)
Output: A longest path PXY

initialize z := 0, a := 0, b := 0, c := nx, d := 1, w = 0
for z = 1, 2, . . . , n do

if z is the endpoint of a vertex x ∈ X then
a := a + 1, c := c − 1

else
b := b + 1, d := d − 1

end
if w < min{b, c} then w := min{b, c}

end
return PXY := (xnx−w, y1, xnx−w+1, y2, . . . , xnx−1, yw−1, xnx , yw)

Theorem 9 A longest path in a chain graph can be found in O(n) time and
space.

Corollary 10 A longest path in a chain graph that contains x1, xnx , y1, yny

and with all vertices ordered according to the orderings over X and Y , can be
found in O(n) time and space.

PROOF. Assume that a longest path P (ordered according to the orderings
over X and Y) found by Algorithm 1 starts from a vertex x ∈ X with x1 < x.
Then, since x ∈ N(y1) = X, we can replace x by x1. Similarly, we can replace
y by yny , and path P starts from x1 and ends at yny . 2

For the path P constructed in Corollary 10, there are indices i and j such that
P consists of {x1, xi, xi+1, . . . , xnx} and {y1, y2, . . . , yj−1, yj, yny}. Intuitively,
rightmost vertices in Y (except yny) are not used for building the path P . We
also pack the vertices in X as much to the left as possible. More precisely, we
can achieve that with the procedure in Algorithm 2, which assumes that P is
PXY .

Algorithm 2: Pack the vertices in X to the left

Input : A chain graph G = (X, Y, E) and a longest path
P = (x1, y1, xi, y2, xi+1, . . . , yj, xnx , yny) stated in Corollary 10;

Output: The lexicographically first longest path P ′;
initialize i := 1
for j′ = 1, 2, . . . , j do

let i′ be the minimum index with i′ > i and xi′ intersecting yj′ and yj′+1

replace xi−j′+2 by xi′

set i := i′
end
return P

9

It is easy to see that the path P obtained with Algorithm 2 is the lexico-
graphically first (lex-first, for short) path among the longest paths satisfying
Corollary 10. Roughly speaking, unused vertices of the lex-first longest path
are collected as much to the right as possible. The lexicographically last (lex-
last, for short) longest path is defined in a similar way, and we have the
following, immediate result.

Corollary 11 The lex-first and lex-last longest paths in a chain graph among
the longest paths that contain x1, xnx , y1, yny and with all vertices ordered ac-
cording to the orderings over X and Y , can be found in O(n) time and space.

The following result will be used in the next section.

Lemma 12 Let P be the lex-first longest path in a chain graph G = (X, Y, E)
stated in Corollary 11. Let X ′ and Y ′ denote the vertices not used in P ; that
is, X ′ := X \ P and Y ′ := Y \ P . Then, X ′ ∪ Y ′ is an independent set.

PROOF. To derive a contradiction, we assume that xi ∈ X ′ intersects yj ∈
Y ′. Then, since P contains x1, xnx , y1, yny , all vertices in P are ordered from left
to right, and since P is connected, it contains four vertices x, x′, y, y′ such that
x < xi < x′, y < yj < y′, and it also contains one of the subpaths (x, y, x′, y′)
and (y, x, y′, x′). In the former case, we can extend P by replacing the subpath
by (x, y, xi, yj, x

′, y′). In the latter case, we can extend P by replacing the
subpath by (y, x, yj, xi, y

′, x′). Both cases contradict the assumption that P is
a longest path. 2

4.2 Longest Path in a Bipartite Permutation Graph

The outline of a linear time algorithm for finding a longest path in a bipartite
permutation graph G = (X, Y, E) is the following.

(1) Compute the complete bipartite decomposition K1, J1, K2, J2, . . . , Kk, Jk

and let Gi be the subgraph induced by Ki ∪Ji, for each i with 1 6 i 6 k.
(2) The algorithm computes four lex-first longest paths PXX

1 , PXY
1 , P Y X

1 ,
and P Y Y

1 in G1, using Algorithm 1 and Algorithm 2. For i = 2, . . . , k,
the algorithm also computes four lex-last longest paths PXX

i , PXY
i , P Y X

i ,
and P Y Y

i in Gi. One of four candidates will be extended to a longest path
in G.

(3) Let PX
i and P Y

i denote two longest paths ending at a vertex of G1 ∪
G2 ∪ · · · ∪ Gi in X and Y , respectively. P Y

1 is initialized by the longer
path of PXY

1 and P Y Y
1 , and PX

1 is the longer one of PXX
1 and P Y X

1 .
For i = 2, 3, . . . , k, the algorithm updates two candidate paths PX

i and

10

P Y
i . Finally, the longer one of PX

k and P Y
k is a longest path in G =

G1 ∪ G2 ∪ · · · ∪ Gk.

We note that in the third step, the update is not just connection of the candi-
dates; we have to add extra vertices between them in some cases. The first and
second steps can be done in O(n) time and space, by Theorems 3, 5, and 9.
Moreover, by Corollary 10, we can assume that each path is ordered, and it
starts from the leftmost vertex and ends at the rightmost vertex. Now, we are
ready to prove the main theorem in this section by showing the implementa-
tion and analysis of the third step.

Proof of Theorem 6 We first compute PX
2 from PXX

1 , PXY
1 , P Y X

1 , P Y Y
1 ,

PXX
2 , PXY

2 , P Y X
2 , and P Y Y

2 . (P Y
2 is symmetric and thus omitted here.) To

obtain the resulting path PX
2 , we have four possible cases; combining (PX

1 or
P Y

1) and (P Y X
2 or PXX

2) with unused vertices between them. We here construct
a path combining PX

1 and P Y X
2 , which is one of the four candidates (the other

cases are similar and omitted here). We remind that PX
1 is the lex-first, and

P Y X
2 is the lex-last. In other words, the unused vertices in G1 are collected

as much to the right as possible and the unused vertices in G2 are collected
as much to the left as possible. If PX

1 and P Y X
2 are independent, PX

1 is a
candidate of the final longest path of G, and P Y X

2 is the candidate of PX
2 .

Hence, we assume that the last vertex in PX
1 intersects the first vertex in

P Y X
2 .

Let GL = (XL, YL, EL) be the bipartite graph induced by XL = X1 \ PX
1 and

YL = Y1 \ PX
1 , and let GR = (XR, YR, EL) be the bipartite graph induced by

XR = X2 \ P Y X
2 and YR = Y2 \ P Y X

2 . That is, GL and GR are the subgraphs
induced by unused vertices between G1 and G2. By Lemma 12, XL ∪ YL and
XR ∪ YR are independent sets and hence, EL = ER = ∅. (We note that PXY

2

is not necessarily a longest path in G2. However, the same argument of the
proof of Lemma 12 with the maximality of PXY

2 implies that XR ∪ YR is an
independent set.) If XL ∪ XR ∪ YL ∪ YR is independent, there are no vertices
that can extend the candidate of a longest path. Hence, we assume that either
XL∪YR or XR∪YL is not independent. (In fact, at most one of them can induce
a nonempty edge set.) Without loss of generality, we assume that the bipartite
graph G′ = (XL, YR, E ′) induced by XL ∪ YR satisfies E ′ 6= ∅. Clearly, G′ is a
bipartite permutation graph. Hence, we can order XL = {x1, x2, . . . , x`} and
YR = {y1, y2, . . . , yr} from left to right (between L1 and L2). Here, we remove
x ∈ XL that has no neighbor in YR, and y ∈ YR that has no neighbor in XL,
since they cannot contribute to extend the candidate of a longest path. Thus,
we assume G′ is connected.

We now remind that GL is a subgraph of G1, which is induced by N(x1)∪N(y1)
and J1. That is, all vertices in XL are in N(y), where y is the rightmost vertex

11

in YL. Since y1 is the right side of y, we have x` < y1 on L1. In other words,
we have x1 < x2 < · · · < x` < y1 < y2 < · · · < yr on L1. Thus, by Lemma 1,
G′ is a connected chain graph. By Theorem 9, a longest path P ′ in G′ can be
found in O(|XL| + |YR|) = O(|X1| + |Y1| + |X2| + |Y2|) time and space.

Here, since the last vertex in PX
1 intersects the first vertex in P Y X

2 , we can
obtain the candidate of a longest path by connecting PX

1 , P ′, and P Y X
2 in this

order. Since PX
1 is lex-first and P Y X

2 is lex-last, the obtained path is the longest
possible one. Combining all possible cases, we can obtain two candidates PX

2

and P Y
2 , which are two longest paths in G1 ∪G2 ending at a vertex in X and

Y , respectively.

Using a procedure similar to Algorithm 2, we can compute the lex-first candi-
dates from PX

2 and P Y
2 . In this procedure, it is sufficient to move the rightmost

vertices in X1 and Y1 and all vertices in X2 and Y2, since the other vertices in
X1∪Y1 are already placed to the left as much as possible. Hence, its complexity
can be bounded by O(|X2| + |Y2|).

For the lex-first candidates in G1 ∪ G2, we add the lex-last PXX
3 , PXY

3 , P Y X
3

and P Y Y
3 , and take the lex-first candidates in G1∪G2∪G3. By Lemma 4(2) and

the previous discussion, this process can be done in O(|X2|+ |Y2|+ |X3|+ |Y3|)
time and space. Repeating this process, we can compute a longest path in
G = G1 ∪ G2 ∪ · · · ∪ Gk. Correctness of the algorithm follows from a simple
induction with Lemma 7. The complexity of the algorithm is clearly O(|X1|+
|Y1| + |X2| + |Y2| + · · · + |Xk| + |Yk|) = O(nx + ny) = O(n). 2

5 Concluding Remarks

Using a similar idea, we can find a maximum independent set (and hence a
minimum vertex cover) of a bipartite permutation graph in O(n) time and
space. The result can be extended to the class of biconvex graphs. The ex-
tended result has an application to phylogenetic networks; it allows one to
efficiently solve the constrained site consistency problem, which is referred to
in [1, Thm. 10]. This was our original motivation for investigating the class of
bipartite permutation graphs, but an O(n) time algorithm for finding a max-
imum independent set in a biconvex graph has been already given by Lipski
and Preparata [9] in a different way and thus, we have omitted it from this
note.

12

References

[1] T. Asano, P. Evans, R. Uehara, and G. Valiente. Site consistency in
phylogenetic networks with recombination. In C. S. Iliopoulos, K. Park, and
K. Steinhöfel, editors, Algorithms in Bioinformatics, chapter 2, pages 15–26.
College Publications, 2006.

[2] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM,
1999.

[3] A. Brandstädt and V. V. Lozin. On the Linear Structure and Clique-Width of
Bipartite Permutation Graphs. Ars Combinatoria, 67(1):273–281, 2003.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. Cambridge, 2nd edition, 2001.

[5] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of
Annals of Discrete Mathematics. Elsevier, 2nd edition, 2004.

[6] D. R. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the
longest path in a graph. Algorithmica, 18(1):82–98, 1997.

[7] T. Kloks, D. Kratsch, and H. Müller. Bandwidth of chain graphs. Information
Processing Letters, 68(6):313–315, 1998.

[8] T.-H. Lai and S.-S. Wei. Bipartite permutation graphs with application to the
minimum buffer size problem. Discrete Mathematics, 74(1):33–55, 1997.

[9] W. Lipski and F. P. Preparata. Efficient algorithms for finding maximum
matchings in convex bipartite graphs and related problems. Acta Informatica,
15(4):329–346, 1981.

[10] H. Müller. Hamiltonian Circuits in Chordal Bipartite Graphs. Discrete
Mathematics, 156(1):291–298, 1996.

[11] J. P. Spinrad. Efficient Graph Representations. American Mathematical Society,
2003.

[12] J. P. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

[13] R. Uehara and Y. Uno. Efficient algorithms for the longest path problem. In
Proc. 15th Annual International Symposium on Algorithms and Computation,
volume 3341 of Lecture Notes in Computer Science, pages 871–883. Springer-
Verlag, 2004.

[14] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on
Computing, 10(2):310–327, 1981.

13

