
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Efficient Algorithms for Airline Problem

Author(s) Nakano, Shin-ichi; Uehara, Ryuhei; Uno, Takeaki

Citation Lecture Notes in Computer Science, 4484: 428-439

Issue Date 2007

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/7877

Rights

This is the author-created version of Springer,

Shin-ichi Nakano, Ryuhei Uehara and Takeaki Uno,

Lecture Notes in Computer Science, 4484, 2007,

428-439. The original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-540-73001-9_38

Description

Efficient Algorithms for Airline Problem

Shin-ichi Nakano1, Ryuhei Uehara2, and Takeaki Uno3

1 Department of Computer Science, Faculty of Engineering, Gunma University, Gunma
376-8515, Japan. nakano@cs.gunma-u.ac.jp

2 School of Information Science, Japan Advanced Institute of Science and Technology,
Ishikawa 923-1292, Japan. uehara@jaist.ac.jp

3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan.
uno@nii.jp

Abstract. The airlines in the real world form small-world network. This implies
that they are constructed with an ad hoc strategy. The small-world network is not
so bad from the viewpoints of customers and managers. The customers can fly
to any destination through a few airline hubs, and the number of airlines is not
so many comparing to the number of airports. However, clearly, it is not the best
solution in either viewpoint since there is a trade off. In this paper, one of the
extreme cases, which is the standpoint of the manager, is considered; we assume
that customers are silent and they never complain even if they are required to
transit many times. This assumption is appropriate for some transportation ser-
vice and packet communication. Under this assumption, the airline problem is to
construct the least cost connected network for given distribution of the popula-
tions of cities with no a priori connection. First, we show an efficient algorithm
that produces a good network which is minimized the number of vacant seats.
The resultant network contains at most n connections (or edges), where n is the
number of cities. Next we aim to minimize not only the number of vacant seats,
but also the number of airline connections. The connected network with the least
number of edges is a tree which has exactly n−1 connections. However, the prob-
lem to construct a tree airline network with the minimum number of vacant seats
isNP-complete. We also propose efficient approximation algorithms to construct
a tree airline network with the minimum number of vacant seats.
Keywords: Airline problem, approximation algorithm, efficient algorithm, NP-
completeness.

1 Introduction

Small-world networks are the focus of recent interest because of their potential as mod-
els for the interaction networks of complex systems in real world [2, 8]. In a small-world
network, the node connectivities follow a scale-free power-law distribution. As a result,
a very few nodes are far more connected than other nodes, and they are called hubs.
Through those hubs, any two nodes are connected by a short path (see, e.g., [5]). There
are many well known small-world networks including the Internet and World Wide
Web. Among them, airlines in the real world form small-world networks [1]. In fact,
some airports are known as airline “hubs.” The fact implies that they can be constructed
in the same manner as the Internet and World Wide Web; in other words, there were

few global strategies for designing efficient airlines. The main reason is that there are
so many considerable parameters to be optimized, and some objective functions con-
flict according to viewpoints; for example, passengers hate to transit, but only complete
graph satisfies their demands, which is an impossible solution for airline companies. In
fact, it is intractable to design the least cost airline network in general. Even if we fix
three hubs, and aim to connect each non-hub to one of the hubs, to design the least cost
airline network is NP-hard problem [6, 7].

In this paper, we simplify the design problem of an airline network to a simpler
graph theoretical problem. We consider the design problem of an airline network as an
optimization problem; we aim to give a reasonable strategy to design a network with
minimum loss, which corresponds to the number of vacant seats. Let Z denote the set
of positive integers. Then we define airline problem over weighted nodes as follows:

Input: A set V of nodes, and a positive integer weight function w : V → Z.
Output: A set E of edges {u, v} in V2, and a positive integer weight function w : V ×

V → Z such that for each v ∈ V , we have w(v) ≤ ∑{v,u}∈E w(v, u), and the graph
G = (V, E) is connected4.

Intuitively, each node v corresponds to a city, and the weight w(v) gives the number of
(potential) passengers in the city. If there are already airports, we can count the number
of users; otherwise, the weights can be estimated from the populations of the cities.
Each edge {u, v} corresponds to an airline. An airplane can transport w(u, v) passengers
at one flight. Airplanes make regular flights along the edges, both ways, and simul-
taneously. Hence the number of passengers, w(v), does not fluctuate in a long term.
We consider that the condition w(v) ≤ ∑{v,u}∈E w(v, u) for each v in V is appropriate
condition as an airline network, if all cities are connected by the airline network. The
condition is enough to supply the least service. In other words, we assume that passen-
gers are silent; they never complain even if they have to transit many times. Therefore
the airline problem can be an idealized model for planning some real network problem
like transportation service, peer to peer file transfer network, and data network flow in
the sense that producing a reasonable (or cheapest) network that can satisfy given de-
mands. After designing the network, we will face the assignment problems. However,
the assignment problems are separated in this context; we only mention that each cheap
network dealt in this paper has at least one reasonable solution obtained by a random
walk approach, which is omitted here.

To evaluate the “goodness” of a solution for the airline problem, we define the loss
L(v) at v by (

∑
{v,u}∈E w(v, u)) − w(v). If the solution is feasible, we have L(v) ≥ 0 for all

v ∈ V . Intuitively, the loss L(v) gives the total number of vacant seats of departure flights
from the city v. We denote by L(G) :=

∑
v∈V L(v) the total loss of the graph (or solution)

G = (V, E). We here observe that L(G) is given by
∑

v∈V L(v) =
∑

v∈V ((
∑
{v,u}∈E w(v, u))−

w(v)) =
∑

v∈V
∑
{v,u}∈E w(v, u) −∑v∈V w(v) = 2

∑
e∈E w(e) −∑v∈V w(v).

We first consider the airline problem to generate a connected network with the min-
imum loss L(G). We show an efficient algorithm that minimizes the total loss of the
flights on the network. The algorithm generates a connected network of at most |V |

4 The weight of an edge e = {u, v} should be denoted by w(e) = w({u, v}) = w({v, u}). However,
we denote them by w(e) = w(u, v)(= w(v, u)) for short.

edges in O(|V |) time and O(|V |) space. Since the minimum number of the edges of a
connected graph with |V | vertices is |V | − 1, our algorithm produces the least cost con-
nected network with |V | − 1 or |V | airlines. Hence it is natural to ask that if we can
restrict ourselves to construct a weighted tree with the minimum loss. It is worth men-
tioning that tree network has an advantage that a shortest route between two vertices
are uniquely determined. However, interestingly, the problem is intractable; the airline
problem to construct a tree airline network (of |V | − 1 edges) with the minimum weight
(or the minimum loss) isNP-complete. For theNP-complete problem, we give two ef-
ficient approximation algorithms. First one always finds a tree airline network T of V of
approximation ratio 2 in O(|V |) time and space. More precisely, the algorithm constructs
a weighted tree T that has additional weight wmax than the optimal weight among all
weighted connected networks that is not necessarily a tree, where wmax = maxv∈V w(v).
The second one is based on an FPTAS for the weighted set partition. Assume we obtain
a partition X and Y of V with

∣∣∣∑x∈X w(x) −∑y∈Y w(y)
∣∣∣ ≤ δ for some δ ≥ 0 by an FPTAS.

Then, from X and Y , we can construct a weighted tree T with L(T) ≤ max{δ, 2} in O(|V |)
time and space.

2 Minimum cost network

In this section, we show efficient algorithms for constructing a connected network of
minimum loss for given weighted nodes V . Hereafter, we denote |V | by n and

∑
v∈V w(v)

by W. Since the case n = 1 is trivial, we assume that n > 1. The main theorem in this
section is the following:

Theorem 1. Let V be a set of n nodes, and w be a positive integer weight function
w : V → Z. Then a connected network E over V of the minimum loss L(G) with |E| ≤ n
can be found in O(n) time and O(n) space.

Procedure Span(u, v,w)
Input : Two vertices u and v, and weight w with w(u),w(v) ≥ w.
Output: An edge {u, v} of weight w.
w(u, v) := w;1
w(u) := w(u) − w; w(v) := w(v) − w;2
if w(u)=0 then remove u;3
if w(v)=0 then remove v;4
return ({u, v});5

Throughout the paper, we will use procedure Span as a basic operation. Mainly,
given two vertices u and v, we span an edge {u, v} of weight min{w(u),w(v)} and remove
one of them. We first have the following lemma:

Lemma 1. If L(G) = 1, the solution is optimal.

Proof. We remind that L(G) is given by
∑

v∈V L(v) =
∑

v∈V ((
∑
{v,u}∈E w(v, u)) − w(v)) =∑

v∈V
∑
{v,u}∈E w(v, u) −∑v∈V w(v) = 2(

∑
e∈E w(e)) −W. Thus when L(G) = 1, W is odd,

which is the input, and hence we cannot improve it. ut

We start with the following three special cases:
Star condition: Let vmax be a heaviest vertex, i.e., w(vmax) ≥ w(v) for all v ∈ V . We say
star condition if we have w(vmax) −∑v∈V\{vmax} w(v) ≥ 0.
Uniform condition: When w(v) = w > 0 for all v ∈ V , we call it uniform condition.
Many-ones condition: If V contains at least two vertices of weight 1, we call that
many-ones condition. To distinguish it from the uniform condition, we assume that V
also contains at least one vertex of weight greater than 1.

We have either the star or uniform condition if |V | ≤ 2. Hence, hereafter, we assume
that |V | > 2. Under the star condition, Algorithm Star computes the solution with
minimum loss L(G) = w(vmax) −∑v∈V\{vmax} w(v) in O(n) time and space. It is also easy
to see that |E| contains n − 1 edges.

Algorithm 2: Star
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: A set E of m = n − 1 edges {u, v} such that (V, E) is connected, and a positive

integer weight function w : E → Z.
let vmax be a vertex such that w(vmax) ≥ w(v) for all v ∈ V;1
foreach v ∈ V \ {vmax} do Span(v,vmax,w(v));2
pickup any e = (v′, vmax) with w(e) > 0;3
w(e) := w(e) + w(vmax);4
return (E := {e | w(e) > 0});5

Algorithm 3: Uniform
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: A set E of m (m = n or m = n − 1) edges {u, v} such that (V, E) is connected, and

a positive integer weight function w : E → Z.
let w be a positive integer such that w = w(v) for all v ∈ V;1
if w = 1 then make any spanning tree T over V , and w(e) := 1 for each edge e ∈ T ;2
else3

foreach odd i = 1, 3, 5, . . . do Span(vi,vi+1,bw/2c);4
foreach even i = 2, 4, 6, . . . do Span(vi,vi+1,dw/2e);5
Span(vn,v1,dw/2e);6

return (E := {e | w(e) > 0});7

Lemma 2. In the uniform condition, Algorithm Uniform produces a connected net-
work E over V of the minimum loss L(G) in O(n) time and O(n) space, where |V | = n.
Moreover, |E| ≤ n.

Proof. Omitted. ut

Algorithm 4: Many-ones
Input : A set V of n nodes, a positive integer weight function w : V → Z.
Output: V ′ of n′ nodes and E of n − n′ edges s. t. V ′ has at most one vertex of weight 1.
let vmax be a vertex such that w(vmax) ≥ w(v) for all v ∈ V;1
let V1 := {v | w(v) = 1} and V2 := {v | w(v) ≥ 2} \ {vmax};2
while |V1| > 1 and |V2| > 0 do3

if V satisfies the star condition then call Star as a subroutine and halt;4
for any vertices v ∈ V1 and v′ ∈ V2, Span(v,v′,1);5
if w(v′) = 1 then move v′ from V2 to V1;6

if |V2| = 0 then7
if V satisfies the star condition then call Star as a subroutine and halt;8
call Span(vmax,v,1) for any w(vmax) − 1 vertices v ∈ V1; // to make w(vmax) = 19
call Uniform as a subroutine and halt;10

return (V and E := {e | w(e) > 0});11

We next turn to the many-ones condition. We first partition V into two disjoint
subsets V1 := {v | w(v) = 1} and V2 := {v | w(v) ≥ 2}. Then we have many-ones
condition iff |V1| > 1 and |V2| > 0. We also pick up a vertex vmax of the maximum
weight as a special vertex to check if the vertex set satisfies the star condition. The
purpose here is to reduce the number of vertices of weight 1 to one. Hence we join the
vertices in V1 to the other vertices and output the remaining vertices, which contains at
most one vertex of weight 1. This is the preprocess of the main algorithm.

The vertex vmax can be found in O(n) time, and
∑

v∈V\{vmax} w(v) can be maintained
decrementally. Hence Algorithm Many-ones runs in O(n) time and space by maintain-
ing V1 and V2 by two queues. Many-ones terminates if the vertex set satisfies the star
condition, the uniform condition, or the set contains at most one vertex of weight 1. In
the former two cases, we already have a solution.

Now, we can assume that the input V satisfies neither the star, uniform, nor many-
ones conditions. Then, we have the following lemmas:

Lemma 3. Algorithm Network outputs a connected network (V, E) with |E| ≤ n.

Proof. In the while-loop, the algorithm either (0) calls Star or Uniform and halts, or
(1) sets w(v, v′) for some v, v′ and removes one of v and v′. The algorithm also joints
all vertices in some vertex set V̂ with

∣∣∣V̂ ∣∣∣ edges. Hence we have an invariant that the
total number of removed vertices is greater than or equal to the total number of added
edges. Hence |E| contains at most n edges. It is easy to see that the resultant network is
connected. ut

Lemma 4. Algorithm Network always outputs a network with the minimum loss L(G).

Proof. Let V1 be the set of vertices of weight 1. Then we have an invariant |V1| ≤ 1
throughout the execution of the algorithm. Let vmax be the heaviest vertex chosen in
step 2. We have two cases; (I) all vertices in V \ {vmax} have the same weight w, and (II)
there are two vertices vi and v j in V \ {vmax} with w(vi) < w(v j).

Algorithm 5: Network
Input : A set V of n nodes, and a positive integer weight function w : V → Z.
Output: A set E of m (m = n or m = n − 1) edges {u, v} such that (V, E) is connected, and

positive integer weight function w : E → Z.
n := |V |, and W :=

∑
v∈V w(v);1

find vmax such that w(vmax) ≥ w(v) for any other v ∈ V;2
let V1 := {v | w(v) = 1} (we have |V1| < 2);3
while true do4

if V satisfies the star condition then call Star as a procedure and halt;5
if V satisfies the uniform condition then call Uniform as a procedure and halt;6
if V satisfies the uniform condition then7

if (n − 2)w < w(vmax) then // we also have w(vmax) < (n − 1)w8
let vi and v j be any two vertices in V \ {vmax};9
Span(vi,v j,d((n − 1)w − w(vmax))/2e) ; // to have star condition10

else11
r := w(vmax) mod w;12
if r = 0 then13

let S consist of any (w(vmax)/w) − 1 vertices from V \ {vmax};14
else15

let S consist of any bw(vmax)/wc vertices from V \ {vmax};16

foreach v ∈ S do Span(v,vmax,w); ; // we have S = ∅17
if w(vmax) = 1 then put vmax into V1;18

else19
if V1 , ∅ then20

let vi be the vertex in V1, and v j be any vertex in V \ {vmax};21
else22

let vi and v j be any vertices in V \ {vmax} with w(vi) < w(v j);23

if W − 2w(vi) > 2w(vmax) then24
Span(vi,v j,w(vi));25
if w(v j) = 1 then put v j into V1;26

else27
Span(vi,v j,d(W − 2w(vmax))/2e) ; // to have star condition28

update V , n, W, vmax if necessary;29

(I) This case is handled in steps 8 to 18. We first note that V is in neither the uniform
nor star cases. Thus, we have w(vmax) > w and w(vmax) < (n − 1)w. Mainly, in the case,
the algorithm takes the vertices of weight w by matching with vmax as follows. Let q be
bw(vmax)/wc and r be w(vmax) mod w.

If r = 0, the last vertex of weight w cannot be matched to vmax since all vertices
spanned by the edges have weight 0, and we will have a loss. Hence, in the case, the
algorithm matches q − 1 vertices of weight w to vmax, and then w(vmax) becomes w.
That is, we will have the uniform case in the next iteration. Through the process, the
algorithm generates no loss, which is handled in steps 14, 17, 18. Hence if the uniform

case will be handled properly, the algorithm generates no loss, which will be discussed
later.

If r , 0, we can match q vertices of weight w to vmax by edges of weight w.
After the matching, we remove q vertices from V \ {vmax}, and w(vmax) is updated
by w(vmax) − qw. If w(vmax) − qw is enough large comparing to the total weight of
the remaining vertices of weight w, the process is done properly in steps 16, 17,
18. However, the process fails when w(vmax) − qw is too light; for example, when
V = {v1, v2, v3} with w(v1) = 8,w(v2) = w(v3) = 5, we cannot make an edge {v1, v2}
of weight 5. The resultant vertex v3 will generate loss 2. In the case, we have to make
E = {{v1, v2}, {v2, v3}, {v1, v3}} with w(v1, v2) = w(v1, v3) = 4 and w(v2, v3) = 1. To con-
sider the case, we partition V \ {vmax} into Va of q vertices and Vb of n − q − 1 vertices.
The loss will be generated, after removing all vertices in Va which are matched with
vmax, if (1) {vmax} ∪Vb satisfies the star condition, and (2) w(vmax) < w. They occur only
if |Vb| = 1, which is equivalent to (n − 2)w < w(vmax) < (n − 1)w. This case is handled
in steps 9 and 10. In the case, we can have the optimal solution with the following as-
signments of weights; pick up any two vertices vi and v j from V \ {vmax}, and add the
edge {vi, v j} of weight d((n − 1)w − w(vmax))/2e. Then we have the star condition, and
we have L(G) ≤ 1, which is the optimal.
(II) This case is handled in steps 20 to 28. Let vi and v j be any two vertices of different
weights with w(vi) < w(v j). If |V1| = 1, the algorithm takes the unique vertex of weight
1 as vi. When w(v j) is not so heavy, we add an edge {vi, v j} with w(vi, v j) = w(vi) and
remove vi in step 25. The exception is that removing w(vi) results in the star condition
with loss, which is equivalent to

∑
v∈V\{vmax} w(v) = W − w(vmax) − 2w(vi) < w(vmax).

Hence the case occurs when W −2w(vi) < 2w(vmax). On the other hand, we did not have
the star condition before removing 2w(vi) from w(vi) and w(v j). Thus, before removing,
we had

∑
v∈V\{vmax} w(v) = W − w(vmax) > w(vmax), or consequently, W > 2w(vmax). In

the case, we can have the star condition without loss by the edge {vi, v j} with w(vi, v j) =⌈∑
v∈V\{vmax } w(v)−w(vmax)

2

⌉
=
⌈

W−2w(vmax)
2

⌉
, and then we have the optimal in step 28.

Hence, in most cases, the algorithm achieves the optimal network. The last case is in
the following case: The algorithm does not call Uniform at first, and it calls Uniform,
which outputs a spanning tree since all vertices have the weight 1. However, this case
is impossible since we have an invariant |V1| ≤ 1.

Thus, Algorithm Network always outputs a network with L(G) ≤ 1, which is opti-
mal by Lemma 1, if V does not satisfy one of three special conditions. ut
Lemma 5. Algorithm Network runs in O(n) time and space.

Proof. If we admit to sort the vertices, it is easy to implement the algorithm to run
in O(n log n) time and O(n) space. To improve the time complexity to O(n), we show
how to maintain vmax and determine if all vertices in a vertex set V \ {vmax} have the
same weight efficiently. In step 2, the algorithm first finds vmax in O(n) time. Then we
can check if V satisfies the star condition or the uniform condition in O(n) time. In the
while-loop, two special vertices vmax and the unique vertex, say v1, in V1 (if exist) are
maintained directly, and all other vertices in V ′ = V \ {vmax, v1} are maintained in a
doubly linked list. The number n of vertices are also maintained.

We first assume that all vertices in V ′ have the same weight w. If (n−2)w < w(vmax),
the algorithm halts in O(n) time. Hence we assume that w(vmax) ≤ (n − 2)w. (Note that

(n − 1)w ≤ w(vmax) implies the star condition.) In the case, the algorithm computes r =
w(vmax) mod w in O(1) time. If r = 0, the algorithm removes (w(vmax)/w) − 1 vertices
from V ′. After that, w(vmax) becomes w(vmax) = w, and we have the uniform case. Thus
the algorithm can call Uniform without checking the condition. The time complexity
can be bounded above by O(|V ′|). If r , 0, the algorithm removes bw(vmax)/wc vertices
from V ′. After that, w(vmax) becomes w(vmax) < w, and the other vertices have the same
weight w. We update vmax by any vertex in V ′ \ {vmax}. Through the step, the running
time is proportional to the number of the vertex removed.

Next, we assume that there are some different weight vertices in V ′. The pair vi and
v j of different weights can be found by traversing the doubly linked list. Let v2, v3, . . .
be the consecutive vertices in the list. If V1 , ∅, the pair vi = v1 and v j = v2 can be
found in O(1) time. Otherwise, the algorithm checks if w(v1) = w(v2), w(v2) = w(v3),
or w(v3) = w(v4), . . . until it finds w(vk) , w(vk+1). Then set vi := min{vk, vk+1} and
v j := max{vk, vk+1}. Moreover, in the case, the algorithm knows that w(v1) = w(v2) =
· · · = w(vk). When W − 2w(vk) ≤ 2w(vmax), the algorithm connects all vertices and
halts in time O(|V ′|). Hence we assume that W −2w(vk) > 2w(vmax). Then the algorithm
removes vi or v j in O(1) time from the linked list. After updating n and W, the algorithm
has to check if all vertices in V ′ have the same weight. Since the algorithm knows that
w(v1) = w(v2) = · · · = w(vi−1), it is enough to check from vi−1. Thus the total time to
check if V ′ contains at least two vertices of different weights is bounded above by O(n).

Hence, the algorithm runs in O(n) time and space. ut

By Lemmas 2, 3, 4, and 5, we immediately have Theorem 1.

3 Minimum cost spanning tree

In this section, we first prove that the problem for finding a minimum loss tree airline
network is NP-complete. Next, we show approximation algorithms for the problem.

3.1 NP-hardness for finding a spanning tree of minimum loss

We first modify the optimization problem to the decision problem as follows; the input
of the algorithm consists of a set V of nodes, a positive integer weight function w(v) for
each v ∈ V , and an integer k. Then the decision problem is to determine if there is the
set E of edges and a positive integer weight function w(u, v) such that they provide a
feasible solution of the airline problem with L(G) ≤ k and (V, E) induces a (connected)
tree.

Theorem 2. The decision problem for finding a tree airline network is NP-complete.

Proof. The problem is clearly in NP. We reduce it to the following well known NP-
complete problem [4, [SP12]]:

Problem: Weighted Set Partition
Input: Finite set A and weight function w′(a) ∈ Z+ for each a ∈ A;
Output: Determine if there is a subset A′ ⊂ A s. t.

∑
a∈A′ w′(a) =

∑
a∈A\A′ w′(a).

Let W :=
∑

a∈A w′(a). Without loss of generality, we assume that W is even. For given
A = {a1, a2, . . . , an} and the weight function w′, we construct the input V and w of the
airline problem as follows; V = A ∪ {u, v}, and w(a) = w′(a) for each vertex a in A. We
define w(u) = w(v) = W

2 + 1. The reduction can be done in polynomial time and space.
We show that A can be partitioned into two subsets of the same weight if and only if
V has a tree airline network with no loss. Let E be the set of weighted edges of the
minimum loss. We first observe that if G = (V, E) achieves L(G) = 0, E has to contain
the positive edge {v, u}. Otherwise, the edges incident to u or v have to have total weight
W + 2 > W, and then we have L(G) > 0.

First we assume that A has a partition A1 and A2 such that A1∪A2 = A, A1∩A2 = ∅,
and
∑

a∈A1
w(a) =

∑
a∈A2

w(a) = W/2. We show that V has a tree airline network with
no loss. We define the weight function w as follows; w{u, v} = 1, w{a, u} = w(a) for all
a ∈ A1, and w{a, v} = w(a) for all a ∈ A2. By assumption and construction, the set E of
positive weighted edges is a tree airline network with no loss.

Next we assume that V has a tree airline network with no loss, and show that A can
be partitioned into A1 and A2 of the same weight. By the observation, the edge {u, v}
has a positive weight, say w′. We then partition the set A into A1 and A2 as follows;
A1 consists of vertices a ∈ A of odd distance from u, and A2 consists of vertices a ∈
A of even distance from u. Since T is a tree, A1 and A2 satisfy A1 ∩ A2 = ∅, A1 ∪
A2 = A, and two sets A1 and A2 are independent sets. Moreover, since T has no loss,∑

e∈(A1\{v})×{u} w(e) =
∑

e∈(A2\{u})×{v} w(e) = W
2 + 1 − w′, and

∑
e∈(A1\{v})×(A2\{u}) = w′ − 1.

Hence we have
∑

a∈A1\{v} w(a) =
∑

a∈A2\{u} w(a) = W
2 . Thus A1 and A2 gives a solution of

the weighted set partition problem.
Therefore, the weighted set partition problem can be polynomial time reducible to

the problem for finding a tree airline network of minimum loss, which completes the
proof. ut

3.2 Approximation algorithms for a tree airline network

In this section, we show two approximation algorithms that aim at different goals. First
one gives us a simple and efficient algorithm with approximation ratio 2. Second one
is based on an FPTAS for the set partition problem, which gives us a polynomial time
algorithm with arbitrary small approximation ratio.

Simple 2-approximation algorithm The simple algorithm is based on the algorithm
stated in Section 2. The algorithm in Section 2 outputs a connected network with at
most n edges. The algorithm outputs the nth edge when (1) it is in the uniform case,
or (2) the edge {vi, v j} is produced in step 10 or step 31 by Algorithm Network. We
modify each case as follows and obtain a simple approximation algorithm.
(1) In the uniform case with w > 1, pick up any pair of vertices {vi, vi+1} such that
w(vi, vi+1) = bw/2c. Then, cut the edge, and add their weight to adjacent edges;
w(vi−1, vi) := w(vi−1, vi) + bw/2c, and w(vi+1, vi+2) := w(vi+1, vi+2) + bw/2c. In the case,
L(G) increases by 2 bw/2c ≤ w.

(2) In both cases, the vertices vi and v j will be joined to vmax in the next iteration since V
satisfies the star condition. Hence we add the weight of the edge {vi, v j} to {vi, vmax} and

{v j, vmax}. In the former case, L(G) increases by 2 d(w(vmax) − (n − 2)w)/2e ≤ w(vmax)−
(n − 2)w + 1 < w(vmax). In the latter case, L(G) increases by 2 d(W − 2w(vmax))/2e <
w(vmax).

From above analysis, we immediately have the following theorem:

Theorem 3. The modified algorithm always outputs a connected tree T = (V, E) with
L(T) ≤ w(vmax) in O(n) time and space.

Let E′ be any feasible solution (which does not necessarily induce a tree) of the
airline problem. Then, clearly,

∑
e∈E′ w(e) ≥ w(vmax). Thus we have the following corol-

lary.

Corollary 1. Let E be the set produced by the modified algorithm, and Eopt be an
optimal solution (with the minimum loss) of the airline problem. Let T := (V, E) and
G := (V, Eopt). Then,

∑
e∈Eopt

w(e) ≤ ∑e∈E w(e) < 2
∑

e∈Eopt
w(e).

Approximation algorithm based on FPTAS A weighted set partition problem
has an FPTAS based on a pseudo-polynomial time algorithm. The idea is stan-
dard and can be found in a standard text book, for example, [3, Chapter 35.5].
Hence, using the FPTAS algorithm, we can compute a partition X and Y of V with
|∑v∈X w(v)−∑v∈Y w(v)|−|∑v∈X∗ w(v)−∑v∈Y∗ w(v)|∑

v∈V w(v) < ε for any positive constant ε in polynomial time
of |V | and ε, where X∗ and Y∗ are an optimal partition of V .

In this section, we show a polynomial time algorithm that constructs a tree airline
network from the output of the the FPTAS for the weighted set partition problem for
the same input V and w.

By the results in Section 2, if V satisfies either the star condition or the uniform
condition, we can obtain a tree airline network that is an optimal solution. On the
other hand, if V contains many vertices of weight 1, we can reduce them by Algo-
rithm Many-ones. Hence, without loss of generality, we assume that V is neither in the
star condition nor in the uniform condition, and V contains at most one vertex of weight
1.

We first regard V and w as an input to the weighted set partition problem. Then
we run the FPTAS algorithm for the weighted set partition problem. Let X and Y
be the output of the algorithm. That is, δ :=

∣∣∣∑v∈X w(v) −∑v∈Y w(v)
∣∣∣ is minimized

by the FPTAS algorithm. We note that an optimal partition X∗ and Y∗ of V gives
the lower bound of the optimal solution for the airline problem; we cannot have
L(T) <

∣∣∣∑v∈X∗ w(v) −∑v∈Y∗ w(v)
∣∣∣ for any weighted tree T that spans V . We can make a

tree airline network that achieves the same performance by the FPTAS.

Theorem 4. Let X and Y be the partition of V produced by an FPTAS for the weighted
set partition problem, and δ :=

∣∣∣∑v∈X w(v) −∑v∈Y w(v)
∣∣∣. Then, from X and Y, we can

construct a connected network E such that T = (V, E) is a tree with L(T) ≤ max{δ, 2}.
The tree T can be constructed in O(|V |) time and space.

Proof. The algorithm consists of two phases.
Let v0 be the vertex in V of the minimum weight, i.e., w(v0) ≤ w(v) for any v ∈ V . If

v0 is uniquely determined (or w(v0) , w(v) for each v ∈ V \{v0}), the algorithm performs
the first phase, and otherwise, the algorithm runs from the second phase.

We first show the first phase, which runs if v0 is uniquely determined. Without loss
of generality, we assume that v0 ∈ X. We let X = {x0 = v0, x1, x2, . . . , } and Y =
{y1, y2, . . . , }. (We note that x1, x2, . . . and y1, y2, . . . are ordered in arbitrary way.) The
first phase is given in Algorithm Caterpillar; it starts from a path {x0, y1}, and extend
it as possible as it can until the next vertex pair becomes the same weight. (The resultant
graph makes a graph that is known as a caterpillar which consists of path where each
vertex on the path has some pendant vertices.) After the first phase, if X = ∅ or Y = ∅,
we complete the tree by joining all vertices in the non-empty set (if it exists) to the last
vertex touched in the empty set. In the case, the tree T admits L(T) = δ. Hence we
assume that X , ∅ and Y , ∅, and w(xi) = w(y j) = w for some i, j, and w. By the
algorithm and initial condition, we have i > 0 and one of w(xi) and w(y j) is updated,
and the other one is not updated. Hence w > w(v0).

Algorithm 6: Caterpillar
i := 0; j := 1;
while w(xi) , w(y j) and X , ∅ and Y , ∅ do

if w(xi) < w(y j) then
Span(xi,y j,w(xi));
i := i + 1;

else
Span(xi,y j,w(y j));
j := j + 1;

Now, we turn to the second phase. We now renumber the vertices as X =

{x0, x1, x2, . . .} and Y = {y0, y1, y2, . . .} such that w(x0) ≤ w(xi) and w(y0) ≤ w(yi) for
each i > 0. By assumption, the input V contains at most one vertex of weight 1. Hence
now we have w(x0) = w(y0) > 1 by the first phase.

If the algorithm runs the first phase, one of x0 and y0 is an endpoint of the caterpillar.
Without loss of generality, we assume that x0 is the endpoint. (We regard that x0 is
the endpoint of the graph of size 1 if the algorithm runs from the second phase.) The
algorithm extends the tree from xi as follows. It searches y j with w(x0) , w(y j) from
{y1, y2, . . .}.

If the algorithm finds w(y j) with w(x0) , w(y j), it calls
Span(x0,y j,min{w(x0),w(y j)} = w(x0)). Then the algorithm repeats the first
phase with the vertex pair x1 and y j; we remark that the algorithm knows that
w(y0) = w(y1) = · · · = w(y j−1) = w, which will be preferred than the other vertices in
the next phase, and the algorithm can omit to check if they have the same weight.

When the algorithm do not find w(y j) with w(x0) , w(y j), we have w(x0) = w(y)
for all y ∈ Y . In the case, the algorithm searches xi with w(xi) , w(x0). If the algorithm
finds w(xi) with w(xi) , w(x0), it calls Span(xi,y0,min{w(xi),w(y0)} = w(y0)). Then the
algorithm repeats to join the vertices in Y to xi until xi is removed. If xi is removed
while Y , ∅, the last touched vertex y j in Y satisfies w(y j) < w(y) for each y ∈ Y
and w(y j) < w(x0) since all vertices in Y had the same weight equal to x0. Thus the

algorithm repeats the first phase for the pair {x0, y j}. If we have Y = ∅ and w(xi) > 0,
the algorithm picks up the last vertex y in Y and connect all vertices in X to y with their
weights. In the case, the algorithm achieves the loss δ.

Now, we have the last case: w(x) = w(y) = w for all x ∈ X and y ∈ Y . We
renumber X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk′ }. By the process above, ev-
ery connected subtree has exactly one node in X ∪ Y . Thus we have a weighted tree
T spanning V by joining those vertices. Moreover, since the vertices are preferred if
they are touched, both of X and Y contain at least one vertex whose weight was not
updated by the algorithm, respectively. If |k − k′| > 1, we can improve δ by moving
the untouched vertex. Hence we have k = k′ or |k − k′| = 1. First, we assume that
|k − k′| = 0. If k = k′ = 1, the algorithm completes the tree by joining {x1, y1} with
w(x1, y1) = w. When k = k′ > 1, the algorithm completes a spanning tree T by the path
(x1, y1, . . . , xk, yk) with w(x1, y1) = w(xk, yk) = w, w(xi, yi) = w − 1 and w(yi, xi+1) = 1
for 1 < i < k. Then we have L(T) = 2. If k = k′ + 1, the path (x1, y1, . . . , xk−1, yk−1, xk)
with w(x1, y1) = w, w(yk−1, xk) = w, w(xi, yi) = w−1 and w(yi, xi+1) = 1 for 1 < i < k−1
gives us the tree T with L(T) = δ. The case k = k′ − 1 is symmetric.

Thus, the algorithm outputs a tree airline network T with L(T) ≤ max{2, δ}. By
similar implementation using queue of the vertices of the same weight in the proof of
Lemma 5, the algorithm runs in O(n) time and O(n) space. ut

4 Concluding remarks and acknowledgment

In this paper, we do not deal with the assignment problem over the constructed net-
work. When each vertex has its destination, the assignment problem is further chal-
lenging problem. The authors are partially supported by the Ministry, Grant-in-Aid for
Scientific Research (C).

References

1. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-world net-
works. Applied Physical Science, 97(21):11149–11152, October 2000.

2. A.L. Barabasi. Linked: The New Science of Networks. Perseus Books Group, 2002.
3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill,

1990.
4. M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory of

NP-Completeness. Freeman, 1979.
5. M. Newman. The structure and function of complex networks. SIAM Review, 45:167–256,

2003.
6. M. O’Kelly. A quadratic integer program for the location of interacting hub facilities. Euro-

pean Journal of Operational Research, 32:393–404, 1987.
7. J. Sohn and S. Park. The Single Allocation Problem in the Interacting Three-Hub Network.

Networks, 35:17–25, 2000.
8. D. J. Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness.

Princeton University Press, 2004.

