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Abstract. This paper demonstrates the generation of a linear time
query processing algorithm based on the constructive proof of Higman’s
lemma described by Murthy-Russell (IEEE LICS 1990). A linear time
evaluation of a fixed disjunctive monadic query in an indefinite database
on a linearly ordered domain, first posed by Van der Meyden (ACM
PODS 1992), is used as an example. Van der Meyden showed the exis-
tence of a linear time algorithm, but an actual construction has, until
now, not been published elsewhere.

1 Introduction

Temporal databases, which are the databases of events on the linearly ordered
domain, have attracted attention from early 90’s, and the complexity of evaluat-
ing various queries has been analyzed [1,6]. One of important issues is indefinite
database, i.e., processing a query whether all possible models of incomplete (par-
tial) information hold it. Van der Meyden showed that the complexity of eval-
uating a conjunctive (n-ary) query containing inequalities is IT5-complete [16],
solving an open problem.

He also investigated tractable subclasses; for instance, a fixed monadic query
can be evaluated in linear time (to the size of a database)!. However, for a
fixed monadic disjunctive query, he only showed the existence of a linear time
query processing algorithm, and an actual construction was not given. His (non-
constructive) proof of the existence is based on Higman’s lemma, which states
that the embedding relation on finite words is a Well-Quasi-Order (WQO). Under
a WQO, minimal elements of any set are guaranteed to be finitely many, and
the linear time algorithm is constructed as to the comparison with these finitely
many minimal elements (called minors).

This situation frequently appears in the upper bound complexity estimation
based on WQO techniques. For instance, the Graph Minor Theorem states that
the embedding relation on finite graphs is a WQO [12], and this implies the
existence of square time algorithms for a wide range of graph problems [3,13,

! Either fixing a query or restricting to a monadic query remains in co-NP.



10]. Difficulty is; one can compute minors by brute-horse manner, but how one
can know whether all have been found. Fortunately, we know constructive proofs
of Higman’s lemma [7,11,2], and what we expect is how to apply them.

In this paper, we describe the generation of a linear time query processing
algorithm of a fixed disjunctive monadic query in an indefinite database over a
linearly ordered domain. This problem is first posed by Van der Meyden in [16],
and has, until now, not been published elsewhere. Our method will effectively
compute minors for a given disjunctive monadic query, using the regular expres-
sion techniques appeared in Murthy-Russell’s constructive proof of Higman’s
lemma [7], and thus will lead a linear time query processing algorithm.

This paper 1s organized as follows: Section 2 briefly outlines the problem.
Section 3 reviews the results of query processing in an indefinite database [16].
Section 4 gives the constructive proof of Higman’s lemma [7] and its extension.
Section b proposes linear time algorithm generation for fixed disjunctive monadic
query processing in an indefinite database. Section 6 concludes the paper.

2 A tour

In this section, to get a basic feeling for our method, we introduce a simpler
version of the target example. A complete description is included in Section 3.

Let # and y be lists, and let sublst(z,y) be a predicate which returns true
if £ 18 a sublist of y. It returns false otherwise. More rigorously, we can write in
Haskell as:

sublst :: [al -> [a] -> Bool
sublst (] ys true
sublst x:xs (]
sublst (x:xs) (y:ys)

false
if x == y then sublst xs ys
else sublst (x:xs) ys

Let us consider an easy problem. Fix a list x.

— Input: A finite set of lists y = {y1, -,y }-
— Output: A decision as to whether sublst(x,z) holds for each list z with
/\z»zlsublst(yj ,Z).

This problem can be regarded a query as follows: we know partial information
on events (which exclusively occur), and this partial information is represented
as a set of lists y;’s. Then, can we decide whether there exists an event sequence
represented as x?

This problem is simply solved by computing sublst(x, y;) for each y;, and if
some sublst(x,y;) returns true then it holds; otherwise it does not hold.

Now we consider two extensions: (simplified versions of) conjunctive query
and disjunctive query. The conjunctive query is as follows: fix finite number of
lists, x1, - -, x;.

— Input: A finite set of lists y = {y1, -,y }-



— Output: A decision as to whether AZ_; sublst(x;, z) holds for each list z with
/\z»zlsublst(yj ,Z).

This is still easy, since this problem is decomposed into the check on each x;,
i.e., whether for each x;, sublst(z;,y;) for some y; holds.

However, the disjunctive query is much harder. The disjunctive query 1is for-
malized as follows: fix finite number of lists, #1,-- -, z5.

— Input: A finite set of lists y = {y1, -,y }-
— Output: A decision as to whether Vi_;sublst(x;, z) holds for each list z with
/\z»zlsublst(yj ,Z).

Finding an efficient solution (a linear time algorithm) for this problem is not
as easy as it appears. To illustrate, consider 21 = [P, @, R], 2 = [@, R, P], and
z3 = [R, P,Q]. This holds for y; = [P,Q], y= = [@, R], and y5 = [R, P], even
though none of ;’s and y;’s hold sublst(x;,y;).

Of course, if one computes every possible combination of z, a decision is
possible, but this requires an exponentially greater amount of time. For instance,
for lists g1, - - -, y¢ of lengths ny, - - - ng, the number of combinationsis (n;+-- -+
ne)l/(ni! x -+ x ngl), which grows exponentially.

The aim of the paper is to generate the linear time algorithm for a given
disjunctive query. In our method, a suitable finite set M of finite set of lists,
called minors is generated corresponding to given z;’s. Namely, for the example

Ty = [PaQaR]’ Lo = [QaRa P]a and T3 = [Ra Pa Q] above,

M={[P,@Ql,1Q Rl [R P} {[R,Q P,[Q, P R][P R Q},
([P, Q. R} A1Q. R, PI}L{R, P.Q),
{[P,Q, PLIQ, R} {[Q, R, Q) [R, PI}{[R, P, R, [P, Q]}}.

Then the disjunctive query for input y = {y1, -, y:} is reduced as to whether
there exists a minor m in M such that for each m € m there exists y; satisfying
sublst(m, y;).

By Higman’s lemma, minors are guaranteed to be finitely many. When gen-
erating minors, the most difficult aspect is knowing whether all have been found.
To do this, we apply the regular expression techniques, called sequential r.e.’s,
used in Murthy-Russell’s constructive proof of Higman’s lemma [7]. Then along
generating minors, we explicitly estimate the resting possibility of minors, that
is represented by sequential r.e.’s. Then, we will eventually find that the resting
possibility 1s empty. This means that all minors have been found.

3 Disjunctive monadic query on indefinite database

As a target example, we used the linear time fixed disjunctive monadic query
processing of indefinite database, proposed by Van der Meyden [16]. He posed
the following unsolved problem:



In a fired disjunctive monadic query, there is an algorithm an-
swering the query, which is linear wrt the size of the indefinite
database on a linearly ordered domain. What is an actual algo-
rithm ?

In this section, we briefly review his results. For details, please refer to [16].

Proper atoms are of the form P(a), where P is a predicate symbol, and a is a
tuple of constants or variables. Order atoms are of the form u < v, where u and
v are order constants or variables. An indefinite database D is a set of ground
atoms. The atoms are either proper atoms or order atoms. A model D of D is a
linearly ordered domain (such as time) satisfying D. D is a collection of partial
facts on a linearly ordered domain, and thus is called indefinite. A model D’ is
an extension of a model D if some subset of D’ is isomorphic to D.

We concentrate on monadic query processing, (i.e., database and queries
contain only monadic predicate symbols except for <). A predicate symbol is
monadic if 1ts arity is less than or equal to one. The class of monadic queries is
restrictive, but contains nontrivial problems, such as a comparison between two
gene alignments (regarding C, G, A, T as monadic predicates).

A query is a positive existential first-order clause constructed from proper
and order atoms using only 3, A, and V. A conjunctive query is a first-order
clause constructed from proper atoms and order atoms using only 3 and A. For
simplicity, queries are expressed in disjunctive normal forms.

For an indefinite database D and a query ¢, we define D |= ¢ if ¢ is valid
in any model of D. For instance, let D = {P(a),Q(b),a < b,Q(c), R(d),c <
d,R(e), P(f),e < f}, and let ¢ = /1 V 42 V ¢35 where

1 = Jeyz[P(2) AQ(y) AR(Z) A 2 <y < 2],
g = Jeyz[Q(2) AR(y) AP(2) A 2 <y<z], and
3 = Jeyz[R(x) AP(Y) AQ(2) A 2 <y < z].

As aresult, D |= ¢. Note that neither D = ¢y, D | ¢, nor D | ¢s.

Definition 1. A conjunctive query is sequential if its form is

Jtito---t, [Pl(tl)/\/\Pn(tn)/\ t1<t2<~~~<tn],

Let Pred be a set of monadic predicates, and let ¥ = P(Pred) be the
power set of Pred. X* is the set of all the finite words of the symbols in 2.
Without losing generality, we can assume that a monadic query does not contain
constants. Thus, up to variable-renaming, sequential monadic queries correspond
one-to-one with words in X*. For instance, It1tats [P(t1) AQ(E1) A P(t2) AR(t3) A
ty < 1y < i3] corresponds to {P, Q}{P}{R}.If ¢ is a conjunctive monadic query,
a path in ¢ is a maximal (wrt implication) sequential subquery of .

We use the expression Paths(i) for the subset of X* corresponding to paths
of ¢, and length(+)) for the sum of the lengths of all the paths.

Lemma 1. Let D be a monadic database and 3 be a conjunctive monadic
query. Then, D =« if and only if D = p for every path p € Paths(y).



Let Py, Py, - -+, P, be either proper or order atoms. By regarding the indefinite
database D = {Py, Ps,---, P,} as a conjunctive monadic formula Py A Ps A -+ - A
P, the paths of the database are similarly defined. We denote the set of paths
as Paths(D). Note that the paths in an indefinite database can be computed in
linear time wrt the size of the database.

Lemma 2. Let 9 be a sequential query, and let < be a subword relation on
X* constructed from C on X (i.e., u < v if there is an order preserving injection
f from u to v s.t. u; C vy for each i). Then D |= ¢ if, and only if, there is a
path ¢/ € Paths(D) s.t. ¢ < 4.

For a disjunctive query ¢, D = ¢ may be true even if D |= 1 does not for each
conjunctive component 1 of ¢. This makes it difficult to judge whether D = ¢.
For the indefinite databases, Dy and Do, Dy C Dy if Paths(D1) <, Paths(Da),
where U <,,, VifVueUIv eV st. u<v.

Theorem 1.  For any disjunctive monadic query ¢, if Dy = ¢ and Dy C Dy,
then D5 | .

At the end of this section, we remark on the existence of the linear time
algorithm to decide whether D | ¢ for a fixed disjunctive query ¢. A quasi
order (QO) (X, <) is a reflexive and transitive binary relation on X

Definition 2.  For a QO (X,<), a sequence &y, %2, &3, - (either finite or
infinite) is bad if #; £ »; for all 4, j with ¢ < j. A (X, <) is a WQO if any infinite
sequence X1, %9, &3, - in X is not bad (i.e., there exist ¢ and j such that i < j
and «; < ;). When X' is clear from the context, we simply denote as <.

Elements in Pred of interest is elements in the monadic queries. Thus, with-
out loss of generality, we can assume that Pred is finite, and the set inclusion C
in ¥ = P(Pred) is a WQO. Then, according to Higman’s lemma, (2*, <) and
(F(X*),<p) are WQOs. Based on Theorem 1, the set of indefinite databases
which hold a fixed disjunctive query ¢ is upward closed wrt C. Thus the prob-
lems of judging whether D = ¢ is reduced to a comparison of D with minimal
indefinite databases wrt C. The judgment can be made in linear in the size of
D. From this observation, the next theorem follows.

Theorem 2. Let us fix a disjunctive monadic query ¢. Then, there exists a
linear time algorithm to decide D [= ¢ for a monadic database D.

Note that if a disjunctive monadic query varies, the complexity becomes co-
NP. This theorem only says the existence of a linear time algorithm, and the
construction, which is reduced to the generation of all the minimal indefinite
databases wrt C, will be shown in Section 5.



4 Higman’s lemma and the constructive proof

In this section, we will briefly explain the constructive proof of Higman’s lemma.
Higman’s lemma states that any bad sequence has finite length, and the con-
structive proof of Higman’s lemma is presented by constructing the effective
well-founded-order (WFO) among bad sequences.

The basic idea 1s as follows: for a bad sequence, we first assign a union of
special regular expressions which approximate possible choice of the next element
to enlarge a bad sequence. Next, we construct an WFO on sets of special regular
expressions such that for each bad sequence its prefix is strictly larger. Thus, this
means that any extension of bad sequences eventually terminates. For details,
please refer [7]. We also show an extension of the proof.

4.1 Constructive proof by Murthy-Russell

Lemma 3 (Higman’s lemma). [5] If (¥, <) is a WQO, then (2* <) is a
WQO, where < is a subword relation constructed based on < (i.e., u < v if there
is an order preserving injection f from u to v s.t. u; < vy for each ).

The standard proof by Nash-Williams [8] is non-constructive, especially, the
reasoning called minimal bad sequence, in which (1) the proof proceeds based
on contradictions, (2) the existence of a minimal bad sequence is a result of
Zorn’s lemma, and (3) the arguments on a minimal bad sequence are heavily
impredicative. An example 1s universal quantification over all bad sequences. A
minimal bad sequence is a bad sequence which is minimal wrt the lexicographical
order of sizes.

Murthy-Russell, Richman-Stolzenberg, and Coquand-Fridlender independently
gave constructive proofs for Higman’s lemma [7,11,2]?. For a constructive proof,
we must make the following assumptions.

1. Let A and B be bad sequences of X, and let A C;.q B if, and only if, A
is a proper extension of B. [;¢q is well founded and equipped with a well
founded induction scheme.

2. The WQO < on X is decidable.

Classically, the first assumption is obviously based on the WQO property of
<, but constructively it is not. The WQO that satisfies the assumptions above
is called a constructive well-quasi-order (CWQO) [14].

We will briefly review the techniques used in [7]. We will refer to an empty
word as € and an upward closure of words which contains w (i.e., {x € 2* | w <

z}) as w.
As a convention, we will refer to the symbols in X as a,b, ¢, -- -, the words
in X* as u,v,w, - -, the finite sequences in X as A, B, -, the finite sequences

in X* as V,W, .- the subsets of ¥* as L,L’,---, the finite subsets of L* as
a, B3, -, the subsets of finite subsets of X* as £, L’ ---, the special periodic

2 Similar idea to [11] is also found in [14].



expressions called sequential reqular expressions as o,0,---, the finite sets of

sequential regular expressions as @, @1, @, - - -, the special power set expressions
called base expressions as &,8,---, and the finite sets of base expressions as
@adjla@% B

Definition 3. Let b € X, and let A = ay,as, -+, a; be a bad sequence in X.
The constant expression (b — A) denotes a subset of X' defined by

{reX |b<ue A a £ foreach i <k},
and the starred expression (X — A)* denotes a subset of ™ defined by
{w=ciey---cn €Z° | a; £¢; foreach i <n,j <k}

The concatenation of A and a € X is Ala.

A sequential regular expression (sequential r.e.) o is a (possibly empty) con-
catenation of either constant or starred expressions. The size size(o) of o is the
number of the concatenation. For a finite set @ of sequential expressions, we
define L(@) = Usco0.

Let wy, ws, ws, --- be a bad sequence of elements in X*. We will explicitly
construct a finite set @ of sequential r.e.’s for wy,ws, - -+, wg such that = \
(wi U---Uwy) C L(@Og). For a word not to be a superword of w, it can only
contain a proper subword of w. So what we do is write down the sequential r.e.’s
which accept classes of words containing different proper subwords of w.

Definition 4.  For sequential r.e.’s oy, -+, 0,, we define their concatenation
o1 o as {wy - wy, | w; € oy fori < n}, and denote 4 for the union operation.
Let o be a sequential r.e. and let w € 0. We will define ©(c, w) as follows.

1. When o is a constant expression (b — A)3, we can identify w as a single
symbol in X' because ¢ C X. Then O(o,w) = (b — Alw) + €.

2. When ¢ is a starred expression (X — A)*4, let w = cica-- ¢ with ¢; € X
for each j. Then

O, w) = Uj=y (X = Aler)"((e1 = A) + ) -+ (T = Alej—1)*((¢j-1 — A) + )
(2 — Aley)”
((ej41 = A) + (X = Alejp1)™ - ((a = A) + (X = Aler)™.

3. When ¢ = o109 - -0,, where o; 1s either a constant or starred expression,

we fix a decomposition of w into o;s (i.e., w = wiwsy - - - wy,) with w; € o; for
each ¢ < n. Then

Oo,w) = Uiz {o1 - oim1oiyr - on | 0 € Ooi, wi)}
® Ref. [7] has a flaw that ©(c, w) is simply defined as (b — A|w).

1 Ref. [7] has a flaw that @(c, w) is simply defined as (X — Alc1)*(c1 +¢€) -+ (c1—1 +
)X — Aler)™.



Let @ be a finite set of sequential r.e.’s. The following lemma shows that if
we remove the sequential r.e. o from @, and replace it with the set @(c, w) with
w € o, the resulting (finite) set of sequential r.e.’s includes all the finite words
in L(@) not containing w.

Lemma 4. Let L C X*. Assume that there is a finite set @ of sequential r.e.’s
such that L C L(©). For any w € L, ¢ € @ with w € o,

L\w® C L((0)\ {o}) UB(, w)).

Thus, for a bad sequence wy, ws, - -+, we can construct @ by starting from
2 and repeating the applications of Lemma 4. If this process terminates, @
eventually empties, and < is a WQO. For termination, we construct a well-
founded order Cjeterp Which strictly decreases when Lemma 4 is applied. This
gives a constructive proof of Higman’s lemma.

Definition 5.  For the finite sequences A, B in X, A C,eq B if B is a proper
prefix of A. For any pair of constant expressions (a—A) and (b—B), (a—A) Ceonst
(b—B)ifa=0b A AL, B. For any pair of starred expressions (X — A)* and
(Z—=B)", (- A C. (¥—B)"if A Cieq B. Let Cegp = Ceonst U Cx
U{(a—A)} x {(¥ = B)} (i-e., all the constant expressions are below the starred
expressions). Let [oeterp be a multiset extension [9] of Cepp.

We define an ordering C,. of sequential r.e.’s by o T, 0 < Wi {0;} Cseteap
&Jézl{ﬁj}, for o =01+ 0, and 0 = 6, ---0;, where the o;s and 0;s are either
constant or starred expressions. We also denote a multiset extension of . with
Csetre-

Theorem 3. Let W = wy,ws, -, wg be a finite bad sequence in X2*. One
can effectively compute a finite set ©@; of sequential r.e.’s for ¢ < k such that

T\ (wj Uwy U---Uwy) C L(6))
and @i+1 Csetre 64 for ¢ < k.
Corollary 1. If (¥, <) is a CWQO, then (X*, <) is a CWQO.

Ezample 1. Let X = {a,b}. Consider the bad sequence ab, bbaa, ba,bb,a,b wrt
<.
B @0 = (Z - 6)*
Or=(T—-a)*b+e)(X =) uU(X—a)(at+ (X —-b)*
Or=0b+e)(X—bU(Z—a)(a+e)
= {ba*, b a}
O;=(T-bub+e)U(a)U(X —a)
O, =(Z-bu(b+e
= {a*, b}
@5 = {E,b}
O = {}



4.2 An Extension

For our purposes, we need further extension to the sets of finite sets of finite
words (which is not included in [7]). Let F(X*) be the set of all finite sets of X*.
Assume that (X%, <) satisfies the CWQO assumptions. Note that an embedding
(X%, <) satisfies them. We define o <, 8 for o, 8 € F(X*) if, for each z € a,

there exists y € J such that © <y. We also denote the upward closure of « in
F(Z*) (e, {y € F(Z*) | @ < v}) with o°.

Definition 6.  Let W = wq,ws, -, wy be a finite bad sequence in X*. The
base exrpression is

(ZreW)=F({ue X" | w; £ uforeach i <k})

We define 2* © V Crase 2" 0 W if V Cieq W. For a finite set @ of base
expressions, we define £L(@) = Uzcg0.

Let aq, g, - - - be a bad sequence of elements in F(X*). We will construct a
finite set @ of base expressions for aq, - - -, oy such that F(Z*)\ (afU---Uaj) C
L(®;). For a finite set not to be a superset of «, it must contain one of the
elements in . What we do is write down base expressions which accept finite
sets not containing some element of «.

Definition 7.  Let (X* & V) be the base expression for a finite bad sequence
Vin 2* and let a € (2* & V). We then define @(Z* sV o) ={X*oV]v|v e
a A v; Ao foreach v; € V]

Lemma 5. Let £ C F(X*). Assume that there is a finite set @ of base ex-
pressions such that £ C Uzcga. For any o € L and ¢ € @ with a € 7,

L\ a® CL((@\{o})UP(,a)).

Let Cpase be the multiset extension of Cyeq. Since < is a WQO on L™, Cieq
is well founded, and so 18 [Cpese. Thus, by using a constructive proof similar to
Higman’s lemma, we obtain the next theorem.

Theorem 4. Let A = ay, a9, -, ay be a finite bad sequence in F(X*). Then
one can effectively compute a finite set @; of base expressions for ¢ < k such that

F(ZI)\(ejUasU---Uaj) C L(P;)

and @1 Cpase @i for ¢ < k.

Corollary 2. If (2* <) is a CWQO, then (F(Z*),<,,) is a CWQO.



Ezample 2. Let X = {a,b}. Consider the bad sequence {ab, bbaa}, {ba,bb},{a, b}
wrt <,,

||
—_— —— f—"—«f—"—«f—"—«/—"—«

(= 09)
(5% & (ab), (5 & (bbaa)}

Fral), #la (04 (o 0))
(£ {a b)) (57 fa ),
(X" & (bbaa, ab)), (X* © (bbaa,bb))}
Flta, b)), FUb+ )™, b (a+ ),
Fl{a (4 a1}
(Z* (ab,ba,a)), (X* © (ab, ba, b)),
(X* & (ab,bb,a)), (2* (ab bb b))
(X* & (bbaa, ab, a)), (X* (bbaa ab, b)),
(X* & (bbaa, bb, a)), (X* & (bbaa,bb, b))}

o)

= (F({a")). F({))

Py =

5 Algorithm generation based on WQO techniques

Throughout the section, we use the symbol D for an indefinite database, and
we fix a disjunctive monadic query ¢ = 91 V ¢b2 V - - -V ¢,,,, where the 1);’s are
conjunctive components (i.e., conjunctive monadic queries).

5.1 Design of disjunctive query processing algorithm

We say minors for minimal indefinite databases wrt T, which are valid for ¢,
and a set of all minors is denoted by M. From the observation in Section 3, we
know that the essence of linear time algorithm generation for deciding D |= ¢ is
reduced to generating M,,. Thus, our aim is to generate M,,.

Let Pred be the set of monadic predicate symbols appearing in ¢, and let
Y = P(Pred). Then Paths(D) € F(X*), and we identify D and Paths(D).
(Thus, we also identify C and <;,.)

Since X is finite, F(XZ*) is enumerable. We assume the enumeration func-
tion Enumerate : N — ]-"(Z*) such that ¢ < j implies Enumerate(i) %,
Enumerate(j). Such Enumerate is easily obtained by enumerating objects from
smaller to larger (in size). Then, the algorithm to generate minors is presented
in Figure 1 with the aid of the following predicates and functions.

— Exclude(@, a): For a finite set @ of finite sets of sequential r.e.’s and a €
F(X*), construct a finite set @’ of finite sets of sequential r.e.’s such that
Uoea LIF(O))\ 0° C Uprea LIF(E')) and © >, €.

— QueryTest(a): For a € F(X*), decide whether D = a implies D | .

— ExistsMinor(@): For a finite set @ of finite sets of sequential r.e.’s, decide
whether there exists o € UgcaL(F(@)) satisfying QueryTest (o).

— Minimize(M): For a finite subset M of F(X*), minimize M wrt <,,



1: begin

2: M:={ };

3: L:={{Z"}};

4: n=0;

5: begin

6: while ExistsMinor (L) do

7: begin

3: NotFound:= true;

9: while NotFound do

10: begin

11: if QueryTest (Enumerate(n)) and In(Enumerate(n),L) then
12: begin

13: add Enumerate(n) to M;
14: L:= Exclude(L,Enumerate(n));
15: NotFound:= false;

16: end

17: n:= n+l;

18: end

19: end;

20: M:= Minimize (M) ;

21: return M;

22: end

23: end

Fig. 1. The algorithm to detect minors M,

The implementation of these predicates and functions is as follows: QueryTest (a)
is decidable, because this is specified in the monadic second order logic S1S [15].
To illustrate, let ¢ = 11 V 95 V 93, where

1 = Jeyz[P(2) AQ(y) AR(Z) A 2 <y < 2],
Py = Jzyz[Q(x) AR(y) AP(2) A 2 < y<z], and
3= Jzyz[R(z) AP(Y) AQ(2) A <y <z]

and let o« = {PQ, QR, RP}. QueryTest(a) is represented in S1S as

(Freyzuvw. P(x)ANQy) ANe <y ANQE)ARu)Az<u ARW)APw)Av<w
ANetyANeFz ANzFu ANcFv A zFw
ANyFz NyFu ANy#v ANy£tw AN z#u
ANzZv ANz#w Autv AN utw A vF#uw)
— (1 V aha V 1b3)
This is valid and QueryTest(«) is true.

Exclude is constructed by repeating the applications of Theorem 3 and The-
orem 4. Minimize is easily computed by using <,,.



Note that if ExistsMinor(L) then eventually QueryTest(Enumerate(n))
and In(Enumerate(n),L) becomes true. Thus, the test of ExistsMinor (L) en-
sures termination of the algorithm, and there are difficulties associated with
ExistsMinor.

5.2 Construction of ExistsMinor(L)
Let @ be a finite set of base expressions.

Definition 8.  For the constant expression (b— A) and the starred expression
(X—A)*, we define ¢((b— A)) as the maximal element in (b—A), and ¢((X—A)*)
as the maximal element in (X' — A)*. (Since ¥ = P(Pred) is a lattice wrt C, we
know that such maximal elements exist.)

For the sequential r.e. 8 = o1 -0y, we define ¥(0,n) as (o)™ - - (o)™
where n; = 1 if o; is a constant expression, and n; = n otherwise.

Lemma 6.

1. Let 6 be a sequential r.e. Then, Vw € 6 In s.t. w < w’ for some path
w' € Paths(¥(0,n)).

2. Let 6 be a sequential r.e. Then, VS C F(0) In s.t. S <, Paths(¥(0,n)).

3. Let © be a finite set of sequential r.e.’s. Then, VT' € L(@) In s.t. T <,
{F(@,n) |0 €O}

Definition 9. Let © be a finite set of sequential r.e.’s 6y, -+ 0. Let ¢ =
Y1V V-V by, where 01, -+ 94 are conjunctive components, and let I(¢) =
maz({length(y;) | 1 <i<t}). A(O) is defined as I(p)> ™" x [[5_, (size(6;) +1).

Lemma 7. Let O be a finite set of sequential r.e.’s #1,---,6;. For each n >

A(O), {w(0;,n) |1 <j < s} Eeif, and only if, {¥(6;, A(©)) | 1 < j < s} o
Sketch of proof We prove the stronger statement below by induction on s.

Let mj = I(p)?(s=7)+1 ;41 (size(0;) +1) and m} > m;. Then
for any model D of Nj_1W(0;,m;), D holds ¢ if, and only if, each
model D' of N;_ W (0;, m};), which is an extension of D, holds ¢.

For s = 1, since the n-times multiplication of the same starred expression is
equivalent for n > (), it is easy. Assume that the statement holds for s.

Let o be a starred expression in some ;. Note that the continuous sequence
Y(o) of lengths greater than /() in a model is equivalent to length ().

Let D (resp. D') be a model by multiplying each occurrence of ¥(o) for each
starred expression o in D (resp. D’) I(¢)? x (size(@s541)+1)-times. Thus, D (resp.
D') holds Aj_,¥(0;, m; x l(¢)? x (size(Os41) + 1)) gresp. />§:1W(9j, mj x l(¢)? x
(size(fs41) + 1))). Let us consider the extension Dt of D, which is a model of
U(fs41,1(yp)) and /\jzlx‘sW(ﬁj, mj x l(p)? x (size(@s41) + 1)).

Note that the fairest distribution of ¥(0;11,/(¢)) in the continuous sequence
of (o) has segments of length {(¢) between each adjacent elements in ¥ (6541,{()).



Thus Dt does not hold ¢, if and only if there exists an extension of D’T, which
1s a model of A§:1W(9j, m; x 1(p)? x (size(fs41) + 1)) and W(95+1,m}+1) with
m 1 > (), such that D't does not hold ¢. [ ]

Theorem 5. Let © be a finite set of finite sets of sequential r.e.’s. Then,

ExistsMinor(©) = Vg oQueryTest({¥ (0, A(Q)) | 6 € O}).

Theorem 6.  The algorithm (in Figure 1) to detect a set of minors M, ter-
minates.

Proof From Theorem 4, for each iteration of while ExistsMinor(L),L strictly
decreases wrt <,,,, and <,,, is an WFO. |

Thus, we can effectively compute a set of minors M, and we can give a
simple algorithm to decide D | ¢.

Corollary 3.  For a fixed disjunctive monadic query ¢, a linear time algorithm
to decide whether D | ¢ for an indefinite database D is as follows:

begin
Flag:= false;
for each m in M, do Flag:= Flag or [m <,, D];
return flag;

end

6 Concluding Remarks

This paper described a generation of a linear time query-processing algorithm for
a fixed disjunctive monadic query in an indefinite database on a linearly ordered
domain. This problem was first posed by Van der Meyden [16] and had, until
now, not been published elsewhere. There are several future directions:

1. Our method is based on the regular expression techniques appeared in Murthy-
Russell’s constructive proof of Higman’s lemma [7]. Among its known con-
structive proofs [7,11, 2], [2] would be the most simple and is implemented on
Coq prover (see http://coq.inria.fr/contribs/logic-eng.html). This
could be applied to the simpler method to algorithm generation.

2. We are designing an automatic generator based on MONA (available at
http://wuw.brics.dk/mona). MONA, which runs on Linux, efficiently de-
cides the satisfiability of formulae in monadic second order logic S1S/S2S.
Based on initial experiments, we expect reasonably fast calculations.

3. The next extension may be to use the constructive proof of Kruskal’s theo-
rem [8]. Gupta demonstrated the constructive proof of the weaker form [4].
This would correspond to, for instance, query-processing in an indefinite
database over partial ordered domains (i.e., events on branching time).
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