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Abstract 

A random multiplicative process (RMP) is one of the basic models which can generate a power law distribution. 

Actually, the distribution generated by RMP has two parts, which are closely matched to the head of a lognormal 
distribution and the tail of a power law distribution. We investigated the relation between a shape of distributions 
and model variables. By changing input variables, we explained the origin of the cumulative population 

distributions of municipalities and prefectures in Japan from 1980 to 2006. This controllability of RMP can be 
applied to a power law distribution in various other fields.   
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1. Introduction 
The evolution of the population seems to change with time due to various factors such as economy, 

environment and policy, etc. However, there is empirical regularity about the distribution of the 
population. Zipf ’s law for cities is one of the most striking empirical facts. Zipf ’s law: In terms of 
distribution, this means that the probability that the size of a city is greater than some S is 
approximately proportional to 1/S. N(Size S) = aS -β with β≥ ≅ 1 in general. Zipf ’s law holds across 
countries with very different economic structures and histories such as the early and modern United 
States [1], France and Japan in the twentieth century [2], China in the mid-nineteenth century [3], 
and India in the early twentieth century [4]. 

Though this law seems to be robust, in previous literature on Zipf ’s law, only large cities were 
considered [5]. This implies that most samples of small cities were ignored. However, when we think 
about entire distribution of population, we cannot ignore small cities. Actually, in the high growth of 
the Japanese economy after 1955 a great demographic shift happened, since the young persons 
migrated to the city regions from the rural regions. Forty percent of municipalities are specified as 
depopulated areas now. We can’t see the entire problem by considering only large cities. Therefore, the 
entire distribution of population and its generation mechanism should be studied.  

The purpose of this paper is twofold. First, we explain the cumulative population distributions of 
(all) municipalities and prefectures in Japan. Second, we investigate the origin of those distributions 
by a random multiplicative process (RMP), which is a simple model. We show that the real data of 
cumulative population distribution are almost constant, and this data can be generated by controlling 
variables of the RMP. The organization of this paper is as follows. In the next section, we analyze the 
cumulative population distribution of all municipalities and prefectures in Japan from 1980 to 2006. 
In Section 3, we introduce the RMP. In Section 4, we examine the features of the distribution 
generated by the RMP. In Section 5, we fit simulated results with real data. In Section 6, we 
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summarize our results. 
 

2. Data analysis 
We have a total population of 127.92 million in Japan at present. The population in 2006 was the 

tenth largest in the world, equivalent to 2.0 percent of the global total1. This population occupies over 
1800 municipalities and 47 prefectures. In this paper, we treat two kinds of data. The first is 
population of municipalities (micro scale) and second is prefectures (medium scale). We analyze the 
distribution of population in the range from micro-scale aspect and medium-scale one, and investigate 
the common features. We acquired the data of municipalities2 and prefectures3 from the Statistics 
Bureau in Japan. The main advantage of using these census data is that they cover the entire 
population distribution. Municipality is a generic name for a city, a town, or a village. Most 
municipalities have very few inhabitants. A number of municipalities have been eliminated after a 
great merge in 2000. Table 1 shows transition of number of municipalities; the total number of 
municipalities has decreased by 1435 in these 26 years.  

 
Table.1 Number of Municipalities 

Year 1980 1985 1990 1995 2000 2006 

Number of 
municipalities 

3257 3253 3253 3234 3229 1822 

Number of eliminated 
municipalities 

 -4 0 -19 -5   -1407 

 
A prefecture consists of a larger area including municipalities (cities, towns, and villages). The 

number of prefectures has been 47 for a long time. Figure 1 shows the cumulative population 
distributions of municipalities (a) and of prefectures (b), respectively. From these figures, the entire 
distribution seems not to have changed so much in these 26 years. The distributions seem to be divided 
into upper part (upper 20%) and lower part (lower 80%), both on a micro scale (municipalities) and a 
medium scale (prefectures). The upper parts of the distributions of municipalities and prefectures 
correspond to over 30000 and 4000000 inhabitants. This means that the distribution deviates from a 
power law in the lower 80% part. We call the lower 80% part of the distribution the “head”, and the 
upper 20% part the “tail”. These two parts are similar to the double Pareto distribution, which is 
closely matched to the head of a lognormal distribution and the tail of a power law distribution [6]. In 
the tail part, a power law can be expressed as  

β−= axxN )(         (1) 

where N(x) and x are the rank of a site (municipality or prefecture) and the population, respectively.  
β denotes an exponent in the power law. By taking logarithm, Eq.(1) is rewritten as 

xaxN lnln)(ln β−=        (2) 

After calculating a regression expression in the tail part by least squares method, the exponent of 
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municipalities is 1.19± 0.04, and the exponent of prefectures is 2.49± 0.06. It can be said that these 
distributions are stationary states.  
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Fig. 1. Log-log plots of the rank of the site N(x) vs. the population x from 1980 to 2006. (a) municipalities and (b) 

prefectures. The solid lines are power laws with the exponents 1.2 (a) and 2.5 (b), respectively. Dotted lines are the 

diverging point of head (lower 80%) and tail (upper 20%). 

 
3. The controllable model 

We consider a Random Multiplicative Process (RMP) proposed by Takayasu [7, 8] to generate the 

real population distributions of municipalities and prefectures. The RMP is one of the basic models 

which can generate a power law distribution in the upper tail. The fundamental idea of the RMP was 

pointed out by Champernowne [9], and the mathematical formalization is given by Kesten [10]. The 

RMP is a stochastic process with multiplicative and additive noises. The model equation is 

characterized by the following stochastic time evolution equation:  

)()()()1( tftxtbtx iiii +=+   Ni ,...2,1=    (3) 

where xi(t) denotes the population of the i-th municipality or prefecture at time t. bi(t) > 0 is a 

multiplicative noise; xi(t+1) increases for bi(t) > 1 and decreases for bi(t) < 1, and fi(t) is an additive 

noise. Takayasu set the distribution functions of bi(t) and fi(t) according to the Poisson distribution and 

the symmetric Gaussian, respectively. However, the result of a power law distribution doesn’t depend 

on these or any other settings [11]. In other words, we can obtain it from any kind of distribution. 

In the context of population dynamics, bi(t) and fi(t) can be interpreted as the growth rate and 

unexpected comings and goings, respectively. Because these noises include various factors, it is 

difficult to specify the explicit distribution form. A further argument is necessary to specify the 

physical meanings of noise. For the sake of simplicity, we assume bi(t) and fi(t) are generated by 

uniformly random noises in a certain range, independent of time, temporarily. There are two reasons 

that we assume bi(t) and fi(t) to be uniformly random noises in a certain range. First is that growth 

rate bi(t) and unexpected comings and goings fi(t) will be bounded variables, not infinite. Second is that 

uniform distribution may include various cases, because it does not assume specified distribution. 

We should remark that random multiplicative noise bi(t) corresponds to growth rate, which does 



not depend on the size of the sites . This is confirmed in the United States [12] and Japan [13]. All 

cities follow similar processes; i.e., their growth processes have a common mean (equal to the mean 

city growth rate). This homogeneity of growth processes is often referred to as Gibrat’s law [14].   

The RMP can generate a power law distribution with the specified exponent β. The relationship 

between exponent β and multiplicative noise b(t) is given by the expectation 

1=βb         (4) 

This relation leads to the following expression. 

∫ =
−
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where bmax and bmin are the upper and lower limits of multiplicative noise b(t), respectively. Figure 2 

illustrates the method of deciding the range of multiplicative noise b(t). The areas of ① and ② are 

equal. For examples, we obtain bmin = 0.24 and baverage = 0.92 by calculation from Eq.(5) after setting β = 

2.0 and bmax = 1.6. If bmax decreases, range of b(t) narrows and baverage increases. Conversely, if bmax 

increases, range of b(t) widens and baverage decreases. From these relations between range of b(t) and 

baverage, after this, we focus on baverage. 
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Fig. 2. Method of deciding range of multiplicative noise b(t). The random variable b(t) is generated by a uniform 

random number within range [bmin ,bmax]. 

 

4. The relationship between variables and distribution 

Before fitting the model with the real data, we examined the features of the distribution generated 

by the RMP. First, we investigated the relationship between noise and shift of distribution. We set β = 

2.5, baverage = 0.99, frange = 1 and number of sites = 1000, respectively. Figure 3 shows the relationship 

between additive noise f(t) and shift of distribution. We can shift the distribution to the right by 

increasing either faverage or baverage. Similarly, we can shift it to the left by decreasing either faverage or 

baverage. 
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Fig. 3. The relationship between additive noise f (t) and shift of distribution. Each symbol stands for faverage;  

 (○) = 4000, (☓) = 20000, (□) = 40000  

 

The relationship between noise and shift of distribution is summarized in Table 2. When we fix 

baverage and want to shift the distribution to the left, we should decrease faverage. Conversely, when we fix 

baverage and want to shift the distribution to the right, we should increase faverage. Decreasing baverage 

corresponds to widening brange. Increasing baverage corresponds to narrowing brange. When we fix faverage 

and want to shift the distribution to the left, we should decrease baverage. Conversely, when we fix faverage 

and want to shift the distribution to the right, we should increase baverage. We confirmed that the 

stationary distribution does not depend on the value of frange. 

 

Table 2. The relationship between noise and shift of distribution  

Distribution 
Noise 

Shift to left Shift to right 

Average Decrease Increase 
b 

Range Wide Narrow 

Average Decrease Increase 
f 

Range No Influence 

 

Next, we investigated the relationship between the number of sites and the distribution range. 

Figure 4 shows the cumulative distributions according to the number of sites. We can expand the 

distribution by increasing the number of sites. Especially, head and tail are expanded by increasing 

the number of sites. The distribution range of municipalities is wide, because the number of 

municipalities is very large (over 1600). On the other hand, the distribution range of prefectures is 

narrow, because the number of prefectures is very small (47). 
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Fig. 4. The relationship between the number of sites and the distribution range. Log-log plots for the cumulative 

population distribution. Each symbol stands for number of sites; (○) = 100, (☓) = 1000, (□) = 10000. 

 

From examining the features of the RMP, we can control the shift of distribution, which depends on 

the values of additive noise f(t) and multiplicative noise b(t), and we can control the distribution range, 

which depends on the number of sites. 

 

5. The data fitting 

To fit the model with the real data, we search appropriate variables systematically by applying a 

binary search. Though specific distribution can be generated just by controlling one noise, additive 

noise f(t) or multiplicative noise b(t), here, we set β, baverage and number of sites respectively, and 

search for faverage. As a procedure, we repeat RMP Compare sum of the mean squared errors (MSE) 

of real data and simulated result RMP…, until we arrive at an appropriate faverage. Figure 5 shows 

procedure of search for faverage. 
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Fig. 5. Procedure of search for faverage. When faverage approaches the appropriate value, sum of MSE decreases. 

 



Procedure of search for faverage is as follows, 

 

Step 1. Chose an initial very small faverage ① as the minimum initial value, and calculate a regression 

expression in the tail part of simulated result. Calculate the following sum of the MSE 

between the real data and simulated result on the approximation line. Sum of the MSE is as 

follows, 

2)(∑ −= simreale yyS       (6) 

where yreal  and ysim are rank of the site on approximation lines of real data and simulated 

result, respectively.  

Step 2. Chose very large faverage ② as the maximum initial value and calculate the sum of the MSE, 

the same as in Step 1. 

Step 3. Chose middle point ③ of ① and ②. 

Step 4. Compare sum of the MSE ① and ②, 

If ①’s error is smaller than ②’s, chose middle point ④ of ① and ③. 

Step 5. Compare sum of the MSE ① and ③, 

If ③’s error is smaller ①’s, chose middle point ⑤ of ③ and ④… 

Step 6. When the shift value of faverage becomes less than 1, these processes are stopped. 

 

 Fitting the simulated result with the real data 

First, we investigated fitting the simulated result with two points of municipalities’ real data (1980 

and 2006), because the number of municipalities has decreased greatly in this period. For 1980 data, 

we set β = 1.16, baverage = 0.99 and number of sites = 3257, respectively, and searched for faverage 

corresponding to these constants. We obtained faverage as 67.62, sum of MSE as 930000.1, and MSE as 

1.49. For 2006 data, we set β = 1.31, baverage = 0.99, and number of sites = 1822, respectively, and 

obtained faverage as 215.70, sum of MSE as 174322.2, and MSE as 1.15. 

Similarly, we fitted simulated result with the average of prefectures real data from 1980 to 2006. 

We set β = 2.49, baverage = 0.99 and number of sites = 47, respectively, and obtained faverage as 34763.9, 

sum of MSE as 2.44, and MSE as 0.17. 

In Figure 6, not only the approximation line of simulated result and real data, but also the whole 

distributions, overlap almost completely. These results show the simulated results generated by the 

RMP and the real data are in very good agreement. 
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Fig. 6. Log-log plots of the rank of the sites N(x) vs. the population x from 1980 to 2006; (a) municipalities and (b) 

prefectures. The solid lines and dotted lines represent the approximation lines of real data and simulated result, 

respectively. Symbol (○) and (☓) stand for real data and simulated result, respectively. 

 

 Trade-off relationship between variables 

In the previous subsection, we searched for faverage in the setting of β, baverage and number of sites. 

However essentially, even if one variable is fixed or changed, specified distribution can be generated by 

the RMP. baverage is on trade-off relations with faverage. Here, we research the trade-off relation between 

baverage and faverage when distribution of municipalities in 2006 is generated. Figure 7 shows the 

relationship between baverage and faverage. It is obvious that baverage is proportional to faverage. Because bi(t) 

is a non dimensional variable (growth rate) and fi(t) is a dimensional variable (number of people), those 

scales are different. When the average of the growth rate (baverage) is small, large faverage is necessary to 

reproduce the population distribution of Japan. On the contrary, faverage may be small, when the 

average of the growth rate (baverage) is large.  This implies that there are many combinations of noises 

which can reproduce real population distribution. One of these combinations might correspond to the 

noise of the real world. It will be a further study to estimate what kinds of combinations are realistic.  
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6. Concluding Remarks 

In summary, we have investigated the cumulative population distribution of all sites 

(municipalities and prefectures) in Japan from 1980 to 2006, and they seem not to have changed so 

much in these 26 years. Especially, the exponent in tail part (β ) has hardly changed. This appears 

similar to the double Pareto distribution, which is closely matched to the head of a lognormal 

distribution, and the tail of a power law distribution. We reproduced these distributions by the RMP 

which combined two kinds of noises recursively. In the RMP, we indicated that the entire distribution 

of population can be reproduced by using the exponent in tail part. It is very interesting to be able to 

reproduce the population distribution by such a simple mechanism. Additionally, we clarified the 

features of the distribution generated by the RMP under noise control. Multiplicative noise baverage is 

on trade-off relations with additive noise faverage. The controllability by changing noises can be applied 

to a power law distribution in various other fields.  

For future work, we should investigate the social meaning of noises. Specifying the meaning of 

these noises and knowing methods to control them may be very useful for planning various policies.  
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