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Abstract 

This paper presents a stylized model of technology adoptions for sustainable 

development under the three potentially most important “stylized facts”: increasing 

returns to adoption, uncertainty, and heterogeneous agents following diverse technology 

development and adoption strategies. The stylized model deals with three technologies 

and two heterogeneous agents: a risk-taking one and a risk-averse one. Interactions 

between the two agents include trade in resources and goods, and technological spillover 

(free riding and technology trade). With the two heterogeneous agents, we run 

optimizations to minimize their aggregated costs in order to find out what rational 

behaviors are under different assumptions if the two agents are somehow cooperative. By 

considering uncertain carbon taxes, the model also addresses environmental issues as 

potential driving forces for technology adoptions.      
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1. Introduction 

It has been widely recognized that the development and diffusion of new technologies is 

the most important source of economic growth (e.g., Metcalfe, 1987; Freeman, 1994) and 

sustainable development (e.g., World Bank, 2000). But new technologies do not fall like 

“manna from heaven.” They frequently need high investment in research and 

development (R&D) and the establishment of demonstration projects at an early stage of 

development. Moreover, as experience in new technologies accumulates, the cost of 

using them tends to decrease—so-called technological learning. Historical evidence of 

technological learning includes reduced investment in photovoltaic cells, gas turbines, 

and windmills as the cumulative installed capacities of these technologies increase 

(Nakicenovic and Rogner, 1996; Nakicenovic et al., 1998; Watanabe, 1995). As costs 

decrease, new technologies become more widely adopted, making technological learning 

a classic example of increasing returns (Arthur, 1989). Technological change or 

technological learning is highly uncertain, as evidenced by investment cost distributions 

for biomass, nuclear, and solar electricity generation in numerous engineering studies 

(e.g., IIASA–WEC, 1995). The importance of technological uncertainty has been 

recognized and explored since the earliest days of global environmental modeling (e.g., 

Nordhaus, 1973; Starr and Rudman, 1973).  

To date, technological change has been treated in most traditional models as largely 

exogenous (i.e., technological change is a free good and can also be known with perfect 

foresight within a given scenario of technological “expectations”).  Technological change 

is either reduced to an aggregate exogenous trend parameter (the “residual” of the growth 

accounts) or introduced in the form of numerous (exogenous) assumptions on the costs 

and performance of future technologies. Common to both modeling traditions is that the 

only endogenous mechanism of technological change is that of progressive resource 

depletion and the resultant cost increases, which also explains the inevitable outcome of 

additional (e.g., environmental) constraints having to be placed on the model: rising costs 

due to the forced adoption of more costly capital vintages that remain unaffected by 

endogenous policy variables in the model. Such constraints, which are at odds with 

historical experience (Barnett and Morse, 1967), trigger both substitutions of factor 

inputs and the penetration of otherwise uneconomical technologies. These are either 
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represented generically as aggregates in form of so-called backstops (Nordhaus, 1973) or 

through detailed assumptions on numerous technologies individually. 

 Traditional, deterministic, social planner models have been criticized (e.g., 

Grübler and Messner, 1998) for being overly naive and “optimistic” regarding the 

feasibility of meeting constraints, as agent heterogeneity and uncertainty will make the 

availability and adoption of new technologies  much slower and more discontinuous than 

is suggested by traditional policy models. However, traditional models can also be 

technologically too “pessimistic,” as they miss out not only on important spillover effects 

but also on adaptive, innovative behavior that arises precisely because of agent 

heterogeneity and interaction.  

There have been increasing concerns in recent years about modeling endogenous 

uncertain technological change (e.g., Nordhaus, 2002), with Grübler and Gritsvskyi’s 

(1998; 2002) work being a typical example. Grübler and Gritsvskyi (1998) introduced a 

model of endogenous technological change through uncertain returns on learning with a 

deliberately simplified 3-technology system, and they applied the model to study a multi-

region and multi-actor energy system by considering more technological details (Grübler 

and Gritsvskyi, 2002). The purpose of this paper is to explore the result if an assumption 

in the original model -- perfect markets both in terms of spillovers for technological 

learning and trade -- is relaxed. As such the paper constitutes a first step to subsequent 

model extension where the risk attitudes of agents and eventually their behavior changes 

evolutionary as the implications of spillover1 and trade restrictions become apparent. To 

make this as transparent as possible this paper uses the simple 3-technology version of 

the model (Grübler and Gritsvskyi, 1998) and extends it by considering explicit agent 

heterogeneity. Following the tradition of agent-based modeling (Ma and Nakamori, 2005), 

which studies macro-level complexities from the interactions at the micro level -- 

combined here with the field of optimization modeling under uncertainty—agent 

heterogeneity is represented by the different risk attitudes and weights of each. The 

interaction between agents is represented via trade in resources and goods as well as 

                                                 
1 Grübler and Gritsvskyi (2002) introduced technological spillover among different (but similar or 
what they called “family”) technologies, e.g., different types of gas turbines, while this paper 
includes technological spillover effect between a pioneer agent and a follower agent. 
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through technological spillover. Using two heterogeneous agents, we run an optimization 

to minimize their aggregated costs in order to discover the rational behaviors for 

technology adoptions under different assumptions if the two agents are somehow 

cooperative. The global optimal solutions of the two-agent model are of Pareto optimality 

in the sense that neither could be made better off without the other being made worse-off.    

As technological change has the potential to impact human society, some social 

issues can act as drivers of, or brakes on, technological change. This paper addresses 

environmental issues as possible drivers of technological change, with uncertain carbon 

taxes being introduced in the model. 

The resultant mathematical problems are non-convex stochastic optimization 

problems. To solve the optimization problems, Matlab’s Optimization Toolbox (version 

3.0), which applies a sequential quadratic programming (SQP) method, was used.  In this 

method, the function solves a quadratic programming (QP) subproblem at each iteration. 

An estimate of the Hessian of the Lagrangian is updated at each iteration using the BFGS 

formula. A line search is performed using a merit function. More details of the method 

can be found in the user’s guide to Mathworks (2004). Global optimality of solutions was 

checked by using different starting points. 

The model presented here is not intended by any means to be a “realistic” model in 

the sense of showing technological or sectoral detail. Rather, the model is mainly 

intended to be used for exploratory modeling purposes and as a heuristic research device 

to examine in depth the impacts of alternative model formulations on the dynamics of 

endogenous technology transition.  

The rest of this paper is organized as follows. Section 2 introduces Grübler and 

Gritsvskyi’s (1998) model of endogenous technological change through uncertain returns 

on R&D investment with one decision agent and provides an analysis of simulation 

results. Section 3 extends the model by considering two heterogeneous agents and 

analyzes various simulation results with trade and technological spillover between the 

two agents. Section 4 plots and analyzes emission paths that result from different 

technological change processes. Section 5 concludes. 
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2. A Stylized Model of Endogenous Technological Change with One Decision Agent 

 Grübler and Gritsvskyi’s (1998) model 

Grübler and Gritsevskyi’s (1998) model of endogenous technological change through 

uncertain returns on learning is deliberately highly stylized. The model supposes one 

primary resource (e.g., coal), the extraction costs of which increase over time as a 

function of resource depletion. The economic system demands one homogeneous good 

(e.g., electricity) and the exogenous demand increases over time. There are three kinds of 

technologies, namely, “existing,” “incremental,” and “revolutionary” that can be used to 

produce the good. The “existing” and “incremental” technologies need primary resources 

to be consumed for the good to be produced, while the “revolutionary” technology needs 

hardly any resource input.  

• The “existing” technology is assumed to be entirely mature, its investment cost 

and efficiency do not change over time, and the emissions caused by using it are a 

little high. An example is coal power plants. 

• The “incremental” technology has a slight efficiency advantage. With a higher 

initial investment cost than that of the “existing” technology (a factor of 2 higher), 

it has potential for technological learning (we assume a mean learning rate of 

10%), and its emissions are lower than those of the “existing” technology.   An 

example is gas turbines.  

• The “revolutionary” technology’s initial investment cost is much higher than that 

of the “incremental” technology (and by a factor of 40 higher than the “existing” 

technology), but its learning potential is also higher (we assume a mean rate of 

30%). It has little in the way of emissions. An example is photovoltaic cells. 

Technological learning is uncertain. An uncertain learning rate is represented by an 

uncertainty range around the mean value adopted, based on a lognormal distribution that 

is in accordance with empirical data (see Messner and Strubegger, 1991). The uncertainty 

was introduced into the model as an additional cost in the objective function. The 

stochastic model responds to a frequent criticism of traditional optimization models: the 

inappropriate assumption of a decision-making agent that operates under perfect foresight. 
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As a result of the endogenization of uncertainty, decision making in the model no longer 

operates under perfect foresight.  

Environmental issues are addressed as possible drivers of technological change. 

The existence, timing, and extent of possible future environmental constraints (e.g., in the 

form of carbon taxes) are highly uncertain.  

With the homogeneous good, three different technologies, and the uncertain carbon 

tax, optimization is run to minimize the total discounted cost of the economic system; 

thus the results denote optimized paths of technology development and diffusion.   

 The mathematical expressions of the model follow. The demand is exogenous and   

increases over time as shown in Equation (1).   

 100(1 ) ,t tD α= +                                              (1) 

where t  is time period (year), tD  denotes the demand in t , and α  is the annual 

increasing rate of demand.  

Let t
ix  ( 1,2,3i = ) denote the annual production of technology i  at time t , and let 

iη  denote the efficiency of technology i ; then the annual extraction tR  is the sum of 

resources consumed by each technology, as shown in Equation (2) 

( )
3

i
1

1  1t t
i

i i

R x η
η=

= ≤∑ 2.                                                       (2) 

Thus the cumulative extraction by time t  is: 

1

t
t j

j

R R
=

=∑ .                                                         (3) 

The extraction cost of the resource increases over time as a linear function of 

resource depletion, as shown in Equation (4):  

0t t
E E Ec c k R= + ,                                                     (4) 

                                                 
2 Usually, the efficiency of a technology should be no greater than 1. But in some special cases, the 
efficiency of a technology could be viewed as greater than 1, for example, when viewing heating a room as 
a service (or goods), the efficiency of electric heat pump could be thought to has a efficiency greater than 
one.    
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where t
Ec  denotes the extraction cost per resource unit at time t , 0

Ec  is the initial 

extraction cost, tR is the total extraction by decision time t , and Ek is a constant 

coefficient.   

Let t
iy  ( 1,2,3i = ) denote the annual new installation of technology i at time t ; 

then the total installed capacity of technology i  at time t , denoted by t
iC ( 1,2,3i = ) can 

be calculated according to Equation  (5).  

,
i

t
t j
i i

j t

C y
τ= −

= ∑                                                         (5) 

where iτ denotes the plant life of technology i .  

The cumulative installed capacity t
iC  of technology i by time t  is calculated as: 

0

1

.
t t

t j j
i i i i

j j

C C C C
=−∞ =

= = +∑ ∑                                            (6) 

where 0
iC denotes initial cumulative installed capacity of technology i , which means the 

cumulative experience on  technology i  before 1t = . 

Technology learning is based on experience that is quantified by the cumulative 

installed capacity; thus future investment cost is a function of cumulative installed 

capacity, as shown in Equation  (7) 

0 ( ) ,ibt t
F i F i ic c C −= ×                                               (7) 

where 1 2 ib−−  is technology i’s learning rate which means the percentage reduction in 

future investment cost for every doubling of cumulative capacity, and 2 ib−  is called 

progress ratio which denotes the speed of learning, and 0
Fic  is the initial cost of 

technology i. 

The following intertemporal optimization will be used to minimize the total cost.  
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where:   

T denotes the scale of the problem;  

δ  denotes the discount rate;  

OMic denotes the operating and maintenance (O+M) cost of technology i ;  

ρ  denotes the decision maker’s risk attitude (a small ρ  denotes a risk-taking attitude, and 

a big ρ  denotes a risk-averse attitude);  

( )t
F ic ψ  is a random variable with ψ  denoting an element from a probability space that is 

characterized by a lognormal distribution, and t
F ic  is the mean of the distribution; 

E denotes expectation;  
taxp  is the probability that the tax will ever  be established;  

0tp is the probability that, if established, the tax will be introduced before time 0t ;  

Cc  is the mean of uncertain carbon tax value;  

iλ  denotes the carbon emissions caused by producing and consuming every unit of the 

good by technology i ; 

and ( )Cc ω  is a random variable, with ω  denoting an element from a probability space 

that is characterized by a Weibull distribution. 



 9

Table 1.  Initial values of parameters 
 

Parameters related to the three technologies  
 Existing Tech. Incremental Tech. Revolutionary Tech.

Initial investment cost  
(US$/kW) 

0
1 1000Fc =  0

2 2000Fc =  0
3 40000Fc =  

Efficiency 1 30%η =  2 40%η =  3 90%η =  
Plant life  (year) 1 30τ =  2 30τ =  3 30τ =  
Initial total installed 
capacity  (kW) 

0
1 100C =  0

2 0C =  0
3 0C =  

Initial cumulative 
installed capacity 
(kW) 

0
1 1000C =  0

2 1C =  0
3 1C =  

O+M cost (US$/kW) 1 30OMc =  2 50OMc =  3 50OMc =  
Carbon emission 
coefficient 

1 0.8λ =  2 0.8λ =  3 0.1λ =  

Mean learning rate3 1 0b =  
( 11 2 0b−− = ) 

2 0.1520b =  
( 21 2 10%b−− = ) 

3 0.5146b =  
( 31 2 30%b−− = ) 

Other parameters 
Probability of carbon 
tax4 

0.33taxp =  Mean carbon tax5 (US$/t) 75cc =  

Increasing rate of annual demand  2.6%α=  
Initial extraction cost 
(US$/kW) 

0 200Ec =  Extraction cost coefficient 0 0.01EK =  

Scale of the problem  100T = , decision interval is 10 years 
Discount rate 5%δ =  
Risk factor 1ρ=  

 

The objective function is made up of three parts. The first part (/the first line) of 

Equation (8) is the cost with deterministic (or mean) learning rates; the second part (/the 

                                                 

3  The lognormal PDF (probability distribution function) is 
( )2

2

ln

21( | , )
2

x

y f x e
x

μ

σμ σ
σ

− −

= =
π

. For the 

learning rate of the “incremental” technology, we set ln 0.1μ = and 2 0.1σ = ; and for the learning rate of 
the  “revolutionary” technology, we set ln 0.3μ =  and 2 0.1σ = . 
4 The establishment of the tax is uncertain with a given occurrence probability of 0.33. The introduction 
time (in case the tax is established) is also unknown with an expected cumulative distribution function that 
goes from 0 in the first decision time to 99% in the final decision time.  

5 The mathematic formulation of the Weibull distribution 1( , )   ( 0),
bx

b b ay f x a b ba x e x
⎛ ⎞⎟⎜− ⎟⎜ ⎟⎟⎜− − ⎝ ⎠= = ≥  

where a  is called the scale parameter and b  is called the shape parameter. For the uncertain carbon tax, 
we set 75a= and 1b= . 
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second line) is the expected cost resulting from overestimating learning rates; and the 

third part (/the third line) is the expected cost of carbon tax. The constraint function 

Equation (9) denotes that the total annual production of all three technologies must 

satisfy given demand; the constraint function Equation (10) denotes that annual 

production for each technology does not exceed its total installed capacity; the constraint 

functions Equation (11) and Equation (12) denote that decision variables cannot be 

negative.  

The scale of the problem is assumed to be 100 years (e.g., from 1990 to 2090) with 

10-year decision intervals. The model is solved for a sufficiently large sample N, where 

the size of N has been determined through successive experiments. Several successive 

model runs with the same sample size N are compared. If no major changes in the 

solution structure and the objective function can be observed, then N is considered 

sufficient large (for more detail, see Messner et al., 1996).   

Table 1 summarizes the initial values of all the parameters that will be used in 

simulations introduced in the next subsection. We will introduce simulations with those 

initial parameter values and sensitivity analysis.   

2.2 Simulations and Sensitivity Analysis 

To show how uncertainty in learning and the uncertain carbon tax affect technological 

change processes, we carried out simulations in three stages. In the first stage, 

simulations were carried out with deterministic learning and without considering the 

carbon tax; that is, the second and third part of the objective function (/the second and the 

third line) of Equation (8) did not appear. In the second stage, uncertainty in learning was 

considered, but not carbon tax; that is, the third part (/the third line) of Equation (8) did 

not appear. In the third stage, both uncertainty in learning and the uncertain carbon tax 

were considered.  In Table 1, we assume a basic case with those initial values at each 

stage. The three basic cases for the three stages are called BC1, BC2, and BC3, 

respectively. Figure 1 shows the results of the three basic case simulations, from which 

we can see that the uncertainty in the learning rate is a factor that will postpone R&D 

investment in the “revolutionary” technology, while the uncertain carbon tax will 

encourage earlier investment in the “revolutionary” technology.   
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 Through sensitivity analysis on parameters in the model, it is found that the 

factors that can contribute to early R&D investment in an advanced technology and its 

wide application include: high learning rate of the new advanced technology, lower initial 

investment cost of the advanced technology, high resource extraction cost (or that the 

resource is becoming rare), low discount rate, low uncertainty in learning rate, low 

sensitivity to risk (or the decision agent is adventuring), high carbon tax, and high 

uncertainty in carbon tax.    

 
R –Revolutionary, I – Incremental, E – Existing 

Figure 1.  Results of basic case simulations at three stages 

 

3. Modeling with Two Heterogeneous Agents 

The above model assumes one global social planner. In real world, it is most likely that 

there are more than one decision makers making decisions simultaneously. And those 

decision makers are heterogeneous and there are interactions among them. In general, this 

section tries to explore the impacts of relaxing the one global social planner to two 

decision makers, i.e., this section extends the above model by assuming there are two 

heterogeneous decision agents, agent 1 and agent 2, operating simultaneously for 

technology adoptions. For exploring the agents’ different risk attitudes to uncertainty in 

technological learning, this section assume a deterministic carbon tax for the two 

agents—the carbon tax will be applied from 2060 with 50$/t for carbon emissions.  

Agents could be heterogonous in many senses, for example, they could face different 

resource depletion functions, they could have different initial status, and so on. It is 
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beyond the capacity and not the main purpose of this paper to explore all kinds of 

heterogeneities. For simplicity and being comparable to the global social planner model, 

we assume the two agents are almost the same except they face different demand6. And 

since this paper addressed uncertain technological learning as an important factor for 

technology adoption, it makes sense to explore how agents’ different attitudes to risk 

impact technology adoption, i.e., the heterogeneities of the agents considered here are the 

different attitudes to risk and weights of the agents. We use 1ρ  and 2ρ  to denote the risk 

factors for agent 1 and agent 2, respectively. We assume that agent 1 is a risk-taking one 

and 1 0.1ρ = , and that agent 2 is a risk-averse one and 2 1ρ = . With a smaller risk factor, 

agent 1 will be a pioneer in developing and adopting new technology, and agent 2 will be 

a follower. Agents’ weights denote their sizes or their share in the total system. The 

weight for agent 1 is 1 (0,1)w ∈ , and the weight for agent 2 is 2 (0,1)w ∈ . The two weights 

satisfy the formulation: 1 2 1w w+ = .  

With two agents, it allows us to model the interactions between them. If a decision 

agent faces a small demand and a lot of resource, then it is not economical to invest a lot 

to develop the advanced technology, but it will be a different story if there is trade 

between it and other decision agents. Trade in goods and resource will change the 

demand and resource depletion functions agents face, thus it will influence technology 

adoption process.  Another kind of interaction that has been identified by many literatures 

as an important factor for technological change is technological spillover. Historical 

observations have shown that it took shorter time for the diffusion of a new technology in 

a follower’s market because of technological spillover from pioneers (see Nakicenovic 

and Grübler 1991). With the two-agent model, we will explore how technology adoption 

is influenced by trade in resources and goods and technological spillover. 

 Trade in resources and goods means that one agent can buy resources and goods 

from the other. In terms of minimizing the aggregated costs of the two agents, the model 

does not treat the price of resources and goods, but the cost of the trade. This cost can be 

viewed as cost for transportation, distribution, and any other additional cost caused by 

moving and using resources and goods from the other agent. The unit costs for the trade 
                                                 
6 But their total demand is the same as that in the global social planner model. 
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of resources and goods are denoted as 1θ and 2θ , respectively. The quantity of trade flow 

at each time step is treated as decision variables.  

Technological spillover can be through various ways, such as scientific publications, 

moving of scientists and engineers, trade of product lines, trade of patents, and so on.  In 

our model, various technological spillover ways are reduced to two formats: 

technological “free riding” and technology trade. Technological free riding means that 

one agent can benefit from the other’s learning effect without cost, but most of time with 

some delay. There are no additional decision variables for free riding. Technology trade 

means that one agent can benefit from the other’s experience (quantified by cumulative 

installed capacity) with some cost, with 3θ  denoting the unit cost of buying experience. 

Again, the model does not treat the price of technology, and the quantities of technology 

trade at each time step are decision variables.  

The objective function of the optimization can be simply denoted as: 

( )

( )

1 2

1 2
1

3
1

min
1( )

1
1( )

1

T
t t t

t

T
t t

t

A A

r g

s

θ θ
δ

θ
δ

=

=

+
⎡ ⎤
⎢ ⎥+ +
⎢ ⎥+⎣ ⎦
⎡ ⎤
⎢ ⎥+
⎢ ⎥+⎣ ⎦

∑

∑

,                                    (13)  

where  
1A  and 2A  denotes the costs of agent 1 and agent 2, respectively, as introduced in 

Equation  (8),  but with a deterministic carbon tax; 

 T denotes the scale of the problem; 

δ  denotes the discount rate; 

1θ , 2θ , and 3θ denote the unit costs of trade in resources, goods, and technology, 

respectively; 
tr , tg , and ts  denotes the quantity of resources, goods, and technology being 

traded at time t , respectively.   

In Equation (13), the first part (/the first line) includes all the costs mentioned in 

Section 2, but with a deterministic carbon tax for both agent 1 and agent 2; the second 
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part (/the second line) is the cost of trade in resources and goods; and the third part (/the 

third line) is the cost of technology trade. The two agents’ weights do not appear in the 

objective function but in constraints related to demand. Suppose tD  is the demand in the 

whole market at time step t, then the demand of agent 1 at time step t is 1 1
t tD w D= , and 

the demand of agent 2 at time step t is 2 2 1(1 )t t tD w D w D= = − . The tr , tg  ,and ts  can 

be negative, depending on the direction of the trade, and we assume that the flow from 

agent 1 to agent 2 is positive.   

The model can be used to generate infinite future scenarios and stories with 

different combinations of those parameters. Moreover, with some specific initial values 

for parameters, the model can be used for certain practical analyses. For example, when 

we want to analyze the development of energy technology in China, we can roughly 

divide China into two parts: western part which is abundant in resource but laggard in 

economy, and eastern part which is advanced in economy and technology but lack of 

natural resources such as coal. There is resource and goods trade and also technological 

spillover between the two parts. By identifying initial values for the parameters, the 

model can generate results which can enhance decision makers’ insight. The main 

purpose of this paper is to explore the behaviors of the model with the two agents.  

3.1 Optimization without Technological Spillover  

A simulation called BC4 was run with 1 0.5w = , 2 0.5w = , 1 0.1ρ = , 2 1ρ = , 

1 2 140θ θ= =  and without a technological spillover effect. The result of BC4 is shown in 

Figure 2, from which we can see that agent 2 develops no “revolutionary” technology, 

and it imports goods from agent 1 as from 2050.  

Simulations with different trade costs reveal that when the trade cost is small 

( 1 2 80θ θ= < ), agent 2 develops neither the “incremental” nor the “revolutionary” 

technology. It exports its resources to agent 1 and imports its goods from agent 1. With 

increasing trade costs, there is also a general tendency for the trade to appear later and 

later and for the quantity of trade to become smaller and smaller, which means both 
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agents operate more and more locally, which results in delay of the development of the 

“revolutionary” technology. 

 

R – Revolutionary, I – Incremental, E – Existing 

Figure 2.   Simulation result of BC4 

From the above simulations, we can learn that the interaction between agents really 

does influence the technological change process, both at the global and local level. The 

globalized market may act as a driving force for the development of advanced 

technologies, as the development of advanced technologies commonly requires huge 

investment, which is, in turn, likely to require  a very large potential market for payback 

to occur on the investment.  

3.2 Optimization with Technological Free Riding 

In free-riding terms, although agent 2 may not have made R&D investment in the 

“revolutionary” technology, it can benefit from agent 1’s learning effect. A simulation 

called BC5 (or BC + free riding) was run with the assumption that agent 2’s future 

investment cost in the “revolutionary” technology relies on agent 1’s cumulative installed 

capacity, but with a one-decade delay. Fig. 3 shows the simulation result of BC5, from 

which we can see that free riding made agent 2 develop the “revolutionary” technology 

from 2080 and that its diffusion time was very short.  Agent 2 starts to import the goods 

from agent 1 from 2050, then after successful free riding from 2080, begins to produce 
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the goods for itself and reduces the imports from agent 1. Other simulations based on 

BC5 revealed that the free riding did not show its effect at all with low trade costs (e.g., 

1 2 40θ θ= = ). This is because if trade costs are low, it is more economical for the whole 

system if agent 2 exports resources to agent 1 and imports goods from agent 1.  

 
R – Revolutionary, I – Incremental, E – Existing 

Figure 3.  Result of BC4 + free riding (or BC5) 

Based on BC5, many simulations were run by varying the two agents’ weights to 

see how different weight influences agents’ decision behaviors. Figure 4 shows the trade 

in goods in terms of the different size of the two agents, from which we can see that if 

agent 1’s weight decreases (or agent 2’s weight increases), agent 2 imports more goods 

from agent 1 during the period from 2040 to 2090. With a small 1w , agent 2 exports some 

goods to agent 1 during the period from 2020 to 2040 because during that period agent 1 

is doing R&D on the “revolutionary” technology, while agent 2 builds a bigger capacity 

for the “incremental” technology.  With a big 1w  (i.e., 1 0.5w > ), from 2080 to 2090, the 

imports from agent 1 to agent 2 decrease because agent 2’s local market is small and its 

production can satisfy its own market after free riding.  
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Figure 4.  Trade in goods with different agent weights  

3.3  Optimization with Technology Trade instead of Free Riding 

In terms of technology trade, an agent is allowed to decide whether it needs to buy 

technology or, more precisely, experience in a new technology from the other and when 

to buy. Based on BC4, a simulation called BC6 (or BC4 + technology trade) was run 

assuming that agent 2 will buy the “revolutionary” technology from agent 1, with trade 

costs being  3 10θ =  for each unit experience (quantified by cumulative installed 

capacity). Figure 5 shows the result of BC6, from which we can see that agent 2 buys the 

“revolutionary” technology in 2060, and the diffusion of the “revolutionary” technology 

in agent 2 is of shorter duration than that in agent 1. Simulations with different 

technology trade costs show that with a small trade cost (e.g., 3 6θ < ), the quantity of 

trade is higher but the trading time remains the same—in 2060—which makes the 

breakeven time of the “revolutionary” technology in agent 2 slightly earlier; and with a 

high technology trade cost (e.g., 3 12θ > ), it becomes uneconomical for agent 2 to import 

technology from agent 1, and agent 2 keeps using the “incremental” technology without 

developing the “revolutionary” technology during the 100-year period. 

With different attitudes to risk regarding the future cost of advanced technology and 

with a technological spillover effect between them, agent 1 and agent 2 act as pioneer and 

follower, respectively; and the diffusion time of the “revolutionary” technology is shorter 

for the follower than for the pioneer, which accords with the historical observation that 
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the later developer of a new technology can obtain a shorter diffusion period (see Grübler 

et al., 1999). The global optimal solutions of the two-agent model are of Pareto 

optimality, in the sense that none of the two agents could be made better-off without the 

other being made worse-off. 

 

R – Revolutionary, I – Incremental, E – Existing 

Figure 5.  Result of BC6 

 

4. Carbon Emission Paths as Results of Different Technological Change Processes  

There are two important factors contributing to emission paths: the demand (or 

consumption) and the technologies used to satisfy the demand. Figure 6 shows the 

different emission paths of different simulations. BC3 shows the strongest carbon 

abatement, while BC2 shows the weakest. The main discoveries related to carbon 

emission paths in our simulations follow.  
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Figure 6.   Different carbon emission paths 

� The model demonstrates an endogenous learning mechanism for the advanced 

technology to replace the existing one. Even without carbon tax, the carbon 

emissions could be reduced by the wide application of advanced technology. 

� The uncertainty in the learning rate will delay the development of the 

“revolutionary” technology and thus result in delayed and weaker carbon 

abatement.  

� Carbon tax, especially the uncertainty in carbon tax, is a driving force for the 

earlier development of the “revolutionary” technology, which is why BC3 

shows the strongest carbon abatement. BC4, BC5, and BC6 include a 

deterministic carbon tax, rather than an uncertain one, making the carbon 

abatement weaker than that in BC3.  

� Although technological learning can lead to the reduction of carbon emissions, 

a carbon tax is still important in the following two senses: 

i. It can control the maximum annual emissions. As show in Figure 6, 

without carbon tax, the maximum annual emissions are relatively 

high in BC2, while in BC3, with the uncertain carbon tax, the 

maximum annual emissions are low.  

ii. It can bring forward the time of low emissions. In Figure 6, with the 

uncertain carbon tax in BC3, the carbon emissions start to decrease 

from 2030; while without carbon tax (i.e., in BC2) the carbon 

emissions start to decrease from 2060. In some special situations, 



 20

carbon tax will become extremely important. For example, the 

emission reduction caused only by technology improvement may, 

without carbon tax, come too late to maintain the ecosystems of 

some cities that have a high population density and a rapid increase 

in energy consumption demand. 

� Some people believe that technological spillover should assist carbon 

abatement, but this is not always true. Sometimes, the anticipation of 

technological spillover can weaken carbon abatement in a given period. As 

shown in Figure 6, with technology trade, the carbon emissions in BC6 are 

higher than in BC4 during the period from 2040 to 2065. This is because, with 

the anticipation of the technological spillover effect, agent 2 imports fewer 

goods from agent 1 during that period, which has two consequences. The first 

consequence is that agent 1 develops the “revolutionary” technology slightly 

late as its market is smaller. The second is that the two agents, especially 

agent 2, consume more goods produced by the “incremental” technology 

rather than by the “revolutionary” one during that period, which results in 

weaker carbon abatement. We also learned from the simulations why 

technological spillover could weaken carbon abatement during a certain 

period, namely, that when the trade in goods is light because of high trade 

costs, agent 2 may rely more  in the  short or medium term—and in 

anticipation of technological spillover effort—on the “existing” technology 

and develop “incremental” technology less, waiting for the “revolutionary” 

technology to be developed by the pioneer agent.  

 

5. Concluding Remarks 

Based on earlier pioneering work done at IIASA, this paper presented a model of 

endogenous technological change with increasing returns, uncertainty, and heterogeneous 

agents. Although the model and simulations are highly stylized, they can provide a better 

idea as to how the three stylized facts impact technological change processes. Here I 

summarize what we can learn from the modeling and simulations: 
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� The model and simulations demonstrate an endogenous learning mechanism whereby 

the advanced technology will replace the existing one. The S-shape diffusion pattern 

of new technologies in our simulations accords with historical observations. 

� Facing uncertainty in technological learning, decision makers would prefer late R&D 

on advanced technologies. Of course, decision makers’ different attitudes to risk will 

play an important role in their decisions. A risk-taking decision maker would prefer 

earlier R&D on advanced technologies than a risk-averse decision maker.  

� The globalized market may act as a driving force for the development of advanced 

technologies, which usually require a huge investment and a very large potential 

market to achieve payback. 

� Anticipation of technological spillover could slow or delay the wide application of 

advanced technologies and thus weaken carbon abatement, mainly in a short or 

medium-term period.    

In terms of minimizing their aggregated costs, the two heterogeneous agents are 

assumed to be cooperative. In the real world, some decision makers may not accept the 

optimization result because they wish to maximize their profit. For example, if a 

technology pioneer develops an advanced technology earlier than others, it could apply a 

very high pricing strategy for its products and technology; this would delay the wide 

adoption of the new technology longer than is suggested by Pareto optimization. Other 

factors preventing decision makers from following Pareto optimization include security 

issues. For example, in some situations, Pareto optimization suggests that an agent with a 

small local market should import goods such as gasoline from others instead of building 

its own capacities; however, as the agent believes that the goods are very important for it, 

it refuses to completely depend on imports as it does not wish its fate to be controlled by 

others.  

Matlab Optimization Toolbox was used to solve the optimization problems, and the 

global optimality of solutions was checked by employing different starting points. In 

future work, global optimization software or solvers (e.g., BARON [see Sahinidis, 2000]) 

will be applied for global optimization. Moreover, the stability of Pareto optimal 

solutions should be explored when the model is used for real applications. 
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