
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Decentralized Fault-tolerant Flocking Algorithms

for a Group of Autonomous Mobile Robots

Author(s) 楊, 燕

Citation

Issue Date 2009-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/7999

Rights

Description Supervisor:Xavier Defago, 情報科学研究科, 博士

Decentralized Fault-tolerant Flocking Algorithms for a Group of
Autonomous Mobile Robots

by

Yan Yang

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Xavier Défago

School of Information Science
Japan Advanced Institute of Science and Technology

March 2009

Abstract

Recently, robotics research has been gained a lot of attentions, due to its wide applications, especially
in some places that human beings can not survive, like in a planet or fire. There are a lot of interesting
applications of multiple robots, such as satellite exploration and surveillance missions. However, in
such system one can not possibly rely on assuming fail-proof software or hardware, especially when
such robot systems are expected to operate in hazardous or harsh environment. Therefore, the issue of
resilience to failure becomes essential. Perhaps surprisingly, this aspect of multiple robot systems has
been explored to very little extent so far.

Flocking, as one of important applications of coordination of multiple robots, has a lot of applica-
tions, like moving a box from one place to another place, or explores some unknown places. During
flocking, mobile robots group to form a desired pattern and move together while maintaining that for-
mation. One difficulty is how to distinguish the crashed robots from those who are staying in “waiting”
state since they all don’t move during some period. Another difficulty is to make a group of robots move
together to form a geographic graph in distributed way. To address the above questions, our research goal
is to achieve the effective coordinated flocking even with the crash of mobile robots. More specifically,
we focus on solving distributed geographic agreement problems for groups of mobile robots.

First, we proposed a fault tolerant flocking in asynchronous model. Our algorithm ensures that the
crash of faulty robots does not bring the formation to a permanent stop, and that the correct robots are thus
eventually allowed to reorganize and continue moving together. Furthermore, the algorithm makes no
assumption on the relative speeds at which the robots can move. The algorithm relies on the assumption
that robots’ activations follow a k-bounded asynchronous scheduler, in the sense that the beginning and
end of activations are not synchronized across robots (asynchronous), and that while the slowest robot is
activated once, the fastest robot is activated at most k times (k-bounded).

By analyzing the above algorithm carefully, we find one flaw in the algorithm due to the limit of
design method. That is the formation formed by robots can not be rotated freely. Therefore, in the
following part, we design a new method to lift such limit by allowing the formation to move to any
direction, including its rotation, yet in a semi-synchronous model. Further analysis demonstrates that the
proposed algorithm can make formation freely rotation, and has very good maneuverability.

In practical applications, some parts of a robot, like sensor, moving actuator, or memory etc., is
prone to transient crash due to the influence of complex environment. We discuss the (im) possibility of
self-stabilization of flocking algorithms with memory corruption in different system models.

Finally, we propose a non-fault tolerant flocking algorithm in order to compare the performance with
the above fault-tolerant ones. The described algorithm can effectively adapt to the environment to avoid
the collision among robots and obstacles. Furthermore, one interesting thing is when there is no obstacle
in the environment; the robots can keep the desired distance with their neighbors.

In all, to the best of our knowledge, our work is the first to consider the fault tolerant issue during
robots dynamic flocking. Also it opens some new interesting topics on robots dynamic coordination, like
robots coordination in the model of crash and recovery.

Keywords: Mobile robot, decentralized coordination, local interactions, flocking, formation gener-
ation, self-organization

i

Acknowledgments

During my time at Japan Advanced Institute of Science and Technology (JAIST), I have been lucky
and honorable to be a member of Dependable Distributed Systems Group (DDSG), Foundations of Soft-
ware Laboratory. I appreciated Professor Xavier Défago very much for letting me join in this group in
2006. As my supervisor, Professor Xavier Défago is a great technical researcher and an erudite teacher. I
would like express my sincere gratitude to my supervisor for advising me and guiding my research during
my study at JAIST. He provided me a lot of encouragement and inspiration for my research. Also, he is
an incredible source of knowledge, and provided excellent guidance on technical details and publication
writing. I am especially thankful for all the time he provided me in improving this dissertation.

Students in the DDSG made it a great place to work. Both supervisors and college-mates made my
Ph.D. experience truly unique. In particular, I am very happy to discuss with Dr. Samia Souissi on
robot research. Also, I appreciate for Dr. Rami Yared’s friendship. Dr. Naixue Xiong gives me a lot of
encouragement and friendship during the past six years in research and life. Furthermore, I would like
to thank Daiki Higashihara for his kind help.

Professor Takuya Katayama gave me a lot of encouragement to pursue my own ideas and to manage
my own research. Most notably, he provided a family- friendly environment that helped me balance my
life with my studies.

I would like to thank Professor Nak Young Chong for his helpful discussions and suggestions, who
is my supervisor of my sub-theme (minor project). He is able to provide in-depth analysis of my work,
and also give me strong spirit encouragement on how to do research.

I really appreciate my defense committees, Prof. Makoto Takizawa, Prof. Koichi Wada, Prof. Tetsuo
Asano, Prof.Tomoji Kishi, and Prof. Yasuo Tan, for their great comments for the improvement of this
thesis.

I devotes my sincere thanks and appreciation to all of my colleagues for their potential care.

In particular, I sincerely appreciate the support from my family. I am grateful to my parents, who
always give me a lot of encouragement and care in my life. Their care gave me inspiration and happiness
whenever times were difficult. Thus, they provided an incredible support net while growing up.

Finally, I would like to thank COE (Strategic Development of Science and Technology) foundation
in Japan for supporting this research.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Multi-robot Cooperation . 1
1.2 Dependability in distributed robot system . 2
1.3 Flocking . 3
1.4 Objectives . 4
1.5 Contributions . 4
1.6 Organization . 5

2 System Models and Definitions 6
2.1 System Models . 6

2.1.1 Fully Synchronous Model (FSYNC) . 7
2.1.2 Suzuki-Yamashita Model (SYm) . 7
2.1.3 CORDA Model . 8
2.1.4 Relation between Models . 8

2.2 Scheduler . 9
2.3 Failure Detection . 9

2.3.1 Failure Classifications . 10
2.3.2 Failure detector . 11

2.4 Position Configuration . 12

3 Problem Statement: Flocking 13
3.1 General Flocking . 13
3.2 Formation Flocking . 13
3.3 Fault Tolerant Formation Flocking . 15
3.4 Challenges of Flocking . 15

4 Fault-tolerant flocking in a k-bounded asynchronous system 17
4.1 Perfect Failure Detection . 18

4.1.1 Algorithm Description . 18
4.1.2 Correctness . 19

4.2 Agreed Ranking for Robots . 20
4.2.1 Algorithm Description . 20
4.2.2 Correctness . 22

4.3 Dynamic Fault-tolerant Flocking . 24
4.3.1 Algorithm Description . 24
4.3.2 Correctness of the Algorithm . 28

iii

4.4 Discussion . 33

5 Fault-tolerant Flocking of Mobile Robots with whole Formation Rotation 35
5.1 Fault tolerant Flocking Algorithm . 35

5.1.1 Flocking Algorithm . 35
5.1.2 Persistent Ranking for Robots . 38
5.1.3 Failure detector . 40

5.2 Correctness . 41
5.2.1 Rank assignment . 41
5.2.2 Collision among robots . 42
5.2.3 Failure detector . 43
5.2.4 Fault tolerant flocking . 44

5.3 Maneuverability and Bound Analysis . 45
5.3.1 Maneuverability . 45
5.3.2 Bound Analysis . 46

5.4 Discussion . 47

6 Flocking under Memory Corruption 49
6.1 System Model with Memory Corruption . 49
6.2 Problem Statement: Flocking in spite of crashes and memory corruption 50
6.3 FT with Memory Corruption . 51

6.3.1 Algorithm FT . 51
6.3.2 FMC

T Self-stabilizes under the SYm Model . 51
6.3.3 About FMC

T in CORDA Model . 53
6.4 FR with Memory Corruption . 53

6.4.1 FMC
R using Algorithm 12 works in FSYNC model 55

6.4.2 FMC
R using Algorithm 12 cannot self-stabilize in the SYm model 55

6.5 Discussion . 55

7 Adaptive Flocking Algorithm 57
7.1 Adaptive Flocking Algorithm . 57
7.2 Correctness Analysis . 60
7.3 Performance Illustration . 61

7.3.1 Simulation Setting . 61
7.3.2 Simulation 1: without obstacles in the environment 62
7.3.3 Simulation 2: with obstacles in the environment 62

7.4 Discussion . 64

8 Conclusion 65
8.1 Research Assessment . 65
8.2 Open Questions & Future Research Directions . 66

References 68

iv

List of Algorithms

1 Perfect Failure Detection (code executed by robot ri) 19
2 Ranking Correct Robots (code executed by robot ri) 21
3 Procedure Lateral Move Right (code executed by robot ri). 21
4 Dynamic Fault-tolerant Flocking (code executed by robot ri) 27
5 Flocking Leader: Code executed by a robot leader ri. 27
6 Flocking Follower: Code executed by a robot follower ri. 30
7 Fault tolerant flocking (code executed by robot ri) . 37
8 Leader movement (code executed by the leader robot) 37
9 Follower movement (code executed by a follower robot ri) 37
10 Persistent Rank Persisting Rank (code executed by robot ri) 39
11 Selection of Correct Robots . 41
12 Persistent Rank Persisting Rank for memory corruption(code executed by robot ri) . 54
13 Adaptive Flocking for every robot. 59

v

Chapter 1

Introduction

In recent years, robotics research has been gained a lot of attentions due to its wide applications. A
powerful robot or a group of robots can solve some tasks that are impossible or hard for human beings,
like searching after earthquake or exploring on moon, et al. (see Figure 1.1).

Nowadays, robotics design has been focused on making system involving a single complex robot
towards the design and use of a large number of robots, which are simple, relatively inexpensive, but
capable of collaborating to perform complex tasks. Several reasons motivate this shift, including reduced
costs, faster computation, more potential for fault tolerance, the possibility of expendability of the system
and the reusability of the robots in different applications.

A large range of applications benefit from this shift, particularly applications in dangerous environ-
ments, where human lives would be jeopardized, and applications in remote places, either inaccessible to
humans or where communication delays render remote controlled robot missions unfeasible. Examples
include planetary rover missions, Mars ground preparation, surveillance and inspection of remote sites,
such as tight spaces, deep sea, hazardous and hostile environments, search and rescue missions, such
as rescuing people trapped under piles of debris in an earthquake disaster, or searching for victims of a
flood, exploration of unknown environments, cooperating autonomous vehicles, etc.

1.1 Multi-robot Cooperation

The coordination of multi-robot teams has a wide variety of applications such as mine exploration, load
carrying, surveillance-and-security, and search-and-rescue [SCHR01, KOVA03, BLT02, JWFE97].

For such operations, relying on a group of simple robots for delicate operations has various advan-
tages over considering a single complex robot [CC98]. For instance, (1) it is usually more cost-effective
to manufacture and deploy a number of cheap robots rather than a single expensive one, (2) higher
number yields better potential for a system resilient to individual robot failures, (3) smaller robots have
obviously better mobility in tight and confined spaces, and (4) a group can survey a larger area than an
individual robot, even if the latter is equipped with better sensors.

Multi-robot systems provide an exciting solution to many real-world problems. Multiple robots
can cooperate to manipulate large objects, survey large areas in a short amount of time, and provide
system redundancy. These functionalities make them applicable to a variety of tasks including large-scale
construction [LALB02], hazardous waste cleanup [RSGHP02], and planetary exploration [SHPB01].

The class of coordination of multiple autonomous mobile robots discussed so far in the literature
includes, among others, the following basic tasks: formation of simple geometric patterns [KSIS96],
gathering and convergence [CFPS, MCGP02, ISMY96a, ISMY96b], flocking (namely, following the
movement of a predefined leader) [GPRE02](see Figure 1.2), uniform distribution over a specified re-
gion [KSIS96], and partitioning into groups [KSIS96].

1

Figure 1.1: A group of robots are searching in the planet or some dangerous places.

Figure 1.2: Example of coordinated social behavior(flocking wild geese).

1.2 Dependability in distributed robot system

In traditional distributed system, increasing the number of components means increasing the probability
that some of these components will be subject to failure during the execution of a distributed algorithm.
To avoid the necessity of restarting an algorithm each time a failure occurs, algorithms should be designed
so as to deal properly with such failures.

Similarly, in mobile robot system, as the common models assume cheap, simple and relatively weak
robots, the issue of resilience to failure becomes prominent, since in such systems one cannot possibly
rely on assuming fail-proof hardware or software, especially when such robot systems are expected to
operate in hazardous or harsh environments [NADP04]. It seems plausible that the inherent redundancy
of such systems may be exploited in order to enable them to perform their tasks even in presence of
faults.

Recently, there are some research addressed on fault tolerant robot coordination, like in gathering of
robots. The first concrete attempt we’re aware of for dealing with crash faults is described in [YMF97],
where an algorithm is given for the Active Robot Selection Problem (ARSP) in the presence of initial
crash faults. The ARSP creates a subgroup of non-faulty robots from a group that includes also initially
crashed robots and makes the robots in that subgroup recognize one another. This allows the non-faluty
robots in the subgroup to overcome the existence of faults in the system, and they can further execute
any algorithm within the group. Then, Agmon and Peleg [AP04] studied fault tolerant algorithms for
the problem of gathering n autonomous mobile robots. Subsequently, an algorithm tolerant against

2

one crash-faulty robot in a system of three or more robots is presented. It is then shown that in an
asynchronous environment it is impossible to perform a successful gathering in a 3-robot system with
one Byzantine failure. Défago etc. in [DGMP06] significantly extended the studies of deterministic
gathering feasibility under different assumptions related to synchrony and faults crash and Byzantine. In
addition we extend our study to the feasibility of probabilistic gathering in both fault-free and fault-prone
environments.

1.3 Flocking

Flocking is one of the important applications of multiple robots coordination. In detail, flocking is the
ability of a group of robots to move in formation and to preserve formation while moving. Flocking
has many important applications, for instance, transporting large objects, exploring hazardous areas and
surveillance [JSEB00, SHP04, ASER03, RCH98].

At first, the behavior of flocking is observed from the collective motion of a large number of self-
propelled entities - is a behavior exhibited by many living beings such as birds, fish, bacteria, and in-
sects [JORE08].

Until now, flocking problem has been studied from various perspectives, such as control theory, artifi-
cial intelligence and computational viewpoint [DKG07, GP04, SM03, CP07]. To the best of our knowl-
edge, only few works studied the flocking problem from computational viewpoint, such as [DISC08,
GP04, CP07]. Among them, the work of [GP04, CP07] are the closest to our work, however, they rely
on the assumption that robots always function properly, and never crash. That assumption is not practi-
cal due to the characteristic of weakness of robots, especially if robots operate in dangerous or complex
environments.

Perhaps surprisingly, this aspect of multiple robot systems has been explored to very little extent so
far. Yoshida et al. [YMF97] proposed a fault-tolerant algorithm to select the active mobile robots from
a group of mobile robots. Unfortunately, the authors only considered initial crash faults of robots, i.e.,
a faulty robot that makes no motion from the beginning of execution of the algorithm. As we know, it
is not applicable in dynamic applications like flocking, because the probability of robot failure during
execution is much high due to influence of various environments.

Recently, the problem of flocking has been addressed from a computational point of view. The first
such study was by Gervasi and Prencipe [GP04]. In their work, the authors first provided a formal
definition for the flocking problem based on a leader-followers approach. The authors proposed a flock-
ing algorithm that applies to formations that are symmetric with respect to the movement of the leader
without an agreement on a common coordinate system (except the unit distance).

Coble and Cook [CC98] discussed the fault tolerant coordination of robot teams. In their work,
the robots can communicate between each other by exchanging messages. In particular, they applied a
symbolic machine learning approach to deal with uncertainties in communication among autonomous
robots. In other words, they provided a set of attributes that a robot needs to consider when determining
whether its neighbor has been destroyed or it is temporarily obstructed from communicating.

Canepa and Potop-Butucaru [CP07] also studied the flocking problem based on a leader-followers
approach from an algorithmic standpoint. In their work, first a leader is elected via probabilistic or
deterministic algorithm, and then robots arrange each other in a symmetric formation (circle) with respect
to the location of the leader in the CORDA model [PREC01]. In their work, they do not rely on the
existence of a specific leader a priori known to every robot in the system. However, the leader cannot
be changed during execution. Finally, their flocking algorithm allows robots to preserve the formation in
movement by just moving ahead. Their algorithm does not permit any other kind of movements (turning,
going backward, scaling, etc.). Furthermore, their work do not consider fault tolerance issue.

In papers [LDC05] and [LC06], the authors tried to solve the weakness of the leader-follower model,
i.e., when the leader is dead, how to select a unique leader. The idea of these papers is to move some
robots, in order to find the unique furthest one from the new average position of all robots as their leader.

3

However, when the scale of a swarm of robots becomes very large, the worst case may appear that there
exist many leaders at any time and no unique leader can be found in finite time.

Gervasi and Prencipe [GP04] have proposed a flocking algorithm for robots based on a leader-
followers model, but introduce additional assumptions on the speed of the robots. In particular, they
proposed a flocking algorithm for formations that are symmetric with respect to the leader’s movement,
without agreement on a common coordinate system (except for the unit distance). However, their algo-
rithm requires that the leader is distinguished from the robots followers.

Canepa and Potop-Butucaru [CP07] proposed a flocking algorithm in an asynchronous system with
oblivious robots. First, the robots elect a leader using a probabilistic algorithm. After that, the robots
position themselves according to a specific formation. Finally, the formation moves ahead. Their al-
gorithm only lets the formation move straight forward. Although the leader is determined dynamically,
once elected it can no longer change. In the absence of faulty robots, this is a reasonable limitation in
their model.

1.4 Objectives

Our main (principle) motivation is to to consider the fault tolerance of flocking of a group of mobile
robots. In particular, a group of mobile robots can generate and maintain a desired formation during
flocking even in the presence of faulty robots.

Our work considers fault tolerance in problems of a dynamic nature (flocking). This is done while
ensuring the collision avoidance during flocking. During the movement of robots, the collision between
robots and the collision between robots and obstacles are also considered.

Our motivation is to find distributed flocking algorithms in different system models under the weak
assumptions. The assumption include the coordinates (Chapter 4, 5 and 6), communication among
robots, visibility of sensor (Chapter 7), etc. Crash faults (Chapter 4-6) and transient value failures (Chap-
ter 6).

1.5 Contributions

There are main three contributions in this dissertation. The first one is about the design of two fault
tolerant flocking algorithms. The second contribution is the discussion about self-stabilization of robot
flocking when robots suffer transient failure. The last but not least is: it is the first time to apply failure
detector [CT96] into robot system.

Fault tolerant flocking Flocking algorithms are studied for many years, but to the best of out
knowledge, the fault tolerance of flocking has not been discussed so far. Fault tolerant flocking in some
sense is a group of mobile robots flock together to coordinate effectively even in presence of robot failure.

First, we formally presents the definition of fault tolerant flocking, which builds a bridge between
robots application (flocking) and dependable distributed system. After formally specifying flocking prob-
lems and developing an adequate computational model, we find as weak as possible conditions under
which flocking can be achieved.

Our main contribution is two deterministic fault tolerant flocking algorithms. One is in k-bounded
asynchronous system which is to show that the geometric formation agreement during dynamic flocking.
Specially, all robots can coordinate effectively each other to generate a desired formation even in presence
of failure of robots. But in asynchronous model, the robots can not make formation rotate freely. To lift
such limitation, we propose a novel flocking algorithm which can make robots move freely, yet in a
weaker model–semi-synchronous model.

Other contributions can be mentioned. First, we propose the algorithm modules, which is convenient
for hardware design and using in practical applications. Second, we propose a useful method how to

4

distinguish the crashed robots from the correct ones. Using this method, the robot system can break the
deadlock situation that the correct robots wait for the crashed robots for ever to keep formation and thus
all robots can not move any more. In all, our algorithms provide a dependable platform for dynamic
flocking of robots.

Self-stabilization of flocking with transient failure The property of self-stabilization is very im-
portant for dependable distributed system. In this dissertation, we analyzed the self-stabilization of
flocking of a group of non-oblivious robots for transient failure.

When the robots or some component of robots experience transient failure, one dependable robot
system should make sure the robots self-stabilize to a stable state. As a result, in our work, we mainly
focus on the corruption of memory. Memory corruption means: some or total of the data in the memory
change to other random values. For instance, in magnetic fields, the data in the memory may experience
corruption. After the robots move away from the special place, the memory are not influenced any more.
In this situation, how to find a way to make robot system self-stabilize and make robot flock together
become a very important issue. In all, we provide a general way to analyze the self-stabilization of robot
coordination.

Failure detector in robot system The abstract failure detection methods [CT96] are addressed in
traditional distributed system for many years. However, there is few work that applies failure detector
into robot system, except the work [AP04].

Differently from [AP04], we provide a specific application of failure detector but not an abstract
one. Our failure detector provides a specific method to distinguish the crashed robots from the correct
ones, as a result, to break the deadlock situation that the correct robots always wait for the crashed ones
to satisfy the requirement of flocking, and can not move any more. Thus, it will inspire the design of the
failure detector for specific applications.

1.6 Organization

The rest of this dissertation is structured as follows:
Chapter 2 discusses system models and definitions that are used throughout this dissertation.

- Chapter 3 states the problem that needs to address in flocking of a group of mobile robots.

- Chapter 4 presents a fault tolerant flocking algorithm for a group of asynchronous mobile robots.

- Chapter 5 discusses formation rotation issue of mobile robots and presents a free rotation flocking
algorithm, yet in a weaker model – semi-synchronous model.

- Chapter 6 discusses the (im)possibility of self-stabilization of the presented fault tolerant flocking
algorithms with memory corruption.

- Chapter 7 addresses on the collision avoidance issue between robots, and between robots and
obstacles in the environments.

- Chapter 8 summaries the major results of this work and outlines future research directions.

5

Chapter 2

System Models and Definitions

2.1 System Models

The system consists of a set of autonomous mobile robots R = {r1, r2,, rn} locating on a two-
dimensional plane. Each robot is modelled and viewed as a point in the plane, and is equipped with
sensors to observe the positions of the other robots. The local view of each robot is expressed according
to a private coordinate system that to be consisted of a unit of length, an origin and the directions and
orientations of the two x and y coordinate axes.

The robots are completely autonomous. Moreover, they are anonymous, in the sense that they are a
priori indistinguishable by appearance. They do not have any kind of identifiers that can be used during
their computations. Furthermore, there is no direct means of communication among them.

Remark: why the robots are anonymous? what advantage could it bring? From the theoretical view-
point, if the robots are anonymous, it makes the model weaker and better. From the practical situation,
even the robots don’t know each other’s identity number, they still could work together. From the another
side to consider, if the robots are not anonymous, that means all robots have identity number, and use
communication to exchange their identity number. Furthermore, all robots need to share the same coor-
dinate system, otherwise, they can not know who is where. Therefore, if the robots are not anonymous,
it brings a lot of problem and makes the problem more complexity.

In particular, each robot Ri identifies the locations of all robots in Ri’s private coordinate system;
the result of this step is a multi-set of points P = {p1, ...pN} defining the current configuration. In all,
robots first get all robot’s location by sensing the environment, perform computations on the sensed data,
and move toward the computed destination. This behavior constitutes its cycle of sensing, computing,
moving and being inactive. We define an activation cycle of a robot as follows:

• Look. Here, a robot observes the world by activating its sensors, which will return a snapshot of
the positions of the robots in the system.

• Compute. In this event, a robot performs a local computation according to its deterministic algo-
rithm. The algorithm is the same for all robots, and the result of the compute state is a destination
point.

• Move. The robot moves toward its computed destination.

Definition 1 The sequence Look-Compute-Move-Wait is called the cycle of a robot. If one such cycle
of a robot is executed, we call this one activation of a robot.

Specially, there is no direct communication among them. Hence, the only way to communicate is
observing the other robots’ position by its sensor. In the “look” step, the robots are indistinguishable, so
each robot Ri knows its own location pi, but does not know the identity of the robots at each of the other
points.

6

Figure 2.1: An activation cycle of a robot in SYm model.

Note that the “look” and “move” steps are carried out identically in every cycle, and the differences
between different algorithms occur in the “compute” step. Moreover, the procedure carried out in the
“compute” step follows the same algorithm. If the robots are oblivious, then the algorithm cannot rely
on information from previous cycles.

Time is represented as an infinite sequence of time instants during which each robots can be either
“active” or “inactive”. Each time instant during which a robot becomes active, the robot observes its
environment, computes a new position, and moves toward that position. The activation of robots is un-
predictable and unknown to robots, with the guarantees that: (1) every robot becomes active at infinitely
many time instants, and (2) at least one robot is active during each time instant.

Our computational model for studying and analyzing problems of coordinating and controlling a set
of autonomous mobile robots follows three well-known models:

• Fully synchronous model (FSYNC) [AP04]

• Suzuki-Yamashita model (SYm model) [KSIS96, AOSY99, SY99]

• CORDA model [PREC01, GPRE01b]

2.1.1 Fully Synchronous Model (FSYNC)

The fully synchronous model is introduced in [AP04]. In fully synchronous model, each robot works
according to the cycle of look-compute-move. In addition, robots operate according to the same clock
cycles, and all robots are active on all cycles. There is a lower bound of S units on the minimum
movement of a robot in a cycle, and also there is a limit of maximum movement in each cycle.

2.1.2 Suzuki-Yamashita Model (SYm)

In the SYm model, time is represented as an infinite sequence of discrete time instants t0, t1, t2, ...,
during which each robot can be either active or inactive. Only when a robot in wait state, it is inactive; in
other state, a robot executes the activations (look, compute, move), which occur instantaneously. Thus,
it results in a form of implicit synchronization(see Figure 2.1). In other words, this model is partially
synchronous, in the sense that all robots operate according to the same clock cycles, but not all robots
are necessarily active in all cycles. The activations of the different robots can be thought of as managed
by a hypothetical “scheduler”, whose only “fairness” obligation is that each robot must be activated and
given a chance to operate infinitely often in any infinite execution.

The cycle of a robot is finite, and the activation of robots is determined by an activation schedule,
which is unpredictable and unknown to the robots. At each time instant, a subset of the robots becomes
active, with the guarantees that: (1) Every robot becomes active at infinitely many time instants, (2) At
least one robot is active during each time instant and (3) The time between two consecutive activations
is not infinite.

7

Figure 2.2: The activation of robots in CORDA model.

The atomic action executed by a robot in this model is a computation cycle. The execution of the
system can be modelled as an infinite sequence of rounds. In a round one or more robots are activated
and perform an activation cycle.

In every single activation, the distance that robot r can travel in one cycle is bounded by δri , then the
algorithm returns a point of at most δri . This distance may be different for different robots.

2.1.3 CORDA Model

The CORDA model introduced by Prencipe [PREC01] is similar to the SYm model described above. The
most notable difference is that, in the CORDA model, there is no synchronization (explicit or implicit)
between robots. Specially, during the period a robot moves (i.e., between “Begin move” and “End move”
in Figure 2.2), the other robots can activate many times. Furthermore, a robot can see the other robots
that are moving in the plane.

In the CORDA model, the (global) time that passes between two successive states of the same robot
is finite, but unpredictable. In addition, no time assumption within a state is made. This implies that
the time that passes after the robot starts observing the positions of all others and before it starts moving
is arbitrary, but finite. That is, the actual movement of a robot may be based on a situation that was
observed arbitrarily far in the past, and therefore it may be totally different from the current situation.

They may be interrupted by the scheduler during the execution of the computation cycle. Moreover
while a robot performs an action A, where A can be one of the following atomic actions: observation,
local computation or motion, another robot may perform a totally different action B.

In the model, there are two limiting assumptions related to the cycle of a robot.

Assumption 1 It is assumed that the distance travelled by a robot r in a move is not infinite. Further-
more, it is not infinitesimally small: there exists a constant δr > 0, such that, if the target point is closer
than δr , r will reach it; otherwise, r will move toward it by at least δr.

Assumption 2 The amount of time required by a robot r to complete a cycle (wait-look-compute-move)
is not infinite. Furthermore, it is not infinitesimally small; there exists a constant τr > 0, such that the
cycle will require at least τr time.

2.1.4 Relation between Models

As discussed in the paper [AP04], the relation between the three models is as follows: The FSYNC model
is an extreme model since in this model, robots work according to the same clock cycles and all robots
are active on all cycles. The SYm model is semi-synchronous model, in the sense that only some robots
may activate in synchronous way and the execution of each activation is atomic. The another extreme

8

model is CORDA (also the weakest model), during which robots are fully asynchronous. Obviously, the
relationship among them is: FSYNC is a subset of SYM, and SYM model is a subset of CORDA. That
is, using the set signal, they satisfy FSY NC ⊂ SY m ⊂ CORDA.

2.2 Scheduler

At each configuration, a scheduler decides the set of robots which are allowed to execute their actions.
A scheduler is fair if, in an infinite execution, a robot is activated infinitely often.

From the paper [DGMP06], we know there are different kinds of schedulers based on their property
(fairness). First, we give the definition of full activation cycle for robots.

Definition 2 (full activation cycle) A full activation cycle for any robot ri is defined as the interval
from the event Look (included) to the next instance of the same event Look (excluded).

Definition 3 (Unfair scheduler) Some robots in the system may never get activated while the other
robots activate often.

Definition 4 (Fair scheduler) Each robot can activate infinite times during infinite executions.

Definition 5 (Centralized scheduler) Each time only one robot get activated.

Definition 6 (Arbitrary scheduler) At each configuration an arbitrary subset of robots is activated.

During the fair schedulers, there is a special scheduler called bounded scheduler.

Definition 7 (Bounded scheduler) There exists a natural number k, but the value of k is unknown,
between two consecutive full activation cycles of the same robot ri, another robot rj can execute at most
k full activation cycles.

In this paper we consider the fair version of a subset of bounded scheduler: k-bounded-scheduler.

Definition 8 (k-bounded-scheduler) Between two consecutive full activation cycles of the same robot
ri, another robot rj can execute at most k full activation cycles, where k is known.

This definition allows us to establish the following lemma:

Lemma 1 With k bounded scheduler, if a robot is activated k + 1 times, then all (correct) robots have
completed at least one full activation cycle during the same interval.

2.3 Failure Detection

Before we talk about failure detection, first we explain three important concepts–failure, fault, and error
based on [ALRL04]. Correct service is delivered when the service implements the system function.
A service failure, often abbreviated here to failure, is an event that occurs when the delivered service
deviates from correct service. A service fails either because it does not comply with the functional
specification, or because this specification did not adequately describe the system function. Since a
service is a sequence of the system’s external states, a service failure means that at least one (or more)
external state of the system deviates from the correct service state. The deviation is called an error. The
adjudged or hypothesized cause of an error is called a fault. Faults can be internal or external of a system.

In a distributed system, two components of the system, both processes and channels, can fail. It is
very important to define types of possible failure for further discussion about existing problems. Now,
some failure models are introduced and the types of failure assumed discussed.

9

Figure 2.3: Different Classifications of failures [ALRL04].

Here, in robot system, similarly with process failure in the distributed system, the robot can fail for
various reasons and they behave differently after failure. Due to the influence of outside environment, a
robot or part of components of a robot, like sensor, communication equipment, or moving actuator, may
crash. In this dissertation, we mainly discuss the crash of robots and put the crash of components of a
robot in our future work.

2.3.1 Failure Classifications

In general, robot failures are mainly classified the following classifications with respect to the behavior
of a robot after failure [ABLS90]. Figure 2.3 shows the different failure classifications in distributed
system.

- Crash failure: A robot halts, but is working correctly until it halts.

- Omission failure: A robot fails to respond to incoming requests.

- Timing failure: A robot’s response lies outside the specified time interval.

- Response failure: The robot’s response is incorrect.

- Arbitrary (Byzantine) failure: A robot may produce arbitrary responses at arbitrary times.

Based on the duration of failure, there are transient failure and persistent failure(permanent failure).
Following the meaning of permanent, a crash is permanent in the sense that a faulty robot stop and
never recovers. Compared with permanent failure, transient failure is temporary failure and the period of
failure is bounded.

Based on [Gerard00], there is another failure models–Byzantine behavior: a robot is said to be
Byzantine if it executes arbitrary steps that are not in accordance with its local algorithm.

We call robots that never crash be correct robots, and robots that have crashed be faulty or incorrect
robots. Note that correct/faulty are predicates over a whole execution: a robot that crashes is faulty even
before the crash occurs. Of course, a robot cannot determine if it is faulty and some other components
(i.e., failure detector modules) cannot make robots faulty.

We consider permanent crash (in most of this dissertation and unless stated otherwise). That is, a
robot may fail by crashing, after which it stop moving and executes no actions (no movement) any more.
However, it is still physically present in the system, and it is seen by the other non-faulty robots. A robot
that is not faulty is called a correct robot.

In this chapter, we address crash failures. That is, we consider initial crash of robots and also the
crash of robots during execution. That is, a robot may fail by crashing, after which it executes no actions
(no movement). A crash is permanent in the sense that a faulty robot never recovers. However, it is still

10

Table 2.1: Eight classes of failure detectors defined based on accuracy and completeness
Completeness Accuracy

Strong Weak Eventual Strong Eventual Weak

Strong Perfect P Strong S Eventually Perfect ♦P Eventually Strong ♦S

Weak Q Weak W ♦Q Eventually Weak ♦W

physically present in the system, and it is seen by the other non-crashed robots. A robot that is not faulty
is called a correct robot.

In distributed coordination of robots, a question arises: how a robot knows a robot has crashed? As
we know in distributed system, a process uses failure detector to detect the other process by sending
message periodically (actively or passively). First, we introduce what the failure detector is and then we
discuss how to design a failure detector for robot system.

2.3.2 Failure detector

In distributed systems with failures, applications often need to determine which processes are up (opera-
tional) and which are down (crashed). This service is provided by failure detector. Failure detectors are
the core of many fault-tolerant algorithms and applications, such as group membership, group communi-
cation, atomic broadcast, atomic commitment, consensus and leader election, etc. Also failure detectors
are found in many systems, such as ISIS, Ensemble, Relacs, Transis, Air Traffic Control Systems.

A Failure detector can be viewed as a distributed oracle for giving a hint about the operational state
of a process. In fact, a failure detector consists of failure detector modules that communicate with each
other by exchanging messages. A process, called a monitoring process, can query its failure detector
module about the status of some process, called a monitored process. The monitoring process thus
obtains information about whether or not the monitored process is suspected to have crashed.

The principal definitions of failure detectors have been proposed by Chandra and Toueg [CT96].
They define the notion of unreliable failure detectors, which are based on the following model. For every
process pi in the system, there is a module FDi attached that provides pi with potentially unreliable
information on the status of other processes. At any time, pi can query FDi and obtain a set of processes
containing those that are suspected of having crashed.

The impossibility result mentioned above (i.e., several distributed agreement problems cannot be
solved deterministically in asynchronous systems if even a single process might crash [CT96]), no longer
holds if the system is augmented with some unreliable failure detector oracle [CT96]. An unreliable
failure detector is one that can, to a certain degree, make mistakes (over and over).

The failure detector is a distributed entity that consists of all modules and whose behavior must
exhibit some well-defined properties. Depending on the properties that are satisfied, a failure detector
can belong to one of several classes. Now, these properties are as follows:

Completeness properties

• Strong completeness: Every faulty process is permanently suspected by all correct processes.

• Weak completeness: Every faulty process is permanently suspected by some correct process.

Accuracy properties

- Strong accuracy: No process is suspected before it crashes.

- Weak accuracy: Some correct process is never suspected.

- Eventual strong accuracy: There is a time after which every correct process is never suspected by
any correct process.

11

- Eventual weak accuracy: There is a time after which some correct process is never suspected by
any correct process.

Perfect failure detector P satisfies strong completeness and strong accuracy. There are eight such
pairs, obtained by selecting one of the two completeness properties and one of the four accuracy proper-
ties.

As an example, the class ♦S of failure detectors, is one of the weakest failure detectors to solve Con-
sensus, are defined by strong completeness and eventual weak accuracy. Interestingly, any given failure
detector that satisfies weak completeness can be transformed into a failure detector that satisfies strong
completeness. There also exist transformation algorithms for failure detectors from strong completeness
to weak completeness. This means that a failure detector with strong completeness and a failure detec-
tor with weak completeness are equivalent, thus, ♦W is also the weakest failure detector for solving
Consensus.

The problem is, that in asynchronous distributed systems, it is impossible to implement a failure
detector of class ♦S in a literal sense. The definition of ♦S failure detector is nevertheless highly
relevant in practice. Algorithms which assume the properties of a ♦S are incredibly robust because they
can tolerate an unbounded number of timing failures. In other words, and in a more pragmatic way, an
application is guaranteed to make progress as long as the failure detector behaves well for long enough
periods. Conversely, the application might stagnate during bad periods and resume only after the next
period of stability.

2.4 Position Configuration

When a robot gets activated, first it “looks” the position of all robots and then gets the set of all robots’
positions. We call such position set as position configuration. Specially, the formal definition is as
follows:

Definition 9 (Position Configuration) When a robot gets activated, the set of the robots’ positions ob-
served by a robot is called a position configuration.

In non-oblivious robot system, the position configuration of robots needs to be saved in the memory.
Between activations of a robot, the past position configuration is saved in the memory.

In order to denote the different flocking algorithm conveniently, we denote the flocking algorithm
which can translate but can not rotate formation as FT . The flocking which can rotate the formation is
called FR. Obviously, FR also can translate. For the different flocking algorithms, they work in different
system models. Now we can use F(MODEL) to denote the translating flocking algorithm which works
in MODEL, where MODEL is a variable that can be CORDA, SYm and FSYNC. If the algorithm can
tolerate the memory corruption, we denote it be FMC(MODEL), where MC is the abbreviation of
memory corruption.

12

Chapter 3

Problem Statement: Flocking

3.1 General Flocking

A special behavior of large number of interacting dynamic agents called “flocking” has attracted many
researchers from diverse fields of scientific and engineering disciplines. The term “flocking” in English
means “moving together in large numbers”. This behavior exists in the nature in the form of flocking
of birds, schooling of fish, and swarming of bacteria . Solutions to the flocking problem are useful
primitives for larger tasks. For instance box pushing or cooperative manipulation, where robots can be
asked to move heavy loads.

In the literature, there are many kinds of flocking definition. The earliest is stated by Craig Reynolds
in his simulation program, Boids in 1986. He said the basic flocking is controlled by three simple rules:

1) Separation - avoid crowding neighbors (short range repulsion)

2) Alignment - steer towards average heading of neighbors

3) Cohesion - steer towards average position of neighbors (long range attraction)

Separation means that each member, or robot, of a flock tries to keep a minimum distance from every
other robot in the flock. Alignment means that each robot tries to go in the same direction as the rest of
the flock. Cohesion means that each robot tries to get as close as possible to the rest of the flock (huddle
together). With these three simple rules, the flock moves in an extremely realistic way, creating complex
motion and interaction that would be extremely hard to create otherwise. Afterward, avoidance is added
as the fourth requirement by some researchers. It means each robot tries to not get too close, or avoid,
robots in other flocks. From these four simple rules of flocking emerges apparently life-like behavior for
a flock.

Numerous definitions of flocking can be found in the literature [GP04, Rey87, BH97, YB96], but few
of them define the problem precisely. The rare rigorous definitions of the problem suppose the existence
of a leader robot and require that the other robots, called followers, follow the leader in a desired fashion
[GP04, CP07, GP01, GPRE01b, VGGP01]. The motion of the leader is not constrained by the problem.
In contrast, the followers must follow the leader in such a way that the relative positions of the robots
always keep a desired distance.

3.2 Formation Flocking

Informally, flocking is the formation and maintenance of a desired pattern1 while moving, by a team of
mobile robots. In this chapter, we take a leader-followers approach [GP04]. That is, at any time, there

1The pattern means a geometrical graph in 2-dimension plane or three dimension space.

13

exists a robot leader in the system to lead the other robots, called followers. This leader is elected and
known by the other robots in the system. In other words, the followers just need to follow the leader
wherever it goes, and to keep the given formation while moving.

In order to provide a formal definition of the formation flocking problem, we use the following
definitions introduced in [GP04].

Definition 10 (D-distance) Given two position snapshots of a group of robots C = {c1, c2, .., cn} and
G = {g1, g2, ..., gn}, where ci and gi denote the positions of a robot in snapshot C and G respectively,
the D−distance between them is defined as follows:

D(C,G) = minπ∈Π

|C|∑
i=1

dist(ci, gπ(i))

where Π is the set of all possible permutations of 1..., |C| and dist(ci, gπ(i)) is the distance between two
points ci and gπ(i).

Definition 11 (Target) Given a pattern P and a position configuration E, we call an undirected target
of the robots any formation that is obtained by translating P so that its leader point coincides with the
leader of E, and rotating it by an arbitrary angle. We denote such a formation as TP,E .

Definition 12 (Approximation undirected formation) An undirected target is formed up to ξ if

D(E,TP,E) ≤ ξ.

Definition 13 (Flocking) Let r1, r2, ..., rn be a group of robots, whose positions constitute a formation
E, and let P be a pattern given in input to r1, r2, ..., rn. We consider the presence of a leader robot
to lead the group, and the other robots are followers. The leader robot can be assigned dynamically,
and any of robots can potentially become a leader if the current leader is crashed. The leader can go
anywhere it wants and the followers just try to follow the leader to satisfy an approximate formation.
The robots solve the approximate formation problem during flocking if, starting from a given desired
formation, the robots can maintain a target formation up to ξ. More specifically, during flocking, there
exists a formation that satisfies D(E,TP,E) ≤ ξ.

Definition 14 (Formation) A formation F = Formation(P1, P2, ..., Pn) is a configuration, with P1

the leader of the formation, and the remaining points, the followers of the formation. Note that the
leader P1 is not distinct physically from the robot followers.

In this chapter, we assume that the formation F is a regular polygon, d is the length of the polygon edge
(known to the robots), and α = (n − 2)180◦/n is the angle of the polygon, where n is the number of
robots in F .

Definition 15 (εr-Approximate Formation) We say that robots form an approximation of the forma-
tion F if each robot ri is within εr from its target Pi in F .

Definition 16 (The Flocking Problem) Let r1,...,rn be a group of robots, whose positions constitute a
formation F = Formation(P1, P2, ..., Pn). The robots solve the εr- Approximate Flocking Problem if,
starting from an arbitrary formation at time t0, ∃t1 ≥ t0 such that, ∀t ≥ t1 all robots are at a distance
of at most εr from their respective targets Pi in F , and εr is a small positive value known to all robots.

14

3.3 Fault Tolerant Formation Flocking

In computing systems, a fault tolerant system can provide services even in presence of faults. Here, we
consider fault tolerance of the mobile robots system. That is, a group of robots form and maintain an
approximation of a regular polygon during flocking, in spite of the possible presence of faulty robots or
some components failure of robots.

In robot system, robots can communicate each other by sending message to detect the failure of
robots, like in traditional distributed system. But in the weak system model, like CORDA or SYm
model, robots can not communicate explicitly. The only way that a robot “communicate” (obviously
implicit) with the other robots is by sensor. When a robot senses the other robots, it can get the position
of the other robots (locally or globally). Checking the position change of robots is a unique option to
find failure of robots. So, a question may arise: How to distinguish a robot is staying in “waiting” state
from a failed one. Also, when detecting the crash of robot by observing the positions of robots, it is not
easy to know that a robot stays in its previous positions all the time or the other robots just move to that
position. Those complicated problems need to be considered during designing flocking algorithms.

Although we do consider the presence of a leader robot to lead the group, the role of leader is
assigned dynamically and any of the robots can potentially become a leader. In particular, after the crash
of a leader, a new leader must eventually take over that role.

3.4 Challenges of Flocking

Flocking provides interesting solutions to many problems: manipulate of large objects, system redun-
dancy, reducing time complexity for the targeted tasks, however it bring in discussion some specific
difficulties. In particular, these robots should achieve their tasks without human intervention based only
on the information provided by the robots in the same group. Moreover, they have to explore unknown
or quasi unknown environments while avoiding collisions among themselves. Additionally, they have to
be able to reorganize whenever one or more robots in the group stop to behavior correctly.

The difficulty of the problem comes from the following points:

• Generate a desired formation For formation flocking, all robots need to self-deploy themselves
to generate a desired formation in distributed way.

• Avoid collision between robots During flocking, the algorithm used in the robots should avoid
robot to “kill” each other.

• Avoid collision between robots and the obstacles When there are obstacles in the environment,
the flocking robots should avoid such obstacles intelligently.

• Detect failure When considering the robot may crash, it is necessary to find a way to distinguish
the crashed robots from the correct ones who stay in “wait” state.

• Find the minimum capability that a robot must have If the minimum capability of a robot must
have for flocking coordination, then it is useful for designing how weak the robots.

• Make robot system self-stabilize when transient failure occurs Robots may experience transient
failure, how to make robots system go back to a “legitimate” configuration becomes very neces-
sary.

Generally, there are two kind of collisions that need to be avoided: collision between robots and col-
lision between robots and obstacles. During dynamic coordination, the distributed algorithm that robots
used should make sure absence of collision. Otherwise, if any two or more robots collide each other
or a robot collides with the obstacles in the environment, then it cannot be called effective coordination

15

and as a result they will never finish their desired task. There are many work on flocking with obstacle
avoidance, like in [MLPO05, SM03, YDCW07, JYJJ91]. Most of them is from the viewpoint of control
theory or graph theory by designing a potential function. The robots do avoid the collision from the ob-
stacles in the environment, while the computation complexity is not considered. Taking these challenges
in mind, we manage to propose the corresponding solution in different system model. Specially, when
we explore the fault tolerant formation flocking, obstacles are not considered in the models.

16

Chapter 4

Fault-tolerant flocking in a k-bounded
asynchronous system

Flocking of a group of mobile robots has a lot of wide and practical applications, like large-scale con-
struction, hazardous waste cleanup, space missions or exploration of dangerous or contaminated area.
However, as we discussed in the previous chapter, it also go with a lot challenges to achieve the effective
coordination, especially in the presence of robot crash.

Therefore, in this chapter, our work is to make mobile robots group to form a desired pattern and
to move together while maintaining such formation. Unlike previous studies of the problem, we con-
sider a system of mobile robots in which a number of them may possibly fail by crashing. Our al-
gorithm [SYD08] ensures that the crash of faulty robots does not bring the formation to a permanent
stop, and that the correct robots are thus eventually allowed to reorganize and continue moving together.
Furthermore, the algorithm makes no assumption on the relative speeds at which the robots can move.

Refer to Chapter 2, we consider the following system model: CORDA model of Prencipe [PREC01]
with a k-bounded scheduler. The local view of each robot includes a unit of length, an origin, and the
directions and orientations of the two x and y coordinate axes. In particular, we assume that robots have a
partial agreement on the local coordinate system. Specifically, they agree on the orientation and direction
of one axis, say y. Nevertheless, such assumptions (e.g., y-axis) seem like a given existing robot sensors
(e.g., compasses.) Also, they agree on the clockwise/counterclokwise direction.All robots share the same
unit distance. The origin of the local coordinate system of a robot is fixed. Mobile robots may possibly
fail by crashing and never recover. Without such assumptions, it is fairly easy to show that the problem
is impossible.

Based on the system model, in this chapter, we present a fault-tolerant flocking algorithm for a k-
bounded asynchronous robot system. Our algorithm ensures that the crash of faulty robots does not
bring the formation to a permanent stop, and that the correct robots are thus eventually allowed to be
reorganized and continue moving together. Furthermore, the algorithm makes no assumption on the
relative speeds at which the robots can move. We assume the existence of at most (n − 3) faulty robots
in the system, where n is the number of all robots in the system.

In detail, the proposed algorithm is made of three parts. First, based on the k-bounded scheduler and
approximate assumption about moving restriction of robots, we provide a method called perfect failure
detector to detect any robot that has crashed. Second, agreed ranks are assigned for every robot based on
the consistent position configuration. Finally, based on the above module, the third part of the algorithm
ensures that the robots move together while keeping an approximation of a regular polygon, while also
ensuring the necessary restrictions on their movement.

Before we proceed, we give the following notations that will be used throughout this chapter. Given
some robot ri, ri(t) is the position of ri at time t. y(ri) denotes the y coordinate of robot ri at some time
t. Let A and B be two points, with AB, we will indicate the segment starting at A and terminating at B,
and dist(A,B) is the length of such a segment. Finally, given a region X , we denote by |X |, the number

17

of robots in that region at time t. Let S be a set of robots, then |S| indicates the number of robots in the
set S.

Specially, for the definition of εr-Approximate Formation, we assume, dist(ri, rj) < εr < (k +
1)dist(ri, rj), where k is from k bounded scheduler, dist(ri, rj) is the distance between two robots ri
and rj .

The presented fault tolerant flocking algorithm consists three modules: perfect failure detector,
agreed ranking of robots and flocking algorithm. First, by using perfect failure detector, the robots
get the set of positions of correct robots. The output of failure detector as the input of the ranking mod-
ule. By ranking module, all correct robots are assigned agreed rank. Thus, in flocking module, a unique
leader can be chosen and all the other robots follow the elected leader move together.

4.1 Perfect Failure Detection

In this section, we give a simple perfect failure detection algorithm for robots based on a k−bounded
scheduler in the asynchronous model CORDA. Refer to Chapter 2, a perfect failure detector has two
properties: strong completeness, and strong accuracy. That is,

• Strong completeness: Every faulty robot is permanently suspected by all correct robots.

• Strong accuracy: No robot is suspected before it crashes.

Before we proceed to the description of the algorithm, we make the following assumption, which is
necessary for the failure detector mechanism to identify correct robots and crashed robots.

Assumption 3 At each activation of some correct robot ri, ri computes as destination a position that
is different from its current position. Also, a robot ri never visits the same location for the last k + 1
activations of ri.1Finally, a robot ri never visits a location that was visited by any other robot rj during
the last k + 1 activations of rj .

Remark: For easy to describe our idea, here we make this assumption and later prove that it is always
verified by our algorithms, thus completing the loop.

This assumption is only needed to determine a unique ranking for any number of robots (even or
odd) as it is the minimal assumption to solve the leader election problem for an even number of robots,
as proved by Flocchini et al. [FPSW99, FPSW01].

4.1.1 Algorithm Description

Recall that we only consider permanent crash failures of robots, and that crashed robots remain physi-
cally in the system. Besides, robots are anonymous. Therefore, the problem is how to distinguish faulty
robots from correct ones. As shown in Algorithm 1, this failure detector part is pretty straightforward.
It provides a simple perfect failure detection mechanism for the identification of correct robots. The
algorithm is based on the fact that a correct robot must change its current position whenever it is acti-
vated (Assumption 3), and also relies on the definition of the k−bounded scheduler for the activations of
robots. So, a robot ri considers that some robot rj is faulty if ri is activated k + 1 times, while robot rj
is still in the same position.

Algorithm 1 gives as output the set of positions of correct robots Scorrect, and uses the following
variables:

• SPosPrevObser: a global variable representing the set of points of the positions of robots in the
system in the previous activation of some robot ri. These points include the positions of correct
and faulty robots. SPosPrevObser is initialized to the empty set during the first activation of the
robot.

1That is, ri never revisits a point location that was within its line of movement for its last k + 1 total activations.

18

• SPosCurrObser: the set of points representing the positions of robots in the current activation of
some robot ri. Note that these points also include the positions of all robots in the system, including
faulty and correct ones.

• cj : a global variable recording how many times some robot rj did not change its position pj;

Assumption 3 gives as output the set of positions of correct robots Scorrect.

Algorithm 1 Perfect Failure Detection (code executed by robot ri)
Initialization: SPosPrevObser := ∅; cj := 0

1: procedure Failure Detection(SPosPrevObser,SPosCurrObser)
2: Scorrect := SPosCurrObser;
3: for ∀ pj ∈ SPosCurrObser do
4: if (pj ∈ SPosPrevObser) then {robot rj has not moved}
5: cj := cj + 1;
6: else
7: cj := 0;
8: end if
9: if (cj ≥ k) then

10: Scorrect = Scorrect − {pj};
11: end if
12: end for
13: return (Scorrect)
14: end

4.1.2 Correctness

The proposed failure detection algorithm (Algorithm 1) satisfies the two properties of a perfect failure
detector; strong completeness, and strong accuracy. It also satisfies the eventual agreement property.
These properties are stated respectively in Theorem 1, Theorem 2, and Theorem 3.

Lemma 2 If some robot ri crashes at time tcrash, then there is a time tmute after which every correct
robot detects the crash of robot ri, that is: ∃tmute, tmute ≤ tcrash + tmax, where tmax is the maximum
time required for the slowest robot to detect the crash.

PROOF. Let ri be a crashed robot. Then, ri will remain at its current position forever.
Let rf be a correct robot which is the fastest robot in the system. By hypothesis on the
system model, the time between two consecutive activations of any robot is finite. Then,
by definition of the k-bounded scheduler, and Assumption 3, robot rf detects that ri has
crashed after (k + 1) activations (activations of rf), which takes finite time.

Now, let rs be a correct robot which is the slowest robot in the system. Assume that rs is
activated the least, i.e., rs is activated only once during the k activations of robot rf . Then,
robot rs detects that ri has crashed after k(k + 1) activations (activations of rs), which is
also done in finite time. As a result, we can deduce that any correct robot rj in the system
detects the crash of robot ri in finite time by similar arguments.

Assume that ri crashes at time tcrash, and tmax is the maximum time required for k(k + 1)
activations of the slowest robot, then we can compute tmute, which is the time after which
all correct robot detect the crash of robot ri as follows: tmute ≤ tcrash + tmax. Since after
time tcrash, robot ri never moves, then after time tmute, ri will be permanently suspected by
all correct robots in the system. �Lemma 15

19

As a direct consequence from Lemma 15, we derive the following theorems:

Theorem 1 (Strong completeness): Eventually every robot that crashes is permanently suspected by
every correct robot.

Theorem 2 (Strong accuracy): There is a finite time after which correct robots are not suspected by
any other correct robots.

PROOF. Let ri and rj be two correct robots. Assume without loss of generality that robot
ri is activated only once during k activations of robot rj .

If robot ri is correct, then by Assumption 3, and by the definition of k−bounded scheduler,
ri must move by a non-zero distance during the k activations of robot rj . Also, by Lemma 1,
ri must have finished its move before the start of the k + 1 activation of rj . In addition, rj

cannot move to the position that was occupied by ri by Assumption 3. Since rj is also cor-
rect, it will realize that ri has changed its position at or before the k + 1 activation of rj .
Since the time required for the k + 1 activations of rj is also finite, rj will realize that ri is
a correct robot in finite time. �Theorem 2

From Theorem 1 and Theorem 2, we can conclude that Algorithm 1 has the following property:

Theorem 3 (Eventual agreement): There is a finite time after which, all correct robots agree on the
same set of correct robots in the system.

4.2 Agreed Ranking for Robots

In this section, we provide an algorithm that gives a unique ranking (or identification) to every robot in
the system since we assume that robots are anonymous, and do not have any identifier to allow them to
distinguish each other. The algorithm allows correct robots to compute and agree on the same ranking.
In particular, the ranking mechanism is needed for the election of the leader of the formation. Note that
a deterministic leader election is impossible without a shared y-axis [FPSW01]. Therefore, we assume
that robots agree on the y-axis.

4.2.1 Algorithm Description

We first assume that robots are not located initially at the same point. That is, robots are not in the
gathering configuration [DGMP06], because it may become impossible to separate them later. In other
words, consider two robots that happen to have the same coordinate system and that are always activated
together. It is impossible to separate them deterministically. In contrast, it would be trivial to scatter
them at distinct positions using randomization (e.g., [DP07]), but this is ruled out in our model.

The ranking assignment is given in Algorithm 2. The algorithm takes as input the set of posi-
tions of correct robots in the system Scorrect, and returns as output an ordered set of the positions
in Scorrect, called RankSequence. This ranking of the positions of robots in Scorrect gives to ev-
ery robot a unique identification number. The computation of RankSequence is done as follows:
RankSequence = {Scorrect, <}, where the relation “ < ”is defined by comparing the y coordinates
of the points in Scorrect, and breaking ties from left to right. In other words, the positions of robots in
Scorrect are sorted by decreasing order of y−coordinate, such that the robot with greatest y-coordinate
is the first in RankSequence. When two or more robots share the same y-coordinate, the clockwise
direction (called right hand) is used to determine the sequence; a robot ri that has a robot rj on its right
hand, has a lower rank than rj in RankSequence.

20

Algorithm 2 Ranking Correct Robots (code executed by robot ri)
1: Input: Scorrect: set of positions of correct robots;
2: Output: RankSequence: Ordered set of positions of correct robots Scorrect;
3: Initialization: counteract := a global variable recording the number of activations of robot ri;
4: procedure Ranking Correct Robots(Scorrect)
5: When ri is activated
6: counteract := counteract + 1;
7: Left(ri):= is the ray starting at ri and perpendicular to its y−axis in counter-clockwise direction.
8: Sort the y−coordinates of robots in Scorrect in decreasing order.
9: if (∀rj, rk ∈ Scorrect, y(rj)
= y(rk)) then

10: RankSequence := the set Scorrect in order of decreasing y−coordinate;
11: else if y(rj) = y(rk) then
12: if (rj is on Left(rk)) then
13: RankSequence := rj < rk;
14: else
15: RankSequence := rk < rj ;
16: end if
17: end if
18: if (counteract ≤ k) then
19: Lateral Move Right();
20: end if
21: Return(RankSequence);
22: end

Algorithm 3 Procedure Lateral Move Right (code executed by robot ri).
1: procedure Lateral Move Right()
2: Right(ri) = is the ray starting at ri and perpendicular to its y−axis in clockwise direction;
3: if (If no other robot on Right(ri)) then
4: ri moves by at most εr/(k + 1)(k + 2) to Right(ri)(see Figure 4.1(a));
5: else {some robots are in Right(ri) including faulty robots}
6: p = the position of the nearest robot to ri in Right(ri);
7: ri moves by min(εr/(k+1)(k+2), dist(ri , p)/(k+1)(k+2)) to Right(ri)(see Figure 4.1(b));
8: end if
9: end

21

(a) ri has no neighbor on
Right(ri): ri moves at
most εr/(k + 1)(k + 2) to
Right(ri).

(b) ri has the nearest neighbor p on Right(ri):
ri moves by mathitmin(εr/(k + 1)(k +
2), dist(ri, p)/(k + 1)(k + 2)) to Right(ri).

Figure 4.1: Zone of movement of the leader.

In order for robots to agree on the same RankSequence initially, some restrictions on their move-
ment are required during their first k activations. The movement restriction is given by procedure
Lateral Move Right(), and it is made in a way that all robots compute the same RankSequence during
their first k activations. In particular, a robot ri that does not have robots on Right(ri) can move by
at most the distance εr/(k + 1)(k + 2) along Right(ri) in order to preserve the same y−coordinate.
Otherwise, ri moves by min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) along Right(ri), where p
is the position of the nearest robot to ri in Right(ri).

Note that, the bounded distance min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2)) set on the
movement of robots is conservative, and is sufficient to avoid collisions between robots, and to satisfy
Assumption 3.

In order to understand the working procedure of Algorithm 2, we give an example shown in Fig-
ure 5.1. By using Algorithm 2, RankSequence can be gotten as {a, b, c, e, d}.

4.2.2 Correctness

From Algorithm 2, we obtain the following lemmas. In particular, Algorithm 2 gives a unique ranking
to every robots in the system, and also ensures no collisions between robots.

Lemma 3 Algorithm 2 gives a unique ranking to every correct robot in the system.

PROOF. The proof is trivial. Since, robots agree on the direction and orientation of the

22

Figure 4.2: An example of Ranking Correct Robots: a, b, c, d, e are the locations of robots in system, e
and d has the same y values.

y−axis, then, by Algorithm 2, all robots with different y−coordinates will have different
ranks. In addition, for robots who have the same y−coordinate, the clockwise direction is
used to determine the sequence. Since, robots agree on the clockwise direction, then two
distinct robots having the same y−coordinate cannot see each other in the same direction.
Thus, a unique ranking is given to each of these robots. �Lemma 3

Lemma 4 By Algorithm 2, there is a finite time after which, all correct robots agree on the same initial
sequence of ranking, RankSequence.

PROOF. Assume without loss of generality that robot ri is the first robot that was activated
by the scheduler. That is, ri has seen the initial configuration of the robots. Then, the proof
consists of showing that all other robots (correct) compute the same sequence of ranking as
ri.

We first show that Algorithm 2 preserves the same sequence of ranking computed by ri.
Assume that robot rj is activated after robot ri has finished one full cycle. Recall that ri has
changed its position based on Assumption 3. Then, we will show that robot rj will compute
the same rank sequence as ri no matter what the movement taken by ri:

1. Robot ri moves toward Right(ri): Since such a move does not change the y−coordinate
of ri, and rj executes the same algorithm as ri, then rj will compute the same rank
sequence as ri.

2. Robot ri moves toward the closest robot to Right(ri), say rc by the distance min(εr/(k+
1)(k + 2), dist(ri, rc) /(k + 1)(k + 2)): Since such a distance is less than the distance
dist(ri, rc)/k, then such a move does not change the order of ri and rc with respect
to left and right, and also it preserves the same y−coordinate of ri and rc. Thus, by
similar arguments as above, rj will compute the same rank sequence as ri.

The same proof applies to the other robots that are activated after ri and rj , by similar ar-
guments. By Lemma 3, the rank sequence, RankSequence computed by all correct robots
is unique. In addition, by the assumption of the k-bounded scheduler, a robot is activated at
least once during k activations, and its cycle is finite by Assumption 2. Consequently, after

23

k activations of the same robot in the system, every other correct robot is activated at least
once, and have computed the same ranking sequence. Such computation is done in finite
time and the lemma follows. �Lemma 4

Lemma 5 The ranking algorithm (Algorithm 2) guarantees no collisions between the robots in the sys-
tem.

PROOF. The proof is straightforward. The only movement allowed by Algorithm 2 is to
make robots move along the perpendicular of their y−axes, toward their right. Assume that
robot ri is one of the robots in the system. There are two cases to consider, depending on
whether robot ri has robots on Right(ri) or not. First, assume that robot ri has a different
y coordinate from the other robots in the system. Then, it is trivial that ri will not collide
with any of these robots because they do not belong to its line of movement. In addition,
they will not arrive at its line of movement because they move in parallel to the y-axis of ri,
by Algorithm 2.

Now assume that robot ri has the same y coordinate as another robot in the system, say rj .
Assume without loss of generality that rj is the closest to ri in Right(ri). By Algorithm 2,
ri is allowed to move at each activation cycle by at most min(dist(ri, rj)/(k + 1)(k +
2), εr/(k + 1)(k + 2)). Then, even in the worst case when ri is activated each time during k
activations, however rj is not, we will not have the situation where ri collides with rj after k
activations of ri because ri will not reach rj since the distance k ·dist(ri, rj)/(k+1)(k+2)
is strictly less than dist(ri, rj). �Lemma 5

4.3 Dynamic Fault-tolerant Flocking

In this section, we propose a dynamic fault tolerant flocking algorithm. Using this algorithm, a group
of robots can dynamically generate an approximation of a regular polygon (Definition 15), and main-
tain it while moving. Our flocking algorithm relies on the existence of two devices, namely a perfect
failure detector device and a ranking device, which were represented respectively in Algorithm 1, and
Algorithm 2.

4.3.1 Algorithm Description

The flocking algorithm is depicted in Algorithm 4, and takes as input the desired length of the polygon
edge d, and the history of robot ri, which includes the following variables:

• SPosPrevObser : the set of positions of robots in the system during the last observation of robot ri.

• HistoryMove: the set of points on the plane visited by robot ri during its last previous k + 1
activations.

• nbract: a counter recording the last previous k + 1 activations of robot ri.

The overall idea of Algorithm 4 is as follows. First, when robot ri gets activated, it executes the
following steps:

(1) It takes a snapshot of the current positions SPosCurrObser of robots in the system.

(2) Robot ri calls the failure detection module to get the set of correct robots, Scorrect.

24

ri+1ri

zone(ri)

< εr

dist(ri,ri+1)/(k+2)

y

(a) ri and ri+1 have the same y-coordinate, and
dist(ri, ri+1) < εr: Zone(ri) is the half circle
with radius dist(ri, ri+1)/(k + 1)(k + 2).

ri

εr/(k+2)

zone(ri)

y

ri+1

>= εr

(b) ri and ri+1 do not have the same
y-coordinate, and dist(ri, projri+1) ≥
εr: Zone(ri) is the circle with radius
εr/(k + 1)(k + 2).

Figure 4.3: Zone of movement of the leader.

(3) Robot ri calls the ranking system, and gets a total ordering on the set of correct robots Scorrect,
called RankSequence.

(4) Depending on the rank of robot ri in RankSequence, robot ri executes the procedure described
in Algorithm 5; Flocking Leader(RankSequence, d, nbract,HistoryMove) if it has the first rank in
RankSequence (i.e., the leader). Otherwise, robot ri is a follower, and it executes the procedure
Flocking Follower(RankSequence, d, nbract,HistoryMove), described in Algorithm 6.

(5) Robot ri is a leader. First, ri computes the points of the formation P1, ..., Pn as in Definition 15,
with its location as the first point P1 in the formation. The targets of the followers are the other
points of the formation, and they are assigned to them based on their order in the RankSequence.
After that, the leader will initiate the movement of the formation, while preserving the same rank
sequence, keeping an approximation of the regular polygon, and also avoiding collisions with
followers.

In order to prevent collisions between robots, the algorithm must guarantee that no two robots
ever move to the same location. Therefore, the algorithm defines a movement zone for each robot,
within which the robot must move. The zone of the leader, referred to as Zone(ri), is defined
depending on the position of the next robot ri+1 in RankSequence. Let us denote by projri+1 ,
the projection of robot ri+1 on the y−axis of ri. The zone of the leader is defined as follows:

• ri and ri+1 have the same y coordinate: Zone(ri) is the half circle with radius min(dist(ri, ri+1)/(k+
1)(k + 2), εr/(k + 1)(k + 2)), centered at ri and above ri (refer to Figure 4.3(a)).

• ri and ri+1 do not have the same y coordinate: Zone(ri) is the circle, centered at ri, and with
radius min(dist(ri, projri+1)/(k + 1)(k + 2), εr/(k + 1)(k + 2)) (refer to Figure 4.3(b)).

After determining its zone of movement Zone(ri), robot ri needs to determine if there are crashed
robots within Zone(ri). Let SCrashInZone be the set of positions of the crashed robots in Zone(ri).
If SCrashInZone is equal to the empty set, then robot ri can move to any desired target within
Zone(ri), satisfying Assumption 3. Otherwise, robot ri can move within Zone(ri) by excluding
the points in SCrashInZone, and satisfying Assumption 3.

(6) Robot ri is a follower. First, ri assigns the points of the formation P1, ..., Pn to the robots in
RankSequence based on their order in RankSequence. Subsequently, robot ri determines its

25

target Pi based on the current position of the leader (P1), and the polygon angle α given in the
following equation: α = (n − 2)π/n, where n is the number of robots in the formation.

After that, robot ri must follow the leader. while preserving the rank sequence of robots, keeping
an approximation of the polygon, and also avoiding collisions with the other robots. In order to
ensure no collisions between robots, the algorithm also defines a movement zone for each robot
follower, within which the robot must make its movement. The zone of a follower, referred to as
Zone(ri) is defined depending on the position of the previous robot ri−1 and the next robot ri+1

to ri in RankSequence. Before we proceed, we denote by projri−1 , the projection of robot ri−1

on the y−axis of robot ri. Similarly, we denote by projri+1 , the projection of robot ri+1 on the
y−axis of ri. The zone of movement of a robot follower is defined depending on the locations of
ri−1 and ri+1 as follows:

• ri, ri−1 and ri+1 have the same y coordinate, then Zone(ri) is the segment rip, with p as
the point at distance min(dist(ri, ri+1)/(k + 1)(k + 2), εr/(k + 1)(k + 2)) from ri (see
Figure 4.4(a)).

• ri, ri−1 and ri+1 do not have the same y coordinate, then Zone(ri) is the circle centered at ri,
and with radius min(εr/(k+1)(k+2), dist(ri, projri−1)/(k+1)(k+2), dist(ri , projri+1)/(k+
1)(k + 2)) (see Figure 4.4(b)).

• ri and ri+1 have the same y coordinate, however ri−1 does not, then Zone(ri) is the half
circle centered at ri above it, and with radius min(εr/(k+1)(k+2), dist(ri , projri−1)/(k+
1)(k + 2), dist(ri, ri+1)/(k + 1)(k + 2)).

• ri and ri−1 have the same y coordinate, however ri+1 does not, then Zone(ri) is the half
circle centered at ri below it, and with radius min(εr/(k + 1)(k + 2), dist(ri, ri−1)/(k +
1)(k + 2), dist(ri, projri+1)/(k + 1)(k + 2)) (see Figure 4.4(c)).

As mentioned before, the bounded distance min(εr/(k + 1)(k + 2), dist(ri, p)/(k + 1)(k + 2))
set on the movement of robots is conservative, and is sufficient to avoid collisions between robots,
and also to satisfy Assumption 3 (this will be proved later).

For the sake of clarity, we do not describe explicitly in Algorithm 6 the zone of movement of the
last robot in the rank sequence. The computation of its zone of movement is similar to that of the
other robot followers, with the only difference being that it does not have a next neighbor ri+1.
So, if robot ri has the same y−coordinate as its previous neighbor ri−1, then its zone of movement
Zone(ri) is the half circle with radius min(εr/(k + 1)(k + 2), dist(ri, ri−1)/(k + 1)(k + 2)),
centered at ri and below ri. Otherwise, its zone is the circle centered at ri, and with radius
min(εr/(k + 1)(k + 2), dist(ri, projri−1)/(k + 1)(k + 2)).

After determining Zone(ri), robot ri needs to determine if it can progress toward its target Target(ri).
Note that, Target(ri) may not necessarily belong to Zone(ri). To do so, robot ri computes the in-
tersection of the segment riTarget(ri) and Zone(ri), called Intersect . If Intersect is equal to the
position of ri, then ri will move toward its right as given by the procedure Lateral Move Right().
Otherwise, ri moves along the segment Intersect as much as possible, while avoiding to reach the
location of a crashed robot in Intersect , if any, and satisfying Assumption 3. In any case, if ri is
not able to move to any point in Intersect , except its current position, it moves to its right as in the
procedure Lateral Move Right().

Note that the followers can move in any direction by adaptation of their target positions with respect
to the new position of the leader. When the leader is idle, robot followers move within the distance
εr/(k + 1)(k + 2) or smaller in order to keep an approximation of the formation with respect to the
position of the leader, and preserve the rank sequence.

26

Algorithm 4 Dynamic Fault-tolerant Flocking (code executed by robot ri)
1: Input:
2: Memory(ri):SPosPrevObser;
3: HistoryMove;nbract;
4: d = the desired distance of the polygon edge;
5: When ri is activated
6: ri takes a snapshot of the positions SPosCurrObser of robots;
7: Scorrect = Failure Detection(SPosPrevObser,SPosCurrObser);
8: RankSequence = Ranking Correct Robots(Scorrect);
9: leader := first robot in RankSequence;

10: if (ri = leader) then {leader}
11: Flocking Leader(RankSequence, d, nbract,HistoryMove);
12: else {follower}
13: Flocking Follower(RankSequence, d, nbract ,HistoryMove);
14: end if

Algorithm 5 Flocking Leader: Code executed by a robot leader ri.

procedure Flocking Leader(RankSequence, d, nbract, HistoryMove)
n := |RankSequence|;
α := (n − 2)π/n;
P := Formation(P1, P2, ..., Pn) as in Definition 14;
P1 := current position of the leader;
ri+1:= next robot to ri in RankSequence;
projri+1:= the projection of ri+1 on y−axis of ri;
if (projri+1 = ri) then {ri has same y−coordinate as ri+1}

Zone(ri):= half circle with radius min(dist(ri, ri+1)/(k+1)(k+2), εr/(k+1)(k+2)), centered
at ri and above ri (refer to Fig. 4.3(a));

else
Zone(ri):= the circle centered at ri, and with radius min(εr/(k + 1)(k +
2), dist(ri, projri+1)/(k + 1)(k + 2)) (refer to Fig. 4.3(b));

end if
SCrashInZone := the set of positions of crashed robots in Zone(ri);
if (SCrashInZone
= ∅) then

leader moves to a desired point Target(ri) within Zone(ri), excluding the points in
SCrashInZone, and the points in HistoryMove;

else
leader moves to a desired point Target(ri) within Zone(ri), excluding the points in
HistoryMove;

end if
CurrMove := the set of points on the segment riTarget(ri);
if (nbract ≤ k + 1) then

HistoryMove := HistoryMove ∪ CurrMove;
else

HistoryMove := CurrMove;
nbract := 1;

end if
end

27

4.3.2 Correctness of the Algorithm

In this section, we prove the correctness of our flocking algorithm by first showing that correct robots
agree on the same ranking of robots during the execution of Algorithm 4 (Theorem 4). Second, we prove
that no two correct robots ever move to the same location, and that a correct robot never moves to a
location occupied by a faulty robot (Theorem 5). Then, we show that all correct robots dynamically form
an approximation of a regular polygon in finite time, and keep this formation while moving (Theorem 6).
Finally, we prove that our algorithm tolerates permanent failures of robots (Theorem 7).

Lemma 6 Algorithm 4 satisfies Assumption 3.

PROOF. To prove the lemma, we first show that any robot ri in the system is able to move
to a destination that is different from its current location, and robot ri never visits a point
location that was within its line of movement for its last k + 1 activations. Then, we show
that a robot ri never visits a location that was visited by another robot rj during the last
previous k + 1 activations of rj .

First, assume that robot ri is the leader. By Algorithm 4, its zone of movement Zone(ri)
is either a circle or a half circle on the plane (centered at ri, and with radius greater than
zero), excluding the points in its history of moves HistoryMove for the last previous k + 1
activations, and the positions of crashed robots. Since, Zone(ri) is composed of an infinite
number of points, the positions of crashed robots are finite, and HistoryMove is a strict
subset of Zone(ri), then robot ri can always compute and move to a new location that is
different from the locations visited by ri during its k + 1 activations.

Now, assume that robot ri is a follower. Three cases follow depending on the zone of
movement of ri. Let ri−1 and ri+1, be respectively the previous, and next robots to ri in
RankSequence.

• Consider that ri is the last in the RankSequence. Robot ri can move to a free position
of its right hand, excluding HistoryMove.

• Consider that Zone(ri) is the segment with length min(εr, dist(ri, ri+1))/(k+1)(k+
2), excluding ri. Since, such case occurs only when ri−1, ri, and ri+1 have the same
y coordinate, and robot ri is only allowed to move to Right(ri). Then, ri can always
move to a free position in Right(ri), which does not belong to HistoryMove, and
which also excludes the positions of crashed robots since they are finite, and there
exists an infinite number of points in Zone(ri).

• Consider that Zone(ri) is either a circle or a half circle, centered at ri, and with a radius
greater than zero, excluding its history of moves HistoryMove for the last previous
k + 1 activations, and the positions of crashed robots. By similar arguments as above,
we have Zone(ri) is composed of an infinite number of points, HistoryMove is a
strict subset of Zone(ri), and the positions of crashed robots are finite. Thus, robot
ri can always compute and move to a new location that is different from the locations
visited by ri during its last k + 1 activations.

We now show that robot ri never visits a location that was visited by another robot rj during
the last previous k +1 activations of rj . Without loss of generality, we consider robot ri and
its next neighbor ri+1. The same proof holds for ri and its previous neighbor ri−1. Observe
that if ri and ri+1 are moving away from each other, then neither robots move to a location
that was occupied by the other one for its last k + 1 activations.

Now assume that both robots ri and ri+1 are moving to the same direction, then we will
show that ri never reaches ri+1 after k+1 activations of ri+1. Assume the worst case where

28

ri+1 is activated once during each k activations of ri. Then, after k + 1 activations of ri+1,
ri will move toward ri+1 by a distance of at most min(dist(ri, ri+1)(k + 1)2/(k + 1)(k +
2), εr(k + 1)2/(k + 1)(k + 2)). which is strictly less than dist(ri, ri+1), hence ri is unable
to reach ri+1, and move to a location that was occupied by ri+1 for the last k +1 activations
of ri+1.

Finally, we assume that both ri and ri+1 are moving toward each other. In this case, we as-
sume the worst case when both robots are always activated together. After k + 1 activations
of either ri or ri+1, each of them will travel toward the other one by at most the distance
dist(ri, ri+1)(k+1)/(k+1)(k+2). Consequently, 2dist(ri, ri+1)/(k+2) is always strictly
less than dist(ri, ri+1) because k ≥ 1. Hence, neither ri or ri+1 moves to a location that
was occupied by the other during its last k + 1 activations, and the lemma holds. �Lemma 6

Corollary 1 By Algorithm 4, there is no overlap between the zones of movement of any two correct
robots in the system.

Agreement on Ranking.

In this section, we show that correct robots agree initially on the same ranking sequence, and that the
order of the sequence is preserved always for correct robots even in the presence of failure of robots.

Lemma 7 By Algorithm 4, correct robots always agree on the same RankSequence when there is no
crash. Moreover, if some robot rj crashes, there is a finite time after which, all correct robots exclude rj
from the ordered set RankSequence, and keep the same total order in RankSequence.

PROOF. By Lemma 4, after the first k activations of any robot in the system, all correct
robots agree on the same sequence of ranking, RankSequence. In the following, we first
show that the RankSequence is preserved during the execution of Algorithm 4 when there
is no crash in the system. Second, we show that if some robot rj has crashed, there is a finite
time after which correct robots agree on the new sequence of ranking, excluding rj .

(1) First, assume there is no crash in the system: we consider three consecutive robots ra,
rb and rc in RankSequence, such that ra < rb < rc. We prove that the movement of
rb does not allow it to swap ranks with ra or rc in the three different cases that follow:

• ra, rb and rc share the same y coordinate. In this case, rb moves by min(εr/(k +
1)(k +2), dist(rb, rc)/(k +1)(k +2)) along the segment rbrc. Such a move does
not change the y coordinate of rb, and it also does not change its rank with respect
to ra and rc because it stays between ra and rc, and it never reaches either ra nor
rb, by the restrictions on the algorithm.

• ra, rb and rc do not share the same y coordinate. In this case, the movement of rb
is restricted within a circle C, centered at rb, and having a very small radius that
does not allow rb to reach the same y coordinate as either ra nor rc. In particular,
the radius of C is equal to min(εr/(k + 1)(k + 2), dist(rb, projra)/(k + 1)(k +
2), dist(rb, projrc)/(k + 1)(k + 2)), which is less than dist(rb, projra)/k, and
dist(rb, projrc)/k, where projra and projrc are respectively, the projections of
robot ra and rc on the y−axis of rb. Hence, the restriction on the movement of rb
does not allow it to have a y coordinate greater than or equal to that of ra, and it
also does not allow rb to have a y coordinate less than or equal to that of rc. Thus,
rb does not swap its rank with either ra or rb.

29

Algorithm 6 Flocking Follower: Code executed by a robot follower ri.
procedure Flocking Follower(RankSequence,d,nbract,HistoryMove)

n := |RankSequence|;
α := (n − 2)π/n;
P := Formation(P1, P2, ..., Pn) as in Definition 14;
P1 := current position of the leader;
∀rj ∈ RankSequence, Target(rj) = Pj ∈ Formation(P1, P2, ..., Pn);
if (∀rj ∈ RankSequence, rj is within εr of Pj) then {Formation = True}

Lateral Move Right();
else {Flocking and formation generation}

ri−1:= previous robot to ri in RankSequence;
projri−1 := the projection of ri−1 on y−axis of ri;
ri+1 := next robot to ri in RankSequence;
projri+1 := the projection of ri+1 on y−axis of ri;
if (projri−1 = ri ∧ projri+1 = ri) then {ri has the same y coordinate as its neighbors}

Zone(ri) := segment with length min(εr/(k+1)(k+2), dist(ri, ri+1)/(k+1)(k+2)) starting at ri to Right(ri)
(see Fig. 4.4(a));

else if (projri−1 �= ri) ∧ (projri+1 �= ri) then
Zone(ri) := circle centered at ri, with radius min(εr/(k + 1)(k + 2), dist(ri, projri−1)/(k + 1)(k +
2), dist(ri, projri+1)/(k + 1)(k + 2)) (see Fig. 4.4(b));

else if (projri−1 �= ri ∧ projri+1 = ri) then
Zone(ri) := half circle centered at ri, with radius min(εr/(k + 1)(k + 2), dist(ri, projri−1)/(k + 1)(k +
2), dist(ri, ri+1)/(k + 1)(k + 2)), and above ri;

else {ri has different y coordinate from next robot}
Zone(ri) := half circle centered at ri, with radius min(εr/(k + 1)(k + 2), dist(ri, ri−1)/(k + 1)(k +
2), dist(ri, projri+1)/(k + 1)(k + 2)), and below ri (see Fig. 4.4(c));

end if
Intersect := the intersection of the segment riTarget(ri) with Zone(ri);
if (Intersect �= ri) then {ri is able to progress to its target}

SCrashInLine := the set of crashed robots that belongs to the segment Intersect ;
if (SCrashInLine = ∅) then

ri moves linearly to the last point in Intersect , excluding the points in HistoryMove;
else

rc := the closest crashed robot to ri in Intersect ;
ri moves linearly to the last point in the segment rirc, excluding the point rc, and the points in HistoryMove;

end if
else

Lateral Move Right();
end if

end if
CurrMove := the set of points on the segment riTarget(ri);
if (nbract ≤ k + 1) then

HistoryMove := HistoryMove ∪ CurrMove;
else

HistoryMove := CurrMove;
nbract := 1;

end if
end

30

• Two consecutive robots have the same y coordinate, (say ra and rb), however
rc does not. This case is almost similar to the previous one. The movement
of rb is restricted within a half circle, centered at rb, and below it, and with a
very small radius that does not allow rb to reach the same y coordinate as rc,
and also does not allow rb to swap positions with rc. In particular, the radius
of that half circle is equal to min(εr/(k + 1)(k + 2), dist(ra, rb)/(k + 1)(k +
2), dist(rb, projrc)/(k+1)(k+2)), which is less than dist(ra, rb)/k, and also less
than dist(rb, projrc)/k, where projrc is the projection of robot rc on the y−axis
of rb. Hence, the restriction on the movement of rb does not allow it to change its
rank with respect to ra, and also it does not allow it to have a y coordinate less
than or equal to that of rc. Thus, rb does not swap rank with either ra or rb.

Since, all robots execute the same algorithm, then the proof holds for any two consecu-
tive robots in RankSequence. Note that, we do not distinguish between the algorithm
executed by the leader, and the one executed by the follower, because the restrictions
made on their movements are the same.

(2) Now consider the case where some robot rj crashes: From what we proved above, we
deduce that all robots agree and preserve the same sequence of ranking, RankSequence
in the case of no crash. In other words, by restrictions on the movements of robots, the
total order in RankSequence never changes. Assume now that a robot rj crashes. By
Lemma 15, we know that there is a finite time after which all correct robots detect the
crash of rj . Hence, there is a finite time after which correct robots exclude robot rj
from the ordered set RankSequence.

In conclusion, we find that the total order in RankSequence is preserved for correct robots
during the entire execution of Algorithm 4. �Lemma 7

The following Theorem is a direct consequence from Lemma 7.

Theorem 4 By Algorithm 4, all robots agree on the total order of ranking during the entire execution of
the algorithm.

Collision-Freedom.

Lemma 8 Under Algorithm 4, no two correct robots ever move to the same location. Also, no correct
robot ever moves to a position occupied by a faulty robot.

PROOF. To prove that no two correct robots ever move to the same location, we show that
any robot ri always moves to a location within its own zone Zone(ri), and the rest follows
from the fact that the zones of two robots do not intersect (Corollary 1). By restriction on
the algorithm, ri must move to a location Target(ri), which is within Zone(ri). Since, ri

belongs to Zone(ri), Zone(ri) is a convex form or a line segment, and the movement of ri
is linear, so all points between ri and Target(ri) must be in Zone(ri).

Now we prove that, no correct robot ever moves to a position occupied by a crashed robot.
By Theorem 1, robot ri can compute the positions of crashed robots in finite time. Moreover,
by Lemma 6, robot ri always has free destinations within its zone Zone(ri), which excludes
crashed robots. Finally, Algorithm 4 restricts robots from moving to the locations that are
occupied by crashed robots. Thus, robot ri never moves to a location that is occupied by a
crashed robot. �Lemma 8

31

The following theorem is a direct consequence from Lemma 8.

Theorem 5 Algorithm 4 is collision free.

Fault-tolerant Flocking.

Before we proceed, we state the following lemma, which gives a bound on the number of faulty robots
under which a polygon can be formed.

Lemma 9 Algorithm 4 allows correct robots to form an approximation of a regular polygon in finite
time, and to maintain it in movement.

PROOF. We first prove that correct robots form an approximation of a regular polygon
in finite time. To do so, we show that each robot can reach within εr of its target in the
formation F (P1, P2, ..., Pn) in a finite number of steps. Assume that ri is a correct robot in
the system. If ri is a leader, then P1 is its current position, and by Algorithm 4, the target of
ri is a point within a circle or half circle, centered at ri, and with radius less than or equal
to εr satisfying Assumption 3, and excluding the positions of crashed robots. Since, there
exists an infinite number of points within Zone(ri), and by Assumption 2, the cycle of a
robot is finite, then ri can reach its target within Zone(ri) in a finite number of steps.

Now, consider that ri is a robot follower. We also show that ri can reach within εr of its
target Pi in a finite number of steps. We consider two cases:

• robot ri can move freely toward its target Pi: every time ri is activated, it can progress
by at most εr/(k + 1)(k + 2). Since, the distance dist(ri, Pi) is finite, the bound k of
the scheduler is also finite, and the cycle of a robot is finite by Assumption 2, then ri
can be within εr of Pi in a finite number of steps.

• robot ri cannot move freely toward its target Pi: first, assume that ri cannot progress
toward its target Pi because of the restriction on the rank sequence RankSequence.
Since, there exists at least one robot in RankSequence that can move freely toward
its target, and this is can be done in finite time as proved in the previous item, and also
because the number of robots in RankSequence is finite, and by Lemma 6, a robot can
always move to a new location satisfying Assumption 3, then, eventually each robot
ri in RankSequence can progress toward its target Pi and arrive within εr of it in a
finite number of steps.

Now, assume that ri cannot progress toward its target Pi because it is blocked by some
crashed robots. By Lemma 6, a robot can always move to a new location satisfying
Assumption 3. Also, the number of crashed robots is finite, so eventually robot ri can
progress, and be within εr of its target in a finite number of steps, by similar arguments
to those above.

We now show that correct robots maintain an approximation of the formation while moving.
Since, all robots are restricted to move within one cycle by at most εr/(k + 1)(k + 2), then
in every new k activations on the system, each correct robot ri cannot go farther away than
εr from its position during k activations. Consequently, ri can always be within εr of its
target Pi as in Definition 15, and the lemma follows. �Lemma 9

Theorem 6 Algorithm 4 allows correct robots to dynamically form an approximation of a regular poly-
gon, while avoiding collisions.

32

PROOF. First, by Theorem 3, there is a finite time after which all correct robots agree on
the same set of correct robots. Second, by Theorem 4, all correct robots agree on the total
order of their ranking RankSequence. Third, By Theorem 5, there is no collision between
any two robots in the system, including crashed and correct robots. Finally, by Lemma 9, all
correct robots form an approximation of a regular polygon in finite time. �Theorem 6

From Theorem 6, we infer the following theorem:

Theorem 7 Algorithm 4 is a fault tolerant dynamic flocking algorithm that tolerates permanent crash
failures of robots.

4.4 Discussion

In this chapter, we have proposed a fault-tolerant flocking algorithm that allows a group of asynchronous
robots to self organize dynamically to form an approximation of a regular polygon, while maintain this
formation in moving. The algorithm relies on the assumption that robots’ activations follow a k-bounded
asynchronous scheduler, and that robots have a limited memory of the past.

Our flocking algorithm allows correct robots to move in any direction, while keeping an approxima-
tion of the polygon. Unlike previous works (e.g., [GP04, CP07]), our algorithm can tolerate permanent
crash failures of robots. The only drawback of our algorithm is the fact that it does not permit the rotation
of the polygon by the robots, and this is due to the restrictions made on the algorithm in order to ensure
the agreement on the ranking by robots.

33

ri-1 ri

εr/(k+2)

zone(ri)

>=εr

ri+1

yyy

p

(a) ri−1, ri, and ri+1 have the same y coordinate.

ri

εr/(k+2)

zone(ri)

y

ri+1

>= εr

ri-1

>= εr

(b) ri−1, ri and ri+1 do not
have the same y coordinate, and
dist(ri, projri−1) ≥ εr , and
dist(ri, projri+1) ≥ εr .

dist(ri,proj(ri+1))/(k+2)

y

ri-1

>= εr

ri

ri+1

< εr
zone(ri)

(c) ri−1 and ri have the same y coordinate, however, ri+1 does
not. Also, dist(ri, ri−1) ≥ εr , and dist(ri, projri+1) < εr

Figure 4.4: Zone of movement of a follower.

34

Chapter 5

Fault-tolerant Flocking of Mobile Robots
with whole Formation Rotation

In the previous chapter, we proposed an asynchronous fault tolerant flocking algorithm. It makes robot
formation move in lateral direction and forward/backward direction freely. However, as we analyzed, it
could not make robot formation freely rotate. To lift such limitation, in this chapter we further explore a
decentralized fault-tolerant flocking algorithm which can make robot formation freely rotation, yet in a
weaker system model-SYm model [YSD09].

In detail, the proposed flocking algorithm uses the following two modules: a persistent rank assign-
ment module, and a non-faulty robot selection module. Using rank assignment model, a unique rank is
assigned for every robot and then the robots keep their ranks persistently. The failure detector module
provides a method for robots to select the non-faulty robots based on a k-bounded scheduler. Finally, the
correctness of the proposed algorithm are proved.

Before we introduce the algorithm, we first give the work environment of robots, i.e., system model
as follows: We assume that robots have a partial agreement on the local coordinate system. Specifically,
they agree on the orientation and direction of one axis, say the y axis. Also, they agree on the orientation
clockwise/counterclockwise. All robots share the same unit distance. The origin of the local coordinate
system of a robot is fixed. The robots are not oblivious, that means, they has memory to remember their
past information. Also, in our model, a robot can see all the other robots in the environment since the
local view of robots make robot network disconnected easily.

5.1 Fault tolerant Flocking Algorithm

In this section, we give a decentralized fault tolerant flocking algorithm for robots. It can make sure
all the correct robots form an approximate regular polygon and maintain it during moving. During
the execution of flocking, two modules called failure detector and rank assignment are used. The rank
assignment module is to assign each robot a unique rank to help robot select a unique leader robot during
flocking; the failure detector module it to select the correct robots for flocking algorithm. First, we
introduce the main contribution –flocking algorithm, where the rank assignment and failure detector are
used as black boxes. Then, the two black boxes are described in the following two subsections.

5.1.1 Flocking Algorithm

Initially, all robots are located on a regular polygon. The goal (requirements) of our algorithm is to
maintain an approximation of a regular polygon, and to reform a new regular polygon with the correct
robots in the absence of crash of robots during flocking. More interesting point of our algorithm is that
it can make robots rotate freely. The main idea of our algorithm is as follows:

35

1) Assign a unique persistent rank for each robot by rank assignment module;

2) Select the correct robots by failure detector module;

3) Based on the rank of robots, select a unique leader from the set of correct robots;

4) Based on positions of the leader and the other correct robots, a robot computes the target position
and moves to satisfy the flocking requirements.

The specific algorithm is shown in Algorithm 7. Before we explain the detail of algorithm, the
variables used in Algorithm 7 are shown as follows:

• ri : the robot with rank number i;

• SCurPosObser: the set of positions of robots at current activation;

• SPrePosObser: the set of observed positions of robots at previous activation;

• HistoryRankPos: the rank and the set of all robot’s positions during a robot’s past k activations
in a robot’s memory, shown as (rank, the latest k positions);

• Nact: the number of activation of some robot;

• d: the expected edge length of the regular polygon, assumed d ≥ ξ;

• Scorrect : the set of positions of the correct robots;

This algorithm is decentralized and can be executed by any robot ri. The input is d,Nact, SCurPosObser,
SPrePosObser, HistoryRankPos. First, by using persist rank model, ri gets the ranks of all robots. Then
the set of correct robots Scorrect is given by failure detector module. The leader is chosen as the robot
with the smallest rank in Scorrect. If the current robot is leader, procedure Leader Move is executed;
otherwise Follower Move is executed. These two procedures work as follows:

• Leader Move A global variable m is used for leader to control its moving speed per activation to
wait for “lazy” follower robots. (Here, if the robots activates less often then the other robots, we
called “lazy” robots.) The leader first observes the current robots’ positions. If the positions satis-
fies Definition3, then the leader moves by not more than min(d

2k(k+1) ,
ξ

nk) to any position p, where

p /∈ HistoryRankPos 1; otherwise, the leader will slow down by using the global variable m,
and move by not more than min(d

2mk(k+1) ,
ξ

mnk) to any position p, where p /∈ HistoryRankPos.

• Follower Move First ri computes its target position Target(ri) based on Function Formation and
the codes in 6-8 in Algorithm 9. Then, it moves to a desired position p, which is not far away
min(d

2k(k+1) ,
ξ

nk) from the current position and p /∈ HistoryRankPos.

A question may arise that: why is the speed of a robot’s movement is not more than min(d
2k(k+1) ,

ξ
nk)?

That is because: during a robot’s k activations, the movement distance is not more than min(d
2k(k+1) ,

ξ
nk)∗

k = min(d
2(k+1) ,

ξ
n). Thus, it can satisfy the requirement of Definition 3 and also can avoid collision

among robots.

1The reason why the target position is different from the position in HistoryRankPos is to satisfy the need of failure
detector module.

36

Algorithm 7 Fault tolerant flocking (code executed by robot ri)
1: Variables m: a global variable whose initial value is 1;
2: Input: SCurPosObser, Nact,HistoryRankPos, d, SPrePosObser

3: Upon activation {
4: Call Persist Rank(SCurPosObser, Nact,HistoryRankPos, d);
5: Scorrect := Select Correct Robots(SPrePosObser, SCurPosObser);
6: n = |Scorrect|;
7: leader := Robot with the smallest rank in Scorrect;
8: if ri is leader then
9: leader Move(d, ξ,HistoryRankPos, Scorrect,m);

10: else
11: Follower Move(d, ξ,HistoryRankPos, Scorrect, leader);
12: end if
13: }

Algorithm 8 Leader movement (code executed by the leader robot)
1: procedure leader Move(d, ξ,HistoryRankPos, Scorrect,m)
2: if Scorrect satisfies Definition 3 (see Section ??) then
3: Move by not more than min(d

2k(k+1) ,
ξ

nk) to any position p, where p /∈ HistoryRankPos;
4: m = 1;
5: else
6: m = m + 1;
7: Move by not more than min(d

2mk(k+1) ,
ξ

mnk) to any position p, where p /∈ HistoryRankPos;
8: end if
9: end

Algorithm 9 Follower movement (code executed by a follower robot ri)
1: procedure Follower Move(d, ξ,HistoryRankPos, Scorrect, leader)
2: Variables: STargetPos: the set of target positions; Target(ri): the target position of ri;
3: Function: Formation(d, Scorrect, leader, HistoryRankPos):= the function to compute the target

robot positions;

4: STargetPos = Formation(d, Scorrect, leader, HistoryRankPos);
5: Sort the positions in STargetPos starting from the leader’s by increasing order of the y coordinate,

and clockwise direction;
6: Sort robots in Scorrect based on the rank from small to large;
7: Assign the jth position of STargetPos to the jth robot of Scorrect (1 ≤ j ≤ |Scorrect|);
8: if dist(ri, Target(ri)) > min(d

2k(k+1) ,
ξ

nk) then

9: Find position p on Segment riTarget(ri), which satisfies dist(ri, p) = min(d
2k(k+1) ,

ξ
nk) (see

Figure 5.1);
10: Target(ri) := p;
11: end if
12: if Target(ri) ∈ HistoryRankPos then
13: Find a position p which satisfies dist(p, Target(ri)) < ξ

nk and p /∈ HistoryRankPos;
14: Target(ri) := p;
15: end if
16: Move to Target(ri);
17: end

37

Figure 5.1: Finding a new target position p, where ri is a robot’s current position , Target(ri) is the
target position.

5.1.2 Persistent Ranking for Robots

In this part, we provide a simple algorithm that gives a unique identification to each robot in the system,
in order to select a unique leader in robot system. Our main idea is: First, assign ranks to robots based on
their initial locations during its first k activations; Then, each robot keeps its rank during flocking. The
specific rank assignment algorithm is given in Algorithm 10, where procedure Assign Rank is to assign
rank to robots during a robot’s first k activations and Persist Rank is to keep their rank persistently after
their first k activations during flocking. These two procedures work as follows:

• Assign Rank Once a robot is activated, it will get the set of positions of all robots SCurPosObser

by sensor. Then, it sorts the positions in SCurPosObser by decreasing order of y-coordinates, and
puts the ordered positions into a variable named RankSequence; then it sorts the positions of
robots with the same y-coordinate from right to left in clockwise direction (the robot located on
the right has a rank smaller than the one on the left); Finally, the robot saves RankSequence and
their corresponding ranks into HistoryRankPos.

• Persist Rank First, by calling the failure detector module, the set of correct robots Scorrect can be
gotten.

referring to HistoryRankPos and Scorrect, a robot excludes the positions of crashed robots from
the current position snapshot SCurPosObser. Then, for every position p in SCurPosObser, it can find
its last recent position in HistoryRankPos that is not far away from p by min(d

2(k+1) ,
ξ
n). This

bound on distance is conservative, and it ensures no collision between robots. Thus, p’s rank can
be found by corresponding to p’s last past position in HistoryRankPos.

Specially, during the first k activations, each activation a robot moves to its right hand along the
perpendicular to y axis by ξ

nk . The moving speed is chosen as ξ
nk per activation, because during this

period, each robot could make sure the positions of robots still maintain an approximate polygon after
moving. Thus, during the first k activations, the relative positions of robots are not changed and finally
all robots get the same initial position configuration. That means, for the same robot its rank is same in
the memory of different robots.

Figure 5.2 and Figure 5.3 as examples illustrate how a robot assigns and tracks the rank of robots in
the system, respectively. In Figure 5.2, there are four robots in the system, which are initially located at
position A, B, C and D respectively. Among these positions, Position B and D have the same y coordinate
value. Based on procedure Assign Rank in Algorithm 10, the ranks corresponds to the positions of four
robots are: (1, A), (2, B), (3,D), and (4, C). These information are recorded in HistoryRankPos, i.e.,
HistoryRankPos = {(rank, position)} = {(1, A), (2, B), (3,D), (4, C)}. In Figure 5.3, all robots
keep their ranks. The idea is to find the robot’s last position based on the movement rule and the current
position. Consequently, each robot gets its rank based on the information of HistoryRankPos. For
example, a robot finds its last position A which is located in the current position A

′
’s searching disc.

Then, by checking HistoryRankPos, it knows the information (1, A). Therefore, a robot knows its
rank is 1.

38

Algorithm 10 Persistent Rank Persisting Rank (code executed by robot ri)
1: Input: SCurPosObser, Nact,HistoryRankPos

2: if (Nact ≤ k) then
3: Assign Rank(SCurPosObser);
4: n= |SCurPosObser|;
5: Move to its right hand by not more than ξ

nk along the perpendicular to its y-axis;
6: else
7: Persist Rank(SCurPosObser,HistoryRankPos, d);
8: end if

9: procedure Assign Rank(SCurPosObser)
10: RankSequence = the positions in SCurPosObser in decreasing order by y-coordinate;
11: Sort the positions of robots in RankSequence with the same y−coordinate from left to right by

decreasing order
12: The rank of each robot corresponds to its order in RankSequence;
13: Save RankSequence and the corresponding rank into HistoryRankPos;
14: end

15: procedure Persist Rank(SCurPosObser, SPrePosObser, d)
16: Scorrect = SelectCorrectRobot(HistoryRankPos);
17: n = |Scorrect|;
18: Referring to Scorrect and HistoryRankPos, exclude the positions of crashed robots from

SCurPosObser;
19: for ∀ p ∈ SCurPosObser do
20: Find position q which satisfies q ∈ SPrePosObser and dist(q, p) ≤ min(d

2(k+1) ,
ξ
n);

21: Get p’s rank that corresponds to q’s;
22: Save p’s position into HistoryRankPos and SPrePosObser;
23: end for
24: end

39

Figure 5.2: Assign Rank during the first k activations: Initially, four robots are located at position A, B,
C and D, where B and C has the same y coordinate. By Algorithm 1, their ranks are 1, 3, 2, and 4 which
corresponds to positions A, B, C and D, respectively.

Figure 5.3: Robots keep their ranks in their searching zones (moving zone), whose radius is
min(d

2(k+1) ,
ξ
n), excluding positions in HistoryRankPos.

5.1.3 Failure detector

In this section, we present a failure detector algorithm called SelectCorrectRobot that provides a way
to select the correct robots. Based on the movement rule of a robot in flocking - each time a robot moves
to a position that is different from before, so a robot can distinguish the other robots have crashed or not
by comparing the position change of robots.

Each robot uses the same algorithm to select the non-faulty robots as shown in Algorithm 11. The
variables used in Algorithm 2 are described as follows:

Counteri : a variable used for recording the times that robot ri did not change its current position;

The input of this algorithm is SCurPosObser, SPrePosObser,HistoryRankPos. First, robot ri com-
pares the current position configuration SCurPosObser and the previous one SPrePosObser. If there a
position that in SCurPosObser and SPrePosObser, then Counteri increases by 1; otherwise, Counteri
becomes zero. When Counteri is larger than k, then the robot in that unchanged position will be re-
garded as a crashed robot based on k bounded scheduler and the movement rule in flocking. Finally, by
corresponding the position and rank in HistoryRankPos, robot ri will know the rank of the crashed
robot. In this way, robot ri can get the set of all correct robots Scorrect.

40

Algorithm 11 Selection of Correct Robots
1: procedure Select Correct Robot (SCurPosObser, SPrePosObser,HistoryRankPos)
2: Stemp := SPrePosObser;
3: Scorrect := φ;
4: for ∀pi ∈ SCurPosObser do
5: if pi ∈ SPrePosObser then
6: Counteri = Counteri + 1;
7: else
8: Counteri = 0;
9: end if

10: if Counteri > k then
11: Stemp = Stemp − {pi};
12: end if
13: end for
14: for ∀pi ∈ Stemp do
15: Scorrect = Scorrect

⋃ {ri|ri is the rank of pi};
16: end for
17: return (Scorrect);
18: end

5.2 Correctness

5.2.1 Rank assignment

In the following, we will prove the correctness of Algorithm 10.

Lemma 10 By Algorithm 10, all correct robots agree on the same sequence of ranking, RankSequence
during the first k activations.

PROOF. Initially, all robots are located on a regular polygon whose edge length is equal to
d. During the first k activations of a robot, each activation, a robot moves to the right hand
by not more than ξ

nk along the perpendicular to the y-axis, which ensures that the y-values
of the robots do not change during this period. Considering the extreme case: the robots
on the right hand activate once during the period the left robots activate k times. At this
time, the maximum distance that the left robots can move is ξ

nk ∗ k = ξ
n < d. Therefore,

these two robots do not swap positions. The same arguments apply to any two robots in the
system. Therefore, after the activation of all robots in the system, they compute the same
RankSequence and agree on the same ranks for every robots.

�Lemma 10

A direct consequence from Lemma 1 can be deduced:

Lemma 11 Algorithm 10 gives a unique rank to every robot in the system during the first k activations.

Lemma 12 By Algorithm 10 and Algorithm 7, the ranking is persistent during the entire execution of
the algorithm.

PROOF. Based on the rank persistent function, i.e., Function PersistRank, each robot
matches its last position in the desired disc, which radius is min(d

2(k+1) ,
ξ
n) at the center of

41

its current position. After that, in each robot’s memory, all robots find their last position and
then keep their rank.

Therefore, the question is how to make sure a robot finds all robots matching last positions
for any number of activations. The worst case is: only when some robots activate k times,
a robot could activate once. Otherwise, in any other case, a robot activates less and then
the movement distance is less than that during k activations. Therefore, in the following we
only need to prove if in the worst case all robots could find their matching last positions. If
yes, then in any cases (in any number of activations) using PersistRank algorithm, all robots
can find their matching last positions, and then keep their ranks.

From Lemma 2, we know that: after the first k activations, each robot gets a unique rank.

By Algorithm 3, at each activation the leader moves by not more than min(d
2k(k+1) ,

ξ
nk).

Therefore, during its k activations, the maximum distance that the leader can move is not
more than min(d

2km(k+1) ,
ξ

nmk) ∗ k = min(d
2m(k+1) ,

ξ
nm) ≤ min(d

2(k+1) ,
ξ
n) since m ≥ 1.

Similarly for the followers, at each activation a follower moves by min(dl,min(d
2k(k+1) ,

ξ
nk)) ≤

min(d
2k(k+1) ,

ξ
nk). Therefore, during k activations, the maximum distance that a follower

can move is also not more than min(d
2(k+1) ,

ξ
n).

Therefore, since k ≥ 1, min(d
2(k+1) ,

ξ
n) ≤ d

2(k+1) < d
2 . By excluding the crashed robots,

each robot can track robots’ past positions and keep their rank persistent during flocking.

In PersistRank function, a robot first finds the robots in the last activation who are within
a distance of min(d

2(k+1) ,
ξ
n) from the current position, call that area Dr (see line 23 in

Rank assignment module). In the set of robots that can satisfy the above condition, there
are two categories: crashed robots and one single alive robot (if the current robot does not
crash). That is because: (1) Initially the distance between any two robots is equal to d. (2)
When there is no robot crashed, every follower tries to move to its target position to form a
desired regular polygon, i.e., tries to keep distance d with its neighbors. Between any two
consecutive activations of a robot, the other robots can not be activated more than k times.
That means, the maximal distance that a robot can move is not more than min(d

2(k+1) ,
ξ
n).

Therefore, for any two correct robots, it is impossible to be closer than min(d
2(k+1) ,

ξ
n) ≤

min(d
2 , ξ

n) ≤ d
2 since n > 3, k > 2, ξ ≤ d, unless a robots has crashed.

�Lemma 12

From lemma 10 to lemma 12, we drive the following theorem.

Theorem 8 Algorithm 1 gives a unique persistent rank for every robot in the system.

5.2.2 Collision among robots

Lemma 13 By Algorithm 10, there is no collision between any two robots in the system during their first
k activations.

PROOF. From the assumption, we know: The initial distance between any two robots is
equal to d. During the first k activations, all robots just move to the right along y-axis by
less than ξ

nk each activation. Even if one robot is very active, the furthest distance that a
robot can move is not more than ξ

nk ∗ k = ξ
n < d. Therefore, there is no collision between

any two robots during the first k activations by Algorithm 1, and the lemma holds. �Lemma 13

42

Lemma 14 There is no collision among robots after the first k activations by Algorithm 7.

PROOF. We prove this lemma in the following two cases.

- Case 1: no new robots crashed during flocking.
In this case, we prove the lemma in two steps: no collision between the leader and the
followers and no collision among followers.

• No collision between the leader and the followers: Initially the input of flocking
algorithm is a regular polygon whose edge length is equal to d. If a follower
and the leader are correct, the follower will follow the leader, trying to keep an
approximate regular polygon, that is, a follower tries to keep distance d with its
neighbors. Furthermore, during k activations, their movement distance is less than
min(dl,min(d

2k(k+1) ,
ξ

nk) ∗ k ≤ min(d
2k(k+1) ,

ξ
nk) ∗ k = min(d

2(k+1) ,
ξ
n) < d

2 .
Therefore, it is impossible for the leader and the followers to collide with each
other.

• No collision among followers: In the initial position configuration, the distance
between neighbor followers is equal to d. Based on the target position computa-
tion method (see code in lines 12-14 in Follower Move function), each follower
moves to its matched target position, and no two followers’ movement paths cross
each other. Therefore, for any two correct followers, there is no collision between
them.

- Case 2: some robots crashed during flocking.
In this case, we will prove that there is no collision between crashed robots and correct
robots, and no collision occurs among correct robots. For correct robots, the proof
is the same as in Case 1. When there are robots crashed (leader or follower), the
crashed robots cannot move any more, and their positions are saved in History. By
the algorithm, we know that the target positions of correct robots are different from
the positions in History. Obviously, their target positions are different from those of
the crashed robots. Therefore, it is impossible for the correct robots to collide with the
crashed ones.

In the above two cases, there is no collision among robots, then we conclude that there is no
collision after the first k activations based on our algorithm. �Lemma 14

5.2.3 Failure detector

The proposed non-faulty robot selection algorithm (Algorithm 11) satisfies the following properties of
perfect failure detector [CT96]: strong completeness, strong accuracy. Furthermore, we get an additional
property eventual agreement.

These properties are proved respectively, in Theorem 9, Theorem 10, and Theorem 11.

Theorem 9 (Strong completeness): eventually every robot that crashes is permanently suspected by
every correct robot.

Lemma 15 If some robot ri crashes at some time, then there is a time after which any correct robot
detects the crash of robot ri.

PROOF. Let ri be a crashed robot. Then, ri will remain at its current position forever. Let
rf be a correct robot in the system. Robot rf detects that ri has crashed after its (k + 1)
activations (activation of rf). �Lemma 15

43

Theorem 10 (Strong accuracy): No robot is suspected before it crashes.

Lemma 16 By Algorithm 11, a faulty robot is never suspected by any other correct robot before it
crashes.

PROOF. This lemma is verified if Algorithm 11 can avoid the situation where robot ri
wrongly suspects robot ri.

Take two robots ri and rj . Let rj observe ri. Robot ri is activated at least once when rj
has been activated k times. From the FaultTolerantFlocking Algorithm, we know: when
robot ri is activated, it will move forward, and never go back to its and the other robots’
past positions during its (k + 1) activations. We can determine that the position of ri must
change unless ri has crashed. Thus, every faulty robot will not be suspected wrongly before
it crashes by any other correct robots. �Lemma 16

From Theorem 9 and Theorem 10, we can conclude that Algorithm 11 satisfies the property of perfect
failure detector [CT96] and also has the following property:

Theorem 11 (Eventual agreement) Eventually all correct robots will have the same set of correct
robots.

5.2.4 Fault tolerant flocking

The following proof is for Algorithm 7.

Lemma 17 Algorithm 7 allows the correct robots to correctly keep an approximation of a regular poly-
gon when no new robots crash during flocking.

PROOF. To prove the lemma, we use mathematical induction.

• Induction basis: Initially, a regular polygon with n robots is the input of flocking al-
gorithm. When an activation number Nack ≤ k, every robot just adjusts its movement
based on code in line 7 of Algorithm 7. It is not hard to see that during this period,
D(E,TP,E) ≤ ξ.

• Induction step: Assume that before an activation Nack (Nack ≥ k) of a robot, an
approximate regular polygon is preserved. For any robot ri(0 < i ≤ n), let PNack

i

denote the current position of ri and TNack
i denote the target position of ri at activation

Nack. Then, D(E,TP,E) =
∑n

i=1 dist(PNack
i − TNack

i) ≤ ξ. For a robot ri, we
assume it is activated xi times during this period. Then, it will move toward its target
TNack+xi

i , which is at a distance of dl from TNack
i . That is, dist(TNack

i −TNack+xi
i) =

dl.

– Leader. During next k activations of a robot, the leader moves forward by d
′
,

where d
′

< min(d
2(k+1) ,

ξ
n). During the period of two consecutive k activa-

tions, the leader moves forward by less than d
′
. Obviously, for a leader robot,

D(E,TP,E) = 0.

– Follower. If ri is a follower, then it will move based on the change of the po-
sition of the leader. If the leader don’t move, the follower will find another po-
sition that is different from those in HistoryRankPos, but still keep the cur-
rent formation. Once ri finds the change of the leader’s position, it will compute
its new target position based on the leader’s position. Then, it moves toward

44

its target TNack+xi
i , where xi is the activation number of ri after Nack. Based

on the code in lines 11-15 in Follower Movement algorithm, after ri moves,
the distance between its actual position and its target position is not more than
ξ

nk ∗k = ξ
n . That is, dist(P k+Nack

i −TNack+xi
i) ≤ ξ

n . Thus, we get D(E,TP,E) =∑n
i=1 dist(P k+Nack

i − TNack+xi
i) ≤ 0 +

∑n−1
i=1

ξ
n = ξ(n−1)

n < ξ.

Here, because Nack can be any natural number, a conclusion can be drawn that: all
robots can keep an approximate regular polygon when no robots crash during flocking.

�Lemma 17

From Lemma 17, we derive the following lemma.

Lemma 18 The flocking algorithm allows robots to make the formation move to any direction including
rotation of the formation.

Lemma 19 When there are crashed robots during flocking, the remaining correct robots can be reformed
into a regular polygon dynamically in finite time.

PROOF. If the leader has crashed, then based on the code in line 6 of flocking module, a
new leader is elected dynamically. Once a follower finds that the leader has crashed, a fol-
lower will follow a new leader. At the same time, if the leader finds the current correct robots
can not form an approximate regular polygon, it will slow down based on the code in lines
8-9 in leader movement algorithm. For the correct followers, they will compute their tar-
get positions based on function Target. These followers will approach their target positions
gradually in finite time since the followers have higher speed than the leader due to m > 1.
Therefore a new approximate regular polygon can be reformed using this method. �Lemma 19

5.3 Maneuverability and Bound Analysis

Based on the algorithm description and the correctness proof, we know the proposed algorithm lifts
the limitation of formation rotation existed in the algorithm of the previous chapter. The reason why
the proposed algorithm in this chapter can make formation rotation freely is that: in this algorithm, the
robots are to keep their rank instead of keeping the relative positions among robots always.

To show the maneuverability of Algorithm 7 straightly, in this part we analyze the movement of
the robots (formation) in detail. Also, we further explore the bound of robots movement to keep the
formation, i.e., line speed per activation and angular speed per activation.

5.3.1 Maneuverability

From Algorithm 7, we know that: once the leader moves, the follower robots will follow the leader to
move. Thus, finally the whole formation formed by all robots will change. In the following, we will
analyze how the leader’s movement affects the whole formation movement.

The set of all possible leader movement is shown in Figure 5.4: rotation, move forward, move
backward, lateral movement (left, right), and random move.

In the following, we give how formation changes due to the leader’s movement. The formation
changes as follows: rotation of formation (see Figure 5.5), formation move forward (see Figure 5.6),
move in lateral direction and move in arbitrary direction. From Figure 5.5, we see: when the leader
moves around a circle by clockwise, the followers compute their target position based on procedure

45

Figure 5.4: The possible leader movements: rotation, move forward, move backward, lateral movement (left,
right) and random move.

Follower Move. All followers rotate in the same way with the leader. At the same time, they can form
an approximate regular polygon. For moving backward and forward, two cases are similar, so it is
not necessary to give the formation backward movement. Same with lateral case, here we only show
the formation changes when the leader moves to right. There is another intrusting movement–arbitrary
move in the moving zone (searching zone). The arbitrary movement actually is a combination of line
movement (formation move forward (backward) and lateral move) and rotation movement.

Remark: The difference between translation and rotation is that the formation of robots are moving
along different routes. For the rotation, all robots move along a circle; but translation means all robots
only move along y-axis and the perpendicular to y-axis.

5.3.2 Bound Analysis

In the following, we analyze the formation rotation of robots from the speed per activation and angular
velocity per activation. From Algorithm 7, we can get the following properties: the maximum speed per
activation of formation rotation is min(d

2k(k+1) ,
ξ

nk) and the maximum angular velocity per activation

is min(π
nk(k+1) ,

2πξ
n2kd), where n is the number of correct robots, k is from k bounded scheduler, d is

the desired distance between neighbor robots, and ξ is from the Definition 3. That is because: when
the distance per activation is equal to d, the angle that passes is 2π

n based on the definition of a regular
polygon). When the distance that a robot passes per activation is min(d

2k(k+1) ,
ξ

nk), so we can get the

angular velocity per activation by using
min(d

2k(k+1)
, ξ
nk

)∗ 2π
n

d = min(π
nk(k+1) ,

2πξ
n2kd

). Thus, we get the
following theorem:

Theorem 12 When the robots flock, they satisfy the following conditions:

• The line speed per activation Vact ≤ min(d
2k(k+1) ,

ξ
nk);

• The angular velocity per activation θact ≤ min(π
nk(k+1) ,

2πξ
n2kd

).

From the analysis and the figures, we know the proposed flocking algorithm has good maneuverabil-
ity. The limitation of formation movement in [DISC08] are lifted in this algorithm by keeping ranks of
robots instead of keeping the relative positions among robots.

46

Figure 5.5: The formation rotates by clockwise: the circles with the broken line are the past positions of robots,
and the circles with the solid line are the current (target) positions of robots.

5.4 Discussion

In this chapter, we proposed a decentralized fault-tolerant flocking algorithm for a group of identically-
programmed mobile robots based on k-bounded scheduler in the semi-synchronous model. Different
from the work in previous chapter, the flocking algorithm in this chapter can make the shape rotate
freely. Nevertheless, the maximal “speed”(expressed by distance per activation), and the rotation of the
shape depend on the following parameters: the number of correct robots, the value of k in the bounded
schedule, the desired edge length of the shape and the parameter in approximate shape ξ. In future work,
we would like to investigate the speed (distance/activation) of the formation based on these different
parameters.

One interesting question is: does the proposed flocking algorithm work correctly in CORDA if we
don’t consider the rotation? As we know, CORDA is totally asynchronous model; the robots can see the
others that are moving. So, it makes the observation of robots are not accurate. Based on the inaccurate
positions of the robots, the movement restriction should be more strict to make all robots keep the desired
formation than that in this section. By comparing the movement restriction in these two models, you may
find the difference.

47

Figure 5.6: The formation moves forward: the circles with the broken line are the past positions of robots, and
the circles with the solid line are the current (target) positions of robots.

48

Chapter 6

Flocking under Memory Corruption

In the previous two chapters (Chapter 4 and 5), we explored the fault tolerant flocking algorithms for a
group of mobile robots in presence of faulty robots. In this chapter, we will discuss the same problem
when robots’ memory can become corrupted any time.

In the previous research, once the robots are faulty, they will stop moving and never recover. How-
ever, in practical applications, compared with the whole robot crash, some parts of a robot, like sensor,
moving actuator, or memory etc., also have a high probability to fail. Thus, it becomes interesting to
explore such kind of components failure or corruption. In particular, components such as memory, may
be experienced bit flips due to external conditions. For example, memory may be influenced by some
magnetic field, solar wind or some other kind of interferences. As a result, some data in memory may
randomly change, e.g., the binary data “1” may become “0”, or “0” may become “1”. Thus, the data
may be changed partly or totally. After the robots move away from the special place, the memory are not
influenced any more.

To the best of our knowledge, few work that addressed on this issue in non-oblivious robots, espe-
cially for dynamic flocking. Therefore, in this chapter we discuss the memory corruption in the robots,
and also address on the permanent faulty of the robots. The memory corruption is that the data in the
memory may be changed partly or totally during unknown bounded period and after that the data is not
changed by the environment.

The organization of this chapter is as follows: First, we analyze under which kind of system model
(FSYNC, SYm and CORDA) the flocking algorithms in chapter 4 and 5 can work respectively; If the
flocking algorithm cannot work in such model, we further discuss the reason why they cannot with
memory corruption. If such algorithm cannot work in any system model, then we attempt to revise the
flocking algorithm and make it work. In all, we try to find the weakest system model that a group of
robot need to flock together with transient memory corruption.

6.1 System Model with Memory Corruption

In Chapter 2, we have presented the model of robots. Now we extend this model by allowing memory
corruption of the robots. In our research, the robots are not oblivious, that is, they can remember their
past position configuration in their memory. By this, they can distinguish if the other robots crash or not.
In this work, we still consider the crash of robots are crashed and stop permanently. We don’t consider
the Byzantine behavior of robots, because the behavior of the robots are crazy.

The data in the memory may change randomly, for instance, past position of some robot changes to
another location or nothing. Here, we assume that memory corruption only happened in “wait” state.
In other words, during the period “look-compute-move”, there is no corruption in memory. As a result,
the observed position configuration each activation is correct. Only the data in memory may experience
corrupt.

49

6.2 Problem Statement: Flocking in spite of crashes and memory corrup-
tion

From Chapter 2, we know the definition of position configuration. In this Chapter, we consider the
memory corruption, as a result, the past position configuration will have the following two kinds of
configuration: “clean configuration” and “dirty configuration”.

Here, we assume there is a time tGST called Global Stabilized Time (GST) after which the memory
corruption stops forever. For instance, the robots move out of the magnetic field. After tGST , the current
position configuration observing by a robot is put into the memory and will not be changed by the outside
environment. Recalling Chapter 2, robots may crash permanently.

Definition 17 (Clean configuration) If all the data in the memory are correct, i.e., the data is not
changed by outside environment, then we called such position configuration as clean configuration.

Definition 18 (Dirty configuration) If some of data in the memory are changed and different from the
observed ones, then we called such position configuration as clean configuration.

A distributed system that is self-stabilizing will end up in a correct state no matter what state it is
initialized with, and no matter what execution steps it will take. This property guarantees that the system
will end in a correct state after a finite number of execution steps. This is in contrast to typical fault-
tolerance algorithms that guarantee that under all state transitions, the system will never deviate from
a correct state. The ability to recover without external intervention is very desirable in robots system,
since it would enable them to repair errors and return to normal operations on their own. The specific
definition of self stabilization is as follows:

Definition 19 (Self-stabilization) Starting from any arbitrary initial position configuration with n robots,
any computation eventually reaches a legitimate configuration in finite activations after a finite time.

Definition 20 (Legitimate configuration) If a position configuration can satisfies the following proper-
ties, we called it legitimate configuration: (1) one unique leader (2) a consistent set of correct robots (3)
all robots can re-form a desired formation in finite time.

When memory is corrupted by the influence of outside environment temporarily, the robust flocking
algorithm should satisfy the requirements of self-stabilizing into a legitimate position configuration in
finite time.

Definition 21 (Self-stabilizing Flocking) Let S a system of robots and P the flocking pattern. S verifies
the flocking specification if and only if the robots satisfy the flocking pattern infinitely often.

In detail, we need to find out if it is possible that a flocking algorithm self-stabilize to a legitimate
state after tGST ; if it is possible, we further explore in what models; otherwise, we find out why it is not
possible.

For any robot, in its memory, there are the history positions of all robots at least in the latest past k
activations. The failure detector can use a robot’s past positions to determine if it is crashed or not. For
a robot ri, we assume the set of all its past past positions in the memory be Si

pos. After the memory get
corrupted, the data in the memory has the following possibilities:

- Case 1: the values of data just exchange among them, but Si
pos don’t change;

- Case 2: the values of data becomes other values which are different from the data in Si
pos;

- Case 3: the values of data become same.

50

Figure 6.1: The modules in asynchronous flocking algorithm

- Case 4: part or total of the values are missing.

For Case 1 and Case 2, it is difficult to know if the memory has crashed, but the results in these
two cases do not influence the output of failure detector. Therefore, we do not need to consider such
corruption of memory.

For Case 3 and Case 4, it is very easy to detect the corruption of memory by comparing the data
in the memory. Furthermore, in these two cases, the corrupted memory results in the wrong outputs of
failure detectors. Consequently, the robots may not flock together.

6.3 FT with Memory Corruption

6.3.1 Algorithm FT

Reminding the flocking algorithm FT in Chapter 4, there are three modules, failure detector module,
rank assignment module and flocking module shown in Figure 6.1.

The basic idea is: for every robot, first it calls Failure detector module to get the set of positions
of correct robots, then it calls Ranking algorithm to re-assign rank for the correct robots based on y-
value and clock/wiseclock direction. Finally, based on the positions of correct robots, it uses Flocking
algorithm to achieve formation flock.

6.3.2 FMC
T Self-stabilizes under the SYm Model

In the SYm model, we know the robots execute their activities of observation, computation, and move-
ment in instantaneous (atomic) fashion and thus a robot observes other robots only when a cycle begins
(i.e., when they are stationary.) Thus, once a robot activates, it can observe all the other robots correctly.
Therefore, each activation the position configuration that a robot put into the memory is correct.

When the memory get corrupted, the data in Case 4, or Case 5 in section 6.2, the output of failure
detector may be incorrect. Thus, a perfect failure detector becomes an unreliable one. (The failure
detector may consider a correct robot as a fault one, or consider a fault robot as correct one.) Thus, the
robots can not have the consistent position configuration about correct robots. Therefore, in flocking
algorithm, more than one leader robot could coexist. Therefore, for FT in Chapter 4, it is impossible

51

Figure 6.2: How the position configuration becomes clean for a robot? Where, n is the number of robots
in the system.

for all the robots to achieve eventual agreement (See Theorem 3) and then to form a desired formation.
Also, all robots can not flock together.

Even after tGST , there are situations when the system never recovers. The data in memories of the
robots will not be influenced any more. Each activation, a robot will get a new clean position configura-
tion, and the dirty configuration will be removed from the memory gradually. Eventually all configura-
tions in the memory will become clean. In other words, all the data are correct in the memory.

The failure detector can use these clean position configurations in the memory to select the set of
positions of correct robots. Because the failure detector is perfect, all robots can get the same number
of correct robots and the same set of positions of correct robots. After that, the rank assignment can
re-assign rank for these correct robots. Using the rank of correct robots, the flocking module in Chapter
4, i.e., FT can elect a unique leader and then flock together.

From the above analysis, we know the point is to make sure all the robots have the same position
configurations and then have the consistent ranks; Thus, it makes possible to select a unique leader in
flocking module.

Lemma 20 FT is self-stabilizing with respect to memory corruption and robot crash under the SYm
model.

PROOF.

For robot ri, after time instant tGST , when robot ri activates once, one clean configuration
is put into HistoryMove, and at the same time, a dirty configuration is pushed out of
the slide window HistoryMove. Thus, for each robot, after at least m activations (m is
the maximum length of the slide window HistoryMove), all the dirty configurations are
cleaned. In our flocking algorithms of , we used k bounded scheduler, so the length of the
slide window used can be equal to k.

Consider some arbitrary time interval k · n of consecutive activations. Let rs denote the
slowest robot in the sense that it is the robot that has the least number of activations during
the interval. Let also rf denote the fastest robot (i.e., with most activations).

Based on k-bounded scheduler, rs will activate at least once when rf activates k times.
Thus, for all robots, after at most k ∗ n activations, all the position configurations in the
memory become clean configurations. Here, we denote the time that all robots need to take
to get stabilized be tstabililzaed.

Then, the perfect failure detector module uses these clean configurations in the memory to
select the set of positions of the correct robots. Since all the positions are correct, the output

52

of failure detector will always be correct using perfect failure detector. Thus, all the robots
get the same set of the positions of the correct robots after tGST + tstabilized.

So, in rank assignment module, all robots can be re-assigned their ranks, and the ranks are
consistent for the different robots. Because: (1) in SYm model, which is different from
CORDA model, the moving of robots are instantaneous. That makes the observed positions
of the robots are same for all the robots; (2) in FT each activation the ranks of the robots are
re-assigned based on y-value of robots and clockwise direction;

Thus, in flocking module, the unique leader can be chosen, as a result, the remaining robots
can follow this leader to flock based on FT .

In all, under the SYm model, FT can make robot system self-stabilizing to a legitimate
configuration with respect to memory corruption and robot crash.

�Lemma 20

6.3.3 About FMC
T in CORDA Model

From FT in Chapter 4, we know: The robots need to control their movement and to make sure all robots
have the same position configuration during their first k activations. That is, the relative position of
robots can not be changed. After that, the relative position of robots are strictly controlled to make sure
all robots have the same relative position configuration. Only by this way, flocking of a group of robots
can be possible.

However, when the memory of robots are influenced, the output of failure detector may be not correct
because failure detector seriously depends on the data in the memory. Also, for the different robots, they
have different outputs. Thus, at this time, several leader robot may exist at the same time. Consequently,
the relative positions of robots are broken and goes into a chaos state.

After tGST , the memory will becomes clean, after each robot activates at least k times, where k is
the value of k bounded scheduler. That means, that will need (O(nk̇2)) activations after all robots have
been activated at least k times, and thus all the positions in memory are clean position configurations.
Here, n is the number of robots in system.

Different from SYm model, CORDA model is totally asynchronous. A robot can observe the moving
robot, which makes the observation of the positions of robots is not accurate. Thus, the relative positions
of robots for different robots are different. Thus, the rank of robots are non-consistent. As a result, the
leader is not unique. It becomes impossible too organize the robots to flock together. Therefore, FMC

T is
impossible to self-stabilize in CORDA model even after tGST .

6.4 FR with Memory Corruption

Differently from the modules in FT (CORDA), the modules in FT+R(SY m) are shown in Figure 6.3.
First, all robots assign the consistent rank in the first k activations. After that, all robots persist their
ranks by searching its past position based on the searching disc.

When the memory becomes corrupted, the past positions in the memory will become random, for
example, Case 3 or 4 in Section 6.1. In Case 3, the robot may wrongly think a correct robot as crashed
one; in Case 4, the robots may take mistake thinking a crashed robot as correct one. Thus, for different
robots, they have different opinion and as a result they will move based on their own decision. Thus, the
positions of the robots may become in disorder or they may collide each other.

Even after tGST , using the searching method to find its past position still is unpractical, since there
may exist more than one position in the searching disc. For example, after finite time, all the configu-
rations in the memory become clean. But the current positions of robots still exist several positions in
robot ri searching area. Thus, ri can not find which one is its past position and as a result it can not find

53

Figure 6.3: The modules of the flocking algorithm in SYM model.

its corresponding rank. Only in one case, the situation can be recovered that: in every robot’s searching
area, only one past position exists. Therefore, this dangerous situation are not always recoverable.

That is, ∃ri, rj , dist(ri, rj) < Rsearch, where Rsearch is the searching radius of a robot. From the
method in Chapter 5, we know Rsearch ≤ min(d

2(k+1) ,
ξ
n). In this case, the robots need to reset to an

initial state and thus to satisfy the requirement that the relative positions of robots can not be changed.
If they can not reset, the flocking algorithm becomes impossible under any system model, whatever
CORDA, SYm or FSYNC.

Here, we attempt to revise the rank assignment algorithm shown in Algorithm 12. The procedure
Reset() can make sure that (1) the distance between any two robots be more than Rsearch; (2) the
relative positions of robots are not changed. A question may arise that: why Rsearch? It is to make sure
no collision among robots in their next activation. Obviously, the expected edge length d should be larger
than Rsearch.

Algorithm 12 Persistent Rank Persisting Rank for memory corruption(code executed by robot ri)

1: if (Nact ≤ k) then
2: First AssignRank(SCurPosObser);
3: n= |SCurPosObser|;
4: Move to its right hand by not more than ξ

nk along the perpendicular to its y-axis;
5: else
6: Persist Rank(SCurPosObser,HistoryRankPos, d);
7: end if

8: if (∃ri, rj , dist(ri, rj) < Rsearch, ri and rj are neighbors) —— (formation don’t satisfy an approx-
imate formation) then

9: Reset();
10: Assign Rank(SCurPosObser);
11: else
12: Persist Rank(SCurPosObser,HistoryRankPos, d);
13: end if

54

The requirement of Procedure Reset is as follows: After resetting, the positions of the robots should
satisfy: (1) the y-values of the robots are not changed; (2) the distance between any two robots is larger
than Rsearch.

6.4.1 FMC
R using Algorithm 12 works in FSYNC model

It is easy to prove that Algorithm 12 works under the FSYNC model. The function of procedure Reset()
is to ensure that the distance among robots is larger than Rsearch.

Lemma 21 FR using Algorithm 12 can self-stabilize in fully synchronous model when memory get cor-
rupted.

PROOF. In FSYNC model, all robots activates simultaneously. Thus, each activation all
robots get the same position configuration.

Based on Algorithm FR, first a robot assigns their ranks using Algorithm 12. There are two
procedures in Algorithm 12: Assign Rank and Persist Rank, which are same with the rank
assignment module in FR.

If there are neighbor robots whose distance are smaller than Rsearch, or the formation of
robots don’t satisfy an approximate formation, then the robots will reset the positions of
robots using the codes in line 9-10 in Algorithm 12. Then, a robot re-assign the ranks of
robots. Now they all get the consistent ranks.

After tGST , each robot needs at least k activations to make the position configurations in
memory to be clean. Then, using the perfect failure detector, all robots get the same set of
positions of correct robots. The following execution is same with that in FR.

In all, FR using Algorithm 12 can self-stabilize in fully synchronous model even memory
may get corrupted.

�empty

6.4.2 FMC
R using Algorithm 12 cannot self-stabilize in the SYm model

When FR uses Algorithm 12, we know that Reset() is a very important procedure. But in SYm model,
differently from FSYNC model, not all the robots activate at the same time. Thus, there is one case: when
a fast robot executes Reset(), but a slow robot doesn’t find any robot ri, rj who satisfy dist(ri, rj) <
Rsearch, where ri and rj are the positions of two robots in the system. Therefore, the slow robot still
executes Persist Rank procedure to keep their ranks, while the fast robot has executed Assign Rank to
re-assign the ranks of the robots. Obviously, the ranks for the same robot may be different in eyes of
these two robots. Thus, they may not get the same leader using the same flocking algorithm, and also can
not flock together. Therefore, in the SYm model, FR uses Algorithm 12 can not work when the memory
of robots may corrupt.

One may ask: Is there other modified algorithms that can work in SYm model? For the question, we
will leave it as an open question for our future work.

6.5 Discussion

In this chapter, we discuss the (im)possibility of self-stabilization of our fault tolerant flocking algorithms
with memory corruption. In our fault tolerant flocking algorithms, the robots are non-oblivious. So, when
the robots moves to some special environment, the memory of the robots may get corrupted temporarily.

55

From our analysis, we get the following conclusion that: for the transient failure occurred in robots,
self-stabilization of robot flocking depends on the system model and design of algorithm .

Here, we only analyze the self-stabilization of our fault tolerant flocking algorithms. If our flocking
algorithm can not work in some model, we analyze why it can not. However, we don’t address if there is
other algorithms that can work in such model. Because as we said before, it will open a new the design
of flocking algorithm.

It would be interesting to apply into the system model with crash and recovery of memory if the
appropriate change is made for the current flocking algorithms. Here, the crash and recovery of memory
means that, in the sense, the memory is crashed and the data in the memory are totally lost; but after a
finite time, it will get recovered and the new data can be saved into it.

In all, our analysis on memory corruption will inspire to consider the other transient failure of robot
components and Byzantine failure model. Also, the self-stabilization of non-oblivious of robots also
could apply to other robot applications, like gathering, or formation control.

56

Chapter 7

Adaptive Flocking Algorithm

In the previous chapters, we mainly focused on the fault tolerance of flocking, whatever robot crash or
memory corruption. Also, we try to find as weak as possible capacity of a robot must have and the weak-
est model they could work. However, in previous chapters, there are no obstacles in the environment, so
only the collision among robots is discussed. Differently from the previous work, here we mainly work
on the collision avoidance between robots and between robots and obstacles in the environment.

The interesting is that: this proposed algorithm can achieve and maintain the desired distance from
neighbors in absence of obstacles in the environments; in presence of obstacles, each robot uses the
same algorithm to avoid the obstacles, also to avoid the other robots. Then, we made two simulations
to evaluate the effectiveness of the proposed algorithm. The simulation results demonstrate that the
proposed flocking algorithm can make a group of robots effectively adapt to a complex environment
during flocking.

Specially, we consider the problem with the following system model: a system of anonymous mobile
robots, which cannot be distinguished by appearance. Now there are assumptions that need to be made:
All the robots can get information about their neighbors by local sensor capability, and they cannot
communicate explicitly. Every robot is oblivious, that is, it can not remember its past information. The
robots share the same coordinate system and unit distance. They execute the same algorithm, which
takes the observed positions of the robots as input, and returns a destination for next step. The main
assumption about the obstacles is that they are convex and compact sets.

7.1 Adaptive Flocking Algorithm

In this section, we introduce a novel and simple flocking algorithm, which can keep desired distance
from neighbors when there are no obstacles, and also can avoid collisions between robots and (dynamic
or static) obstacles when there are obstacles. Here, we assume the sense range of robots is larger than
the desired distance d between neighbor robots, in other words, that a robot can use its sense ability, not
communication ability, to achieve the desired distance from its neighbors. For simplicity, we assume all
obstacles are closed discs, and the point of an obstacle that a robot can see and which is nearest to a robot
is denoted by Ok, where k is a unique identity number of an obstacle. Let

−→
F denote the flocking vector,

which is shared among robots.
In order to describe the proposed algorithm, the following notation is defined in Table 7.1:
Therefore, the set of neighbors for Robot i can be described as:

NBi = {Rj ||qi − qj| < r, i, j = 1, 2, 3, ...}, (1)

where |qi − qj| means the distance between qi and qj . Equation (1) means if robot Rj is in the sensor
range of Ri, then Rj is a neighbor of Ri.

For Robot i, the movement vector from its neighbors
−−→
V i

nbs can be computed as follows:

57

Table 7.1: Notation of parameters

Notation Description

Ri the ID number of robot i;
Ni the number of neighbors of Robot i;−→
Vi the movement vector of Robot i;−−→
V i

nbs the sum of movement vectors for all the neighbors of Robot i;−−−−−→
V i

obstacles the sum of repulsive vectors from the obstacles of Robot i;
d desired distance between robot neighbors;
Ok the position in obstacle k that a robot can see, and which is nearest to a robot;
Ok the position of obstacles;
l safety margin of obstacles;
di

min the minimum distance between robot Ri and nearby obstacles;

NiObs the set of obstacles of Robot i in its sensing range, i.e., NiObs = {Obsj ||−→qi − −→
Oj| < r},

where
−→
Oj denotes the position of the obstacle Obsj;

qi the position of Robot i;

θ(
−→
Vi ,

−→
Vj) the angle between the vectors

−→
Vi and

−→
Vj ;

r the interaction range for every robot, here d < r;
NBi the set of robot Ri’s neighbors;

−−→
V i

nbs =
∑

j∈NBi

qj − qi

|qj − qi|
(|qj − qi| − d)

Ni + 1
, (2)

Equation (2) describes a robot trying to achieve the desired distance from its neighbors. In this
equation, qj−qi

|qj−qi| shows the unit vector whose direction is from qi to qj ,
−−−→
RiRj . And (|qj − qi| − d) is

the distance deviation between the actual distance and the desired distance between two robots. Here,
it is interesting to explain why the distance deviation is divided by 2 in Equation (2), i.e., (|qj−qi|−d)

2
as a robot’s desired movement distance. That is because the algorithm is distributed, and every robot
moves to the target using the same algorithm. For example, if the desired distance between two robots
is 2m, and now the actual distance between them is 4m, in order to achieve the desired distance between
them, a robot only needs to move towards the other by 1 m, i.e., (|qj−qi|−d)

Ni+1 = 4m−2m
1+1 = 1 m. When

the number of a robot’s neighbors is larger than one, the sum of movement vectors between the robot
and its neighbors will be computed. Obviously, when the distance between two robots is larger than the
desired distance d, the robots will move toward each other; otherwise, when the distance between them
is smaller than d, they will move away from each other until they achieve the desired distance.

When there is no obstacle in the sensor range of a robot, a robot first computes the movement vector−→
Vi =

−−→
V i

nbs +
−→
F . Also, in order to avoid collision with obstacles or robots which are beyond the sensor

range of a robot, the size of vector
−→
Vi can not be larger than the sensor range r, i.e., when

−→|Vi| > r,−→
Vi =

−→
Vi/|−→Vi | ∗ r.

When there are obstacles in the environment, in order to avoid the obstacles, a robot will adjust the
movement vector based on Equation (2). We assume obstacles have the safety margin l, if the distance
between a robot and obstacles is larger than l, then there is no force on a robot; otherwise there will be a
repulsive force on a robot in order to avoid collision between robots and obstacles.

−−→
V i

obs =
∑

k∈NiObs

Ok − qi

|Ok − qi|Sat{l − |Ok − qi|}, (3)

58

where
Sat{x} = max(0, x). (4)

Furthermore, we can find that: the closer a robot is to an obstacle (i.e.,|Ok − qi| is smaller), the larger
the repulsive force will become (l − |Ok − qi| becomes larger). Therefore, it is an effective method
to protect the robot itself from colliding with an obstacle. In addition, when |Vi

obstacle| < |−→Vi |, the

coefficient α is computed by |−→Vi |/|V i
obstacle| in order to make sure there is no collision between robots

and obstacles; otherwise, when |V i
obstacle| > |−→Vi |, the value of α is 1. If there is no parameter α to balance

the vectors of
−→
Vi and V i

obstacle, the collision may happen when |−→Vi | > |V i
obstacle| when the direction of−→

Vi and Ok−qi

|Ok−qi| | are opposite. Therefore, the parameter α is a very important factor, and it can make the
algorithm more robust.

The specific algorithm for obstacle avoidance flocking is described in Algorithm 13. When the size
of

−→
Vi , i.e., |−→Vi | is larger than the sensor range of a robot, the vector

−→
Vi needs to be adjusted using Equation

(5) in order to avoid any collision with anything that is beyond a robot’s sensor range.

−→
Vi =

−→
Vi/|−→Vi | ∗ r; (5)

When there are obstacles and neighbors in a robot’s sense range simultaneously, the movement for
a robot is determined by three factors: the positions of its neighbors, the positions of obstacles, and the
size of the flocking vector

−→
F . First, a robot computes the movement vector V i

obsacles using Equation (4).
Also, it computes the nearest distance di

min from the nearby obstacles. And then, the smaller one between

|−→Vi +
−−→
V i

obs| and di
min is chosen as the value of dt. Finally, the target movement vector is computed by

−→
Vi = (

−→
Vi +

−−→
V i

obs) ∗ dt; (6)

Thus, in order to avoid the obstacles, the distance that a robot moves is not more than dimin. That

is why a robot chooses the smaller one between dimin and |−→Vi +
−−→
V i

obs| as the movement distance. The

direction of the final movement vector is same as that of the vector
−→
Vi +

−−→
V i

obs and the distance that Ri can
move is not more than di

min. Therefore, our contribution is that we not only consider collision avoidance
among robots, but also consider collision avoidance between robots and (static or dynamic) obstacles at
the same time.

Algorithm 13 Adaptive Flocking for every robot.

1:
−−→
V i

nbs =
∑

j∈NBi

qi−qj

|qi−qj |
(|qi−qj |−d)

Ni+1 . {Compute the movement vector from neighbors}

2:
−→
Vi =

−−→
V i

nbs +
−→
F ;

{Compute the sum of two movement vectors,
−−→
V i

nbs and flocking vector
−→
F }

3: if |−→Vi | > r then
4:

−→
Vi =

−→
Vi/|−→Vi | ∗ r;

5: end if
6: if there exist obstacles then
7: di

min = min(|qi − O1|, ...|qi − Ok|), where k ∈ NiObs;
{Compute the minimum distance between robot Ri and the obstacles around it}

8:
−−→
V i

obs =
∑

k∈NiObs

qi−Ok
|qi−Ok|Sat{l − |qi − Ok|}, where Sat{x} =

{
0, x ≤ 0;
x, x > 0.

9: dt = min(|−→Vi + V i
obstacle|, di

min);

10:
−→
Vi = (

−→
Vi +

−−→
V i

obs)/|
−→
Vi + V i

obstaces| ∗ dt;
11: end if

59

7.2 Correctness Analysis

Lemma 22 If there are no obstacles at the current time, Equation (2),

−−→
V i

nbs =
∑

j∈NBi

qi − qj

|qj − qi|
(|qj − qi| − d)

Ni + 1
,

ensures that robots achieve the desired distance d from their neighbors.

PROOF.

(1) NBi = 0. A robot has no neighbor in its sense range, it just moves with movement
vector

−→
F .

(2) NBi = 1. Robot Ri has one neighbor, and we assume that neighbor is robot Rj . The

vector
−−→
V i

nbs for Robot i can be computed as follows:

−−→
V i

nbs =
qi − qj

|qj − qi| (
|qj − qi| − d

2
).

Because the algorithm is distributed and robots are synchronous,the movement vector
V j

neighbors for robot Rj is

V j
neighbors =

qj − qi

|qi − qj|(
|qi − qj| − d

2
).

If the current positions of Robot i and Robot j are described as qi(xi, yi) and qj(xj , yj),
the current actual distance dact between two robots can be described as |qi − qj| when

the robots can see each other. After Robot Ri moves with
−−→
V i

nbs, the new position of
Robot Ri will become

q′i : (xi +
xj − xi

dact

dact − d

2
, yi +

yj − yi

dact

dact − d

2
). (7)

The new position of Robot Rj is

q′j : (xj +
xi − xj

dact

dact − d

2
, yj +

yi − yj

dact

dact − d

2
). (8)

Therefore, the new distance between the new positions of Robot i and Robot j is:
|q′i − q′j| =

√
[(xi − xj) +

(xj − xi)(dact − d)

dact
]2 + [(yi − yj) +

(dact − d)(yj − yi)

dact
]2

=
√

(xi − xj)2 d2

d2
act

+ (yi − yj)2 d2

d2
act

= d
dact

√
(xi − xj)2 + (yi − yj)2

= d
dact

· dact

= d.

Therefore, from the above analysis, we can see that two robots can achieve the desired
distance based on Equation (3).

60

(3) NBi > 1. The robot Ri has more than one neighbor in its sensor range. At this time,
the movement of robot Ri for the next step will consider all its neighbors, and move
with the sum of the vectors between neighbors. In other words, robot Ri will move
to the average position of its neighbors and try to keep the desired distance with its
neighbors. Eventually, the target of the desired distance from its neighbors will be
achieved in finite time.

�Lemma 22

Lemma 23 This flocking algorithm can enable robots to avoid collision with obstacles in the environ-
ment.

PROOF.

When there are neighbors and obstacles in the interaction range of robot Ri, the final move-
ment vector is determined by Equations (2), (3), (5) and the size of flocking vector

−→
F .

First, if the size of
−→
Vi , i.e., |−→F +

−−→
V i

nbs| is larger than the sensor range r of a robot, the direction

is not changed but |−→Vi | is adjusted to be equal |r|. Thus, the robot avoids the objects beyond
its sensor range.

Second, the minimum distance di
min between the robot and the nearby obstacles is com-

puted. And then, if there are many obstacles around Ri, Equation (3) is used to compute the

sum of the repulsive force for Ri. The direction is along that of the vector
−→
Vi +

−−→
V i

obs and the
distance that Ri can move is not more than di

min. There is a critical case may happen if the
robot Ri is close to its nearest obstacles but doesn’t collide with it. Thus, Ri cannot collide
with any obstacles.

�Lemma 23

7.3 Performance Illustration

In this section, we would like to illustrate the algorithm execution by considering a few examples. During
this illustration, we would like to know how a group of robots move together to avoid the collision
between them, and between robots and obstacles. All the robots coordinate in distributed way.

There are two kinds of situations that need to illustrate: (1) when the obstacles are absent in the
environment, how robots flock to avoid collision between robots? (2) when obstacles are present in the
environments, how robots flock to avoid the collision between robots and between robots and obstacles.

7.3.1 Simulation Setting

The specific simulation settings for the simulations are as follows: the number of robots is 20. The
sensor range of every robot is 2.0m. Initially, the robots are randomly positioned in different places.
The flocking movement vector

−→
F is [0.1; 0], which means, the direction of the whole flock is along the

x-axis. The desired distance between robots is 1.5m.
In the following, we run two simulations to evaluate the performance of the proposed algorithm: one

is without obstacles and another one with obstacles in the environment. For the first case, we mainly
consider the desired distance between robots; for the second case, we mainly evaluate two aspects of this
algorithm: collision between robots and collision between robots and obstacles.

61

(a) Initial neighbor network of robots. (b) Neighbor network at 0.01 s.

(c) Neighbor network at 0.03 s. (d) Neighbor network at 0.05 s.

Figure 7.1: Dynamic change of the robot neighbor network without obstacles using the proposed algo-
rithm: each of them keep the desired distance with their neighbors.

7.3.2 Simulation 1: without obstacles in the environment

In this simulation, there is no obstacle in the environment. The specific results are shown in Figure 7.1.
In this figure, the triangles are robots, and the line between robots means robots are neighbors of each
other, that is, two robots are neighbors if they can see each other. There are four sub-figures in Figure 7.1.
The sub-figure 7.1(a) shows the initial positions and neighboring relationships of all robots. As we seen,
the neighbor network is very dense. A robot may has many neighbors in its sensor range. Using the
proposed algorithm, the distance between robots is adjusted and the neighborhood network becomes
sparser after 0.01 s (see sub-figure 7.1(b)). With time passing, at time slot 0.03 s, the distances between
robots are mostly close to the desired distance shown in sub-figure 7.1(c). Finally, about at 0.05 s, all
robots achieve the desired distance from their neighbors.

From the results shown in Figure 7.1, we can see: when there are no obstacles in the environment and
each robot has at least one neighbor, all robots achieve the desired distance with their neighbors during
flocking.

7.3.3 Simulation 2: with obstacles in the environment

Unlike Simulation 1, in this simulation there are 3 obstacles in the environment. Therefore, the movement
of a robot is determined by three forces, from its neighbors, from obstacles (if there is an obstacle), and

62

from the flocking vector. The simulation results are shown in Figure 7.2. Here, every sub-figure in
Figure 7.2 is a snapshot of 20 robots at a specific time. The sub-figure 7.2(a) is the initial position of
robots. And at time 0.03t, all robots try to achieve the desired distance from their neighbors and move
forward. With time passing, the robots adjust their movement vectors to avoid collision with neighbors
and with obstacles. Finally, all robots avoid collision.

The detailed information about how a flock of robots move during flocking is shown in Figure 7.3.
Specially, we analyze the following four typical track lines: Line 1, Line 2, Line 3 and Line 4. The
robot that moved along Line 1 avoided collision with a big obstacle. The robot that moved along Line 2
simultaneously avoided two obstacles, the bigger one and the smaller one. The robot with the movement
track of Line 3 adapted to avoid the second-biggest obstacle and the smallest one. The fourth case, the
robot with the track of Line 4 avoided the second-biggest obstacles. In all, despite the fact that different
robots may choose different routes to flock, they all can effectively avoid collision with obstacles.

(a) Position snapshot at
0.01 s.

(b) Position snapshot at 0.03 s. (c) Position snapshot at 0.08 s.

(d) Position snapshot at 0.12 s. (e) Position snapshot at 0.2 s. (f) Position snapshot at 0.5 s.

(g) Position snapshot at 0.8 s. (h) Position snapshot at 1.0 s. (i) Position snapshot at 1.4 s.

Figure 7.2: Robots move together to avoid obstacles between robots and between robots and obstacles.

63

Line 1

Line 2

Line 3

Line 4

Figure 7.3: The movement tracks of all robots during flocking.

7.4 Discussion

This paper proposed a novel and simple flocking algorithm, which can make robots achieve and keep
desired distance from neighbors when there are no obstacles, also can avoid collisions between robots
and their neighbors and between robots and obstacles when there are obstacles in the environment. By
algorithm correctness analysis and simulation results, we find this algorithm is effective and correct, and
it would be very useful in practical applications, like rescue after earthquake, and space exploration etc.

Due to the different choice of routes and a robot’s local sensor capability, the times that robots spent
to pass by these obstacles are different. Eventually, a group of robots may be split into several groups. It
is necessary to address this problem in future work, for example, to design a flexible flocking movement
vector, or add some robots who have longer sensor capability into a flock of robots, to make all robots
move together.

From the above analysis, we know due to the robot’s limited sensor capability, the connection be-
tween robots becomes very weak. To find an appropriate distance between robot neighbors becomes
important relatively. The distance between robot neighbors can not be too near to avoid collision, and
also can not be too large to avoid losing connection. That is why in formation flocking part, we assume
the robots has unlimited sensor ability. In future, we will further explore the fault tolerance of flocking
of the robots with limited sensor ability.

64

Chapter 8

Conclusion

8.1 Research Assessment

In this research, we work on the flocking problems of a group of mobile robots. During flocking, all
robots use the same algorithm to coordinate each other, for instance, formation maintenance, collision
avoidance. Contrary to the existed work, our flocking algorithms could work in presence of robot failure;
also in transient failure of some component, they could self-stabilize under appropriate system model.

The main originality is that we build bridge gap between several communities–distributed systems
(fault tolerant algorithms), self-stabilization and mobile robotics. In fault tolerant distributed systems,
all processes use the same algorithm to cooperate each other and they ensure the whole system reliable
and dependable. That means, even in presence of process failure the remaining correct processes still
can make sure the whole system work well. Self-Stabilization is the property of an autonomous process
to obtain correct behavior no matter what initial state is given. Thus, self-stabilization automatically
corrects following arbitrary transient faults that corrupt the state (so long as the program’s code is still
intact). In mobile robotics, the effective cooperation between robots is the focus. The similarity between
distributed systems and mobile robotics is that they both address a group of processes (robots) which
work in distributed way. The similarity of fault tolerant algorithms and self-stabilization is that they
both can make sure the whole system dependable, but the difference is that self-stabilization focuses on
transient failure but in distributed systems the failure can be transient or permanent.

In all, this research has led to four major contributions. The first major contribution is fault tolerant
flocking in a k-bounded asynchronous robot system. All robots can form a regular polygon and keep it
while moving, but the formation generated by the robots can not freely rotate. In the second important
contribution, we lift such limitation yet in a weaker system model. The third contribution is the discussion
about self-stabilization of robot system when memory may corrupt. The last major contribution is the
distributed flocking algorithm to avoid collision among robots and obstacles.

Fault-tolerant flocking in a k-bounded asynchronous system This dissertation formally presents
the definition of fault tolerant flocking, which builds a bridge between robots application (flocking) and
dependable distributed system. After formally specifying flocking problems and developing an adequate
computational model, we find the appropriate and as weak as possible conditions under which flocking
can be achieved.

The main contribution of fault tolerant flocking in k-bounded robot system is to show that the ge-
ometric formation agreement during dynamic flocking. Specially, all robots can coordinate effectively
each other to generate a desired formation even in presence of failure of robots.

Other contributions can be mentioned. First, we propose the algorithm modules, which is convenient
for hardware design and using in practical applications. Second, we propose a method how to distinguish
the crashed robots from the correct ones. Using this method, the robot system can break the deadlock
that the correct robots wait for the crashed robots for ever and don’t move any more. In all, they provide

65

a dependable platform for dynamic flocking of robots.

Fault-tolerant Flocking with whole Formation Rotation Despite the above flocking algorithm
works well in asynchronous model, it does not allow the rotation of formation by the robots freely. To
lift such movement limitation, we solve this problem yet in weaker (semi-synchronous) model.

Concretely, the main contribution is that the proposed flocking algorithm has good maneuverability.
Also it can tolerate the permanent crash of the robots and can maintain the desired formation by the
robots when there is no new crash.

Remark: In the proposed fault tolerant flocking algorithms, some modules like rank assignment and
failure detector can be used in other robot coordination, such as gathering.

Flocking with memory corruption In practical applications, some parts of a robot, like sensor,
moving actuator, or memory etc., is prone to crash due to the influence of complex environment. It is
interesting that sometimes part of components, like memory of robots, may corrupt during some special
area (e.g., magnetic field). After the robots move away from such special area, the memory is not
influenced any more.

The main contribution is the discussion of the (im)possibility of self-stabilization of flocking algo-
rithms with memory corruption. From the analysis result, we find: for the transient failure occurred in
robots, the self-stabilization of robot flocking depends on the system model and algorithm design.

Decentralized Adaptive Flocking Algorithm There are many engineering points to solve flocking
issue. In order to actually use the solutions, we present a distributed flocking algorithm to effectively
avoid collision between robots, as well as the collision between robots and obstacles in presence of
obstacles in the environment. More interesting is that in absence of obstacles, a robot can keep the
desired distance with all its neighbors.

In this flocking algorithm, we mainly focus on the collision avoidance, not on fault tolerance. Putting
it into this thesis is to compare the non-fault-tolerant flocking with fault-tolerant flocking.

8.2 Open Questions & Future Research Directions

“Research”, as its names means, “re-search”. It is a procedure to re-search interesting questions and
the corresponding solutions. As mentioned in the literature, finding the answers to important questions
usually leads to asking further questions. Now, our work also opens several new interesting questions
and we present some of the related open questions and future directions.

Possibility of shape rotation in other models A shape rotation flocking presented in Chapter 5
considers a semi-synchronous model called SYm [SY99] with crash failure of robots, in which robots
can crash but never recover. We know the SYm is an semi-synchronous model, in which robots execute
their activations in atomic way.

An interesting question is whether it is possible to find shape rotation solution in more complex
models: CORDA [GPRE01b] model where robots are totally asynchronous, systems where robots can
crash and recover, or systems with Byzantine robots. In detail, Byzantine failure is more general but
more complex than crash stop failure. In such case, when robots experience Byzantine failure, all robots
may get crazy and move to wherever it wants. The other correct robots may get crash by colliding with
such crashed robots. Therefore, it would be a big challenge to make all robots work coordinately with
Byzantine failure.

The CORDA model is weaker than SYm, that means, if one flocking algorithm can in CORDA
model, it implies that it also can work in SYm model. That makes the algorithm more general and have
wider applications.

66

Flocking with other schedulers In our work, the k bounded scheduler is used in the fault tolerant
flocking algorithms to make sure the fairness of the activations between robots in Chapter 4 and 5. The
value of k is known for every robot. One question may arise that: What if the robots don’t know the
value of k ?

Therefore, in future, it is interesting to consider the fair version of the following schedulers in flocking
application of robots: unbounded scheduler, bounded regular scheduler, centralized scheduler, arbitrary
scheduler [DGMP06], etc.. Except centralized scheduler, the other schedulers are weak than k bounded
scheduler. It would be interesting to discuss the (im)possibility using such scheduler and thus to find the
weakest scheduler that robots coordination needs. It provides the way to find the weakest model that the
robots need to coordinate each other.

Flocking with other failure detectors To design a fault tolerant algorithm, one important (core)
question is to find a failure detect to distinguish the crashed processes and the correct ones. The fault
tolerant robot research is no exception. In the presented fault tolerant flocking algorithms, a perfect
failure detector is used by managing the moving of robots strictly.

As we know, the perfect failure detector is very strongest among eight failure detectors. We could
call perfect failure detector be reliable failure detector, since it always provides the correct results. One
interesting questions is: what if using the unreliable failure detector, like S failure detector or ♦S failure
detector [CT96].

Also, in our work, the robot needs very strict movement restriction to make sure the perfect failure
detector work well. To loose such movement restriction and at the same time to make sure the effective
coordination of robots, an adaptive failure detector would be a good choice and could bring more effective
coordination.

Self-stabilization of robot system The property of self-stabilization is very important for depend-
able distributed system. In this dissertation, we analyzed the self-stabilization of flocking of a group of
non-oblivious robots in detail in Chapter 6.

As we know, memory corruption is one kind of transient failures in robot system. In practical robot
applications, like gathering, flocking, or formation control, there are many other kinds of transient fail-
ures, such as sensor is crashed or communication between robots is disconnected temporarily. Therefore,
in future work, the deeper analysis of the self-stabilization of robot system, combined with the results
obtained through our analysis of flocking with memory corruption, could provide more dependable and
flexible robot systems.

67

Bibliography

[ABLS90] A. Bondavalli, L. Simoncini, “Failure classification with respect to detection”, in Proceed-
ings.of IEEE Workshop on Future Trends of Distributed Computing Systems, pages: 47-53, 30
Sep-2 Oct, 1990.

[ALRL04] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing”, IEEE Transactions on Depenable and Secure Computing, vol.
1, No. 1, 2004.

[AOSY99] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “A distributed memoryless point conver-
gence algorithm for mobile robots with limited visibility,” IEEE Transactions on Robotics and
Automation, vol.15, no.5, pp. 818-828, October 1999.

[AP04] N. Agmon and D.Peleg, “Fault tolerant gathering algorithms for autonomous mobile robots”, In
Proceding of 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages
1070-1078, New Orleans, LA, USA, January 2004.

[ASER03] A. Serrani, “Robust coordinated control of satellite formations subject to gravity perturba-
tions, in Proceedings of the American Control Conference, June 2003, vol. 1, pp. 302C307.

[BH97] D. C. Brogan and J. K. Hodgins, “Group Behaviors for Systems with Significant Dynamics”, In
Autonomous Robots Journal, vol. 4, 137-153, 1997.

[BLT02] B. R. Bellur, M. G. Lewis, and F. L. Templin. An Ad-hoc Network for Teams of Autonomous
Vehicles. In Proc. of IEEE Symposium on Autonomous Intelligence Networks and Systems, 2002.

[CC98] J. Coble, D. Cook, “Fault tolerant coordination of robot teams,” available at: cite-
seer.ist.psu.edu/coble98fault.html.

[CFK97] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: antecedents and
directions”, Autonomous Robots, 4(1): 7-23, March 1997.

[CFPS] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro, “Solving the robots gathering problem”,
in 30th Int. Colloq. on Automata, Languagues and Programming, pp. 1181-1196, 2003.

[CP07] D. Canepa and M. G. Potop-Butucaru, “Stabilizing flocking via leader election in robot net-
works”, in Proceeding of 9th International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pp.52-66, Paris, France, November 14-16, 2007.

[CT96] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems”, Jour-
nal of ACM, vol. 43, no. 2, March 1996, pp. 225-267.

[Defago02] X. Defago, “Agreement-relate problems: from semi-passive replication to totally ordered
broadcast”, PhD thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, August 2000.
Number 2229.

68

[DGMP06] X. Défago, M. Gradinariu, S. Messika, and P. Raipin-Parvédy, “Fault-tolerant and self-
organizing mobile robots gathering”, in Proceedings of 20th International Symposium on Dis-
tributed Computing (DISC 2006), vol. 4167, pp. 46–60, September 2006.

[DISC08] Samia Souissi, Yan Yang and Xavier Defago, “Fault-tolerant flocking in a k-bounded asyn-
chronous system”, School of Information Science, Japan Advanced Institute of Science and Tech-
nology (JAIST), IS-RR-2008-004, September 26, 2008.

[DKG07] M. J. Daigle, X. D. Koutsoukos, and G. Biswas, “Distributed diagnosis in formations of mo-
bile robots,” IEEE Transactions on Robotics, vol. 23, no. 2, pp. 353-369, April 2007.

[DP07] Y. Dieudonné, and F. Petit, “A Scatter of Weak Robots”, Technical Report RR07-10, LARIA,
CNRS, Amiens, France, 2007.

[FPSW99] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, ”Hard Tasks for Weak Robots: The Role
of Common Knowledge in Pattern Formation by Autonomous Mobile Robots”, in Proceedings
of 10th International Symposium on Algorithms and Computation (formerly SIGAL International
Symposium on Algorithms), 1999.

[FPSW01] P. Flocchini and G. Prencipe and N. Santoro and P. Widmayer, “Pattern Formation by Au-
tonomous Robots Without Chirality”, In Proc. of 8th Intl. Colloquium on Structural Information
and Communication Complexity (SIROCCO 2001), 147–162, Juin, 2001.

[GP01] V. Gervasi, and G. Prencipe, “Flocking by A Set of Autonomous Mobile Robots”, Technical
Report, ”Dipartimento di Informatica, Universitá di Pisa, Italy, TR-01-24, 2001.

[GP04] V. Gervasi and G. Prencipe, “Coordination without communication: the case of the flocking
problem”, Discrete Applied Mathematics, vol. 143, no. 1-3, pp. 203-223, Sep. 2004.

[GPRE00] G.Prencipe, “ A new distributed model to control and coordinate a set of autonomous mobile
robots: the CORDA model”, Technical report, TR-00-10, August 17, 2000.

[GPRE01b] G. Prencipe, “Instantaneous actions vs. full asynchrononicity: Controlling and coordinating
a set of autonomous mobile robots”,in Proc. 7th Italian Conf. on Theretical Computer Science,
pages 185-190, October 2001.

[GPRE02] G. Prencipe, “Distributed cooridnation of a set of autonomous mobile robots”, PhD thesis,
Universita Degli Studi Di Pisa, 2002.

[HJP03] G. T. Herbert, A. Jadbabaie and G. J. Pappas, “Stable flocking of mobile agents Part II: dynamic
topology”, In IEEE Conference on Decision and Control, pp. 2016–2021, 2003.

[HT02] A. T. Hayes, P. Dormiani-Tabatabaei , “Self-organized flocking with agent failure: Off-line
optimization and demonstration with real robots”, in Proceedings of IEEE International Conference
on Robotics and Automation, vol.4, pp. 3900- 3905, USA, May 11-15, 2002.

[ISMY96a] I. Suzuki and M. Yamashita, “Agreement on a common x-y coordinate system by a group of
mobiel robots”, in Proceedings of Dagstuhl Seminar on Modeling and Planning for Sensor-Based
Intelligent Robots, September 1996.

[ISMY96b] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots- formation and agree-
ment problems”, in Proceedings of 3rd Collq. on Structural Information and COmmunication Com-
plexity, pp. 313-330, 1996.

[JORE08] O. J. O’Loan and M. R. Evans, “Alternating steady state in one-dimensional flocking”. Jour-
nal of Physics A: Mathematical and General. Retrieved on June 13, 2008.

69

[JSEB00] D. J. Stilwell and B. E. Bishop, “Platoons of underwater vehicles, IEEE Control Systems
Magzine, vol. 20, pp. 45 C52, Dec. 2000.

[JWFE97] J. S. Jennings, G. Whelan, and W.F. Evans. Cooperative Search and Rescue with a Team of
Mobile Robots. Proc. 8th International Conference on Advanced Robotics, 193–200, 1997.

[JY98] T. John and T. Yuhai, “Flocks, Herds, and Schools: A Quantitative Theory of Flocking”, Physical
Review Journal. vol. 58(4), pp. 4828-4858, 1998.

[JYJJ91] J. Y. J. Joe, “A collision avoidance algorithm for the mobile robot and the robot manipulator in
multi-robot system”, Ph.D. Thesis Texas Univ., Arlington, August 1991.

[KOVA03] K. Konolige, C. Ortiz, R. Vincent, A. Agno, M. Eriksen, B. Limketkai, M. Lewis, L. Briese-
meister, E. Ruspini, D. Fox, J. Ko, B. Stewart, and L. Guibas, “CENTIBOTS: Large-Scale Robot
Teams”, in Journal of Multi-Robot Systems: From Swarms to Intelligent Autonoma, 2003.

[KSIS96] K. Sugihara and I. Suzuki, “Distributed algorithms for formation of geometric patterns with
many mobile robots”, Journal of Robotic systems, 13(3): 127-139, 1996.

[LALB02] D. L. Akin and M. L. Bowden, “Eva, robotic and cooperative assembly of large space struc-
tures”, in Proceeding of the IEEE Aerospace Conference, March 2002.

[LC06] G. Lee and N. Y. Chong, “Decentralized formation control for a team of anonymous mobile
robots,” The 6th Asian control, July 18-21, 2006, Bali, Indonesia.

[LDC05] G. Lee, X. Defago, and N. Y. Chong, “A distributed algorithm for the coordination of dynamic
barricades composed of autonomous mobile robots,” in the proceedings of the International Con-
ference on Control, Automation and Systems (ICCAS 2005), June 2-5, 2005, in Kintex, Cyeong
Gi, Korea.

[LHC06] G. Lee, Y. Hanada, and N. Y. Chong, “Decentralized formation control for small-scale mo-
bile robot teams,” in Proceedings of the 2006 JSME Conference on Robotics and Mecha tronics,
Waseda, Japan, May 26-28, 2006.

[MCGP02] M. Cieliebak, G. Prencipe, “Gathering autonomous mobile robots”, in Proceeding of 9th Int.
Colloq. on Stuctural Information and Communication Complexity, pp. 57-72, June 2002.

[NADP04] N. Agmon, D. Peleg, “Fault-tolerant gathering algorithms for autonomous mobile robots”,
in Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1070 -
1078,2004.

[MLPO05] M. Lindhe and P. Ogren, “Flocking with Obstacle Avoidance: A New Distributed Coor-
dination Algorithm Based on Voronoi Partitions”, in the Proceedings of the IEEE International
Conference on Robotics and Automation Barcelona, Spain, April 2005.

[PREC01] G. Prencipe, “CORDA: Distributed Coordination of a Set of Autonomous Mobile Robots”,
in Proceding of European Research Seminar on Advances in Distributed Systems, pp. 185-190,
Bertinoro, Italy, May 2001.

[PTF01] L. Parker, C. Touzet, and F. Fernandez, “Techniques for learning in multi-robot teams”, in T.
Balch and L. Parker, editors, Robot teams: From Diversity to Polymorphism, A. K. Peters, 2001.

[RCM04] P. Renaud, E. Cervera, and P. Martinet, “Towards a reliable vision-based mobile robot forma-
tion control”, in Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3176-3181, Sendai, Japan, Sep. 28 - Oct. 2, 2004.

70

[Rey87] C. W. Reynolds, “Flocks, Herds, and Schools: A distributed Behavioral Model”, Journal of
Ccomputer Graphics, vol. 21 (1), 79-98, 1987.

[ROS06] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithm and theory,” IEEE
Transactions on automatic control, vol. 51, no.3, March 2006.

[RCH98] A. Robertson, T. Corazzini, and J. P. How, “Formation sensing and control technologies for
a separated spacecraft interferometer, in Proceedings of the American Control Conference,, June
1998, vol. 3, pp. 1574C1579.

[RSGHP02] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopoulos, “Perfor-
mance of a distributed robotic system using shared communications channels”, IEEE transactions
on Robotics and Automation, pages 713-727, October 2002.

[SHP04] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of space formation flying guidance and
control (part 2), in Proceedings of the American Control Conference, Boston, Massachusetts, June
2004.

[SCHR01] K. Schreiner, “NASA’s JPL Nanorover Outposts Project Develops Colony of Solar-powered
Nanorovers”, In IEEE DS Online, 3(2), 2001.

[SM03] R. O. Saber and R. M. Murray, “Flocking with Obstacle Avoidance: Cooperations with Limited
Communication in Mobile Networks,” in Proceedings of the 42th IEEE Conference on Decision
and Control, pp. 2022 - 2028, Maui, Hawaii, USA, Dec. 2003.

[SY99] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robot: Formation of geometric
patterns,” SIAM Journal of Computing, vol. 28, no.4, pp. 1347-1363, 1999.

[SHPB01] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, and E. T. Baumgartner, “Planetary rover
developments supporting mars exploration, sample return and future human-robotic colonization”,
in Proceedings of the 10th Conference on Advanced Robotics, pages 31-47, 2001.

[SYD08] S. Souissi, Y. Yang and X. Défago, “Fault-tolerant flocking in a k-bounded asynchronous sys-
tem”, accepted by 12th International Conference On Principles Of Distributed Systems December,
2008, to appear.

[Gerard00] Gerard Tel, “Introduction to distributed algorithms”, Second Edition, Cambridge, 2000.

[VGGP01] V. Gervasi, G. Prencipe, “Need a Fleet? Use The Force!”, in FUN With Algorithms 2 (FUN
2001), pages 149-164, Elba, Italy, May 2001.

[YDCW07] R. Yared, X. Defago, J. I. Cartigny and M. Wiesmann, “Collision prevention platform for
a dynamic group of asynchronous cooperative mobile robots”, Journal of Networks, 2(4):28C39,
August 2007.

[YMF97] D. Yoshida, T. Masuzawa and H. Fujiwara, “Fault-tolerant distributed algorithms for au-
tonomous mobile robots with crash faults,” Systems and Computers in Japan, vol. 28, no. 2, 1997.

[YSD08] Y. Yang, S. Souissi, and X. Défago, “ Fault-tolerant Flocking in a k-bounded Semi-
synchronous System with Flock Rotation”, Submitted for publication.

[YB96] H. Yamaguchi and G.Beni, “Distributed Autonomous Formation Control of Mobile Robot
Groups by Swarm-based Pattern Generation”, Proc. of the 2nd Int. Symp. on Distributed Au-
tonomous Robotic Systems (DARS 96), pp. 141-155, 1996.

71

[YSD09] . Yang, S. Souissi, X. Défago, “Fault-tolerant flocking in a k-bounded semi-synchronous sys-
tem with flock rotation”, accepted by the IEEE 23rd International Conference on Advanced Infor-
mation Networking and Applications (AINA-09),Bradford, United Kingdom, 2009.

[YXCD08] Y. Yang, N. Xiong, N. Y. Chong, X. Défago, “A Decentralized and Adaptive Flocking Algo-
rithm for Autonomous Mobile Robots,” in the Proceeding of International Symposium on Advances
in Grid and Pervasive Systems (GPC 2008), pp. 262-268, Kunming, China, May, 2008.

[ZXKHYP04] X. Zhang, R. Xu, C. Kwan, L. Haynes, Y. Yang, M. M. Polycarpou, “Fault tolerant
formation flight control of UAVs”, International Journal of Vehicle Autonomous Systems, vol. 2,
no.3-4, pp. 217 - 235, 2004.

72

Publications

In direct relation with the research:

[1] Y. Yang, S. Souissi, X. Défago, “Fault-tolerant flocking in a k-bounded semi-synchronous system
with flock rotation”, accepted by the IEEE 23rd International Conference on Advanced Informa-
tion Networking and Applications (AINA-09),Bradford, United Kingdom, 2009, to appear.

[2] S. Souissi, Y. Yang and X. Défago, “Fault-tolerant flocking in a k-bounded asynchronous system”,
accepted by 12th International Conference On Principles Of Distributed Systems, December 2008,
pp. 145-163.

[3] Y. Yang, N. Xiong, N. Y. Chong, X. Défago, “A Decentralized and Adaptive Flocking Algorithm
for Autonomous Mobile Robots,” in the Proceeding of International Symposium on Advances in
Grid and Pervasive Systems (GPC 2008), pp. 262-268, Kunming, China, May, 2008.

[4] N. Xiong, Y. Yang, X. Défago, “Comparative Analysis of QoS and Memory Usage of Adaptive
Failure Detectors,” The 13th IEEE Pacific Rim International Symposium on Dependable Comput-
ing (PRDC’07), pp. 27-34, Melbourne, Victoria, Australia, December, 2007, pp. 27-34.

[5] X. Défago, N. Xiong, Y. Yang, and N. Hayashibara“Pragmatic Accrual Failure Detection with
Kappa-FD”, Technical Report, Japan Advanced Institute of Science and Technology.

[6] S. Souissi, Y. Yang, X. Défago, “Fault-tolerant flocking in a k-bounded Asynchronous System”,
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST),
IS-RR-2008-004, September 26, 2008.

On other earlier research:

[7] Y. Yang, L. Tan and N. Xiong, “PDAVQ: An adaptive virtual queue algorithm based on the pro-
portional and differential control”, Journal of China Institute of Communications, vol. 26, no. 3,
2005, pp.39-44.

[8] Y. Yang, L. Tan, N. Xiong and X. Zhan, “A Novel TCP Algorithm in Multiple Bottleneck Net-
work”, MINI-MICRO SYSTEMS, vol. 26, no. 2, 2005, pp. 186-191.

[9] L. Tan, Y. Yang, C. Lin and N. Xiong, “PID-RPR: A high performance bandwidth allocation
approach for RPR networks”, IEICE Transactions on Communications, vol. E88-B, no.7, July
2005.

[10] L. Tan, Y. Yang, C. Lin, N. Xiong and M. Zukerman, “Scalable Parameter Tuning for AVQ”, IEEE
Communications Letters, vol. 9, no.1, Jan. 2005. (Impact Factor: 1.196)

[11] L. Tan, Y. Yang, W. Zhang and M. Zukerman, “On Control Gain Selection in Dynamic-RED”,
IEEE Communications Letters, vol. 9, no.1, Jan. 2005. (Impact Factor: 1.196)

73

[12] L. Tan, N. Xiong, Y. Yang and P. Yang, “A Consolidation Algorithm for Multicast Service Using
Proportional Control and Neural Network Predictive Techniques”, Computer Communications,
vol.29, no.1, pp.114-122, Dec.2005.

[13] N. Xiong, L. Tan and Y. Yang, “An Approach for Regulating the Transmission Rate in Multi-
cast Congestion Control”, Journal of China Institute of Communications, vol.25, no.11, 2004.11,
pp.142-150.

[14] L. Tan, N. Xiong, Y. Yang,, “A PGM-based Single-rate Multicast Congestion Control Scheme”,Journal
of Software, Vol.15, No.10, 2004.10, pp.1538-1546.

[15] Y. He, N. Xiong, Y. Yang, “A TCP Congestion Control Algorithm in Multiple Bottleneck Net-
works”, Journal of Computer Research and Development, Vol. 42, No.12, 2005, pp.2070-2076.

[16] L. Tan, N. Xiong, and Y. Yang, “One class of rate control schemes for many-to-many multicast con-
gestion control”, Journal of Postgraduates in Wuhan University (Natural Science Edition), Vol.21,
No.3, pp.55-62, 2004.

[17] N. Xiong, Y. Yang, “A Note on Intrusion Detection in Telnet”, Journal of Central China Normal
University, Vol.38, No.2, pp.160-164, February 2004.

[18] N. Xiong, L. Tan and Y. Yang, “A Novel Congestion Control Algorithm Using the BP Neural
Network”, Computer Engineering, vol. 30, no. 24, pp. 35-36, 2004.

[19] Y. Yang, L. Tan and N. Xiong, “A resource-based admission control algorithm for grid computing
systems”, in Proceedings of The Fourth International Conference on Computer and Information
Technology (CIT 2004), Sept. 14-16, 2004, Wuhan, China.

[20] N. Xiong, X. Dfago, X. Jia, Y. Yang, Y. He, “Design and Analysis of a Self-tuning Proportional
and Integral Controller for Active Queue Management Routers to Support TCP Flows”, IEEE
INFOCOM 2006, Barcelona, Spain, April 23-29, 2006. (the 25th Annual Conference on Computer
Communications, Impact Factor: 1.39)

[21] Y. He, N. Xiong, Y. Yang and C. Lin, “EBA: An efficient bandwidth allocation approach for RPR
networks”, In the Proceedings of ACM SIGCOMM ASIA WORKSHOP 2005, ACM, April 2005,
Beijing, China, pp. 175-181.

[22] N. Xiong, Y. Yang, Y. He, “On the Quality of Service of Failure Detectors Based on Control
Theory”, The IEEE 20th International Conference on Advanced Information Networking and Ap-
plications (AINA2006), Vienna, Austria, pp. 75-80, April 18-20, 2006.

[23] N. Xiong, X. Dfago, Yan Yang, Y. He, and J. He, “On Control Gain Selection in PI-RED”, 2006
IEEE International Conference On Networking, Sensing and Control (ICNSC06), Ft. Lauderdale,
Florida, USA, April 23-25, 2006, pp.516-522.

[24] N. Xiong, Y. He, J. Cao and Y. Yang,“On Designing a Novel PI Controller for AQM Routers
Supporting TCP Flows”, in the Proc. of the Seventh Asia Pacific Web Conference (APWeb05),
March, Shanghai, China, LNCS, Vol. 3399, pp. 991-1002, 2005.

[25] N. Xiong, Y. He, L. T. Yang, and Y. Yang, “A Self-tuning Reliable Dynamic Scheme for Multicast
Flow Control”, The 3rd International Conference on Ubiquitous Intelligence and Computing (UIC-
06), Wuhan, China, LNCS 4159/2006, book: Ubiquitous Intelligence and Computing, pp. 351-
360, September, 2006.

74

[26] N. Xiong, Y. He, Y. Yang, L. T. Yang, C. Peng, “A Self-tuning Multicast Flow Control Scheme
Based on Autonomic Technology”, The 2nd IEEE International Symposium on Dependable, Au-
tonomic and Secure Computing (DASC’06), USA, pp. 219-226, September, 2006.

[27] N. Xiong, Y. He, Y. Yang, J. Cao and C. Lin, “An Efficient Flow Control Algorithm for Multi-rate
Multicast Networks”, The 2004 IEEE International Workshop on IP Operations & Management
(IPOM 2004), October, 2004, Beijing, China, pp.74-81.

[28] Y. He, N. Xiong and Y. Yang, “Data Transmission Rate Control in Computer Networks using
Neural Predictive Networks”, The Proceeding of the 2004 International Symposium on Parallel
Processing and Applications (ISPA 2004), LNCS, Vol. 3358, pp. 875-887.

[29] N. Xiong, X. Dfago, Y. He and Y. Yang, “A Resource-based Server Performance Control for Grid
Computing Systems”, The IFIP International Conference on Network and Parallel Computing
2005 (NPC 2005), Nov. 30- Dec. 2, 2005, Beijing, China, pp. 56-64.

[30] Y. He, N. Xiong, X. Dfago, Y. Yang and J. He, “A Single-pass Online Data Mining Algorithm
Combined with Control Theory with Limited Memory in Dynamic Data Streams”, The 4th Inter-
national Conference on Grid and Cooperative Computing (GCC’05), November 30-December 3,
2005, Beijing, China, pp. 1119-1130.

[31] N. Xiong, Y. Yang, J. He, and Y. He, “On Designing QoS for Congestion Control Service Using
Neural Network Predictive Techniques,” in the proceedings of IEEE International Conference On
Granular Computing (IEEE-GrC 2006), pp. 299 - 304, Atlanta, USA, May 10-14, 2006.

[32] N. Xiong, L. T. Yang, Yan Yang, X. Dfago, Y. He, “A novel numerical algorithm based on self-
tuning controller to support TCP flows”, Mathematics and Computers in Simulation 79(4): 1178-
1188 (2008).

75

