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Abstract

In the logic level VLSI design, the clock skew is now utilized intentionally for im-
proving system performances and significant efforts have been devoted. Similar to the
clock schedule in the logic level design, the skew-aware high level design will contribute
to reducing the clock period. In addition, the intentional skew considered in high level
synthesis may also contribute to reducing the number of control steps (makespan) for a
target application. In the logic level design, the effect of the intentional clock skew is
often enhanced by re-timing technique. Similar to this situation, in the skew-aware high
level synthesis, the simultaneous optimization of the control step assignment and the skew
assignment has a higher potential in performance optimization.

In this thesis, we investigate the optimization of schedule (σ), skew (τ) and clock
period (clk). We assume that resource binding and delay information are given as an a
part of input description. The contributions of this thesis are following.

• The proof of NP-hardness of simultaneous optimization of (σ,τ ,clk).

• The proof of NP-hardness of simultaneous optimization of (σ,τ) under given clk.

• The proof of NP-completeness of decision problem whether there exists a feasible
pair of (σ,τ) for the input instance under given clk.

• A sufficient and necessary condition for the input instance to have a feasible pair of
(σ,τ) for any clk. This condition is also a sufficient condition to have a feasible pair
of (σ,τ) for specified clk.

• A heuristic algorithm for simultaneous optimization of (σ,τ) under given clk. The
objective of the algorithm is to minimize the number of control steps.

Intentional skew control is a promising key technology not only to improve VLSI per-
formance, but also to provide tunability for each VLSI to operate with its own maximum
performance, which may overcomes the current and future process variability problem.
Those results presented in this paper should be important theoretical base of skew-aware
datapath design.
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Chapter 1

Introduction

High level synthesis is the transformation of an input algorithm which is required to be
implemented on VLSI to a RT-Level architecture. A RT-Level architecture consists of
components such as registers, multiplexers, and FUs and connections between compo-
nents. An input algorithm consists of operations and data dependencies between opera-
tions. To generate RT-Level architecture, we have to assign operations and relevant data
to FUs and registers. This assignment is called “resource binding”. A register reads an
output of an operation and a multiplexer selects a data for a FU to execute an operation
or for a register to read an output. These actions are controlled by control signals which
are assigned to discrete time slots called “control steps” and are issued synchronized with
a clock signal. We call this assignment of control signals to control steps as “control
schedule.”

In deep sub-micrometer or nanometer technology, interconnection delay becomes a
dominant factor for the operation speed of VLSI systems. To synthesize high performance
VLSI systems, the importance of exploiting interconnection delay information at higher
level design is recognized, and several synthesis systems, which combine tasks in high
level synthesis and floorplan, have been proposed [1]-[5]. When we determine the control
schedule directly considering not only maximum delays but also minimum delays, we can
temporally overlap some data flows in same data path to improve system performance.
We can see one typical example of it in [8].

To improve system performance in terms of total computation time and/or robustness
to delay variation, we are going to introduce appropriate delays which differentiate the
arrival times of control signals to registers and multiplexers. A similar technique to the
skew of register control has been proposed for sequential circuits, and significant efforts
have been devoted to so–called clock scheduling [9],[10],[11],[12]. It is well-known in the
logic level design that the clock skew only is not enough for the highest performance, and
the combination of the clock skew with the re-timing technique is a promising approach
[13],[14]. Similar to this situation, in the skew-aware high level synthesis, the simultaneous
optimization of the control step assignment and the skew assignment has a higher potential
in performance optimization.

To discuss mathematically and logically the essential difference between skew and re-
timing in a sequential circuit and our skew and control step assignment would be a hard
task. The rather superficial difference between two are as follows.

1. Every register reads its input at every clock cycle in a sequential circuit. On the
other hand, each register reads its input only scheduled clock cycle.
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2. By re-timing technique in a sequential circuit, delay between registers will change,
but still every register keeps to read its input at every clock cycle. On the other
hand, in a datapath circuit, control step assignment (re-scheduling) does not change
any delay between registers, but changes the timing in which each register reads its
input.

3. Skew and re-timing for a sequential circuit target on reducing clock period. On the
other hand, our skew and re-schedule can work not only for reducing clock period,
but also for reducing schedule length. Furthermore, it is not clear which value (or
concept) in a sequential circuit corresponds to the schedule length and varies by
re-timing.

So, as a result, skew and re-timing algorithms designed so far for a sequential circuit can
not be applied to our problem, especially for reducing schedule length.

Taking the peculiarity of the skew assignment into consideration, we assume that re-
source binding and the temporal order (not a specific control step assignment) of lifetimes
of data assigned to the same register are fixed as a part of input description to our prob-
lem, and we try to optimize skew and control step assignments under those constraints. It
is expected that, if we have a tool to solve this problem, it can be used also as a sub-tool
for optimizing resource binding and temporal order of lifetimes.

In this thesis, we investigate the optimization of schedule (σ), skew (τ) and clock
period (clk). In Chapter 2, we show some examples which show the effectiveness of si-
multaneous schedule, skew and clock period optimization and formulate the simultaneous
optimization problem. We also present an approximation algorithm for skew and clock
period optimization in this chapter. It is based on graph algorithm and binary search.
In Chapter 3, we give a proof of NP-hardness of simultaneous schedule, skew and clock
period optimization problem by reduction from 3SAT problem. Following Chapters are
about partial problems. In Chapter 4, we show a proof of NP-hardness of simultaneous
skew and schedule optimization and NP-completeness of decision problem whether the
input has a feasible solution or not. In Chapter 5, we present a sufficient condition for
the decision problem whether simultaneous skew and schedule assignment problem have
a feasible solution or not. We present a heuristic algorithm for simultaneous skew and
schedule optimization problem in Chapter 6.
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Chapter 2

Preliminaries

2.1 Background and Motivational Example

2.1.1 Structural and Behavioral Descriptions of Datapath Cir-

cuit

We assume that the input algorithm of high-level synthesis is described as a data flow
graph (DFG in short) (O,D) where a vertex set O is the set of operations and an edge
set D indicates data dependencies between operations.

The input algorithm is transformed to the datapath circuit by determining resource
binding, that is, the functional unit assignment ρ : O → F and the register assign-
ment ξ : O \ U → R, where F is the set of functional units, R is the set of registers,
U is the set of operations whose outputs are not written to registers, and ξ(o) = r
means that the output data of operation o is assigned to register r (the output of o is
written in r). Interconnections and multiplexers in the datapath part are so designed
that, for each operation oj with (oi, oj) ∈ D, the input register ξ(oi) is connected to
the functional unit ρ(oj) and ρ(oj) is connected to the output register ξ(oj). As an
example, Fig.1(b) shows a datapath circuit obtained from Fig.2.1(a) with the resource
binding ρ(o1) = FU1, ρ(o2) = FU2, ρ(o3) = FU2, ρ(o4) = FU1, ρ(o5) = FU1, ξ(o1) =
r2, ξ(o2) = r5, ξ(o3) = r3, ξ(o4) = r4, ξ(o5) = r1.

The behavior of a datapath circuit, on the other hand, is determined by the arrival

o1

o2
o4

o5

o3 m1

r2r1

FU1

r4

m3

r3

FU2

r5

m2 m4

(a) (b)

Figure 2.1: Example of DFG and RT-Level architecture.
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timing of control signals to registers and multiplexers. We let M be the set of all registers
and multiplexers, and S denotes the set of all control signals, where co

x ∈ S represents
the control signal which is related to the execution of o ∈ O and is sent to x ∈ M. Each
co
x ∈ S will be assigned to an appropriate control step. The control step is denoted as

σ(co
x) and we call control step assignment σ : S → Z+ as a control schedule. Timing skew

assignment τ : M → R assign skew between arrival timing of a control signal and begging
of a control step. As the result, the control signal co

x reaches x at the time σ(co
x)·clk+τ(x),

where clk is a clock period.

2.1.2 Motivational Example

r1

r2

r3

clk

time

(a) A schedule with only
maximum delay

r1

r2

r3

clk

time

(b) A schedule with maxi-
mum and minimum delay

Figure 2.2: Benefit of considering minimum delay

In conventional High Level Synthesis, a schedule is decided based on maximum delay.
In this paper, we discuss scheduling considering both maximum and minimum delays of
a signal transmission path which includes a functional unit. Fig.2.2 shows the benefit of
considering minimum delays. Each horizontal line indicates the time axis at a multiplexer
or a register. A vertical arrow shows the arrival of a control signal and a solid slant arrow
shows a data propagation. A broken slant arrow shows unintended data propagation
which may break a necessary data. A data propagation from r1 to r3 starts when the
first control signal arrives at r1. The unintended data propagation from r1 to r3 starts
when the second control signal arrive at r1. The schedule based on only maximum delays
(Fig.2.2(a)) needs 4 control steps, while the schedule considering maximum and minimum
delays(Fig.2.2(b)) needs 3 control steps. The start of data propagation is controlled by
control signals for multiplexers and registers. This is the reason to schedule control signals
directly.

Fig.2.3(a) shows a schedule of 6 control signals. The number written beside a slant
solid/broken arrow shows maximum/minimum delay of the data propagation. The sched-
ule requires 4 control steps. This is an optimal schedule under zero skew if the number of
control steps is restricted to smaller than or equal to 4, and its minimum clock period is 8
(total computation time 8 × 4 = 32). When we assign skew (τr1, τr2, τr3) = (0,−0.5, 0.5),
the minimum clock can be reduced to 7.5 (total computation time 7.5 × 4 = 30). The
situation is illustrated in Fig.2.3(b). Note that the negative skew value assigned to r2 is
transformed to 7 as described in Section 2.2.1. Fig.2.3(c) shows an optimal schedule and
skew assignment. The minimum clock period is now 5 (totally, 5×4 = 20). This example
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r1

r2

r3

clk

(a) An optimal schedule
with zero skew

7.5

8

7 3

4 6

8

7

7

0.5

magnifier

r1

r2

r3

clk

(b) Skew optimization
for 2.3(a)

5

8

7 3

4 6

8

3

2

3

2

r1

r2

r3

clk

(c) An optimal schedule
and skew assignment

Figure 2.3: Necessity of skew aware scheduling

shows that we can reduce clock period by optimizing skew value for existing zero skew
schedule, but we may not generate optimal schedule in such a way, so we should decide
schedule and skew simultaneously.

Skew optimization was discussed mainly for sequential logic circuits, where the subject
to be optimized is the arrival time difference of the clock signal instead of control signals.
In deep submicrometer or nanometer technology, interconnection delay becomes a domi-
nant factor for the operation speed of a VLSI system, and the importance of exploiting
interconnection delay information at higher level design is recognized. Coupled with this
interconnection delay information, control signal schedule and skew assignment based on
maximum/minimum delay model will be important techniques supporting the design of
high performance VLSIs.

The main subject of this paper is the simultaneous skew and control schedule opti-
mization in high-level datapath synthesis.

2.2 Simultaneous Optimization of Control Step and

Skew Assignments

2.2.1 Formulation of the Problem

Our simultaneous optimization problem, (σ,τ ,clk)-optimization, receives a data flow graph
G, resource binding ρ, ξ, and the execution order of operations assigned to the same
FU, and the production order of data assigned to the same register (the function next
introduced later reflects such information), and outputs σ, τ and clk.

Fig.2.4 illustrates the correct timing of control signals with respect to the execution
of oj . We assume that oi is an operation generating an input of oj, and the output of the
operation oj is written in a register rj (ξ(oj) = rj). On the other hand, the resource xi

is either a register which stores the input data for oj , an input multiplexer of a FU ρ(oj),
or an input multiplexer of rj.

The “setup constraint” (the arrival of the control signal c
oj
rj has to be later than the

6



time
s h

D
oj

xi−rj

d
oj

xi−rj

coi
xi

c
oj
rj

c
next(xi,oi)
xixi

rj

Figure 2.4: Setup / Hold constants.

arrival of the result of oj) is formulated as

σ(co∗
xi

) · clk + τ(xi) + terr + D
oj

xi−rj
+ s ≤ σ(coj

rj
) · clk + τ(rj)

where o∗ is either the operation that generates the input of oj stored in a register xi

or oj in case xi is a multiplexer at the input of ρ(oj) or rj . D
oj

xi−rj
is the maximum path

delay from xi to rj related to the execution of oj . terr is a timing margin, and s is the
setup time of the register rj .

On the other hand, the “hold constraint” (the arrival of c
oj
rj has to be earlier than the

destruction of the result of oj) is given as

σ(coj
rj

) · clk + τ(rj) + terr ≤ σ(cnext(xi,oi)
xi

) · clk + τ(xi) + d
oj

xi−rj
− h,

where d
oj

xi−rj
is the minimum path delay from xi to rj related to the execution of oj,

and h is the hold time of rj. next(xi, oi) is the operation next to oi on the resource xi.
In case that several operations are chained, setup and hold constraints are formulated
between input registers to the first operation, intermediate multiplexers located on the
chaining path, and the output register of the last operation of the chain. Note that, when
the control step assignment σ is variable, we can set 0 ≤ τ(x) < clk for all x ∈ M without
loss of optimality.

Note that schedule and skew for an input multiplexer of a register is trivial. Let m
be an input multiplexer of a register r. For all operations o which are assigned to the
same register r, the maximum path delays Do

m−rs have almost the same value, and also
the minimum path delays do

m−rs have almost the same value. So we can set σ(co
m) and

τ(m) as following.

σ(co
m) = �σ(co

r) · clk + τ(r) − Do
m−r

clk
�,

τ(m) = τ(r) − Do
m−r − �τ(r) − Do

m−r

clk
�clk.

In general, the objective of the scheduling is the minimization of the computation time
and the size of a resultant circuit. Since ξ and ρ are fixed in our problem, to minimize the
size of a circuit is to minimize the size of a controller. We can assume that the size of the
controller is an increasing function of |M| and CS (the number of control steps). Since
|M| is fixed, CS is our objective to be minimized in terms of circuit size. On the other
hand, the computation time of a circuit can be evaluated with clk ·CS. Hence, we choose
clk · CS + λ · CS as the objective to be minimized, where λ is a weighting coefficient.

7



Whether an instance has a feasible solution or not can be tested easily by relaxing
integer-valued problem into real-valued problem, that is, by relaxing σ : S → Z+ into
σ : S → R≥�. We will call σ : S → R≥� a real-valued schedule and it is computed by
using a real-domain schedule constraint graph Grs = (S, Ers). The vertex set S is the set
of all control signals. The weighted edge set Ers corresponds to the following constraint
inequalities obtained from (2.2.1)-(2.2.1) assuming variables τ equal to zero.

σ(coj
rj

) ≥ σ(coi
xi

) + D
oj

xi−rj
+ s + terr (2.1)

σ(cnext(xi,oi)
xi

) ≥ σ(coj
rj

) − d
oj

xi−rj
+ h + terr (2.2)

That is, corresponding to (2.1)-(2.2), we add (coi
xi

, c
oj
rj ) with its weight D

oj

xi−rj
+ s + terr

and (c
oj
rj , c

next(xi,oi)
xi ) with its weight −d

oj

xi−rj
+ h + terr. The longest path length to each

vertex from a source in Grs provides a feasible and optimal (in terms of clk×CS → min)
real-valued schedule.

Theorem 1 If and only if there is no positive cycle in Grs, there is a feasible assignment
of σ and τ .

If there is no feasible real-valued schedule, there is no feasible assignment of σ and τ
because if there is a feasible assignment of σ and τ , we can compute the actual time of
control signals in the form of σ(co

x) · clk + τ(x). When clk is sufficiently small, τ is also
small, nearly equal to zero, and we can assume that σ(co

x) · clk takes an arbitrary real
value. That is a reason why if there is a feasible real-valued schedule, there is a feasible
assignment of σ and τ .

σ takes an integer value and τ takes a real value, so if one of clk and CS is fixed, the
problem becomes a Mixed Integer Linear Programming Problem. We show an optimiza-
tion algorithm to compute optimum σ and τ using MILP solver in Fig.2.5. Although the
algorithm computes an optimum solution, it takes impractical time.

Input λ, constraints.

Step1 Set the objective of MILP to the minimization of CS. Solve the MILP and let
CSmin be the minimum CS.

Step2 Set clk to 1 and the objective to the minimization of CS. Relax the problem into
a real valued LP problem, and solve it. Let timemin be the minimum CS

Step3 Set opt to ∞ and CS to CSmin.

Step4 Set the objective to the minimization of clk and solve MILP. If clk ·CS +λ ·CS <
opt then set opt to (clk · CS + λ · CS), CSopt to CS and sol to (σ, τ).

Step5 Increase CS by 1. If (clk · CS − timemin) > λ then goto Step4, otherwise output
sol and terminate.

Figure 2.5: A simultaneous optimization algorithm using MILP
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2.2.2 Partial Problems

Because simultaneous optimization of σ, τ , clk is a hard problem, we consider partial
problems. The optimization of one of σ, τ , clk is easy. When we try to optimize σ or
τ while other is fixed, we can use the longest path algorithm on the constraint graph
described in section 5.3.1 and 5.3.2. The computation of clk is the easiest problem among
three problems. We only have to compute the common region of one variable inequalities.
We assume that one of σ, τ , clk is fixed, and try to optimize the other two.

(τ , clk)-optimization is the problem to optimize τ and clk while keeping control sched-
ule σ unchanged. This problem is the same as the clock skew optimization problem in
logic level. Because τ and clk take real values, (τ , clk)-optimization problem can be
formulated as LP problem. We present an approximation algorithm in Section 2.3.

(σ, clk)-optimization is the problem to optimize σ and clk under given skew τ . Con-
ventional high level synthesis systems treat (σ, clk)-optimization with zero skew.

(σ, τ)-optimization is the problem to optimize σ and τ under a give clock period clk.
In most cases clk may be determined considering various factors, and we often encounter
this type of optimization problem. (σ, τ)-optimization is also a good candidate subroutine
for solving the original (σ, τ, clk)-optimization. That is, by repeating (σ, τ)-optimization
with a systematic sweep of clk, we can find a best solution for (σ, τ, clk)-optimization.
We propose An efficient graph theoretic approach in Chapter 6.

2.3 A Solution Algorithm for Skew Optimization for

Clock Period Minimization

In this section, we show a constant approximation algorithm CSO (Control Skew Opti-
mization) for (τ ,clk)-optimization problem. Algorithm CSO output clock period clk ≤
clkopt + ε and skew assignment τ in time O(|O|2 · log2((clkmax −clkmin)/ε)) where clkopt, ε,
clkmax and clkmin are minimum clock period for given input instance, accuracy specified
by user, maximum bound of clock period given by user and minimum bound computed
from setup and hold constraints, respectively.

(τ ,clk)-optimization Problem is a same problem as clock skew optimization problem
in logic level. The contribution in this section is also the first solution algorithm for
clock skew optimization for the circuit which have multi clock cycle path. More advanced
method for clock skew optimization problem have been proposed in [11].

2.3.1 Skew Scheduling for Minimizing Clock Period

From (2.2.1)-(2.2.1), we have

τ(rj) − τ(xi) ≥ (σ(coi
xi

) − σ(coj
rj

)) · clk + τerr + D
oj

xi−rj
+ s, (2.3)

τ(xi) − τ(rj) ≥ (σ(coj
rj

) − σ(cnext(xi,oi)
xi

)) · clk + τerr − d
oj

xi−rj
+ h. (2.4)

We generate skew constraint multigraph Gs = (V, E) from (2.3-2.4) as shown in
Fig.2.6. Vertices V is a set of multiplexers, registers and one auxiliary source node vs.
Weighted edges E are the union of edges corresponding to (2.3)-(2.4) over all operations,
and {(v, vs)|v ∈ V \ vs} ∪ {(vs, v)|v ∈ V \ vs}. Edge weights for {(v, vs)|v ∈ V \ vs} and
{(vs, v)|v ∈ V \ vs} are −clk and 0. Then, skew assignment (skew schedule) problem is

9
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00
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xi

) − σ(c
oj
rj )) · clk + τerr + D

oj

xi−rj
+ s

(σ(c
oj
rj ) − σ(c

next(xi,oi)
xi )) · clk + τerr − d

oj

xi−rj
+ h

(σ(cok
xi

) − σ(col
rj

)) · clk + τerr + Dol
xi−rj

+ s

(σ(col
rj

) − σ(c
next(xi,ok)
xi )) · clk + τerr − dol

xi−rj
+ h

−clk
−clk

vs

Figure 2.6: Skew constraint multigraph

now considered as the problem to assign real values to vertices in Gs, and maximum path
lengths from vs to other vertices gives us a solution, i.e., skew of registers and multiplex-
ers. If Gs has a positive cycle, feasible skew schedule does not exist. Skew schedule for
minimizing clock period is, then, the problem to find minimum clk such that the resultant
Gs includes no positive cycle.

Once we assign a value to clk, multi edges between a pair of vertices can be reduced to
one edge which has maximum weight (since only maximum path length is our concern),
and hence we can use Ford algorithm to compute maximum path length.

The following lemma is a key to derive a binary search algorithm for finding minimum
clock period.

Lemma 1 There is at most one continuous clk region, for which feasible skew assignment
exists.

We assume that there is a positive cycle in Gs with clk = clk∗, clk∗ ∈ R+, the cycle
weight can be denoted as x · clk∗ + y. We call x the “coefficient” of the cycle. If the
coefficient x is positive, the cycle is also positive for all clk > clk∗. If the coefficient
is negative, the cycle is also positive for all clk < clk∗. So we can derive the above
lemma. (In conventional skew problem in a sequential circuit, σ(coi

xi
) − σ(c

oj
rj ) = −1

and σ(c
oj
rj ) − σ(c

next(xi,oi)
xi ) = 0 hold equivalently, and all cycles have negative or zero

coefficients.)
If upper and lower bound of clk is given, we can use binary search to find minimum

clock period by identifying a positive cycle if it exists and extracting the polarity of its
coefficient. Extraction of a cycle coefficient is performed using modified Ford algorithm
whose complexity is the same with the original one.

The lower bound of clk “clkmin” is calculated from (2.3)-(2.4). clkmin must satisfy the
following inequality so that τ(rj) − τ(xi) has feasible range of value.

clkmin ≥ D
oj

xi−rj
− d

oj

xi−rj
+ s + h + 2τerr

σ(c
next(xi,oi)
xi ) − σ(coi

xi)
(2.5)

The upper bound “clkmax” is assumed to be given by a user.
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Step1. Generate Gs. Calculate clkmin.

Step2. If clkmax − clkmin < ε, go to Step7.

Step3. Set clk = (clkmax − clkmin)/2

Step4. Reduce multi edges of Gs. Apply modified Ford algorithm to compute longest
path lengths on Gs.

Step5. If there is no positive cycle, set clkmax = clk and go to Step2.

Step6. Extract a positive cycle. If its coefficient is positive, set clkmax = clk, If not, set
clkmin = clk. Go to Step2.

Step7. Set clk = clkmax. Reduce multi edges of Gs and apply Ford algorithm. If there
exist a positive cycle, given instance has no solution. If not, maximum path lengths
to vertices are optimized control skews.

Figure 2.7: Algorithm CSO (Control Skew Optimization)

The algorithm CSO (Control Skew Optimization) is shown in Fig.2.7. “ε” is the
resolution of clock period, and it is also given by a user. Fig.2.8 shows an illustrative
example of our binary search done by CSO.

Theorem 2 Algorithm CSO computes ε-minimum1 clock period and feasible control skew
for registers and multiplexers with O(|O|2 · log2((clkmax − clkmin)/ε)) computation time,
if the length of the feasible control skew region is not smaller than ε.

Computational complexity of CSO will be explained briefly. First, |V | = O(|O|) and
|E| = O(|O|). The computational complexity for constructing Gs is O(|O|). Computation
of clkmin and clkmax take O(|E|) time. Let ε be time unit for clk. Binary search recurs

1There is no feasible solution which is smaller than ε-minimum solution minus ε.

detect positive cycle with positive coefficient

detect no positive cycle

detect positive cycle with negative coefficient

feasibel region

clk

clk

clk

clkmin

clkmin

clkmin

clkmin

clkmax

clkmax

clkmax

clkmax

Figure 2.8: Example of binary search
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O(log2((clkmax − clkmin)/ε)) times. In each recurrence takes O(|E|) time to remove multi
edges and O(V · E) time for ford algorithm. Finally, proposed algorithm takes O(|O|2 ·
log2((clkmax − clkmin)/ε)) time.

Finally, it is commented that the algorithm CSO can be easily modified to find the
maximum feasible clock period, if necessary. That is, we only need to modify CSO such
that clkmin is updated if no positive cycle is detected in Step5, and set clk = clkmin in
Step7. Then we can compute the maximum feasible clock period in the same computa-
tional complexity with the original CSO.

2.3.2 Experiments

Proposed method was implemented using C programming language and tested on AMD
Athlon based system. Our experimental instance are two DAG algorithms based on
Jaumann wave filter, all-pole Lattice filter and Elliptic wave filter.

Delays between two modules are the sum of delays of register-multiplexer, multiplexer-
FU, FU, FU-multiplexer, and multiplexer-register. Maximum/minimum delays of multi-
pliers and adders are 60/10 and 20/10, respectively. The other delays are given randomly.
minimum of register-multiplexer and FU-multiplexer delays are 3-25 and multiplexer-
register and multiplexer-FU delays are 2-15. Maximum delay of a path is 1.1-1.4 times
larger than its minimum delay.

clk reduction by skew

Table 2.1: Experiment 1
Jaumann
instance ID #fu #reg n/s w/s ratio

1 9 10 47 31 0.66
2 9 9 51 32 0.62
3 9 10 51 41 0.80
4 9 11 51 36 0.70
5 9 10 66 52 0.79
6 9 12 68 60 0.88
7 9 12 69 59 0.86
8 10 11 70 59 0.84

Lattice
instance ID #fu #reg n/s w/s ratio

1 6 8 64 40 0.63
2 6 8 42 27 0.64
3 6 8 56 38 0.68
4 6 8 66 44 0.67
5 6 8 56 40 0.71
6 6 8 64 57 0.89
7 6 8 59 56 0.95
8 5 8 72 58 0.81

In the first experiment, the effect of skew optimization is simply tested on several
datapath designs. For each input instance (target algorithm), eight different control step
schedule and binding are tested. Experimental results are shown in table 2.1. A user
defined parameter clock resolution is 2. The column #fu and #reg represents the number
of functional units and the number of registers in each datapath. The column n/s is the
minimum clock period with zero skew. The column w/s is the minimum clock period with
optimized skew obtained from our proposed algorithm. The column ratio is the reduction
ratio of clock period. The results show the effectiveness of the skew optimization.
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Table 2.2: Experiment 2

totalcost
without

skew

totalcost
with
skew

time
without
skew

time
with
skew

CS controllerarea net

Jaumann competitor 1485.1 1349.1 812.55 676.50 7.0 107.8 26.2 44.4
proposed 1693.1 1304.6 951.51 563.04 7.6 130.4 28.6 47.8

lattice competitor 2113.4 1768.1 1521.3 1175.9 12.8 157.0 20.4 34.0
proposed 2210.1 1752.9 1594.9 1137.7 11.8 156.0 20.6 36.8

elliptic competitor 3880.7 3172.1 2402.1 1693.5 19.0 511.4 35.5 85.4
proposed 3634.2 2816.6 2229.4 1411.8 17.4 458.4 34.7 83.6

Synthesis with skew optimization

The second experiment is the datapath synthesis enhanced by skew optimization. We
combined proposed skew optimization with high-level synthesis system. The system is
based on Simulated Annealing search of the solutions space which consists of assignment
of operations to functional units, assignment of data to registers, order of operations
on functional units, assignment of inputs of operations to port of functional units, and
assignment of integers to operations (which indicate control step for the output of an
operation to be written in an assigned register, not the timing of the execution of the
operation). Control step for control signal to a multiplexer is optimized so that clock
period without control skew is minimized.

We use time, controller, net, area to evaluate solutions. time = CS × clk where CS
is the number of control steps. controler is the size of controler, which is proportional to
the number of state and controlled modules. net is the number of connections between
modules. area is the area of circuit. These four criteria are combined linearly to yield
our objective function.

totalcost = α · time + β · controller + γ · net + δ · area

Coefficients α, β,γ, δ are decided experimentally as α = 1.0, β = 1.0, γ = 8.0, δ = 8.0.
We have carried out two types of synthesis, one is the synthesis with skew optimization

and the other is the synthesis without skew optimization (all skews are fixed to 0). Re-
sults of both synthesis are evaluated with and without control skew optimization. Input
algorithm is Jaumann wave filter, all-pole lattice filter and elliptic wave filter. Results are
shown in table 2.2. Each value in the table is the average of 5 trials. As for parameters
peculiar to simulated annealing, we use the following. Initial temperature is 1.0×105, ter-
minate temperature is 0.50, temperature reduction ratio is 0.98, the number of iterations
in inner loop is 14000 for competitor (zero skew version), 650 for proposed version (with
skew optimization). Run time is 41m10s in average for proposed method, and 50m35s for
competitor.

It seems natural that our proposed method can generate better solutions (datapaths)
in both totalcost and time with skew, while these solutions are worse in totalcost and
time without skew in jaumann and lattice cases. That is, the reversal in performance
occurs, which indicates us the necessity of skew aware synthesis.
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2.3.3 Conclusion

In this section, we have focused on the skew of the arrival time of control signals to
multiplexers and registers in a RT level datapath. In interconnection delay dominant VLSI
systems, the timing of the arrival of control signals at multiplexers should be carefully
controlled as much as the timing of the arrival of control signals at registers.

An algorithm for this problem based on binary search has been developed, and it can
be applied also to clock skew optimization of sequential circuits which have multi cycle
paths. The computational time of proposed algorithm is about 0.7 times that of simplex
algorithm when input algorithm is Jaumann wave filter or all-pole Lattice filter and 0.5
times when input algorithm is Elliptic wave filter. Proposed algorithm is more efficient
for larger input instance.
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Chapter 3

Computational Complexity of
Simultaneous Optimization of
Schedule, Skew and Clock Period

3.1 Introduction

In this chapter, we discuss the simultaneous optimization of the clock period (clk), the
control step assignment (σ) and the skew assignment (τ) under given resource assignment
and given operation order on each FU and Register. The contribution of this chapter is to
show that our simultaneous optimization problem of schedule, skew assignment and clock
period ((σ,τ ,clk)-optimization problem in short) is HP-hard even if we limit the control
step assignment to the one keeping the execution sequence of operations on a functional
unit (and the lifetime sequence of data on a register) unchanged.

Although the contribution that (σ,τ ,clk)-optimization problem is NP-hard do not
give the method to solve the problem, it would important in the sense that it shows us
a broad and crucial guideline for designing a solution algorithm. It implies that there is
no polynomial time algorithm unless P=NP. It is a motivation to discussion about sub
problems of (σ,τ ,clk)-optimization problem in following chapters.

3.2 NP-hardness of (σ,τ ,clk)-Optimization Problem

We show that (σ,τ ,clk)-optimization problem is NP-hard by the reduction of MAX-3SAT
problem to (σ,τ ,clk)-optimization problem. Let (X, C) be the instance of MAX-3SAT
problem, where X = {x1, x2, · · · , xn} is the set of variables, C = c1 ∧ c2 ∧ · · · ∧ cm is the
algebra, and for each clause ci = (li1 ∨ li2 ∨ li3), literal lij is either xk or ¬xk. The solution
Ξ : X → {0, 1} for an instance (X, C) is the assignment of {0, 1} for variables. We define
a transformation from (X, C) to (G, ρ, ξ, next, D, d, λ) and from (σ, s, clk) to Ξ.

We set (s,h,terr,λ) to (0,0,0,0.5).
We construct G as shown in fig.3.1. For each clauses ci, we add operation Oci

. Oc0 is
auxiliary start operation. Between Oci−1

and Oci
, there are two paths Oci−1

Oli1Ocis1Oli2Ocis2Oli3

and Oci−1
Ociw1Ociw2 · · ·Ociw7−αi

where αi is the number of literal so as xk. Operations Oli1,
Oli2 and Oli3 correspond to literals li1, li2 and li3, respectively.

We assign each operations to distinct FU. We tie in variable xi with register xi i.e. if
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Oc0 Oci−1 Oci Ocm
Olii Oli2 Oli3Ocis1 Ocis2

Ociw1 Ociw2
Ociw7−αi

Figure 3.1: A DFG for a 3SAT instance.

lij = xk or lij = ¬xk, ξ(Olij) = xk. To add to registers corresponding to variables, we
use two registers y1 and y2. ξ(Oci

) = y1 and ξ(Ociwj
) = y2. After we compute optimum

solution (σ, τ, clk), we transform τ according to Lemma4, if τ(xi) = τ(y1), we assign 0
for variable xi, and if τ(xi) �= τ(y1), we assign 1 for variable xi. Basic concept is to
design (G, ρ, ξ, n, D, d, λ) so that the more clauses are satisfied, the smaller CS is, and
the number of satisfied clauses can be calculated from CS.

For each Olij , let O1, O2 be the predecessor and the successor. As we show later, clk is
1 unit time in the optimum solution. Denote the minimum value of σO2

y1
−σO1

y1
as Lij. We

assign delay value so that if lij = 1, Lij is smaller than that with lij = 0. In case lij = xk,

we set D
Olij

y1−xk
, DO2

xk−y1
to 0.5 unit time. If τ(xk) �= τ(y1)(i.e. if τ(y1) = 0, τ(xk) = 0.5,

and if τ(y1) = 0.5, τ(xk) = 0), Lij is 1. On the other hand, if τ(xk) = τ(y1), Lij is 2.

These situations are shown in fig.3.2. In case lij = ¬xk, we set D
Olij

y1−xk
= DO2

xk−y1
= 1. If

τ(xk) = τ(y1), Lij is 2. On the other hand, if τ(xk) �= τ(y1), Lij is 3. These situations

are shown in fig.3.3. Denote σ
Oci
y1 − σ

Oci−1
y1 as χi. Then χi = 2αi + 3(3−αi) = 9−αi if ci

cO1
y1

cO1
y1

cO2
y1

cO2
y1

c
Olij
xkc

Olij
xk

y1

xk

τ(xk) = 0τ(xk) = 0.5

Figure 3.2: Edge weight for literal lij = xk.

1 1
1 1

cO1
y1

cO1
y1

cO2
y1

cO2
y1

c
Olij
xkc

Olij
xk

y1

xk

τ(xk) = 0τ(xk) = 0.5

Figure 3.3: Edge weight for literal lij = ¬xk.

is not satisfied, and χi < 9 − αi if ci is satisfied. We use path Oci−1
Ociw1Ociw2 · · ·Ociw7−αi

to assure χi > 8 − αi. Maximum delay between registers (r1, r2), (r2, r2) and (r2, r1) for
each operation in the path is 1.
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Because χi = 9 − αi if ci is not satisfied, or χi = 8 − αi if ci is satisfied, so CS =∑m

i=1 χi = 9m − ∑m

i=1 αi − z where z is the number of satisfied clauses, and thus if we
minimize CS, the number of satisfied clauses is maximized.

We did not mentioned next, d. next trivial for registers because there is a path between
two operations O1, O2 such that ξ(O1) = ξ(O2). We defined ρ so as to ρ(O1), ρ(O2) for
all O1 �= O2. So we need not consider next for multiplexers because there is no input
multiplexer for any FU. We can assign arbitrary value to do

x in range 0 ≤ do
x−y < Do

x−y

for any x, y ∈ M and o ∈ G from following lemma.

Lemma 2 Minimum delays do not affect σ and τ .

Proof of Lemma: Let o, o′ are operations such that (o′, o) ∈ G. We prove that we can

schedule co
ξ(o) faster than c

next(o′,ξ(o′))
ξ(o′) ; i.e. σo

ξ(o) · clk + τ(ξ(o)) ≤ σ
next(o′,ξ(o′))
ξ(o′) · clk + τ(ξ(o′)).

If σo
ξ(o) · clk + τ(ξ(o)) ≤ σ

next(o′,ξ(o′))
ξ(o′) · clk + τ(ξ(o′)) hold constraint is obviously fulfilled for

any do
τ(o′)−τ(o).

1. o = Ociw1

In this case, ξ(o), o′ and ξ(o′) is y2, Oci
and y2, respectively. Because y1 is the sole

register whitch appear in left hand side of setup constraint (2.2.1) while y2 is in

right hand side, and Do
y1−y2

is 1 for all o, we can set τ(y2) and σ
Ociw1
y2 as following

without losing optimality.

τ(y2) = τ(y1) + 1 + �τ(y1) + 1

clk
�clk,

σ
Ociw1
y2 = �σy1Oci

+ τ(y1) + 1

clk
�

Thus σ
Ociw1
y1 · clk + τ(y2) = σ

Oci
y1 · clk + τ(y1)+ 1. On the other hand, next(Oci

, y1) is

Ocis1 , and σ
Ocis1
y1 · clk+ τ(y1) ≥ σ

Oci
y1 · clk + τ(y1 +1) Subjective inequality is fulfilled.

2. o = Ociwj
, j �= 1

In this case, next(o′, ξ(o′)) = o. It is obvious to fullfill the subjective inequality.

3. o �= Ociwj

There exist a directed path from o′ to next(ξ(o′), o′) in G, so tracing setup constraints

of registers, we can verify σo
ξ(o) ≤ σ

next(o′,ξ(o′))
ξ(o′) .

�

Finally, we show that clk = 1 and τ(x) ∈ {0, 0.5} in optimum solution.

Lemma 3 clk = 1 in optimum solution.

Proof of Lemma : We show that for each case of clk �= 1, it is not a optimum solution if
we set λ to 0.5. When we fix clk, let optclk be the value of optimum solution with given

clk. CSclk and χi clk denote the number of control steps and σ
Oci
y1 − σ

Oci−1
y1 in optclk. From

the constraint given by edges (Oci−1, Ociw1), (Ociwj
, Ociwj+1) : 1 ≤ j ≤ 7 − αi − 1 and

(Ociw7−αi
, Oci

), we have following inequality as we show in Fig.3.4.


2/clk� + 
1/clk�(7 − αi − 1) ≤ χi clk. (3.1)
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Figure 3.4: Two delay charts give equivalent two constraints for χi clk when we ignore the
other path.

Because CSclk =
∑m

i=1 χi clk and 3 ≤ 7 − αi − 1 ≤ 6, we have

m (
2/clk� + 3
1/clk�) ≤ CSclk, (3.2)

especially, 5m ≤ CS1.

1. clk < 0.5
There is no optimum solution in clk < 0.5 because 0.5CS0.5 = minclkclk CSclk and
CSclk > CS0.5 in clk < 0.5.

2. clk = 0.5
From (3.1), we have χi 0.5 ≥ 16− 2αi and χi 1 ≤ 9− αi, so χi 0.5 ≥ 2χi 1 − 2. It leads
CSclk ≥ 2CS1 − 2m.

opt0.5 − opt1 = CS0.5(0.5 + λ) − CS1(1 + λ)

≥ 2CS1 − 2m − 1.5CS1

= 0.5CS1 − 2m

≥ 0.5(5m) − 2m = 0.5m > 0

3. 0.5 < clk < 2/3
In this case, Lkl ≥ 2 for lkl = xj from clk < 1, and Lkl ≥ 4 for lkl = ¬xj from
3clk < 2. This fact means that we can reduce clk to 0.5 while CS is not changed.
So we do not have optimum solution.

4. 2/3 ≤ clk < 1
From (3.1), we have χi clk ≥ 2(7−αi)+3 and χi 1 ≤ 7−αi +2, so CSclk ≥ 2CS1−m.

optclk − opt1 ≥ (2CS1 − m)(clk + λ) − CS1(1 + λ)

= (2clk − 0.5)CS1 − clk m − 0.5m

≥ (2clk − 0.5)5m − clk m − 0.5m

= 9m clk − 3m

> 9m(2/3) − 3m = m > 0
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5. 1 < clk < 1.5
For lkl = xj , Lkl = 1 if 0.5 ≤ tau(xj) ≤ clk − 0.5 and Lkl = 2 in other case. For
lkl = ¬xj , Lkl = 2 if 1 ≤ tau(xj) or tau(xj) ≤ clk − 1, and Lkl = 3 for other case.
So we can reduce clk to 1 while we do not change CS by setting tau(xj) to 0.5 if
0.5 ≤ tau(xj) ≤ clk − 0.5, and 0 in other case,

6. 1.5 ≤ clk < 2
From (3.1), we have χi clk ≥ 8 − αi, so CSclk ≥ CS1 − m.

optclk − opt1 ≥ (CS1 − m)(1.5 + λ) − CS1(1 + λ)

= 0.5CS1 − 2m ≥ 2.5m − 2m = m > 0

7. 2 ≤ clk
From (3.1), we have χi clk > 7 − αi, so CSclk ≥ CS1 − 2m.

optclk − opt1 ≥ (CS1 − 2m)(2 + λ) − CS1(1 + λ)

= CS1 − 5m = 0

�

Lemma 4 If clock period is clk and delay values are either k ·clk or (k+0.5)clk for some
integer k, we can transform skew values of optimum solution to 0 ore 0.5clk keeping σ in
time complexity of O(|M|).

Proof of Lemma : Let Δx is τ(x)(if τ(x) < 0.5clk) or τ(x) − 0.5clk(if τ(x) ≥ 0.5clk) for
every register x. We show that for all register such that Δx = miny∈RΔy, we can reduce
skew value by Δx.

Consider X = {x|Δx = miny∈RΔy} and suppose we can not reduce τ(x) for some
x ∈ X. Then there exist a register x′, operations o, o′ and constraint inequality σo

x+τ(x) ≥
σo′

x′ + τ(x′) + Do
x−x′ so that σo

x + τ(x) − (σo′
x′ + τ(x′) + Do

x−x′) < Δx. Because σ is integer
and Do

x−x′ is multiple of 0.5clk, Δx′ ≤ Δx. This is a contraction.
From above discussion, we can reduce skew value by Δx, i.e. reduce to 0 or 0.5clk,

keeping σ. Obviously, the time complexity of this transformation is O(|M|). �

Now we go on to the most important theorem.

Theorem 3 (σ,τ ,clk)-optimization problem is NP-hard.

Proof of Lemma : The transform from an instance of MAX-3SAT to an instance of
(σ,τ ,clk)-optimization problem, the mapping from τ to {0, 0.5}, and the transformation
from a solution of (σ,τ ,clk)-optimization problem (σ, τ, clk) to a solution MAX-3SAT
problem Ξ are in class of polynomial time complexity. We designed a transformation so
as to clk = 1, so the objective of (σ,τ ,clk)-optimization problem is to minimize CS. When

we try to minimize CS, σ
Ocm
y − σ

Oc0
y is also minimized. Because the smaller σ

Ocm
y − σ

Oc0
y ,

the larger the number of satisfied clauses, so we can solve MAX-3SAT problem by solving
(σ,τ ,clk)-optimization problem. Thus, we can reduce MAX-3SAT problem into (σ,τ ,clk)-
optimization problem, so (σ,τ ,clk)-optimization problem is NP-hard. �
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3.3 Conclusion

We have introduced a novel optimization problem, simultaneous control schedule and
skew optimization problem, and we have proven that the problem with fixed clock period
is NP-hard. The proof is based on the reduction from 3SAT problem. The result of this
paper would become an important base for various types of the intentional-skew-aware
system optimization problem. Development of an efficient heuristic algorithm for the
simultaneous optimization of control schedule and skew assignment is our future target.
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Chapter 4

Computational Complexity of
Simultaneous Optimization and
Solvability of Simultaneous
Optimization of Schedule and Skew
assignment

4.1 Introduction

The simultaneous optimization of the control step assignment (σ) and the control skew
assignment (τ) is a powerful technique in improving performance. So the computational
complexity of (σ,τ)-optimization problem is an important subject for a investigation. We
show a NP-hardness of simultaneous optimization of (σ,τ) in this chapter. The proof is
based on a reduction from one of most common NP-hard problem, 3SAT problem. A
3SAT instance is transformed into an instance of decision version of (σ,τ)-optimization
problem which asks whether there exists a control step assignment which achieve a goal
of the number of control steps.

An unfortunate result that (σ,τ)-optimization problem attract a controversy surround-
ing the tractability of computation of a feasible solution of (σ,τ)-problem. Our second
contribution in this chapter is that a decision problem of solvability of an instance of
(σ,τ)-problem.

4.2 NP-Hardness of (σ,τ)-Optimization Problem

We show the proof of NP-hardness of (σ, τ)-Optimization Problem.
Our proof is based on the polynomial time reduction from 3SAT to the decision version

of (σ, τ)-optimization problem (In the following, we call it (σ, τ)-decision problem in
short.).

First, we define the transformation from an instance of 3SAT problem to an instance
of the (σ, τ)-decision problem. Let (X, C) be an instance of 3SAT problem, where X =
{x1, x2, · · · , xn} is a set of variables, C = c1∧c2∧· · ·∧cm is a formula, and for each clause
ci = (li1∨li2∨li3), literal lij is either xk or ¬xk for some k. An input instance of the decision
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Figure 4.1: A DFG for a 3SAT instance.

version of (σ, τ)-optimization problem is a 8-tuple (G, ρ, ξ, next, D, d, clk, CSspec), and the
problem asks “Are there any feasible σ and τ satisfying that the maximum control step
is less than or equal to CSspec?”

See Fig.4.1 shows the input instance for (σ, τ)-decision problem transformed from the
input instance for 3SAT problem. The description is in following. Data Flow Graph G = (O,D):

The set of vertices O is;

O = {Oci
| 0 ≤ i ≤ m}

∪{Olij | 1 ≤ i ≤ m, 1 ≤ j ≤ 3},
and the set of edges D is;

D = {(Oci−1
, Oci

)|1 ≤ i ≤ m}
∪{(Oci−1

, Oli1), (Oli1 , Oli2), (Oli2, Oli3), (Oli3, Oci
)|1 ≤ i ≤ m}

Resource assignments ρ and ξ:
For operations, they are assigned to separate FUs (no FU sharing occurs). For data,

we prepare n + 1 registers named x1, x2, · · · , xn, and y, and we assign ξ(Oc0) = ξ(Oc1) =
· · · = ξ(Ocm) = y, and ξ(Olij) = xk, where the literal lij is either xk or ¬xk, for all i and
j.
next:

Trivial from the data dependency specified by G = (O,D).
Maximum path delay D and minimum path delay d:

Maximum path delays are set depending on the number of negated variables in a
clause.

1. For a clause ci = (xj ∨ xk ∨ xl) ; D
Oli1
y−xj

= D
Oli2
xj−xk

= D
Oli3
xk−xl

= 0.5, D
Oci
xl−y = 1.5,

D
Oci
y−y = 4.

2. For a clause ci = (xj ∨ xk ∨ ¬xl) ; D
Oli1
y−xj

= D
Oli2
xj−xk

= 0.5, D
Oli3
xk−xl

= D
Oci
xl−y = 1,

D
Oci
y−y = 4.

3. For a clause ci = (xj ∨ ¬xk ∨ ¬xl) ; D
Oli1
y−xj

= D
Oli3
xk−xl

= 0.5, D
Oli2
xj−xk

= D
Oci
xl−y = 1,

D
Oci
y−y = 4.

4. For a clause ci = (¬xj ∨ ¬xk ∨ ¬xl) ; D
Oli1
y−xj

= D
Oci
xl−y = 1, D

Oli3
xk−xl

= D
Oli2
xj−xk

= 0.5,

D
Oci
y−y = 4.
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On the other hand, we can assign an arbitrary value (between 0 and the corresponding
maximum path delay) to the minimum path delay do

x−y, i.e., 0 ≤ do
x−y ≤ Do

x−y.
clk:

We set clk = 1.
CSspec:

We set CSspec = 4m, where m is the total number of clauses.
Others:

We set s, h, terr to 0, for the simplicity purpose. Discussions do not lose the generality
by this simplification, because we can generate an equivalent problem instance with non-
zero s, h, terr by simply arranging the maximum path delay Do

x−x′ to Do
x−x′ − terr − s and

the minimum path delay do
x−x′ to do

x−x′ + terr +h. Based on this observation, the following
discussions are made under s = h = terr = 0. The basic idea behind this transformation

is to simulate the {0, 1} assignment to variables in 3SAT problem by the skew assignment
to registers x1, x2, · · · , xn in the (σ,τ)-decision problem.

The first lemma ensures that the optimum solution for a problem instance obtained by
the above transformation from an instance of 3SAT problem can be determined without
depending on the minimum path delay information, and we need to care only maximum
path delays.

Lemma 5 Let o and o′ be distinct operations and there exist an edge (o′, o) in G. If there
exist a directed path from o to next(ξ(o′), o′) in G, the minimum path delay do

ξ(o′)−ξ(o) ≥ 0

does not affect σ(co
ξ(o)).

Proof of Lemma: If there exist a directed path from o′ to next(ξ(o′), o′) in G, we can
sum up the setup constraints of registers along this path, and we have

σ(co
ξ(o)) + τ(ξ(o)) ≤ σ(c

next(o′,ξ(o′))
ξ(o′) ) + τ(ξ(o′)).

It means that the hold constraint

σ(co
ξ(o)) · clk + τ(ξ(o))

≤ σ(o
next(o′,ξ(o′))
ξ(o′) ) · clk + τ(ξ(o′)) + do

ξ(o′)−ξ(o)

is satisfied automatically without depending on the value of do
ξ(o′)−ξ(o). �

Next, we will introduce the following lemma which allows us to restrict the skew
value to doubleton {0, 0.5clk}. By this restriction, we can ensure the correspondence
between {0, 1} assignment in 3SAT and the {0, 0.5clk}-skew assignment in the (σ,τ)-
decision problem.

Lemma 6 If the clock period is clk and each of maximum and minimum path delays
has the value either k · clk or (k + 0.5)clk for some integer k, there always exists a (σ,
τ)-optimum solution with only 0, 0.5clk skew values. (From an arbitrary (σ, τ)-optimum
solution, we can construct a (σ, τ)-optimum solution having only 0, 0.5clk skew values.
The time complexity of this transformation is O(|M|).)
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Proof of Lemma: Let σ and τ be an optimum solution of the (σ, τ)-optimization for
an input instance in which every path delay has the form either k · clk or (k + 0.5)clk for
some integer k. Let τ ∗ be the transformed version of τ , which is obtained as follows.

τ ∗(x) =

{
0 if 0 ≤ τ(x) < 0.5clk
0.5clk if 0.5clk ≤ τ(x) < clk

(4.1)

Note that τ(x) ≥ τ ∗(x) for all x. It will be proven that σ and τ ∗ is also an optimum
solution for the given instance. Since σ is unchanged, it is enough to verify that the pair
of σ and τ ∗ is a feasible solution. For the setup constraint of any part

σ(co
x) · clk + τ(x) ≥ σ(co′

x′) · clk + τ(x′) + Do
x−x′,

we have

σ(co
x) · clk + τ ∗(x) + (τ(x) − τ ∗(x)) − (τ(x′) − τ ∗(x′))

≥ σ(co′
x′) · clk + τ ∗(x′) + Do

x−x′

Since σ(co
x) · clk, τ ∗(x), σ(co′

x′) · clk, τ ∗(x′) and Do
x−x′ are all multiples of 0.5clk, and

−0.5clk < (τ(x) − τ ∗(x)) − (τ(x′) − τ ∗(x′)) < 0.5clk, we can truncate (τ(x) − τ ∗(x)) −
(τ(x′) − τ ∗(x′)) to 0, and we have

σ(co
x) · clk + τ ∗(x) ≥ σ(co′

x′) · clk + τ ∗(x′) + Do
x−x′

We can verify hold constraints for σ and τ ∗ in a similar way, and we can conclude the
feasibility of the pair σ and τ ∗. �

From Lemmas 6 and 5, we can discuss an optimum solution for the problem instance
obtained by the transformation from 3SAT only considering maximum path delays and
doubleton {0, 0.5} for skew values.

Theorem 4 (σ, τ)-optimization problem is NP-hard.

Proof of Theorem: It is clear that the (σ, τ)-decision problem is in the class NP.
The transformation from an instance of 3SAT ((X, C)) to an instance of the (σ, τ)-

decision problem ((G, ρ, ξ, next, D, d, clk, CSspec)) can be done in polynomial time. We

claim that (G, ρ, ξ, next, D, d, clk) has σ and τ such that σ(c
Ocm
y )− σ(c

Oc0
y ) is less than or

equal to 4m if and only if (X, C) is satisfiable. It can be easily verified that σ(c
Ocm
y ) −

σ(c
Oc0
y ) equals to 4m if and only if

σ(c
Oci
y ) − σ(c

Oci−1
y ) = 4

is satisfied for all i, 1 ≤ i ≤ m. For a clause ci = (xj ∨xk ∨xl) (all non-negated variables),

σ(c
Oci
y ) − σ(c

Oci−1
y ) = 4 if and only if at least one from τ(xj), τ(xk) and τ(xl) equals to

0.5 (See Fig.4.2), which corresponds to the fact that at least one from xj , xk and xl is

assigned 1 and the clause ci is satisfied. On the other hand, σ(c
Oci
y ) − σ(c

Oci−1
y ) = 5 if we

assign 0 to all of τ(xj), τ(xk) and τ(xl), which corresponds to the fact that all of xj , xk

and xl are assigned 0 and the clause ci is not satisfied. The similar arguments are satisfied
for the other types of clauses (Fig.4.3-4.5 shows 3 other cases where the clause include

negated variables). So, we can conclude that σ(c
Ocm
y ) − σ(c

Oc0
y ) equals to 4m if and only

if all clauses are satisfied. �
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(a) Partial DFG corresponding to clauses ci = (xj ∨ xk ∨ xl)
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(b) A schedule takes 5 control steps. It corre-
sponds to boolean assignment (xj , xk, xl) =
(0, 0, 0) and clauses ci in not satisfied.
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Figure 4.2: 4 control-step assignments for the clause ci = (xj ∨ xk ∨ xl).
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(a) Partial DFG corresponding to clauses ci = (xj ∨ xk ∨ ¬xl)
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(b) A schedule takes 5 control steps. It cor-
responds to boolean assignment (xj , xk, xl) =
(0, 0, 1) and clauses ci in not satisfied.
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Figure 4.3: 4 control-step assignments for the clause ci = (xj ∨ xk ∨ ¬xl).
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(a) Partial DFG corresponding to clauses ci = (xj ∨ ¬xk ∨¬xl)
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(b) A schedule takes 5 control steps. It cor-
responds to boolean assignment (xj , xk, xl) =
(0, 1, 1) and clauses ci in not satisfied.
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Figure 4.4: 4 control-step assignments for the clause ci = (xj ∨ ¬xk ∨ ¬xl).
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(a) Partial DFG corresponding to clauses ci = (¬xj ∨¬xk∨¬xl)
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(b) A schedule takes 5 control steps. It cor-
responds to boolean assignment (xj , xk, xl) =
(1, 1, 1) and clauses ci in not satisfied.
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(e) A schedule takes 5 control steps

Figure 4.5: 4 control-step assignments for the clause ci = (¬xj ∨ ¬xk ∨ ¬xl).
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Figure 4.6: A DFG for a 3SAT instance.

4.3 NP-Completeness of (σ,τ)-Solvability Problem

We show that decision problem whether input instance of (σ,τ) problem have a feasible
solution or not is a NP-Complete problem. We define the transformation from an instance
of 3SAT problem to the solvability decision problem.

Theorem 5 If and only if there is no positive cycle in Grs, there is a feasible assignment
of σ and τ .

Proof of Theorem:
We modify the instance of (σ,τ)-optimization problem in the proof of Theorem 4.

Data Flow Graph G′ = (O′,D′): See Fig.4.6. Add operation Oini and edge (Oini, Ocm) to
the DFG in Theorem 4.
Resource assignments ρ′ and ξ′:

ξ(Oini) = y. Other assignments are same as Theorem 4.
Order of operations:

Let next(y, Oini) = Oc0.
Maximum path delay D and minimum path delay d:

D
Ocm
y−y = 4m + 1, d

Ocm
y−y = 4m + 0.5.

Others:
Same as Theorem 4. In such a instance, from the edge (Oini, Ocm) in DFG and

next(y, Oini) = Oc0, following hold constraint holds.

σ(cOcm
y ) · clk + τ(y) ≤ σ(c

Oc0
y ) · clk + τ(y) + dOini

y−y

So following inequality holds.

σ(cOcm
y ) − σ(c

Oc0
y ) ≤ 4m

Recall that in optimum σ and τ assignment, if there exists a feasible assignment of X,

σ(cOcm
y ) − σ(c

Oc0
y ) = 4m,

otherwise,

σ(cOcm
y ) − σ(c

Oc0
y ) > 4m.
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So there exists feasible σ and τ assignment which satisfy

σ(cOcm
y ) − σ(c

Oc0
y ) = 4m

if and only if there exists a feasible assignment of X and there exists no feasible σ and τ
assignment if if there exists no feasible assignment of X. �

4.4 Conclusion

Simultaneous control step and timing skew assignments is a problem to find σ and τ which
satisfy a set of simultaneous inequalities, where each inequality includes two σs and two
τs as variables. We have presented that the optimization of σ τ is NP-hard, and solv-
ability of this problem is also NP-complete. The result of this chapter would become an
important base for various types of the intentional-skew-aware system optimization prob-
lem. Development of an efficient heuristic algorithm for the simultaneous optimization of
control schedule and skew assignment is required.
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Chapter 5

Theorems on Solvability of
Simultaneous Optimization of
Schedule and Skew assignment

5.1 Introduction

The simultaneous optimization of the control step assignment (σ) and the control skew
assignment (τ) is a powerful technique in improving performance. However, the simulta-
neous optimization problem is a NP-hard problem. This chapter treats an essential and
important problem, the solvability of this simultaneous (σ,τ)-problem: to decide whether
a given input instance of (σ,τ)-problem has a feasible pair (σ,τ) or not. The feasibility
means that σ and τ satisfy all setup and hold inequalities for all operations. If either one
of σ and τ is fixed, and the rest is included as variables in each setup or hold inequality,
the solvability can be reduced to the problem to test whether a directed graph (skew con-
straint graph or schedule constraint graph) has a positive cycle or not. It is because, after
fixing either one of σ or τ , individual setup/hold inequality includes only two variables,
and the problem to determine these variable can be considered as the problem to find
the longest path length to each vertex in a directed graph. However, (σ,τ)-problem, each
setup/hold inequality includes two σs and two τs as variables, and the solvability of those
simultaneous inequalities have been proven to be a NP-Complete problem in Chapter 4.

Theorem 5 suggests that the solvability is intractable in general, and we have to
prepare for exponential time algorithm. One other way we can take is tractable sufficient
conditions for the solvability. The schedulability under zero skew is one of such tractable
sufficient conditions, which can be tested by looking into a schedule constraint graph and
searching for a positive cycle in it (if there is a positive cycle, it is unsolvable).

In this chapter, we propose another useful sufficient condition (which can be tested in
polynomial time) for the solvability of (σ,τ) problem and it contributes greatly to design-
ing a heuristic algorithm for the simultaneous optimization of (σ,τ). The condition is also
a necessary and sufficient condition for an input instance to have feasible solutions for
every clock period. In the following, first, skew constraint graph and schedule constraint
graph are reviewed, and then modified skew constraint graph will be introduced. After
that, our main theorem will be presented.
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Figure 5.1: Schedulability enhancement with skew optimization.

5.2 Motivational Example

Fig.5.1 shows the first example. We assume that the resource binding has been finished,
and for each operation, signal path delay from an input register to an output register
via a functional unit (and multiplexers if necessary) is given. In general, data path
from a multiple-bit register to a multiple-bit register must be a multiple-input, multiple-
output combinatorial circuit, and hence data path from a register to a register includes
multiple signal paths having different delays. We will characterize each data path with the
maximum and the minimum among those delays, and we call them the maximum delay
and the minimum delay, respectively. In Fig.5.1(a), numbers beside each edge represent
the maximum and the minimum delays. The assignment of data to registers is indicated
as ri beside each arc. For example, 10/7 beside an edge (O1, O2) represents that the
maximum (minimum) path delay from ξ(O1) = r1 to ξ(O4) = r3 via a functional unit for
the operation O4 is 10 (7). The order of operations on the register is following; O1,O2 for
r1.
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If clock period is specified to be 2, we have a feasible zero-skew schedule as shown in
Fig.5.1(b). If clock period is 3, there is no feasible schedule under zero skew, but there is
only non-zero skew schedule as shown in Fig.5.1(d).

As the second example, we will schedule a DFG shown in Fig.5.3(a). Let orders of
operations on the registers are following; O1,O2,O7 for r1, O3,O6 for r2 and O4,O5 for r3.
We can schedule it with clock period 3 as shown in Fig.5.3(b). On the other hand, with
clock period 4, we have three inequalities.

τ(r2) ≤ τ(r3) + 4k1 ≤ τ(r2) + 1

τ(r1) + 2 ≤ τ(r3) + 4k2 ≤ τ(r1) + 3

τ(r1) + 2 ≤ τ(r2) + 4k3 ≤ τ(r1) + 3

from nodes {O1,O2,O3,O4} in DFG and we also have

τ(r3) + 2 ≤ τ(r2) + 4k4 ≤ τ(r3) + 3

τ(r3) + 2 ≤ τ(r1) + 4k5 ≤ τ(r3) + 3

τ(r2) ≤ τ(r1) + 4k6 ≤ τ(r3) + 1

from nodes {O4,O5,O6,O7} where k1, k2, k3, k4, k5, k6 are auxiliary integers. We cannot
fulfill all inequalities simultaneously, so we cannot schedule with clock period 4. Let orders
of operations on the registers are following; O2,O1,O7 for r1, O3,O6 for r2 and O4,O5 for
r3. We can schedule it with clock period 4 as shown in Fig.5.3. The schedulable in Fig.5.3
is more excellent than the schedulable in Fig.5.3(b) in both computational time and size
of the controller (the number of control steps). If we decide the resource assignment and
the operation order so that it is schedulable with zero skew and then optimize schedule
and skew assignment, we might miss such an excellent solution. So another condition is
required.

It is clear that the schedulability depends on a resource assignment, execution order
of operations, path delays and a clock period. Our question tackled in this paper is; “Is it
possible to decide whether a given instance has a feasible solution or not? How to decide
it?”

5.3 Theorems on Solvability of (σ,τ)-Optimization Prob-

lem

5.3.1 Skew Constraint Graph

From (2.2.1)-(2.2.1), we have

τr − τm ≥ (σ(cop
m ) − σ(cok

r )) · clk + τerr + Dok
m−r + s, (5.1)

τm − τr ≥ (σ(cok
r ) − σ(cnext(m,op)

m )) · clk + τerr − dok
m−r + h. (5.2)
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Figure 5.2: A non-schedulable example of DFG, resource assignment and operation order
with skew optimization.

34



10
2

4 10

2

4

7

1

clk = 4

cO1
r1

cO2
r1

cO3
r2

cO4
r3

cO5
r3

cO6
r2

cO7
r1

r1

r2

r3

Figure 5.3: A schedulable order for DFG and resource assignment in Fig..

00

(σ(c
op
m ) − σ(cok

r )) · clk + τerr + Dok
m−r + s

(σ(cok
r ) − σ(c

next(m,op)
m )) · clk + τerr − dok

m−r + h

(σ(cok
m ) − σ(col

r )) · clk + τerr + Dol
m−r + s

(σ(col
r ) − σ(c

next(m,ok))
m ) · clk + τerr − dol

m−r + h

−clk
−clk

vs

m

r
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We generate a skew constraint multigraph Gτ = (Vτ , Eτ ) from (5.1-5.2) as shown in
Fig.5.4. Vτ is a set of multiplexers, registers and one auxiliary source node vs. A set of
weighted edges Eτ is the union of a set of edges reflecting (5.1) or (5.2) (i.e., an edge
(m, r) with weight (τ

op
m − τ ok

r ) · clk + τerr + Dok
m−r + s or an edge (r, m) with weight

(τ ok
r − τ

next(m,op)
m ) · clk + τerr − dok

m−r + h) over all operations, and a set of auxiliary edges
{(m, vs)|m ∈ Vτ \ vs} ∪ {(vs, m)|m ∈ Vτ \ vs}. Edge weights for {(m, vs)|m ∈ Vτ \ vs} and
{(vs, m)|m ∈ Vτ \ vs} are −clk and 0, respectively. Then, skew assignment problem is
now considered as the problem to assign real values to vertices in Gτ , and the maximum
path length from vs to each vertex gives us a solution, i.e., skew of each register and
multiplexer. If Gτ has a positive cycle, feasible skew schedule does not exist.

Once we assign a value to clk and τ , multi-edges between a pair of vertices can be
reduced to one edge which has maximum weight (since only maximum path length is our
concern), and hence we can use Ford algorithm to compute maximum path length.

5.3.2 Schedule Constraint Graph

From (2.2.1)-(2.2.1) with regarding integral σ, we have

σ(coj
rj

) − σ(coi
xi

) ≥
⌈(

τ(xi) − τ(rj) + terr + D
oj

xi−rj
+ s

)
/clk

⌉
,

σ(cnext(xi,oi)
xi

) − σ(coj
rj

) ≥
⌈(

τ(rj) − τ(xi) + terr − d
oj

xi−rj
+ h

)
/clk

⌉

We generate a schedule constraint graph Gσ = (Vσ, Eσ) similar to a skew constraint
graph. Vσ = S ⋃{vs} where vs is an auxiliary source node. Eσ is the set of edges reflecting
(5.3.2) or (5.3.2), and (vs, v) for all v ∈ S whose weight is 0.

Once τ and clk are given, the longest path length from vs to each node v is a feasible
value of σ(v), and the maximum of those longest path lengths gives CS: the number of
steps for the application. A path which gives CS is called a critical path. If Gσ has a
positive cycle, feasible schedule does not exist.

5.3.3 Modified Skew Constraint Graph

Modified skew constraint graph Gm(Vm = Vτ , Em) is a subgraph of a skew constraint
graph. The edge set Em is a subset of Eτ . If and only if the edge of schedule constraint
graph (co

x, c
o′
x′) is an element of a directed cycle, corresponding (expressing same constraint

inequality) edge (x, x′) in skew constraint graph is an element of Em. Edge weight of (x, x′)
is τerr + Do′

x−x′ + s if the weight in skew constraint graph is (σ(co
x) − σ(co′

x′)) · clk + τerr +

Do′
x−x′ + s or τerr − do′

x−x′ + h if weight in skew constraint graph is (σ(co′
x′) − σ(c

next(o)
x )) ·

clk + τerr − do′
x−x′ + h.

Theorem 6 If and only if there is no positive cycle in modified skew constraint graph,
the input instance has feasible control-step and skew assignments for every clock period.

Before going to the proof of the theorem, we show some preliminary lemmas.
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Lemma 7 Let Dmax be the maximum value of path delays. If there is a cycle C in
schedule constraint graph and co

x, c
o′
x′ ∈ C, then

∣∣∣(σ(co
x)clk + τ(x)) −

(
σ(co′

x′)clk + τ(x′)
)∣∣∣ < |M|Dmax

Proof of Lemma: Let P1 is a path from co
x to co′

x′ in C. Dσ(e) denote the weight of edge
e except two terms which contain τ . Summing up constraint inequalities along P1, we
obtain (

σ(co′
m′)clk + τ(m′)

)
− (

σ(c0
m)clk + τ(m)

)
>

∑
e∈P1

Dσ(e).

So we have

(
σ(c0

m)clk + τ(m)
) − (

σ(co′
m′)clk + τ(m′)

)
< −

∑
e∈P1

Dσ(e) < |M|Dmax.

Similar discussion about path from co′
x′ to co

x in C leads the substance of the lemma. �

Lemma 8 If there is a feasible control-step and skew assignment for sufficiently large
clock period, there is a control-step assignment which assign all control signals belonging
to the same cycle to the same control-step.

Proof of Lemma: Assume that there exists control-step assignment σinit. Compute skew
assignment with skew constraint graph. Skew value τ(m) for m ∈ M can be expressed
as n clk +

∑
e∈P (m) d(e) where P (m) is a longest path to m from the source vertex vs in

skew constraint graph and d(e) is the weight of edge e other than σ (i.e. the weight of e
in modified skew constraint graph). Following inequality is obvious.

−|M|Dmax ≤
∑

e∈P (m)

d(e) ≤ |M|Dmax

Recall 0 ≤ τ(m) < clk and let clk be clk > 3|M|Dmax. Then one of followings holds.

τ(m) ≤ |M|Dmax

clk − |M|Dmax ≤ τ(m) < clk

When we put off the timing of control signals by |M|Dmax and let new control-step and
skew assignment be σ′ and τ ′, we have

τ ′(m) ≤ 2|M|Dmax

(See Fig. 5.5. Circles in the figure show arrival timing of control signals.). If there exist
a cycle C and σ′(c0

m), σ′(co′
m′) ∈ C such that σ′(co

m) �= σ′(co′
m′), the inequality

∣∣∣(σ′(c0
m)clk + τ(m)

) − (
σ′(co′

m′)clk + τ(m′)
)∣∣∣ > |M|Dmax

holds and it is the contradiction to Lemma7. So σ′ is a control-step assignment such that
all control signals belonging to the same cycle is assigned to the same control-step. �
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Figure 5.5: Timing shift of control signals.
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Lemma 9 If there is no positive cycle in modified skew constraint graph, the longest path
length for each vertex is a feasible skew value for clock period clk with clk > 3|M|Dmax.

Proof of Lemma: If an edge in skew constraint graph is not an element of any cycle, the
skew assignment to its end points does not affect whether there is a positive cycle or not.
So if we can modify control-step assignment, we don’t have to consider a corresponding
edge in skew constraint graph. If there is a feasible control-step and skew assignment for
sufficiently large clock period, there is a control-step assignment which assigns all control
signals belonging to same cycle to same control-step. For such control-step assignment,
two σ values in a constraint inequality is the same value i.e. edge weight of skew constraint
graph is the same as modified skew constraint graph. So, modified skew constraint graph
gives a feasible skew assignment for clk > 3|M|Dmax. �

Lemma 10 If there exists a feasible control-step and skew assignments for all clock period
larger than certain clock period clk1, there is feasible solution for every clock period.

Proof of Lemma: For any clock period clk < clk1, there exists a positive integer k such
that kclk > clk1. Let σ and τ be a control-step and skew assignment for clock period
kclk. Then, the following σ′ and τ ′ are feasible control-step and skew assignments.

σ′(co
x) = kσ(co

x) + �τ(x)/clk�

τ ′(x) = τ(x) − �τ(x)/clk�

�

Proof of Theorem 1: Lemma 8 implies necessity of the condition. Sufficiency is obvious
from Lemma 9 and 10. �

5.4 Examples

We show some examples of modified skew constraint graph. Fig.5.6(a) shows the skew
constraint graph for the DFG, resource assignment and operation order in Fig.5.1. The
schedule constraint graph is shown in Fig.5.6(b). There is a cycle cO2

r1
, cO3

r2
, cO4

r3
. So the mod-

ified schedule graph (Fig.5.6(c)) have edges corresponding to (τ(r1)− τ(r2)+DO3
r1−r2

)/clk,
(τ(r2) − τ(r3) + DO4

r2−r3
)/clk and (τ(r3) − τ(r1) − dO2

r1−r3
)/clk. The modified constraint

graph have no positive cycles, so we can schedulable the DFG, resource assignment and
operation order in Fig.5.1 for any clock period if we optimize skew assignment.

Next example in Fig.5.8 is corresponding to Fig.5.3. The schedulable constraint graph
(Fig.5.8(b)) have two cycles cO2

r1
cO2
r3

cO4
r3

and cO5
r3

cO6
r2

cO7
r1

. The modified skew constraint graph
consists of these 6 edges and have a positive cycles r1r2 and r2r3. So we can not schedulable
the DFG, resource assignment and operation order in Fig.5.3 for some clock period even
if we optimize skew assignment.

If we change the order of O1 and O2 on r1, the cycle cO2
r1

cO2
r3

cO4
r3

is resolve in schedulable
constraint graph (??(b)) and the modified constraint graph have no positive cycle (??(c)).
So we can schedule the DFG, resource assignment and operation order in Fig.5.3 for any
clock cycle.
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Figure 5.6: Modified skew constraint graph corresponding to Fig.5.1

5.5 Conclusions

Simultaneous control step and timing skew assignments is a problem to find σ and τ which
satisfy a set of simultaneous inequalities, where each inequality includes two σs and two
τs as variables. We have shown a non-trivial sufficient condition for an input instance to
have a feasible solution. It is useful in a practical design, because the condition is now
a necessary and sufficient condition for an input instance to have a feasible solution for
every choice of clock period.
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Chapter 6

Heuristic Algorithm for
Simultaneous Optimization of
Schedule and Skew assignment

6.1 Introduction

The skew of control signals can be utilized intentionally for improving system perfor-
mances. In conventionally, skew is utilized only for reducing clock period. In this chapter,
we focus to reduce the number of control steps (makespan) for a target application. (σ,τ)-
Optimization problem is a problem to decide control step assignment of control signals
and skew assignment to modules so as to minimized the number of control steps under
given resource binding, order between operations which bound to the same resource, de-
lays and clock period. In other words, we have to decide σ and τ so as to satisfy setup
and hold constraint (2.2.1)-(2.2.1) and minimize maxs∈S σ(s).

The simultaneous optimization of skew and control step assignment of control signals
is a NP-hard problem. It implies that there is no efficient solution algorithm. So, in this
chapter, we show a heuristic algorithm for this (σ, τ)-optimization problem.

6.2 Motivational Example

Fig.6.1(a) shows an example of a DFG. We assume that the resource binding has been
finished, and for each operation, signal path delays from an input register to an output
register via a functional unit has been obtained. In general, data path from a multiple-bit
register to a multiple-bit register must be a multiple-input, multiple-output combinatorial
circuit, and hence data path from a register to a register includes multiple signal paths
having different delays. We will characterize each register-to-register data path with the
maximum and the minimum among those delays, and we call them the maximum delay
and the minimum delay, respectively. In Fig.6.1(a), the maximum and the minimum
delays are indicated like 6/2 for O2, 8/3 for O3, etc. The assignment of data to registers
is indicated as ri beside each arc.

Fig.6.1(b) shows a schedule of 6 control signals co1
r1

, co2
r2

, co3
r3

, co4
r1

, co5
r2

, and co6
r3

. The
number written beside a slant solid (broken) arrow shows maximum (minimum) delay
of the corresponding operation. The schedule requires 4 control steps, and its minimum
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clock period is 8 (the total computation time is 8×4 = 32). This is an optimum schedule
under zero skew if the number of control steps is restricted to smaller than or equal to
4 (See Fig.6.1(b)). When we assign skew (τ(r1), τ(r2), τ(r3)) = (0,−1, 1), the minimum
clock period can be reduced to 7 (the total computation time is now 7×4+1 = 29). The
situation is illustrated in Fig.6.1(c). When we assign skew (τ(r1), τ(r2), τ(r3)) = (0, 6, 2)
and we keep clock period to 8, we can modify the schedule and the number of control steps
can be reduced to 3 (totally, 8 × 3 + 2 = 26). The situation is illustrated in Fig.6.1(d).
Fig.6.1(e) shows an optimum schedule and skew assignment. If we try to keep the number
of control steps to 3, the minimum clock period is now 7 (totally, 7 × 3 + 2 = 23).

Skew is conventionally utilized only for reducing clock period (Fig.6.1(c)). However,
in many design flows, the clock period can not be determined freely upon convenience of
a single datapath circuit. If we need to design a datapath under a given clock period,
the conventional skew optimization can not be used directly. As it is shown by Design 3
in Fig.6.1(d), the simultaneous optimization of the skew assignment and the control step
assignment is necessary for datapath synthesis under a given clock period. Also in the
case for minimizing the latency (Design 4 in Fig.6.1(e)), the skew assignment and the
control step assignment must be treated simultaneously.

6.3 Heuristic Algorithm for (σ, τ)-optimization Prob-

lem

Our heuristic algorithm uses skew constraint graph Gτ (see Section 5.3.1) and schedule
constraint graph Gσ (see Section 5.3.2).

Suppose we have computed τ from Gτ , and consider the union T of a longest path
from vs to each node. Then, T is a spanning tree, and for each edge (xi, rj) in T ,
relative skew (τ(rj) − τ(xi)) mod clk is equal to either “(terr + D

oj

xi−rj
+ s) mod clk” or

“(terr − d
oj

xi−rj
+ h) mod clk” depending on the edge weight. Therefore, we can consider

the skew optimization problem as the problem to extract a spanning tree from Gτ . It
is interesting that, once a spanning tree T of Gτ is fixed, and tree edges are suppose to
be critical path edges in Gτ , we can compute τ from T ⊂ Gτ without information of σ.
That is, for each edge (xi, rj) in T , we can put the relative-skew (τ(rj) − τ(xi)) mod clk
as either (terr + D

oj

xi−rj
+ s) mod clk or (terr − d

oj

xi−rj
+ h) mod clk depending on the edge

weight.
On the other hand in Gσ, since the right hand side of (5.3.2)-(5.3.2) has a ceiling,

if the relative skew (τ(rj) − τ(xi)) mod clk is equal to (terr + D
oj

xi−rj
+ s) mod clk or

(terr − d
oj

xi−rj
+h) mod clk, the weight of the edge reflecting inequality (5.3.2) or (5.3.2) is

minimized. Therefore, to minimize CS, it is efficient to set relative skew to (terr+D
oj

xi−rj
+

s) mod clk or (terr − d
oj

xi−rj
+ h) mod clk for as many edges as possible in a critical path.

That is, we have to choose as many edges in a critical path in Gσ as edges of spanning
tree in Gτ .

Our heuristic algorithm is shown in Fig.6.3. We start with the spanning tree T whose
edge set is {(vs, m)|m ∈ V \ vs} assuming τ(m) = 0 for all m. We replace (vs, m) with
an edge corresponding to an edge on a critical path in Gσ in one by one manner. In
each time, we will test all candidate edges to be added to T , and choose one edge which
achieves smallest CS.

In order to keep T being a tree, we use a partitioning to know which edge we can
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add and which edge we have to remove. Each connected component in T\{(vs, x)|x ∈ V }
forms a partite set of a partition. Because T is a tree, only one edge from each partite set
connects to vs. If we generate T(u,v) by adding (u, v) to T , we remove the edge between vs

and the connected component to which v belongs to. Gτ in Fig. 6.2 shows the replacement
of edges. We add (u, v) to T only if u and v belong to different partite sets.

6.4 Experiments

The proposed heuristic algorithm for (σ, τ)-optimization has been implemented using C
programming language and tested on AMD OpteronTM based PC. As input applications,
we use three DAG algorithms modified from Jaumann wave filter, all-pole lattice filter
and elliptic wave filter.

We have prepared 2 input instances for each input algorithm, each instance has dif-
ferent resource binding, different operation order, and different delay assignment.

A path delay from an input register to an output register is the sum of delays of
register-to-multiplexer, multiplexer-to-FU, FU, FU-to-multiplexer, and multiplexer-to-
register. Maximum/minimum delays of multipliers and adders are 60/10 and 20/10,
respectively. The other delays are given randomly. That is, minimum register-multiplexer
and FU-multiplexer delays are chosen between 3 to 25, and the minimum multiplexer-
register and multiplexer-FU delays are chosen from 2 to 15. The maximum delay of each
path is set as 1.1 to 1.4 times larger value than its minimum delay.

Note that, for each input instance, those maximum delay values and minimum delay
values, as well as resource binding and operation order on each FU, are fixed throughout
the experiments done with various different clock period clk. Of course, skew and control
step are determined so that the setup condition and the hold condition are satisfied for
all operations under the specified maximum delays, minimum delays, and clock period.

As the first experiment, for each instance, we have applied a schedule optimization
without skew optimization (assuming zero skew) and the proposed algorithm.

Table 6.1 shows some of experimental results. The columns “#fu”,”#reg”, and ”clk”
represent the numbers of functional units, registers, and clock period of each instance,
respectively. The column “CS” represents the number of control steps (makespan) of an
output schedule and “time” represents the computation time in milli seconds.

Figures 6.4 through 6.6 show the experimental results graphically by plotting design
points on the application time (i.e., CS × clk) vs. clock period axes. Those plots
are obtained by applying our algorithm repeatedly with increasing clk by 1 at a time.
Note again that, for each input instance, resource binding, operation order on each FU,
maximum delay values and minimum delay values are fixed, and these same values are
used for different clk values. Lower bound in each figure represents the minimum CS
× clk of real-valued schedule, which is introduced in Section 2.2.1. Since the solution
space for real-valued schedule includes the one for integer-valued schedule (with skew),
the smallest CS × clk achieved by real-valued schedule is no larger than the smallest
CS × clk achieved by integer-valued schedule with skew.

Conventional skew optimization algorithm is designed only for reducing the clock
period. Even though its objective does not match with our objective; reduce the schedule
length CS under a given clock period, we will bravely compare our method with a two-
step method; scheduling followed by skew optimization. Results are shown in Fig.6.7
through 6.12. Design points given by “skew after schedule” are the result of the two-step
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Table 6.1: Experimental results
Instance #fu #reg clk CS time(ms)

n/s w/s n/s w/s
Jaumann1 6 6 20 38 33 0.122 8.31

40 22 18 0.124 11.4
60 18 13 0.125 12.4
80 14 11 0.123 11.9
100 13 11 0.122 14.9

Jaumann2 7 7 20 33 31 0.114 1.72
40 19 17 0.114 3.05
60 13 12 0.113 11.3
80 11 9 0.115 10.5
100 11 9 0.116 9.13

Lattice1 3 5 20 55 50 0.075 2.12
40 31 27 0.076 3.05
60 24 18 0.080 5.37
80 19 15 0.075 3.80
100 15 12 0.073 5.64

Lattice2 4 5 20 50 46 0.078 2.76
40 29 25 0.078 3.33
60 19 16 0.078 3.43
80 17 14 0.077 5.02
100 16 13 0.084 6.10

Elliptic1 8 13 20 66 57 0.241 42.1
40 38 33 0.241 74.0
60 32 24 0.238 88.6
80 23 16 0.239 96.5
100 19 15 0.232 108

Elliptic2 8 14 20 67 58 0.245 42.2
40 38 31 0.244 51.6
60 32 20 0.240 57.8
80 22 18 0.243 101
100 20 17 0.242 90.6

algorithm; scheduling (with zero skew) followed by skew optimization. Figures 6.7, 6.8,
and 6.9 compare our proposed algorithm with “skew after schedule”. On the other hand,
“skew after proposed” is also a two-step algorithm; proposed algorithm followed by skew
optimization for reducing clock period. Figures 6.10, 6.11, and 6.12 compare “skew after
proposed” with “skew after schedule”.

From those experiments, advantage of our proposed method to the conventional skew
optimization can be verified It is notable that the advantage is remarkable especially when
we choose a large clock period (low clock frequency).

6.5 Conclusion

We have introduced a novel optimization problem, simultaneous schedule (control step
assignment) and skew optimization problem. We presented a heuristic algorithm for the
simultaneous control step and skew optimization under given clock period. It start with
initial skew assignment (zero for all modules) and modify a skew assignment so as to
minimize the length of the longest path in schedule constraint graph. So the algorithm
cannot compute a solution for the instance which have no feasible schedule with zero
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skew.
The experimental result shows the effectiveness of simultaneous optimization of sched-

ule and skew and efficiency of our algorithm.
The algorithm has the potential to play a central role in various scenarios of skew-

aware RT level synthesis. A study of the relation between the simultaneous optimization
of skew and re-timing in logic level and our problem in RT level is one of the interesting
future works.
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Figure 6.1: Several different types of skew aware designs
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Figure 6.2: We add an edge on a critical path in Gσ to T .

Step1. Generate Gτ and Gσ

Step2. Generate an initial spanning tree T ⊂ Gτ .

Step3. Compute τT from T . Compute σ from Gσ|τ=τt . Let P be a critical path in Gσ |τ=τt .

Step5. For each edge (u, v) ∈ Gτ corresponding to e ∈ P, try to generate T(u,v) from T by
adding (u, v) and removing an appropriate edge. If we can compute T(u,v), compute skew
assignment τ(u,v) from T(u,v) and the number of control steps CS(u,v) from Gσ|τ=τt .

Step6. If CS(u,v) > CS or we cannot generate T(u,v) for all (u, v) in Step5, output τT and σ and
quit. Otherwise, set T = T(u,v) by such (u, v) which achieves the smallest CS(u,v), and go
to Step3.

Figure 6.3: Heuristic algorithm
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Figure 6.4: Application time (CS × clk) vs. clk for Jaumann
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Figure 6.5: Application time (CS × clk) vs. clk for Lattice
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Figure 6.6: Application time (CS × clk) vs. clk for Elliptic
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Figure 6.7: Application time (CS × clk) vs. clk for Jaumann
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Figure 6.8: Application time (CS × clk) vs. clk for Lattice
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Figure 6.9: Application time (CS × clk) vs. clk for Elliptic
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Figure 6.10: Application time (CS × clk) vs. clk for Jaumann
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Figure 6.11: Application time (CS × clk) vs. clk for Lattice
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Figure 6.12: Application time (CS × clk) vs. clk for Elliptic
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Chapter 7

Conclusion

In this paper, we have introduced a new problem, the skew of the arrival time of control
signals to multiplexers and registers in a RT level datapath. We have investigated about
simultaneous optimization of skew assignment to control signals to registers and registers,
control step assignment of control signals, and clock period. As a first contribution,
we have proven the NP-hardness of simultaneous optimization of three subjectives by
induction from 3SAT problem in Chapter 3. Based on the results, we focused on sub
problems: (1) simultaneous skew and clock period optimization under given control step
assignment of control signals and (2) simultaneous skew and control step assignment
optimization under given clock period.

For (1), we have presented an approximation algorithm in Section 2.3. The algorithm is
based on combination of the longest path algorithm on skew constraint graph and binary
search algorithm. The algorithm compute near optimal solution in shorter time than
simplex algorithm. The ratio of computation time expands as the scale of input instance
grows. The first experiment in Section 2.3.2 shows the effectiveness of skew optimization.
It reduced clock period by 74% in average. The second experiment i.e. high-level synthesis
with skew optimization shows an importance to optimize control schedule with regarding
internal skew.

For (2), we have proven that the optimization is NP-hard in Chapter 4. We have
also proven that the decision problem whether there exists a feasible solution is a NP-
complete problem. These result implies that there is no efficient solution algorithm unless
P = NP. It also suggests the need for a heuristic algorithm. So we have focused to the
conditions for the solvability in Chapter 5. As a result, we have proven that a sufficient
and necessary condition for an input instance (a input algorithm, resource assignment,
order of operation on a resource and delay information) to have a feasible solution for
any clock period is that there is no positive cycle in modified skew constraint graph. The
condition is also a sufficient condition for the input instance have a feasible solution for
a specific clock period. Then we developed a heuristic algorithm in which we construct
an initial solution (assign zero skew to all modules) and improve the skew assignment.
To break the limitation of the algorithm that we cannot compute the solution for the
instance which have no feasible control schedule with zero skew, it will useful to utilize
the sufficient condition presented in Chapter 5 to generate an initial skew.

After all, we have developed a solution algorithm for two problems: skew assignment
optimization so as to minimize the clock period under given control step assignment and
control step assignment so as to minimize the number of control steps under given clock
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period.
Intentional skew control is a promising key technology not only to improve VLSI per-

formance, but also to provide tunability for each VLSI to operate with its own maximum
performance, which may overcomes the current and future process variability problem.
Those results presented in this paper should be important theoretical base of skew-aware
datapath design.

As a future directions, a heuristic algorithm to optimize all of control step assignment,
skew assignment, clock period is required. The order of operation on a resource should
also be a subjecives of optimization. Especially, the generation of an order which satisfy
the sufficient condition in Chapter 5 or explicit condition (there is a feasible schedule with
zero skew) to solvability is an important problem. A study of the relation between the
simultaneous optimization of skew and re-timing in logic level and our problem in RT
level is one of the interesting future works.
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