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Abstract

This dissertation aims to propose spectral modelings and spectral modification algo-
rithms to improve the quality of modified speech in voice transformation.

Voice transformation is a process of changing certain perceptual properties of speech
while leaving other properties unchanged. Voice transformation has many applications
in our lives. For example, we employ voice transformation techniques to create various
wave sounds from a limited pre-recorded database in a Text-to-Speech system. In foreign
language learning, it will be much easier to listen when slowing down the speed of sounds.
To enhance the hearing abilities of deaf people, we can adjust the frequency of sounds so
that it is located in their hearing portion.

One of the core processes in voice transformation is spectral modification. Since spec-
tral processing is closely linked to human perception, it is an effective way to perform
sound processing, such as manipulations of the formant structures, amplitude manipula-
tions. The challenge of spectral modification is to modify the spectral/acoustical features
without degrading the speech quality. Most high-quality spectral modification methods
operate in time-frequency domain. The representations of speech signals in the time-
frequency domain can describe the speech signals well. The reason is that when a human
produces voices, the continual motion of the articulators forms a time-varying acoustic
filter which is responsible for the generation of the speech waveform.

Although many high-quality spectral modification methods have been proposed in
the literature, they still have issues. In the time axis, most of them process speech
signals frame by frame. They lack of a model to describe the temporal evolution of
parameters. Therefore, they do not ensure the smoothness of synthesized speech after
modification. In addition, they either do not guarantee to keep the natural evolution of
parameters of speech signals. These limitations degrade the quality of modified speech.
In the frequency axis, spectral modification can be performed by the rule-based approach
or the statistical approach. The rule-based approach often needs small training data.
However, this approach only stores basic rules, and the basic rules do not reflect the
natural characteristics of the speech signals. While the statistical approach performs
spectral modification by using machine learning techniques, and it requires large training
data. Therefore, applying which approach depends on applications and specific conditions.
Three main issues of spectral modification methods can be summarized as follows.

1. The first issue is lack of efficient spectral modelings for speech modification. The
spectral modelings determine which attributes can be processed and how these at-
tributes can be modified. One of requirements of these spectral modelings is that
they allow to ensure smoothness of modified speech signals and to perform efficient
spectral modification.

2. The second issue is insufficient smoothness of modified spectra between frames.
Conventional methods of spectral modification often perform spectral modification
frame by frame. When unexpected modifications happen, there are discontinuities of
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speech spectra between frames. This leads to degradation of the quality of modified
speech.

3. The third issue is ineffective spectral modification. The rule-based techniques of
spectral modification, such as linear prediction (LP)-based methods and frequency
warping methods, are limited by their inability to independently control important
formant characteristics such as amplitude, bandwidth or to control the spectral
shape. The statistical techniques of spectral modification take advantages of math-
ematical or statistical models, but they lack of acoustic constraints. It therefore
requires a new method for performing efficient spectral modification.

The main goals of this dissertation are to deal with the three major issues of spectral
modification mentioned above, i.e. lack of spectral modelings for speech modification,
insufficient smoothness of the modified spectra between frames, and ineffective spectral
modification.

To perform spectral modification, we first develop an analysis/synthesis framework.
When human beings produce speech voices, the continual motion of the articulators forms
a time-varying acoustic filter which is responsible for the generation of the speech wave-
form. To characterize this type of properties, we need a joint time-frequency representa-
tion. In the first part of this dissertation, we first introduce improvements of speech spec-
tral envelope modeling, and then we present a new modeling of speech spectral sequence.
Conventional representations of a speech spectral envelope, such as LP coefficients or
non-parametric representations, meet difficulties in controlling spectral peaks and spectral
shape. In our framework, we explore the Gaussian mixture model parameters proposed by
Zolfaghari et al. (called spectral-GMM parameters in this dissertation) to model a speech
spectral envelope. In this technique, formants are assumed to be represented by Gaussian
distributions, and a speech spectral envelope could be represented by a Gaussian mixture
model. Although the original method well models and flexibly controls the speech spec-
tral envelope, it still has two main problems. The first problem is difficulty in modifying
a speech spectral envelope in both axes, frequency and amplitude. The second problem
is that a Gaussian distribution does not always fit to a formant very well, especially for
other kinds of voices which are not reading voices, such as singing voices. To solve these
drawbacks, we propose two improvements in the speech spectral envelope modeling. We
employ constraints to model a spectral peak by using only one Gaussian component. We
also use an asymmetric Gaussian mixture model to model a speech spectral envelope,
instead of a Gaussian mixture model. We then develop a new modeling of speech spec-
tral sequence based on temporal decomposition (TD), which originally proposed by Atal,
and spectral-GMM parameters. In our modeling, the TD algorithm is utilized to model
the temporal evolution (in the time domain), and spectral-GMM parameters are used to
model the speech spectral envelope (in the frequency domain). Experimental results show
that our modeling models speech signals very well. In addition, our analysis/synthesis
method is potential to ensure the smoothness of modified speech, and to perform efficient
spectral modification.

To solve the second issue, the insufficient smoothness of modified spectra between
frames, one of efficient ways is to control spectral dynamics. In this dissertation, we
employ the TD technique, which decomposes speech into event targets and event func-
tions, to control spectral dynamics to improve the quality of synthesized speech. Based
on the TD technique, we propose a new method to improve the quality of modified speech
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signals in concatenative speech synthesis. Concatenative speech synthesis systems form
utterances by concatenating pre-recorded speech units. In concatenative speech synthe-
sis systems, output speech is limited by the contents of the pre-recorded databases, and
inevitable concatenation errors can lead to audible discontinuities. To reduce the dis-
continuities between speech units, many methods have been presented in the literature.
However, some steps in these methods need to be manually performed, due to prepara-
tion of “fusion” units, or extraction of formants. Therefore, it is necessary to have a new
method which can automatically smooth the mismatch between speech segments. In our
method, we automatically decompose speech units by using the TD technique. The same
event functions evaluated for the spectral parameters are also used to describe the tem-
poral patterns of the excitation parameters. The modifications of spectral parameters,
F0 and gain information at the joint parts of the speech units are performed by altering
the last and the first event and excitation targets of the first and the last speech units,
respectively. As a result, the mismatch of spectral, F0, and gain information are reduced
at the concatenation points.

To solve the third issue, the ineffective spectral modification, we develop a new efficient
algorithm of spectral modification which is applied for rule-based methods, and propose
an improvement of GMM-based voice conversion methods.

In our proposed algorithm of spectral modification, we utilize spectral-GMM parame-
ters to model a speech spectral envelope. Spectral-GMM parameters extracted from the
spectral envelope are spectral peaks, which may be related to formant information. It is
well-know that formant frequencies are some of the most important parameters in char-
acterizing speech, and control of formants can effectively modify the spectral envelope.
To modify the spectral-GMM parameters in accordance with formant scaling factors, it is
necessary to find relations between formants and the spectral-GMM parameters. There-
fore, we develop a new algorithm to modify spectral-GMM parameters in accordance with
formant frequencies. We then apply our algorithm to two areas, emotional speech synthe-
sis which requires modifications of both formant frequency and power, and voice gender
conversion which requires a large amount of spectral modification. Experimental results
show the effectiveness of our spectral modification algorithm.

In state-of-the-art voice conversion systems, GMM-based spectral voice conversion
methods are regarded as some of the best systems. However, the quality of converted
speech is still far from natural. This dissertation presents a new spectral voice conversion
method to deal with two drawbacks of the conventional GMM-based spectral voice con-
version methods, insufficient precision of GMM parameters and insufficient smoothness
of the converted spectra between frames. For improvement of the estimation of GMM
parameters, we utilize phoneme-based features of event targets as spectral vectors to take
into account relations between spectral parameters in each phoneme, and to avoid us-
ing spectral parameters in transition parts. For enhancement of the continuity of speech
spectra, we only need to convert event targets, instead of converting source features to
target features frame by frame, and the smoothness of the converted speech is ensured
by the shape of the event functions. Experimental results confirm the high-quality of our
converted speech.

In summary, the main contributions of this dissertation are as follows.

1. Propose a new approach of spectral modeling for speech modification. Our method is
potential to ensure smoothness of modified speech, and to perform efficient spectral
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modification.

2. Propose an efficient framework to model and control temporal evolution, which
can ensure the naturalness and the smoothness of modified speech. This feature
improves the quality of modified speech.

3. Propose a new efficient algorithm of spectral modification. Our algorithm performs
spectral modification directly on the speech spectral envelope, which is flexible to
modify the speech spectral envelope, and does not produce artifacts.

4. Apply phoneme constraints to the GMM-based spectral voice conversion method
to improve the quality of transformation functions, which leads to enhancement of
converted speech quality.

Key words: spectral modification, voice transformation, temporal decomposition, spectral-
GMM
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Chapter 1

Introduction

In this chapter, we briefly introduce the research context, the research motivations, as well

as the major contributions of the dissertation. We begin by introducing the need for voice

transformation. In the next parts, we present an overview of analysis/synthesis methods,

and discuss typical spectral modification methods. We then state the motivation and

scope of this dissertation. The main contributions of this dissertation are also shortly

mentioned. Finally, the structure of this dissertation is outlined.

1.1 Definition of voice transformation

This dissertation aims to study on spectral modification of speech to improve the quality

of modified speech in the field of voice transformation.

The capability of speaking a language is one of the most wonderful skills of human

beings. Speech is one of the communication ways that human beings most widely use.

It serves as a very effective way of communication, such as sharing experiences, feelings,

concepts and ideas among people. As the most natural way of communication between

human beings, speech is a subject which has attracted much interest and attention. The

structure of speech, speech production, and speech perception mechanisms have been

researched by linguists, psychologists and physiologists.

Nowadays, advances in electronic and computer technology are causing an explosive

growth in the use of machines for processing information. Scientists and engineers try

to improve the communication not only among human beings but also between human

beings and machines via human beings’ voices in different environments. In general, two

major technologies for the communication between human beings and machines are speech

recognition and speech synthesis. Speech recognition is a technique to recognize a set of

words from voices of any speakers with high accuracy rate. It can be seen as a technique

for processing information input. On the other hand, speech synthesis is a technique for

processing information output. It can be defined as the artificial production of human

speech. In this context, speech synthesis is the reverse of speech recognition.

The central topic of this dissertation, spectral modification in voice transformation, can

be considered as a core part of the speech synthesis area. The goals of voice transformation

systems are to generate wave sounds from a pre-recorded speech database, or to alter styles
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of speech utterances/segments without losing the utterance/segment content, etc. The

styles which can be changed include the speaker’s gender, the speaker’s identity, or the

speaker’s emotion, and so on. A voice transformation system often has to be capable of

accomplishing two main tasks:

1. Training phase: The system determines the optimal transformation for converting

speech utterances/segments into the other ones from training data.

2. Transformation phase: The system applies this optimal transformation to convert

new input utterances/segments.

1.2 The need for voice transformation

Voice transformation is an important technique in Text-to-Speech. In addition, voice

transformation also has many applications in our lives, such as in education, aid-to-the

handicapped, and entertainment.

Text-to-Speech: The main goal of Text-to-Speech is to produce natural speech sounds

from texts. The most successful TTS approach to-date is called concatenative synthesis.

In this approach, natural speech utterances of speakers first are recorded and stored in

an acoustic inventory. During synthesis, individual portions of a speech utterance are

retrieved from the inventory, optionally modified, and then concatenated in the desired

sequence. Therefore, it is necessary to smooth the mismatch between these speech units.

In addition, to create various kinds of databases, we employ voice conversion techniques

to modify utterances of a speaker to those of another speaker, or we convert neutral

utterances to emotional utterances.

Education: When learning foreign languages, proper intonation of sentences and pronun-

ciation of words is one of the most difficult tasks for learners. Slowing down conversions

helps the learners to properly pronounce foreign words/sentences, as well as to practice

their listening skill.

Aid-to-the handicapped: Voice transformation techniques can be employed to enhance

the speech quality for both speakers and listeners. For a handicapped speaker, we can

improve the speech intelligibility, since the intelligibility of his/her voices may be affected

by abnormal controls over phoneme duration and pitch variations. For a handicapped

listener, e.g. a person with hearing disabilities, we can employ voice transformation

techniques to put the frequency space to the hearing portion of his/her ears.

Entertainment: In the game industry, voice transformation can create virtual voices to

achieve interesting atmospheres. In the film industry, voice transformation can be used

to dub the voice of actors/actresses in different languages.

Others: Voice transformation can be integrated into car navigation systems, voice-enabled

e-mail systems, etc.
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Moreover, voice transformation can be also applied to the most classical areas of the

speech technology, such as speech coding, speech recognition, speaker verification and

identification, speech enhancement. In speech coding, we perform time-scale modifica-

tion for data reduction to save storage space and transmission bandwidth. In speech

recognition, there is variety of speakers. Each speaker has own characteristics, such as

gender, accent, identity; even the same speaker also has different styles, due to changes

of emotions. Therefore, to improve the accuracy rate of speech recognition, we need

to perform speaker adaptation or vocal tract length normalization to reduce the vari-

ety of speakers. In speaker verification and identification, we apply speech modification

methods to remove the linguistic contents, and keep the speaker’s identity. In speech

enhancement, voice conversion techniques are useful tools to improve the speech quality

and/or intelligibility.

1.3 Analysis/synthesis methods

There are various attributes of speech signals which can be modified, such as speed,

formants, fundamental frequency. Speech modification can be classified into three main

groups as follows.

• Time-scale modification: It is a process of modifying the duration of a speech

signal, while maintaining other quality, such as the pitch and the timbre, unchanged.

• Pitch-scale modification: Aim of pitch-scale modification is to change fundamen-

tal frequency information of a speech signal, while maintaining the original time and

spectral properties.

• Spectral modification: Purpose of spectral modification is to change spectral

attributes of a speech signal, while keeping the duration and fundamental frequency.

In voice transformation, analysis/synthesis methods are very important, since they

determine which features and algorithms for modifications. Many analysis/synthesis

methods are available in the literature. They process speech signals in the time-domain

[51, 95, 96], in the frequency-domain [33, 40, 98], and in the time-frequency domain

[42, 43, 44, 91, 92]. We now present some typical analysis/synthesis methods.

Many analysis/synthesis methods are waveform-based systems, such as pitch-synchronous

overlap-add (PSOLA) [51, 95, 96]. PSOLA processes directly on the waveform to incor-

porate the desired prosody information. It operates by sampling windowed portions of

the original signal and then re-synthesizing them with a basic overlap-add procedure.

Time-scale modification is performed by deleting or repeating windowed sections prior

to the overlap-add procedure. Pitch-scale modification is also possible by adjusting the

spacing between overlapped windows during re-synthesis. These methods have been a

popular choice mainly because of their simplicity and capability of high fidelity playback.

However, they offer only crude modifications that often result in objectionable artifacts.

The source-filter model for speech production [39] is based on a simple model of speech

production. According to this model, the simplified human voice production system is
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decomposed into three components: glottal source, vocal tract, and radiation impedance.

The main challenge of the source-filter model is the estimation of the glottal excitation

and vocal tract filter parameters from the speech signal. In this model, it is assumed

that there is no interaction between the source and the filter. Hence, the individual

acoustic properties of the source and the filter can be separately simulated. The vocal

tract filter can be modeled as an acoustic tube with a varying cross-sectional area formed

by the pharynx, the oral cavity, the nasal cavity, and the lips. Depending on the shape

of the acoustic tube, a sound wave traveling through it is reflected in a certain way so

that interferences generate resonances at certain frequencies. These resonances are called

formants. The ability to manipulate the characteristics of the vocal tract largely depends

on the formant structure of the vocal tract spectrum. Formant characteristics have long

been known to be important in the area of speech signal processing. Modification of

the formant structure can be performed in a number of ways. All-pole models, such

as linear prediction (LP) models, offer formant modification through the shifting and

scaling of pole locations. Other methods modify the spectral envelope with functions

that warp the envelope along the frequency and/or amplitude axes. These methods,

however, are capable of performing only limited modifications and offer little control

over important formant characteristics. For example, pole modification does not allow a

particular formant’s bandwidth and amplitude to be independently controlled.

Sinusoidal model was initially explored by McAulay and Quatieri [91, 92]. It is based

on modeling the time-varying spectral characteristics of a sound as sums of time-varying

sinusoids. An input sound is modeled by

s(t) =
R∑

i=1

Ai(t)cos(θi(t)) (1.1)

where Ai(t) and θi(t) are the instantaneous amplitude and phase of the ith sinusoid,

respectively.

By representing a voiced waveform as a sum of sinusoidal components, the sinusoidal

model has been shown to be capable of producing high-quality speech, even after pitch

and time-scale transformations. Later work with this model showed the potential for

time-scale modification and pitch alteration [122, 123]. An extension to McAulay and

Quatieri’s work, the Analysis-by-Synthesis/Overlap-Add (ABS/OLA) model, was devel-

oped by George and Smith [42, 43, 44]. This model is based on the combination of a block

overlap-add sinusoidal representation and an analysis-by-synthesis parameter estimation

technique. ABS/OLA performs synthesis by employing an efficient FFT implementation.

The sinusoidal model is an attractive representation of speech. However, because of a high

number of sinusoidal amplitudes, frequencies and phases involved, the sinusoidal model-

ing is less flexible to modify spectral features than the source-filter model. In addition,

this model does not yield control over the speech in terms of formant frequencies and

bandwidths [160].
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Figure 1.1: Block diagram of a spectral processing framework

1.4 Spectral modification techniques

Spectral modification is one of the core processes in voice transformation. Since spectral

processing is closely linked to human perception, it is an effective way to perform sound

processing, such as manipulations of the formant structures, amplitude manipulations.

The diagram of spectral processing is shown in Figure 1.1. The basic idea of spectral

processing is to convert a time-domain digital signal into its representation in a time-

frequency domain. Most approaches start by developing an analysis/synthesis technique

from which the speech signal is reconstructed with minimum loss of sound quality. Then,

the main issues have to be resolved: what kind of representation and which parameters

are chosen for the application of the desired speech processing. The question of which

speech representation to be used is tightly related to the question of which features and

algorithms to be employed for modifications. The challenge of spectral modification is to

modify the spectral/acoustical features without degrading the speech quality.

Among other sophisticated representations, the short-term Fourier transform (STFT)

and its magnitude are good mathematical tools [31]. To further process the spectral

information, we often obtain the spectral envelope from a Fourier magnitude spectrum

by successively smoothing its curve to get rid of the rapid fluctuations. In general, the

spectral envelope is a smoothed version of the frequency spectrum of a sound, and is

often independent of the fundamental frequency. In the literature, there are two popular

approaches to spectral modification:

• Rule-based approach: This approach works based on a set of rules that have been

established by analyzing training data. In this approach, the rules are described

by specific clauses, such as IF THEN. However, the manual development of an

understanding component is time-consuming, since each application requires an own

adaptation.

• Statistical approach: This approach works based on mathematical and statistical

algorithms. The statistical models are derived from the automatic analyses of large

speech databases.
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1.4.1 Rule-based approach

The main idea of the rule-based approach is modifying speech signals by applying rules

which can be clearly described by using specific clauses, such as IF THEN. This approach

includes two main following techniques.

• All-pole-based methods which scale poles by a complex factor to alter formant char-

acteristics.

• Frequency warping methods which modify the spectral envelope directly.

Pole modification

When linear prediction (LP) analysis is used to estimate the spectral envelope, formants

are assigned to poles, and can then be modified to correspond with desired formant

locations. The algorithm for changing formant frequencies and bandwidths is described

as follows.

It has been previously mentioned that the prediction error filter or the LP analysis

filter A(z) can be expressed in terms of the LP coefficients ai in the following form:

A(z) = 1−
p∑

i=1

aiz
−i. (1.2)

The roots obtained from Eq. (1.2) are:

zi = rie
±jωi (i = 1, 2, ..., p/2) (1.3)

Each formant is related to a complex conjugate pair of poles zi = rie
±jωi . Formant

frequency, Fi, and formant bandwidth, Bi, can be calculated as follows.

Fi =
ωi

2π
Fs (1.4)

Bi = − logri

π
Fs (1.5)

where Fs is the sampling frequency.

Formant modifications can be performed by scaling the angle, ωi, and magnitude, ri,

of each pair of poles. However, this kind of algorithms has two main problems, i.e. pole

interaction, and difficulty in controlling the spectral shape. When two poles are shifted

too closely to one another in frequency, only one peak appears in the spectrum. This

is a symptom of pole interaction. Based on the fact that the formant energy is more

important than the formant bandwidth in speech perception [75], a number of iterative

algorithms has been developed to compensate for pole interaction, such as [56, 94]. While

these methods can produce spectral envelopes with desired formant amplitudes at the

formant frequencies, one drawback of them is that the bandwidth and amplitude of each

formant can not be controlled independently. As shown in Eq. (1.5), each formant’s

bandwidth is dependent on the magnitude of the corresponding pole. Therefore, the

amplitude and bandwidth of each formant can not be independently modified with these
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procedures. Recently, a method for directly modifying formant locations and bandwidths

in the line spectral frequency (LSF) domain has been developed [99]. From now, we refer

to the method in [99] as the LSF-based method. By taking advantage of the nearly linear

relationship between the LSF coefficients and formants, modifications are performed based

on desired shifts in formant frequencies and bandwidths. However, the main drawback,

i.e. the lack of control over the spectral shape, has not been solved.

Frequency warping

Frequency warping is a simple method for shifting formants by applying a frequency

warping function directly to the spectral envelope. In frequency warping methods, we

need to define three parameters, i.e. the lower and upper frequencies, fL and fU , and

a warping function. The lower and upper frequencies, fL and fU , determine the range

of the spectral envelope to be affected. The warping function determines how to modify

frequencies in the defined range. The warping function can be either a piecewise linear

function or a non-linear function.

Shifting the formants by a constant factor may be performed via linear expanding

or compressing the speech spectral envelope X(f, t) along the frequency axis. It can be

called a linear frequency scale mapping of the speech spectral envelope. It corresponds

to:

Y (f, t) = X(W (f, t)) (1.6)

where X(f, t) and Y (f, t) represent the source spectrum envelope and the transformed

spectrum envelope at time t, respectively. The linear frequency scale mapping function

W (f, t) is given by:

W (f, t) =
f

γ
(1.7)

where γ is the constant formant modification factor corresponding to the ratio of the

target speaker frequency ftarget and the source speaker frequency fsource:

γ =
ftarget

fsource

(1.8)

An example of a linear warping function is illustrated in Figure 1.2. In [126], Rentzos

et al. proposed a new frequency warping method to modify frequencies, bandwidths

and amplitudes of formants. They divided the frequency of aperiodic component into N

bands, which is accordance with N formant ranges. The equation for spectrum mapping

is expressed as follows.

Y (f, t) = η(f, t)X[W (f, t), f, t] (1.9)

where X, Y and f denote the source spectrum, the transformed spectrum and the frequency

variables, respectively. The frequency warping function W (f, t) is the mapping functions

for the peak frequency, and η(f, t) is the magnitude shaping function used to map the
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Figure 1.2: Examples of linear warping functions over a speech spectral envelope. The
warping functions cause an expansion or compression of the speech spectral envelope.
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spectral magnitude between the source and the transformed peaks. However, in this

study, formants first have to been estimated, and this process is a difficult task.

The disadvantage of the linear warping method is that for γ > 1 the frequencies higher

than Fs/2γ are missed, and for γ < 1 the frequencies higher than Fs/2γ must be padded

by arbitrary values (see Figure 1.2). Furthermore, if NF-point fast Fourier transform

(FFT) is used for the original spectrum envelope computation, the number of points of

the modified speech spectral envelope is lower than NF for γ > 1, and higher than NF

for γ < 1. Therefore, the transformed spectrum envelope would have to be re-sampled so

that its length would be NF.

To overcome this drawback, some non-linear warping methods have been proposed,

such as [120]. For example, in [120], one warping function was chosen as a circle arc going

through the points [fL, fL] and [fU , fU ] as follows.

W (f) = y ±
√

r2 − (f − x)2 (1.10)

where

y =
Fs

8Γ

3Γ2 − 1

R− 1

x =
Fs

2
− y

r2 = x2 + y2

and Γ is the formant modification factor corresponding to the middle of the modified

frequency range, (fL + fU)/2.

Although frequency warping methods allow a high level of control over formant char-

acteristics, this type of modification still has some limitations.

• Frequency warping methods only perform spectral modification when the original

and modified formants are spaced far enough apart so as to be nearly independent

of one another. When formants are too close to one another, it is difficult to modify

their bandwidths to desirable specifications. This is similar to the pole interaction

problem suffered by pole modification techniques.

• The conventional frequency warping methods do not estimate and model spectral

peaks. Therefore, they meet difficulties in controlling spectral peaks, such as pre-

serving shapes of peaks, and emphasizing spectral peaks around 3 kHz in transfor-

mation of speaking voice into singing voice.

• Frequency warping methods do not allow formants to be merged or split, which is

often desired in formant modification processes [78].

1.4.2 Statistical approach

The original purpose of this approach is for speaker adaptation [134] and spectral voice

conversion [23, 34, 37, 61, 74, 81, 107, 143, 148, 163]. After that, researchers apply this
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approach in other areas of speech technology, such as in noise reduction [101]. To convert

the spectral envelopes of the source speaker to the spectral envelopes of the target one, a

training (or learning) step is necessary. The training data includes two parts. One part

is the analyzed data set of source parameters, the other part is the analyzed data set of

target parameters. The source and target training data sets are aligned. Mathematical or

statistical algorithms are applied to formulate mapping functions. We utilize the mapping

functions to convert features of a speech signal, and synthesize the converted and other

features to output the converted speech. This subsection reviews some typical techniques

and functions used for spectral transformations.

One of the earliest approaches to the spectral conversion problem is the mapping

codebook method proposed by Abe et al. [1]. The basic idea of this technique is to

make mapping codebooks which represent the correspondence between the two speakers.

A conversion of acoustic features from one speaker to another is therefore reduced to

the problem of mapping the codebooks of the two speakers [1]. The procedure for the

mapping codebooks construction is given below [1]:

1. The source and target speakers pronounce a learning word set. Then all words are

vector quantified frame by frame.

2. Using a time warping technique (DTW), the correspondence between vectors of the

same words for the two speakers is determined.

3. The vector correspondences between the speakers are accumulated as histograms.

Using each histogram as a weighting function, the mapping codebook is defined as

a linear combination of the target speaker’s vectors.

4. Steps 2 and 3 are repeated to refine the mapping codebook.

The acoustic space of a speaker is typically modeled by a vector quantization codebook

of 32-256 vectors derived using the LBG algorithm [50]. In the conversion phase, the

source speaker’s input utterance is LPC-analyzed and the spectrum parameters are vector

quantized using the source speaker’s own codebook. Then, they are decoded using the

source-target mapping codebooks. The main shortcoming of the systems based on vector-

quantization is that there are discontinuities in the transformation function near the

transitions between classes. This limitation leads to degradation of the transformed speech

quality.

The appearance of discontinuities in the transformation function near the transitions

between classes is solved by dividing the acoustic space into overlapping classes, so that

all the input vectors have a certain probability of belonging to each of the acoustic classes.

Stylianou et al. [143] propose a Gaussian mixture model (GMM)-based method for voice

conversion to solve the discontinuity problem. In [143], a Gaussian mixture model (GMM)

is fitted to the training acoustic vectors of the source speaker as follows.

p(x) =
M∑

m=1

αmN (x; µm, Σm) (1.11)
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where M is the number of Gaussian components, N (x; µm, Σm) is a Gaussian vector

distribution defined by the mean vector µm and the covariance matrix Σm, and αm is the

weight assigned to the mth Gaussian component. The transformation function is given as

follows.

F (x) =
M∑

m=1

pm(x)[vm + ΓmΣ−1
m (x− µm)] (1.12)

where pm(x) denotes the probability that x belongs to the mth Gaussian component. The

vectors vm and matrices Γm are calculated during the training phase. The soft acoustic

classification based on GMM avoids the appearance of typical artifacts caused by the

discontinuities in the transformation function. This technique has become one of the best

statistical methods of spectral voice conversion. However, it still has some drawbacks,

such as over-smoothing effect of converted spectrum that degraded the transformed speech

quality. Although many studies have improved the GMM-based method, such as [23, 34,

37, 61, 74, 81, 107, 147, 148, 163], the quality of the transformed speech is still far from

natural.

1.5 Motivation and scope of the research

Speech is one of the most convenient ways for people to communicate. The advances in

technology lead to the rapid growth of communication environments between human be-

ings and machines. The areas of speech processing technology related to human-machine

communication are speech recognition and speech synthesis. The former is a technique

to extract linguistic content in a spoken utterance. The aim of the latter is to generate

an artificial voice from a machine. However, in many cases, the communications between

human beings and machines are not friendly, since voice processing techniques related to

the problems of man-machine communication do not provide high quality communication.

Our work is restricted to the voice transformation area. We focus on how to improve

the quality of transformed speech. Most speech processing applications utilize certain

properties of speech signals in accomplishing their tasks. Voice transformation algo-

rithms aim to change some attributes of speech while leaving other attributes unchanged.

Voice transformation generally consists of the process of analyzing a speech signal into

a number of parameters, modifying these parameter values in accordance with a desired

goal and synthesizing the correspondingly modified speech signal. Applications of voice

transformation can be founds in many areas. In Text-to-Speech, voice transformation is

used to create new speech signals from a pre-recorded speech database. We can combine

and smooth speech units to generate a long utterance. Since recording a speech database

is time-consuming and expensive, to create other types of speech, e.g. emotional or ex-

pressive speech or speech of various speakers, we modify available speech databases. In

education, slowing down voices helps learners to discover proper intonation of sentences

and pronunciation of words, as well as to practice listening skill. Voice transformation

is used to aid for the handicapped people, such as placing speech signals to other fre-

quency ranges to improve the recognition rate for the deaf people. In addition, voice
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transformation can be applied in car navigation, voice-enabled e-mail, etc.

In the voice transformation area, a number of key factors determines the success and

usefulness of a voice transformation system:

• the quality (including intelligibility and naturalness) of the transformed speech

• the flexibility to generate the speaker’s styles (e.g. speaker’s emotion, speaker’s

gender, and speaker’s identity) to achieve more flexible speech database

To achieve these goals, we need to solve many questions. For example, how to analyze

and synthesize speech signals, which properties of speech should be manipulated, how to

modify these properties. Speech modification can be classified into three main groups:

time-scale modification, pitch-scale modification, and spectral modification.

In this dissertation, we concentrate on spectral modification, which is one of the core

processes in voice transformation. Since spectral processing is closely linked to human

perception, it is an effective way to perform sound processing. Spectral modification is

used to perform a variety of modifications to speech spectra, such as modifications of

formant structures, amplitude. The challenge of spectral modification is to modify the

spectral/acoustical features without degrading the speech quality.

From a mathematical point of view, we can represent a speech signal in various ways.

For example, we can describe the speech signal as a function of time in the time-domain,

which shows how signal magnitude changes over time. We can also describe the signal

as a functions of frequency in the frequency-domain, which shows how quickly signal

frequencies changes. Representation and processing of speech signals in the time-domain

and the frequency-domain are important for some aspects of speech applications. However,

these representations in these domains do not reflect the most essential property of speech.

The reason is when a human produces voices, the continual motion of the articulators

forms a time-varying acoustic filter responsible for the generation of the speech waveform.

To characterize this type of properties, we need a joint time-frequency representation.

Most methods of spectral modification process speech signals frame by frame, and they

rarely consider the relations between neighboring frames. When there are unexpected

modifications in some frames, the modified speech may be not smooth. As a result, there

are some clicks in the modified speech, which lead to degradation of the speech quality.

In addition, they often do not model the temporal evolution of parameters. Time-scale

modification is performed by replication/omission of some of the windowed segments [156]

or using interpolation functions [65]. Therefore, the natural evolution of speech signals is

not guaranteed, which also leads to degradation of the modified speech quality.

To perform spectral modification, among other sophisticated representations, the

short-term Fourier transform (STFT) and its magnitude are good mathematical tools

[31]. To further process the spectral information, we often obtain the spectral envelope

from a Fourier magnitude spectrum by successively smoothing its curve to get rid of the

rapid fluctuations, and modify the spectral envelope. The spectral envelope can be repre-

sented by non-parametric or parametric methods. Modification of spectral envelope can

be carried out by the rule-based approach or the statistical approach.
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The rule-based approach works based on a set of rules that have been established

by analyzing training data. In this approach, the rules are described by specific clauses,

such as IF THEN. For the non-parametric methods, frequency warping techniques, such

as [151], are often employed to modify the spectral envelope. Although this kind of

methods provides high-quality, the modification is still not successful, because frequency

warping methods meet difficulties in modifying spectral peaks, such as preserving shapes

of peaks, and emphasizing spectral peaks around 3 kHz in transformation of speaking voice

into singing voice, since they do not estimate spectral peaks. Moreover, the frequency

warping methods do not allow formants to be merged or split, which is often desired in

formant modification processes [78]. High-quality, flexible modifications can be achieved

by parametric methods when processing speech. A number of parameterization methods

exist for speech spectral modeling, such as LP-based methods [94, 99]. Although these

spectral modelings have been successfully used in various applications, such as in speech

coding and speech recognition, the main drawback to these types of models, the lack of

control over the spectral shape, has not been solved.

The statistical approach works based on mathematical and statistical algorithms. In

this approach, a training (or learning) step is necessary to find rules for mapping. The

mapping rules are described by mathematical or statistical models. We should add acous-

tic constraints to improve the quality of modified speech.

Although many methods of spectral modification have been proposed, there are still

three main issues:

1. lack of efficient spectral modelings for speech modification,

2. insufficient smoothness of modified spectra between frames, and

3. ineffective spectral modification

This dissertation focus on solving three issues mentioned above. To perform spectral

modification, we first develop an analysis/synthesis framework. The analysis/synthesis

method is very important, since it decides that which and how features can be modi-

fied. Many high-quality analysis/synthesis methods have been proposed. For example,

the sinusoidal model [91, 92] and its extensions [42, 43, 44] produce the high quality of

synthesized speech. However, a number of parameters is high, and their parameters are

not directly related to formants. These limitations prevent the sinusoidal model from

modifying the spectral envelope in accordance with scaling factors of formants. Although

the STRAIGHT method [65] produces very high quality of synthesized speech and mod-

ified speech, it still processes speech signals frame by frame and its spectral information

is non-parametric representation. Therefore it is necessary to have a spectral modeling

which is effective and flexible to ensure the smoothness of modified speech and perform

the efficient spectral modification.

In the second part of this dissertation, we focus on solving the second issue, insufficient

smoothness of modified spectra between frames. The discontinuities between frames exist

in most applications of speech modification when manipulating speech signals if we do not

consider the relation between neighboring frames. It is necessary to have a method for
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modeling the temporal relations. In the literature, a hidden Markov model (HMM) is well-

known for being a typical model for modeling temporal trajectories of spectral parameters.

A HMM can be used to represent a given speech segment in a stochastic manner. It models

each of the various quasi-stationary spectral zones characteristic of particular word as a

state in a Markov chain with an associated observation probability density function. The

HMM model is widely employed in automatic speech recognition [80], speech coding [55],

in formant tracking [3], speech synthesis systems [149], etc. However, the quality of

the HMM model much depends on training data. The HMM model is not suitable for

applications of speech modification when limited training data is available. Therefore, it

requires a new method for modeling temporal evolution of speech parameters. We aim

to present an efficient model of temporal evolution. After that, we verify this model in

concatenative speech synthesis.

Concatenative speech synthesis systems form utterances by concatenating pre-recorded

speech units. In a concatenative speech synthesis systems, output speech is limited by the

contents of the acoustic inventory (not just the linguistic content, but also the emotional

state of the speaker, degree of articulation, etc.), and inevitable concatenation errors can

lead to audible discontinuities. To solve the discontinuities between speech units, many

methods for reducing the mismatch between speech units have been presented, such as

[53, 161, 62]. However, some steps in these methods need to be manually performed,

due to preparation of “fusion” units [161], or extraction of formants [62]. Therefore, it is

required to have a new method which can automatically smooth the mismatch between

these units.

In the third part of this dissertation, we concentrate on solving the third issues, the

ineffective spectral modification. We deal with both kinds of spectral modification ap-

proaches: rule-base and statistical approaches.

First, our purpose is to develop a new efficient algorithm of spectral modification.

One of the most important requirements of spectral modification is that it is flexible

enough to perform a variety of modifications within the spectral envelope. Formant

frequency is one of the most important parameters in characterizing speech, and it also

plays an important role in specifying speaker characteristics. Therefore, alteration of

formant frequencies can control other features that are directly connected to the speech

production process. Conventional spectral modification methods, such as [94, 99, 151],

often control formants to modify the speech spectral envelope. However, these methods

are limited by their inability to independently control important formant characteristics

such as amplitude and bandwidth, or to control the spectral shape. In our solution, we

use spectral-GMM parameters to model the speech spectral envelope. Spectral-GMM

parameters extracted from the spectral envelope are spectral peaks, which may be related

to formant information. To modify the spectral-GMM parameters in accordance with

formant scaling factors, it is necessary to find relations between formants and the spectral-

GMM parameters. We propose a new algorithm for modifying spectral-GMM parameters

in accordance with formant frequencies. We then apply our algorithm to two areas,

emotional speech synthesis which requires modification of both formant frequency and

power, and voice gender conversion which requires a large amount of spectral modification.

Second, we aim to improve the quality of spectral modification in voice conversion
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systems. The purpose of the voice conversion is to transform a voice of a speaker (source

speaker) so that it is perceived by listeners as if it were uttered by a different specific

speaker (target speaker). The limitation in current voice conversion systems is that ma-

nipulating the speech signal for converting the source voice into the target voice still

degrades its quality. Although there are various speaker-dependent voice characteristics,

the conversion of spectral characteristics is a major process in a voice conversion sys-

tem. Many spectral voice conversion methods have been proposed in the literature, and

GMM-based spectral voice conversion methods are regarded as some of the best systems.

However, the quality of converted speech is still far from natural. To improve the quality

of converted speech, we focus on solving two main problems of the degradation of the

quality of converted speech: (i) modeling the distribution of acoustic features in voice

conversion often uses unstable frames, which degrades the precision of GMM parame-

ters (ii) the transformation function may generate discontinuous features if frames are

processed independently.

In summary, this dissertation focuses on improving the quality of modified speech in

the area of voice transformation. We aim to propose new spectral modelings and efficient

spectral modification algorithms to solve three main issues of spectral modification in voice

transformation, i.e. the lack of efficient spectral modelings for speech modification, the

insufficient smoothness of the modified spectra between frames, and the ineffective spectral

modification. Four main applications discussed in this dissertation include concatenative

speech synthesis, emotional speech synthesis, voice gender conversion, and spectral voice

conversion.

1.6 Main contribution of the dissertation

As mentioned earlier, this dissertation focuses on spectral modification of speech in voice

transformation. Being motivated by these research objectives, this dissertation has been

conducted, and some research results have been revealed. Our methods can solve the three

main issues as mentioned above, i.e. the lack of efficient spectral modelings for speech

modification, the insufficient smoothness of modified spectra between frames, and the

ineffective spectral modification. The major contributions presented in this dissertation

can be summarized as follows.

1. Developed two improvements of modeling of the speech spectral envelope using sta-

tistical methods (Chapter 3). This kind of representation meets most requirements

of a spectrum representation for speech modification. Those are preciseness and sta-

bility, which ensure to model and reconstruct the speech spectral envelope precisely,

locality (without affecting the intensity of frequencies further away from the point

of manipulation), and flexibility and ease of manipulation. Our spectral modelings

not only model the speech spectral envelope well but also flexibly modify the speech

spectral envelope in both dimensions, frequency and amplitude.

2. Developed a new modeling of speech spectral sequence for speech modification

(Chapter 3). Our modeling is based on temporal decomposition and spectral-GMM.
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Our modeling is potential to ensure the smoothness of modified speech and perform

efficient spectral modification. In addition, our modeling is also potential to control

temporal evolution of speech signals. This characteristic helps to improve the speech

quality of synthesized speech when performing time-scale modification.

3. Proposed a new method for spectral smoothing in concatenative speech synthesis

(Chapter 4). Our method reduces the mismatch of spectral, gain, and F0 informa-

tion at concatenation points.

4. Developed a new efficient spectral modification algorithm (Chapter 5). Our algo-

rithm performs spectral modification directly on the speech spectral envelope, which

is flexible to modify the speech spectral envelope, and does not produce artifacts. We

then apply our algorithm to two areas, emotional speech synthesis, which requires

modification of both formant frequency and power, and voice gender conversion,

which requires a large amount of spectral modification.

5. Proposed a new method for spectral voice conversion using temporal decomposition

and Gaussian mixture model (Chapter 6). Our method solved two drawbacks of

GMM-based voice conversion methods: insufficient precision of GMM parameters,

and insufficient smoothness of the converted spectra between frames.

Although this dissertation only focuses on improving the quality of modified speech

in the area of in voice transformation, our work can find other applications in other

fields of speech signal processing, such as speech recognition, speech perception, speaker

verification and identification. In our work, we model the temporal evolution of spectral

parameters. We also directly model the speech spectral envelope. These modelings allow

us to effectively and flexibly perform time-scale modification and spectral modification.

These two operations are employed in most areas of speech technology.

1.7 Outline of the dissertation

The rest of the dissertation is organized as follows. A schematic overview of this disserta-

tion and the correspondence between our work and the flowchart of voice transformation

are shown in Figure 1.3, and Figure 1.4, respectively.

Chapter 2 - Research Background

In this chapter, we introduce the background knowledge for our dissertation. It includes

speech production and its modelings, source-filter model, spectral modification algorithms,

temporal decomposition, speech spectrum modeling using Gaussian mixture model, and

STRAIGHT.

Chapter 3 - Spectral Modelings for Speech Modification

The purpose of this chapter is to deal with the first issue of spectral modification, the lack

of efficient spectral modelings for speech modification. This chapter first introduces two
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improvements in modeling speech spectral envelope using spectral-GMM parameters [166,

167, 170]. In the first improvement, we not only model the speech spectral envelope well

but also ensure a correspondence between spectral peaks and Gaussian components. In

the second improvement, we use asymmetric Gaussian mixture model to model the speech

spectral envelope, instead of using Gaussian mixture model. This chapter also presents a

new method for speech spectral sequence modeling in the time-frequency domain.

Publications related to this chapter are [103, 104, 105, 106, 109].

Chapter 4 - Spectral Smoothing for Concatenative Speech Synthesis based on

Temporal Decomposition

The aim of this chapter is to solve the second issue of spectral modification, the insuffi-

cient smoothness of modified spectra between frames. To improve the quality of modified

speech, one of requirements of spectral modification methods is to ensure the smoothness

of modified speech. To overcome the discontinuities of speech after modification, one of

efficient ways is to control spectral dynamics. Knagenhjelm and Kleijn [73] point out

that spectral dynamics is more important than spectral distortion in human perception.

This chapter employs the temporal decomposition technique [5, 113] to control spectral

dynamics in concatenative speech synthesis. We address discontinuities (spectral, funda-

mental frequency, and gain information) in concatenation points in a concatenative speech

synthesis system.

Publications related to this chapter are [107].

Chapter 5 - Rule-based Approach to Spectral Modification

The aim of this chapter is to solve the third issue of spectral modification, the ineffective

spectral modification. We develop a spectral modification algorithm. Formant frequency

is one of the most important parameters in characterizing speech, and control of formants

can effectively modify the spectral envelope. Spectral-GMM parameters extracted from

the spectral envelope are spectral peaks, which may be related to formant information.

To modify the spectral-GMM parameters in accordance with formant scaling factors,

it is necessary to find relations between formants and the spectral-GMM parameters.

We solve this problem in this chapter. We evaluate the effectiveness of our proposed

method in two areas, emotional speech synthesis which requires modification of both

formant frequency and power, and voice gender conversion which requires a large amount

of spectral modification.

Publications related to this chapter are [103, 104, 105, 106].

Chapter 6 - Statistical Approach to Spectral Modification

This chapter continues to solve the third issue of spectral modification, ineffective spectral

modification. In Chapter 5, we develop a spectral modification algorithm which is applied
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for the rule-based approach. In this chapter, we focus on other kind of spectral modifica-

tion approach, i.e. how to efficiently perform statistical approach to spectral modification.

We improve the GMM-based method, one of most successful statistical techniques. In our

work, we deal with the two following drawbacks in a GMM-based spectral voice conver-

sion system, insufficient precision of GMM parameters and insufficient smoothness of the

converted spectra between frames.

Publications related to this chapter are [107, 108].

Chapter 7 - Summary and Future Work

In this chapter, we summarize the contribution of this dissertation, and gives some future

research directions.

1.8 Summary

In this chapter, we have presented the overview of our work. Our motivation and scope

have been given. The contributions to the knowledge in the field of spectral analysis and

spectral processing have been summarized. The structure of this dissertation has been

outlined.
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Chapter 2

Research Background

In this chapter, we present the background for our work. In the first part, speech pro-

duction is outlined. In the next part, source-filter model for speech production is intro-

duced. The overview of the linear predictive analysis and LSF coefficients are presented.

Finally, three major methods which are used extensively in the remaining chapters of

this dissertation are presented. They are temporal decomposition [5, 113], modeling

of speech spectrum using Gaussian mixture model [166, 167, 170], and a speech analy-

sis/modification/synthesis system, STRAIGHT [65].

2.1 Speech production

When processing speech signals for many possible applications, the task is made much

easier if one understands how human beings generate speech, and how various voice

processes of human beings can be modeled in computer. This section briefly introduces

the human speech production.

The main organs of the human body which are responsible for producing speech are

the lungs, larynx, pharynx, nose, and mouth. These organs are shown in Figure 2.1. The

production of a sound is described as follows.

1. The human speech production starts with the downward movement of the diaphragm

to let air flow up to the lungs.

2. Air pressure from the lungs creates a steady flow of air through the trachea, larynx,

and pharynx.

3. The vocal folds in the larynx vibrate to create fluctuations in air pressure that are

known as sound waves.

4. Resonances in the vocal tract add characteristics to these sound waves according to

the positions and the shapes of the lips, jaw, tongue, soft palate, and other speech

organs.

5. Openings of mouth and nose radiate the sound waves into the environment.
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Figure 2.1: The human vocal organs [29]

When we hear somebody making a voiced sound, we hear the fundamental frequency

and a series of harmonics. The fundamental frequency is determined by the amount of

vibrations of the vocal folds in one second which is measured in Hertz (cycles per second).

This fundamental frequency is also known as the lowest resonant frequency of a vibrating

object. Speech signals are generally considered as voiced, unvoiced, or in some cases it can

manifest itself between these two. Voiced sounds consist of F0’s whereas (purely) unvoiced

sounds do not consist of any F0’s. Therefore, an unvoiced sound can be considered as

a white noise. When the vocal folds vibrate, the harmonic components of the F0 are

produced. Harmonics or vibrations of the vocal folds at different frequencies give the

sound with their particular character. The relation between the harmonic and the F0

is that the harmonic is an integer multiple of the F0. Because the vocal tract modifies

the wave signal, formant (pole) and sometimes antiformant (zero) frequencies occur. The

most important properties of a formant are its frequency, amplitude and bandwidth. The

fundamental frequencies and formant frequencies are considered to be the most important

concepts in speech synthesis and speech processing.

In our daily lives, we mainly communicate with other people through voice. We can

use our voice perception to understand the information conveyed in the human voice.

The human voice does not only contain speech information but also help us in identifying
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individuals and perceiving their mental and emotional state. The human voice contains

the following information.

Linguistic information

Fujisaki defined the linguistic information as “symbolic information that is represented

by a set of discrete symbols and rules for their combination” [41]. The human voice is a

medium on which spoken words are carried. It is an acoustic signal which is used by a

language to communicate with other people (who at least understand the language).

Non-linguistic information

Speech is a natural way of communication between people. Besides the words that are

said, it contains much other information. When listening to a voice, we perceive not only

what is said but also how it is said. The way of speaking conveys a lot of information

that is automatically processed in our brains to give an overall impression of the message

we hear. The information hidden in the words is called non-linguistic information. The

non-linguistic information “concerns such factors as the age, gender, idiosyncrasy, and

physical and emotional states of the speaker, etc.” [41]. The non-linguistic information

can be further classified as follows.

• Identity information. This information help us to identify who speaking. Each

person has own characteristics of articulation, such as the size of the vocal tract

and larynx. When people produce speech signals, identity information is contained

in speech signals. Listeners can determine the gender, and the age of the speaker

from voice. Apart from that, listeners may realize where the speaker comes from,

due to the specific pattern of pronunciation which is related to some regional factors

(accents).

• Affective information This information in the voice is directly related to the

feeling, mood and tone of the speaker. Usually it is paired with observable external

manifestations. Affective information in the voice occurs when there are changes in

the acoustic parameters induced by the autonomic influence and specific patterns of

muscular contraction corresponding to various affective states. Affective information

is probably the most important study field in emotional speech analysis. Not just

because it influences the way we speak but it also dictates the way our speech

organs produces the sound. Therefore, it can be implied that there is a strong

relation between the human voice and human emotion.

2.2 The source-filter model for speech production

Obviously, there is no single representation and processing system which are optimal for

everything. In this section, we give a brief introduction to the source-filter model for

speech production, which forms the basis for many speech production models, including

the methods used in this research.
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Figure 2.2: Block diagram of simplified model for speech production.

In 1960, Fant [39] introduced the source-filter model for speech production. This model

has become a very useful tool for speech analysis and applications such as vocoders, speech

synthesis, speech coding, speech modification, speech enhancement. The source-filter the-

ory hypothesizes that an acoustic speech signal can be seen as a source signal (the glottal

source, or noise generated at a constriction in the vocal tract), filtered with the reso-

nances in the cavities of the vocal tract downstream from the glottis or the constriction.

Therefore, a speech signal is represented as follows.

S(z) = E(z)G(z)V (z)R(z) (2.1)

where S(z) is the acoustic speech waveform, E(z) is partial realization of a white noise

process for an unvoiced sound or a discrete-time impulse train of period for a voiced

sound, G(z) is the glottal waveform, V(z) is the vocal tract filter, and R(z) is the radiation

impedance.

Fant demonstrated that by modeling the vocal tract as a series of concatenated, lossless

acoustic tubes, a linear model for speech production can be derived. As shown in the block

diagram in Figure 2.2, the excitation of this filter is either an impulse train for producing

voiced speech and zero mean, unit variance, Gaussian noise for unvoiced speech. For

voiced speech, the period of the impulse train corresponds to the pitch, T0, of the speaker.

In most of the speech modification algorithms, the radiation part and the vocal tract

part are interchanged so the input to the vocal tract transfer function is a differentiated

voice source waveform. In some cases, such as in linear prediction analysis, it is convenient

to combine the glottal pulse, radiation, and vocal tract components all together and

represent them as a single transfer function, H(z), as follows.

H(z) = G(z)V (z)R(z) (2.2)

It should be noted that the source-filter model has got some limitations, and does

not account for all types of speech production. In reality, the vocal tract is not lossless.
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Additionally, sounds produced by the nasal tract are not provided in this model. Also,

there are certain forms of speech, such as voiced fricatives, which require dual excitation

modes. However, this model forms the foundation for later models which have attempted

to account for additional factors.

2.3 Linear prediction model

One of the most powerful speech analysis techniques is the linear prediction (LP) model.

This model is an early method originally developed for speech coding and compression.

Because of the special properties of this method, it can also be used for spectral envelope

estimation. LP represents the spectral envelope as an all-pole filter. This representation

is based on the concatenated lossless acoustic tube model. In this model, the composite

spectral effects of glottal excitation, vocal tract, and lip radiation are represented by a

time-varying all-pole filter with the transfer function H(z) of the form.

H(z) =
S(z)

U(z)
=

G

1−∑p
i=1 aiz−i

(2.3)

where S(z) and U(z) are the z-transforms of output and input signals, respectively. G

denotes the gain of the filter. If the order p of the LP filter is high enough to capture the

spectral envelope of speech, this all-pole model performs a good reconstruction of speech

for all speech sounds when it is excited by an accurate enough input signal (excitation).

In the simplest synthesis structure, the filter is excited by an impulse train for voiced

speech and by random noise for unvoiced speech. The main advantage of this model is

that the filter, ai, and gain parameter, G, can be estimated in a computationally efficient

manner using linear predictive analysis.

The basic idea behind the LP model is that a given speech sample at time n, s(n),

can be approximated as a linear combination of the past p speech samples, as follows.

s(n) ≈ a1s(n− 1) + a2s(n− 2) + ... + aps(n− p) =

p∑
i=1

ais(n− i) (2.4)

where ai(1 ≤ i ≤ p) are assumed constant over the speech analysis frame.

In source-filter model, the speech samples s(n) are related to the excitation u(n) by

the following equation.

s(n) =

p∑
i=1

ais(n− i) + Gu(n) (2.5)

A linear predictor with prediction coefficients, ai, is defined as a system whose output

is

ŝ(n) =

p∑
i=1

ais(n− i) (2.6)

The prediction error, e(n), is defined as
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e(n) = s(n)− ŝ(n) = s(n)−
p∑

i=1

ais(n− i) (2.7)

Eq. (2.7) implies that the prediction error is the output of a system with the transfer

function given by

A(z) = 1−
p∑

i=1

ais(n− i) (2.8)

The prediction error filter, A(z), is an inverse filter for the system, H(z), as follows.

H(z) =
G

A(z)
(2.9)

The basic problem of linear prediction analysis is to determine the optimum set of

prediction coefficients, ai, from speech signal, s(n). Because of the time varying charac-

teristics of speech, prediction coefficients are estimated over short-time frames of speech

of duration of approximately 20-30 ms. The evaluation of ai involves the minimization of

the prediction error E(n) for a window of speech around the sample of index n.

En =
∑
m

e2
n(m) (2.10)

=
∑
m

(sn(m)− ŝn(m))2 (2.11)

=
∑
m

(
sn(m)−

p∑
i=1

aisn(m− i)

)2

(2.12)

We can find the values of ai that minimize En in Eq. (2.12) by setting ∂En

∂aj
= 0 for

j = 1, 2, ..., p, and we obtain the following equations.

∑
m

sn(m− j)sn(m) =

p∑
i=1

ai

∑
m

sn(m− j)sn(m− i) 1 ≤ j ≤ p (2.13)

If we define

φn(j, i) =
∑
m

sn(m− j)sn(m− i) (2.14)

Eq. (2.13) can be written as follows.

p∑
i=1

aiφn(j, i) = φn(j, 0) j = 1, 2, ..., p (2.15)

The linear system of equations given in Eq. (2.15) can be solved to determine the LP

coefficients, ai. The quantities φ(j, i) can be calculated either using the autocorrelation

method [84, 85, 88] or the covariance method [6].
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Line spectral frequency (LSF)

In this subsection, we briefly introduce the line spectral frequency (LSF) coefficients which

are discussed more often in this dissertation.

LP coefficients have other representations which are directly derived from the LP

coefficients: line spectral frequencies (LSF), reflection coefficients (RC), autocorrelations

(AC), log area ratios (LAR), impulse responses of LP synthesis filter (IR), etc. They

effectively have an one-to-one relationship with the LP coefficients, and they preserve all

the information from the LP coefficients. Among them, some are computationally efficient.

Some of them have special features which make them attractive for different purposes.

For the purpose of spectral modification, among LP representations, LSF coefficients have

some advantages as follows.

• The LSF coefficients have locality property. The locality requirement states that it

is possible to achieve a local change of the spectral envelope, i.e. without affecting

the intensity of frequencies further away from the point of manipulation. Ideally, the

representation would fulfill the requirement of orthogonality, where one component

of the spectral envelope can be changed without affecting the others at all. An

adverse alteration of one LSF coefficient results in a spectral change only around

that frequency [117].

• The LSF coefficients correspond to the bandwidths and approximate locations of the

formant frequencies. Hence, we can directly obtain the information about formant

locations and bandwidths from the LSF coefficients.

• The LSF’s movements in time are more predictable and gradual compared to LP

coefficients. Therefore, the LSF coefficients have been found to be suitable as an

input of the temporal decomposition algorithm [5], which is a technique we employ

in this dissertation.

• Stability check is easy. If the LSF coefficients are in ascending order in the range

[0,π], the resulting filter is guaranteed to be stable.

We briefly describe the procedure to calculate LSF coefficients. The more details of

this procedure can be referred to [60, 138]. It has been previously mentioned that the

prediction error filter or the LP analysis filter A(z) can be expressed in terms of the LP

coefficients (direct form predictor coefficients) ai in the following form:

A(z) = 1−
p∑

i=1

aiz
−i. (2.16)

The LSF coefficients are calculated using a symmetric and an anti-symmetric poly-

nomial obtained from A(z). The symmetric polynomial, P (z), and the anti-symmetric

polynomial, Q(z), are obtained from A(z) as follows.

P (z) = A(z) + z−(p+1)A(z−1) (2.17)

Q(z) = A(z)− z−(p+1)A(z−1) (2.18)
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P (z) and Q(z) satisfy three conditions below [137].

• All the roots of P (z) and Q(z) polynomials lie on the unit circle.

• Roots of P (z) and Q(z) are interlaced.

• The minimum phase property of A(z) can be preserved, if the first two properties

are intact after quantization or interpolation.

From the first property, we see that the roots of P (z) and Q(z) can be expressed in terms

of wi (as ejwi). These wi are called the LSFs. The LSF parameters may be calculated from

Eqs. (2.17) and (2.18) using several methods. Soong and Juang [138] computed the LSF

parameters by applying a discrete cosine transformation, and Kabal and Ramachandran

[60] used Chebyshev polynomials.

2.4 Temporal decomposition

As mentioned above, one of issues of spectral modification methods is that there are dis-

continuities when unexpected modifications happen. To solve this issues, in our disserta-

tion, we employ the temporal decomposition (TD) [5] as an analysis/synthesis framework.

This section introduces the temporal decomposition technique, and the modified restricted

temporal decomposition (MRTD), which is one of improvements of the TD algorithm, and

is employed in this dissertation.

2.4.1 Introduction

In 1983, a new technique for efficient coding of linear predictive coding (LPC) parameters,

i.e. spectral parameters, was introduced by Atal [5]. Considering that speech events do not

occur at uniformly spaced time intervals and that articulatory movements are sometimes

fast, sometimes slow, he concluded that uniform time sampling of speech parameters

is not efficient. Thus, he proposed the temporal decomposition (TD) to represent the

continuous variation of these parameters as a linear-weighted sum of a number of discrete

elementary components. In other words, the observed spectral parameter vectors are

approximated by a linear combination of a number of vectors of the same dimension

called event targets. The interpolation functions used in this approximation are later

referred to as event functions. The computational procedure of Atal’s method includes

three main steps as follows.

1. Detection of event locations by expressing the event functions as a linear combi-

nation of orthogonal functions using singular value decomposition (SVD) of the

spectral parameter matrix.

2. Computation of event functions by basing on the minimization of a compactness

measure of event functions.

3. Calculation of event targets by minimizing the mean squared error between the

original and reconstructed spectral parameters.
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Although efficient speech coding was his primary objective, the concept of temporal

decomposition of speech has attracted many researchers in different application areas,

such as speech coding or voice storage [5, 7, 8, 9, 10, 24, 25, 45, 47, 48, 69, 70, 79, 102,

112, 113, 127], speech recognition [68, 89, 115, 153, 154, 155], speech segmentation [11],

and speech synthesis [4, 18, 19], speaker identification [111], voice morphing [135], speech

modification [103, 105, 106, 107, 108, 109].

2.4.2 Atal’s method of temporal decomposition

Temporal decomposition of speech [5] was first used as a method for efficient coding

of LPC parameters. Suppose that a given speech utterance has been produced by a

sequence of K movements aimed at realizing K acoustic targets. Let us denote the

speech parameters corresponding to the kth target by ak, and the temporal evolution of

this event by a function, φk(n). The frame number n varies between 1 and N , the number

of frames in the speech segment. In temporal decomposition of speech, the observed

speech parameters, y(n), are approximated by ŷ(n), a linear combination of event targets

as follows:

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (2.19)

where

ak = [a1k a2k · · · aPk]
T

y(n) = [y1(n) y2(n) · · · yP (n)]T

ŷ(n) = [ŷ1(n) ŷ2(n) · · · ŷP (n)]T

The superscript T on a vector or matrix means its transpose. In matrix notation, Eq.

(2.19) can be written as

Ŷ = AΦ (2.20)

where P is the dimension of the spectral parameters, Ŷ is a P × N matrix whose nth

column is ŷ(n), A is a P ×K matrix whose kth column is ak, and Φ is a K ×N matrix

whose kth row is φk.

In Eqs. (2.19) and (2.20), both the event targets A and event functions Φ are unknown,

only the speech parameter sequence of a given utterance Y is known. To find A and Φ,

Y is to be decomposed through orthogonalization [5, 155]. The analysis procedure in the

original TD method [5] is described as follows. The more details of this procedure can be

referred to [5].

First, the spectral parameter matrix of a windowed speech segment of about 200-300

ms is decomposed into two orthogonal matrices and a diagonal matrix of eigenvalues,

using the so-called singular value decomposition.

Y T = UDV T
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where Y T is the N × P spectral parameter matrix, U is a N × P orthogonal matrix,

V is a P × P orthogonal matrix, and D is a diagonal matrix of eigenvalues. N is the

number of frames in the windowed speech segment, and P is the order of the spectral

parameters. This allows the event functions to be represented as a linear combination

of a set of orthogonal functions, and also allows the number of events, M, to be fixed in

the windowed speech segment under analysis, by taking into account only the number of

significant eigenvalues. A window of about 200-300 ms often gives M = 5.

φk(n) =
M∑
i=1

bkiui(n)

where ui(n) is the element (n, i) of the matrix U and bki are a set of coefficients.

Next, the nearest event function, φ(n), to the center of the windowed speech segment,

n = nc, is evaluated by considering the minimization of a distance measure, θ(nc).

θ(nc) =

√∑N
n=1(n− nc)2φ2(n)∑N

n=1 φ2(n)

Minimization of ln(θ(nc)), with respect to the coefficients bi leads to an eigenvector

problem of a matrix R ∈ RK×K .

Rb = λb

where the element (i, r) of the matrix R is given by

Rir =
N∑

n=1

(n− nc)
2ui(n)ur(n),

and b is the vector of coefficients bi. The solution corresponding to the smallest eigenvalue

λ provides the optimum b.

To analyze a complete utterance the above procedure should be repeated with windows

located at intervals through out the utterance. In Atal’s method, to ensure that no event

function is missed, the window is required to be shifted by a small interval, i.e. by a frame

interval. Therefore, if the total number of windows is L, SVD and eigenvector solving

should be performed L times. SVD is a highly involved computational procedure and

this is known to be the major reason for the high computational complexity of the Atal’s

method.

Since the window is shifted by a small interval at each time, the same event function is

generally found for several adjacent windows. To find the locations of the event functions,

and to reduce the total set of event functions, a reduction algorithm based on a zero

crossing criterion of a timing function, ν(l), is incorporated.

ν(l) =

∑N
n=1(n− l)φ2(n)∑N

n=1 φ2(n)

The function ν(l) crosses the ν(l) = 0 axis from positive to negative at each location
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l which equals the location of one of the φk(n) for some k.

By considering the minimization of the squared error between reconstructed and orig-

inal spectral parameters, Ei, with respect to aik’s, the spectral targets, ak, are determined

in the following expression.

Ei =
N∑

n=1

(
yi(n)−

K∑

k=1

aikφk(n)

)2

, 1 ≤ i ≤ P

where N and K are the total number of frames and events in the entire utterance, respec-

tively. Finally, an iterative refinement procedure is used to improve the event function

shapes and to reduce the reconstruction error. The refined set of event functions are

evaluated by minimizing the reconstruction error, En, of spectral vectors.

En =
P∑

i=1

(
yi(n)−

K∑

k=1

aikφk(n)

)2

, 1 ≤ n ≤ N

The resultant φk(n)’s are used to obtain an even better estimates of the targets, ak’s.

The procedure is repeated until both φk(n)’s and ak’s converge to a set of stable values.

2.4.3 Modified restricted temporal decomposition (MRTD)

Although the original implementation of temporal decomposition of speech [5] was math-

ematically solid, it is known to have the following two major drawbacks: (i) The method

is computationally costly, making it impractical; and (ii) High parameter sensitivity of

the number and locations of the events. In other words, they are very sensitive to some

trivial changes in the analysis parameters [87, 155].

In the literature, the TD algorithm has been attractive to many researchers, and

numerous improvements of TD have been proposed. Studies focus on solving two main

drawbacks, high computational costs, and high parameter sensitivity to the number and

locations of events. To alleviate the complexity problem with the original method, a

number of modifications has been proposed in the literature [4, 9, 11, 24, 32, 45, 46, 69,

102, 112, 113, 115, 136, 155]. To alleviate the sensitivity problem with Atal’s method,

some solutions have also been proposed, such as [102, 112, 113, 155].

In this dissertation, we employ the modified restricted temporal decomposition (MRTD)

algorithm [113]. The reasons for using the MRTD algorithm in this work are twofold:

(i) the MRTD algorithm enforces a new property on event functions, named the “well-

shapedness” property, to model the temporal structure of speech more effectively [113];

(ii) event targets can convey the speaker’s identity [111].

In this subsection, we briefly describe the MRTD. The details of MRTD algorithm can

be referred to [110]. The block diagram of the MRTD algorithm is given in Figure 2.3.

In the MRTD algorithm, some following constraints are applied.
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Figure 2.3: Block diagram of the MRTD algorithm [110].

φk+1(n)

φk (n)

nnk k+1n

Figure 2.4: Example of two adjacent event functions in the second order TD model.

Restricted second order TD model

Assume that the co-articulation in speech production described by the TD model in terms

of overlapping event functions is limited to adjacent events, the second order TD model

[9, 115, 136], where only two adjacent event functions can overlap as depicted in Figure

2.4, is given by Eq. (2).

ŷ(n) = akφk(n) + ak+1φk+1(n), nk ≤ n < nk+1 (2.21)

where nk and nk+1 are the locations of event k and event (k + 1), respectively.

The so-called restricted second order TD model was utilized in [32, 69] and this work

with an additional restriction to the event functions in the second order TD model that

all event functions at any time sum up to one. The argument for imposing this constraint

on the event functions can be found in [32]. Eq. (2) can be rewritten as follows.

ŷ(n) = akφk(n) + ak+1 (1− φk(n)) , nk ≤ n < nk+1 (2.22)

Determination of event functions

Assume that the locations nk and nk+1 of two consecutive events are known. Then, the

right half of the kth event function and the left half of the (k + 1)th event function can be

optimally evaluated by using ak = y(nk) and ak+1 = y(nk+1). The reconstruction error,
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Figure 2.5: The path in parameter space described by the sequence of spectral parameters
y(n) is approximated by means of straight line segments between breakpoints.

E(n), for the nth spectral parameter vector is

E(n) = ‖ y(n)− ŷ(n) ‖2

= ‖ (y(n)− ak+1)− (ak − ak+1)φk(n) ‖2 (2.23)

where, nk ≤ n < nk+1. Therefore, φk(n) should be determined so that E(n) is minimized.

Geometric interpretation of TD

TD yields an approximation of a sequence of spectral parameters by a linear combination

of event vectors. Since TD’s underlying distance metric is Euclidean, a natural require-

ment is to have this approximation be invariant with respect to a translation or rotation of

the spectral parameters. Dix and Bloothooft [32] considered the geometric interpretation

of TD results and found that TD is rotation and scale invariant, but it is not translation

invariant.

To overcome this shortcoming and describe TD as a breakpoint analysis procedure

in a multidimensional vector space, where breakpoints are connected by straight line

segments, Dix and Bloothooft [32] enforced two constraints on the event functions: (i) at

any moment of time only two event functions, which are adjacent in time, are non-zero;

and (ii) all event functions at any time sum up to one. In other words, the restricted

second order TD model was utilized in [32]. These constraints are needed to approximate

the path in parameter space by means of straight line segments between breakpoints (see

Figure 2.5).

Geometrically speaking, the two event vectors ak and ak+1 define a plane in P-

dimensional vector space. The determination of event functions φk(n) and φk+1(n) in

the interval [nk, nk+1] is now depicted in Figure 2.6(a) as the projection of vector y(n)

onto this plane. Clearly the following holds: φk(nk) = 1, φk(nk+1) = 0, and 0 ≤ φk(n) ≤ 1

for nk ≤ n ≤ nk+1.

While n ranges from nk to nk+1, the movement of vector y(n) is described by the

transition of ŷ(n) along the straight line segment connecting two breakpoints ak and

ak+1. As time is moving forward, the transition of ŷ(n) should be monotonic.
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Figure 2.6: Determination of the event functions in the transition interval [nk, nk+1]. The
point of the line segment between ak and ak+1 (a), between ŷ(n − 1) and ak+1 (b) with
minimum distance from y(n) is taken as the best approximation.
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Figure 2.7: Examples of a well-shaped event function (a) and an ill-shaped event function
(b).

New determination of event functions

The TD model is based on the hypothesis of articulatory movements towards and away

from targets. An appealing result of the above properties of event functions is that one

can interpret the values φk(n) as a kind of activation values of the corresponding event.

During the transition from one event towards the next the activation value of the left event

decreases from one to zero, whilst the right event increases its activation value from zero

to the value of one. As mentioned earlier, to model the temporal structure of speech more

effectively no backwards transitions are allowed. Therefore, each event function should

have a growth cycle; during which the event function grows from zero to one and a decay

cycle; during which the event function decays from one to zero. In other words, each

event function should have only one peak, which is called the well-shapedness property.

On the contrary, an ill-shaped event function can be viewed as an event function which

has several growth and decay cycles, i.e. having more than one peak.

Figure 2.7 shows examples of well-shaped and ill-shaped event functions. It can be seen

that well-shaped event functions are desirable from speech coding point of view because

the well-shapedness property helps reduce the quantization error of event functions when

vector quantized.

However, the determination of event functions in [32] has not guaranteed the well-
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shapedness property for them since their changes during the transition from one event

towards the next may not be monotonic, which results in ill-shaped event functions. In

particular, one may wonder that if an event function has some values of one interlaced by

other values, causing the next event function to have more than one lobe, which is not

acceptable in the conventional TD method. Ill-shaped event functions are also undesirable

from speech coding point of view. They increase the quantization error when vector

quantized because the uncharacteristic valleys and secondary peaks are not normally

captured by the codebook functions. This is because an event function is quantized by

its length and shape in the interval between its and the next event function’s locations.

In that interval, a well-shaped event function is always a decreasing function while an

ill-shaped event function is always non-monotonic.

Taking into account the above considerations, we have modified the determination of

event functions corresponding to the point of the line segment between ŷ(n− 1) and ak+1

(see Figure 2.6(b)) instead of ak and ak+1 as considered in [32], with minimum distance

from y(n). In mathematical form, the above determination of event functions can be

written as

φk(n) =





1− φk−1(n), if nk−1 < n < nk

1, if n = nk

min(φk(n− 1), max(0, φ̂k(n))), if nk < n < nk+1

0, otherwise

(2.24)

where

φ̂k(n) =
〈(y(n)− ak+1) , (ak − ak+1)〉

‖ ak − ak+1 ‖2 (2.25)

Here, < ., . > and ‖ . ‖ denote the inner product of two vectors and the norm of a vector,

respectively.

This modification ensures that the value of event function φk at n is always not greater

than the value of event function φk at n − 1 in the interval [nk; nk+1] (see the third line

of Eq. (5)), and thereby the well-shapedness property is guaranteed. It should be noted

that in [32], φk(n) is determined as min(1, max(0, φ̂k(n)), if nk < n < nk+1.

Identification of event location

In the MRTD algorithm, the local minima of the spectral feature transition rate (SFTR)

based on LSF parameters is used as the initial locations of events [69, 102]. SFTR is

calculated as follows.

SFTR : s(n) =
P∑

i=1

ci(n)2, 1 ≤ n ≤ N (2.26)

where

ci(n) =

∑M
m=−M myi(n + m)∑M

m=−M m2
, 1 ≤ i ≤ P (2.27)

The window size, 2M , of SFTR analysis is the only parameter that effects the initial
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Figure 2.8: Example of event targets and event functions which are decomposed from the
MRTD algorithm.

number and locations of events.

An example of event targets and event functions which are decomposed from the

MRTD algorithm is shown in Figure 2.8.

MRTD of excitation parameters

In the MRTD algorithm, the same event functions evaluated for the spectral parameters

are also used to describe the temporal pattern of the excitation parameters. Let b(n) be

an excitation parameter, i.e. F0, gain, and aperiodic component (AP), in the nth frame.

b(n) can be approximated by using event target of excitation bk and its event function

φk(n), as follows.

b̂(n) =
K∑

k=1

bkφk(n), 1 ≤ n ≤ N (2.28)

where φk(n) is estimated from Eq. (2.19).

2.5 Speech spectrum modeling using Gaussian mix-

ture model

2.5.1 Introduction

To perform spectral modification, we first represent the speech spectrum by using para-

metric or non-parametric methods. For the parametric representations, such as LP co-

efficients, spectral modification is done by changing LP coefficients [56, 94, 99]. For the

non-parametric representations, spectral modification is performed by applying directly

frequency warping techniques to the spectral envelope [120, 151].

Parametric methods for spectral modification, such as representing the spectral enve-

lope by using LP coefficients, is flexible. They change properties of formants to perform
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spectral modification. However, there is a number of problems associated with the use of

formants as features. For example, formants are often poorly defined in certain types of

phonemes, such as fricatives or nasalized consonants. LP-based methods do not extract

any amplitude information of formants from the speech signal, since it is difficult to con-

trol formant amplitudes when manipulating the formant frequencies. LP-based methods

also meet a pole interaction. Moreover, the accuracy of the LP-based methods can hardly

be high because it is not always clear to determine whether a root obtained forms a for-

mant or just shapes the spectrum [29]. These drawbacks prevent performing high-quality

spectral modification from using representations of LP coefficients.

Although frequency warping functions, which perform spectral modification directly

on the speech spectral envelope [120, 151], give high quality, they are non-parametric

methods. Therefore, it is difficult to emphasize on specific peaks, such as converting a

speaking voice into a singing voice, or merging or splitting spectral peaks.

In 1996, Zolfaghari and Robinson [167] proposed a new statistical method for esti-

mating parameters of Gaussian mixture model (called spectral-GMM parameters in this

dissertation) from the speech spectrum. Originally proposed as a parametric method

for representing the speech spectrum, it was later developed as a low-bit speech codec

[167, 168]. The technique assumes that a set of Gaussian components can represent a dis-

tribution based on the spectral envelope. The GMM parameters are iteratively estimated

using the expectation maximization (EM) algorithm [30]. The spectral-GMM parameters

have flexibility to model and control the speech spectrum.

In following subsections, we introduce the technique for modeling a speech spectrum

using Gaussian mixture model [140, 164, 167] and related issues. The more details of this

technique can be found in [140, 164].

2.5.2 Estimation of spectral-GMM parameters

The main purpose of this subsection is to find an optimal parameter set of Gaussian

mixture model to fit to a speech spectrum. The parameters of a probability density

function are the number of Gaussian components M, the mean µm, the standard deviation

σm, and the weighting factors αm. The flowchart to estimate spectral-GMM parameters

from a speech signal is shown in Figure 2.9, and the procedure of estimation of spectral-

GMM parameters is described as follows.

In a single frame, the spectrum X(ejωn) is viewed as a probability distribution P (xk),

where xk are the bin numbers (k = {1, ..., N}) and 2N is the FFT size. P (xk) is simply a

normalized spectral density which is to be approximated by a Gaussian mixture model.

Figure 2.10 illustrates P (xk) for a single frame.

Let xk be the observed incomplete data and (xk, yk) be the complete data, where yk is

an unobservable integer between 1 and M indicating the number of Gaussian components.

We optimize the expected complete data log likelihood instead of the actual complete data

log likelihood, since we can not observe the values of variables yk. Auxiliary function Q

is the expected complete data log likelihood for multiple observed data X = {x1, ..., xN}
and multiple unobserved data Y = {y1, ..., yN}. We assume that a parametric family of

mixture probability density functions is given, and a particular Φ is the parameter value
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Figure 2.9: Block diagram of estimation of spectral-GMM parameters from speech signals

to be estimated.

In this model, each bin xk is weighted by its corresponding intensity P (xk), and we

can write the incomplete data log-likelihood as

L(X, Φ) = log

[ N∏

k=1

f(xk|Φ)P (xk)

]

=
N∑

k=1

P (xk)logf(xk|Φ) (2.29)

The log-likelihood of one complete data point (xk, yk) is obtained as

f(xk, yk|Φ) = αyk
f(xk|yk, φyk

) (2.30)

where αyk
is the a priori probability (the mixture weight). A log-likelihood of one incom-

plete data point xk is

f(xk, Φ) =
∑
yk

f(xk, yk|Φ) (2.31)

and the posterior probability is formalized by
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Figure 2.10: Probability distribution P (xk).

P (yk|xk, Φ) =
αyk

f(xk|yk, φyk
)∑

yk
αyk

f(xk|yk, φyk
)

(2.32)

Hence the Q-function can be represented as

Q(Φ, Φ) =
N∑

k=1

P (xk)

{∑
yk

P (yk|xk, φyk
)log[αyk

f(xk|yk, φyk
]

}
(2.33)

Since the inner summation is over all yk and yk ∈ 1...M for each k, we can denote yk by

i, that is yk = i if the kth sample was generated by the ith mixture. Splitting the two

log-terms, the Q-function can be written as.

Q(Φ, Φ) =
M∑
i=1

{ N∑

k=1

P (xk)P (i|xk, φi)

}
logαi +

+
M∑
i=1

{ N∑

k=1

P (xk)P (i|xk, φi)logf(xk|i, φi)

}
(2.34)

The Gaussian distribution is used as the density, and is described as follows.
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f(xk|i, φi) = N (xk, µi, σ
2
i ) =

1√
2πσ2

i

exp

{
−(x− µi)

2

2σ2
i

}

where µi is the mean, and σi is the standard deviation. Note also that the mixture weights

of the mixture model satisfy.

M∑
i=1

αi = 1; αi ≥ 0 (2.35)

Maximization of the Q-function is achieved by maximizing each term in Eq. (2.34) with

respect to αi and φi. The following equation is obtained from the second term of Eq.

(2.34)

∂Q1(Φ, Φ)

∂φi

=
N∑

k=1

P (xk)P (i|xk, φi)
∂

∂φi

[logf(xk|i, φi]

= 0 (2.36)

Differentiating for µi, and σ2
i in Eq. (2.36), and setting it equal to zero, we obtain new

parameter estimates µi, and σ2
i .

µi =

∑N
k=1 P (xk)P (i|xk, φi)xk∑N

k=1 P (xk)P (i|xk, φi)
(2.37)

σ2
i =

∑N
k=1 P (xk)P (i|xk, φi)(xk − µi)

2

∑N
k=1 P (xk)P (i|xk, φi)

(2.38)

From the first term of Eq. (2.34), the mixture weights are formulated as follows

αi =
1

N

N∑

k=1

P (xk)P (i|xk, φi) (2.39)

Using the EM algorithm, we can estimate the spectral-GMM parameters to model the

shape and the peaks of the speech spectrum.

2.5.3 Initialization

The EM algorithm [30] is an iterative process. Initialization of EM is a critical issue

because EM converges to a local maximum of the likelihood function: the final estimate

depends on the initialization. Therefore, an important consideration is that the parameter

estimates need to be initialized for the first iteration of the algorithm. The choice of

initial parameters constrains the solution found by the EM algorithm and hence is very

important. There are several options for the choice of initial parameters. In [164, 166],

Zolfaghari et al. presented two methods of initialization of EM algorithm. They include:

• Initializing the means uniformly over the interval. The variances are made significant
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with respect to the interval and the number of Gaussian components in the mixture.

The mixture weights are set equal values.

• The final iteration of the previous frame is used for initializing the current frame.

The second method for choosing the initial values for the EM algorithm has a draw-

back. The estimation of the current frame is poor, if the estimation of the previous frame

is poor. Therefore, in [164, 166], Zolfaghari et al. suggested the combination of two meth-

ods. In [140], via small initial experiment, Stuttle suggested that the good initialization

values for each Gaussian component i in the GMM would be as follows.

µi =
N(i + 0.5)

M
+ 0.5 (2.40)

σ2
i =

N2

M2
(2.41)

αi =
1

M
(2.42)

This initial values are similar to the first method in [164, 166]. In this dissertation,

we employ the initial values in Eqs. (2.40), (2.41), and (2.42).

2.5.4 Issues in estimating spectral-GMM parameters from a

speech spectrum

In the previous subsection, the theory for estimating spectral-GMM parameters from a

speech spectrum was presented. In this subsection, a number of issues with the imple-

mentation of this algorithm is examined.

Spectral smoothing

The characteristic shape of the speech spectrum can give problems for estimating spectral-

GMM parameters. The voiced speech spectrum is characterized by a number of pitch

peaks separated by the fundamental frequency. The choice of initial parameters can

determine the maxima found by the EM algorithm. There exist many local maxima the

EM algorithm could find at each of these pitch peaks. If the pitch peaks are separated

by a high fundamental frequency, a maximum could be found estimating a Gaussian

component to a single pitch peak, and ignoring the adjacent harmonics. The Gaussian

component which models the harmonic has a very small variance, but does not represent

the general spectral envelope. To represent the phonetic class of the speech spectrum,

it is desirable that the GMM models the spectral envelope, and avoids the problem of

components converging upon the pitch peaks.

There are three possible solutions to the problem of the Gaussian components repre-

senting the spectral harmonics:

• Variance flooring: applying a variance floor to the Gaussian components prevents

any component becoming too narrow and representing only a single pitch peak.
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• Spectral smoothing: using a smoothing algorithm, such as the SEEVOC algo-

rithm [118], to remove the pitch or voicing from the spectrum and estimate the

vocal tract function.

• Overlapping bin functions: rather than the FFT bins being represented by a

rectangular histogram function, the bins could be allowed to overlap each other.

This technique can be related to a spectral smoothing approach.

Prior distributions

The technique for estimating spectral-GMM parameters from a spectral histogram in

Section 2.5.2 places no prior constraint on the parameters extracted. Small changes in

the spectral histogram could lead to large changes in the solutions found by the EM

algorithm. It is possible that the estimated parameters could vary greatly between two

frames that appear similar. Therefore, some constraints, or priors, should been applied

on the locations of the peaks modeled.

Issues from the EM algorithm

When estimating the spectral-GMM parameters, we employ the EM algorithm [30]. The

configuration of the EM algorithm, i.e. the number of Gaussian components, the initial-

ization, and number of iterations, affects the estimated spectral-GMM parameters. These

issues are described as follows.

• Number of components. One variable to consider in estimating spectral-GMM pa-

rameters from a spectrum is the number of Gaussian components. Note that in-

creasing the number of components leads to better modeling of the speech spectrum.

However, it increases the size of the feature vector, and gives difficulties in control-

ling Gaussian components to alter the characteristic of the spectral envelope.

• Initialization of the EM algorithm. The EM algorithm is sensitive to the values used

to initialize the estimated parameters. The choice of initial parameters affect the

local maxima, and it is an important parameters. In [164], the use of the previous

frame values for the initialization of the spectral-GMM parameters was mentioned.

However, initializing the EM algorithm with the spectral-GMM parameters from the

previous frame causes problems when the speech changes suddenly, such as a plosive

sound. The estimated features respond poorly to rapid changes in the speech. The

mixture weights of some components weights can approach zero and the variances

become very large. When the values are passed onto the next frame, the small

weights and large variances of Gaussian components used to initialize will lead to

the EM algorithm finding a local maximum with the variances approaching infinity

and the priors approaching zero.

• Maximum number of iterations. When estimating spectral-GMM parameters, an-

other important parameter of the EM algorithm is the maximum number of iter-

ations. In general, in terms of the objective function, decreasing the maximum
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number of iterations will yield a less precise estimation, but will take less time, and

increasing the maximum number of iterations will yield a more precise estimation,

but take more time. It should be noted that in some cases, the large maximum num-

ber of iterations only increases precise estimation in term of the objective function.

If too many iterations are used, the model will find local maxima, and ignore esti-

mation of some important features of the speech spectrum (e.g. important spectral

peaks).

2.5.5 Properties of the spectral-GMM parameters

In the previous subsections, we have outlined the technique for extracting spectral-GMM

parameters from a speech spectrum, and some issues of this technique. In this subsection,

we discuss the properties of the spectral-GMM parameters.

Gaussian parameters as formant-like features

The spectral-GMM parameters can be considered to be analogous to a set of formant-like

features [167]. The means, standard deviations, and mixture weights of Gaussian com-

ponents correspond to the formant locations, the formant bandwidths, and the formant

amplitudes, respectively. Once the spectral-GMM parameters have been extracted from

a speech spectrum, they are ordered according to their frequency values. These formant-

like features have been employed in speech recognition [140, 141, 142], and adaptation of

children’s speech [28]. In addition, Qin et al. [121] found out the correspondence between

the mean values of the first Gaussian component and fundamental frequencies.

Flexible control over the speech spectrum

Modeling of speech spectrum using spectral-GMM parameters gives flexibilities to control

the speech spectrum. We present a method for modifying amplitudes of spectral peaks in

Chapter 3, and another method for modifying frequencies of spectral peaks in Chapter 5.

2.6 STRAIGHT

2.6.1 Outline of STRAIGHT

The source-filter model, which separates speech information into mutually independent

filter parameters and source parameters, has been found to produce synthetic speech of

very high quality. However, for such systems to attain this high quality the parameters

need careful attention and hand-editing [165]. The STRAIGHT (Speech Transformation

and Representation using Adaptive Interpolation of weiGHTed spectrum) system [65]

based on the source-filter model allows flexible control of speech parameters. Successive

refinements on extraction procedure of source and spectral parameters enable the total

system to re-synthesize high-quality speech. The STRAIGHT independently allows for

over 600 % manipulation of such speech parameters as pitch, vocal tract length, and

speaking rate, without introducing further degradation due to parameter manipulation.
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Figure 2.11: Schematic structure of STRAIGHT (adapted from [12]).

Although STRAIGHT is basically a channel VOCODER [65], its design objective

greatly differs from its predecessors. We briefly describe the main parts of STRAIGHT.

The detailed mathematical treatment of STRAIGHT can be found in [64, 65]. Figure

2.11 shows the schematic diagram of STRAIGHT. It consists of three key subsystems:

• Source information extractor: Dedicated F0 extractors for STRAIGHT are

based on instantaneous frequency. The fundamental frequency is accurately esti-

mated to smooth out the periodic bouncing in the short-term spectrum using an

F0-adaptive filter.

• Smoothed time-frequency representation extractor: The central feature of

STRAIGHT is the extended pitch synchronous spectral analysis that provides a

smooth artifact-free time-frequency representation of the spectral envelope of the

speech signal. The STRAIGHT spectrum is basically an F0-independent represen-

tation.

• Synthesis engine: It consists of an excitation source and a time varying filter.

The time varying filter is implemented as the minimum phase impulse response

calculated from the smoothed time-frequency representation through several stages

of FFTs.

In this dissertation, we employ STRAIGHT as an analysis/synthesis method for two

main reasons. First, STRAIGHT is an extremely high-quality analysis/modification/synthesis

method [65]. This method has been successfully applied in many speech application ar-

eas, especially in speech modification [66, 81, 104, 107, 108, 121, 146, 147, 148]. Second,
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STRAIGHT uses a pitch-adaptive spectral analysis scheme combined with a surface re-

construction method in the time-frequency plane to remove signal periodicity. This results

in a smooth spectral representation both in the time domain and in the frequency do-

main [65]. It follows that the LSF parameters extracted from the STRAIGHT spectra

are correlated among frames, and thus the corresponding LSF contours are smooth also.

It is not the case of a normal LP analysis method, where LSF parameters are extracted

independently on a frame-by-frame basis.

2.6.2 Derivation of LSF parameters

STRAIGHT is based on a simple channel VOCODER [65]. It decomposes input speech

signals into source information (F0, aperiodic indexes) and spectral information (STRAIGHT

spectral envelope). LSF parameters are extracted from a STRAIGHT spectrum as follows.

The amplitude spectrum X[n], where 0 ≤ n ≤ NF
2

(NF is the number of samples in

the frequency domain), obtained from STRAIGHT analysis is transformed into the power

spectrum using Eq. (2.43).

S[n] = | X[n] |2, 0 ≤ n ≤ NF

2
(2.43)

The ith autocorrelation coefficient, R[i], is then calculated using the inverse Fourier

transform of the power spectrum as follows.

R[i] =
1

NF

NF−1∑
n=0

S[n] exp{j 2πni

NF
}, 0 ≤ i ≤ NF − 1 (2.44)

where S[n] = S[NF − n]. Assuming that the speech samples can be estimated by a P th

order all-pole model, where 0 < P < NF , the reconstruction error is calculated as given

in Eq. (2.45).

GL = R[0]−
P∑

l=1

aP
l R[l] (2.45)

where {aP
l }, l = 1, 2 · · ·P , are the corresponding linear predictive coding (LPC) coeffi-

cients. GL hereafter is referred to as gain. By minimizing GL with respect to aP
l , aP

l could

be estimated. They are then transformed into LSF parameters.

2.7 Summary

In this chapter, we have presented the background for our dissertation. First, we have

briefly described the speech production. We then have given introduction of the source-

filter model for speech production. We also have presented the representation of the vocal

tract filter in the source-filter model, i.e. LP coefficients, and LSF parameters. Last, we

have presented the key details of the temporal decomposition technique, speech spectrum

modeling using spectral-GMM parameters, as well as brief introduction of STRAIGHT.
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Chapter 3

Spectral Modelings for Speech

Modification

The aim of this chapter is to solve the first issue of spectral modification, the lack of effi-

cient spectral modelings for speech modification. In general, speech modification consists

of the process of analyzing a speech signal into a number of parameters, modifying these

parameter values in accordance with a desired goal, and synthesizing the correspondingly

modified speech signal. Therefore, to obtain the high-quality of modified speech, the first

task is to develop a spectral modeling which can allow to perform efficient modification.

This chapter first presents two improvements of the speech spectral envelope modeling us-

ing spectral-GMM parameters. We then introduce a new modeling of the speech spectral

sequence.

3.1 Introduction

Spectral modification techniques are used to perform a variety of modifications to speech

spectra, such as manipulations of the formant structures, amplitude manipulations. Since

spectral processing is closely linked to human perception, it is an effective way to perform

sound processing. It can be applied in many areas. Spectral modification methods are a

powerful technology for customizing Text-to-Speech (TTS) systems, such as by converting

source features to target features [1, 143], changing a male voice into a female voice

and vice versa [77], and applying emotional speech synthesis [66]. Spectral modification

techniques are often applicable to automatic speech recognition tasks [49], and speech

enhancement [15].

The basic idea of spectral processing is to convert a time-domain digital signal into its

frequency-domain representation. Most of the approaches start by developing an analy-

sis/synthesis technique from which the speech signal is reconstructed with minimum loss

of sound quality. Then, the main issues have to be resolved: what kind of representation

and which parameters are chosen for the application of the desired speech processing.

The challenge of spectral modification is to modify the spectral/acoustic features without

degrading the speech quality.

This chapter presents spectral modelings for speech modification. In the first part, we
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present two improvements of modeling of a speech spectral envelope. In the second part,

we propose a new framework for modeling speech spectral sequence.

3.2 Modelings of a speech spectral envelope

3.2.1 Speech spectrum modeling using Gaussian mixture model

One of the most important requirements of spectral modification is that it be flexible

enough to perform a variety of modifications within the spectral envelope. Formant

frequency is one of the most important parameters in characterizing speech, and it also

plays an important role in specifying speaker characteristics. Therefore, using formant

frequency as a parameter can control other features that are directly connected to the

speech production process. Conventional spectral modification methods, such as [94, 99,

151], often control formants to modify the speech spectrum. However, these methods are

limited by their inability to independently control important formant characteristics such

as amplitude and bandwidth, or to control the spectral shape.

Zolfaghari et al. proposed a technique to fit a Gaussian mixture model to a smoothed

magnitude spectrum of a speech signal [166, 167, 170]. This technique is briefly described

as follows.

In a single frame, the normalized spectrum X(ejωn) is viewed as a probability distri-

bution P (X), where X = {x1, ..., xL}, xl (1 ≤ l ≤ L) is the frequency bin number, and

2L is the FFT size. P (xl) is simply a spectral density. The overall density of a Gaussian

mixture model is written by

u(x) =
M∑

m=1

αmN (x; µm, σ2
m) (3.1)

where M is the number of mixture components,N (x; µm, σ2
m) = 1√

2πσ2
m

e
− (x−µm)2

2σ2
m is the mth

local Gaussian component, µm, σm are called mean and standard deviations of Gaussian

component m respectively, and {αm}M
m=1 are mixture weights satisfying 0 ≤ αm ≤ 1 and∑M

m=1 αm = 1.

Zolfaghari et al. assumed that formants could be represented by Gaussian distribu-

tions, and a speech spectrum could be represented by a Gaussian mixture model. The

EM algorithm [30] is often used to optimize the log likelihood of the histogram of the

speech spectrum at time t with respect to the model parameters u(x) in Eq. (3.1). The

estimated means, standard deviations, and mixture weights of the Gaussian components

can be related to the locations, bandwidths, and amplitudes of the formants, respectively

[167]. The ability to independently control the parameters of each Gaussian component

enables precise estimation of the spectral envelope, enables a wide variety of modifications,

and enables independent control of the formants.
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Figure 3.1: A Gaussian mixture model (M=8) fits to a STRAIGHT spectral envelope.

3.2.2 Smoothed-spectrum representation by STRAIGHT

The characteristic shape of the speech spectrum can present problems for estimating a

set of Gaussian components. The voiced speech spectrum is characterized by a number

of pitch peaks separated by the fundamental frequency. If the pitch peaks are separated

by a high fundamental frequency, a maximum can be found by estimating a Gaussian

component for a single-pitch peak, and ignoring the adjacent harmonics. This results

in a very small variance for that Gaussian component. Therefore, the high-quefrency

effects of the excitation from the spectrum are removed to improve the representation

of the spectral envelope by the GMM fitting method. In this dissertation, we model a

STRAIGHT spectral envelope using spectral-GMM parameters. STRAIGHT [65] uses a

pitch-adaptive spectral analysis scheme combined with a surface reconstruction method

in the time-frequency plane to remove signal periodicity. This results in a smooth spectral

representation free of glottal excitation information. Figure 3.1 shows that a Gaussian

mixture model of eight Gaussian components can fit to a STRAIGHT spectral envelope

(at 12 kHz sampling frequency) well.

3.2.3 Improvement of spectral peak estimation using Gaussian

mixture model

The ability to independently control the parameters of each Gaussian component enables

precise estimate of the spectral envelope, enables a wide variety of modifications, and en-

ables independent control of the formants. However, the original methods [166, 167, 170]

do not ensure an one-to-one correspondence between spectral peaks and Gaussian compo-
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Figure 3.2: Illustration of the Empirical rule of Gaussian distribution.

nents. This creates difficulties in modifying the speech spectral envelope in both dimen-

sions, frequency and amplitude. To overcome this drawback, we propose an improvement

of modeling speech spectral envelope for speech modification. The aim of our proposed

method is not only to model the speech spectral envelope well, but also to ensure an

one-to-one correspondence between spectral peaks and Gaussian components. We de-

scribe one important characteristic Gaussian distribution , called “68-95-99.7 rule” or the

“empirical rule”, which we used to solve these problems. The rule is described as follows.

About 68% of values drawn from a Gaussian distribution N (z; µ, σ2) fall in the interval

µ− σ to µ + σ, about 95% of the values fall in the interval µ− 2σ to µ + 2σ, and about

99.7% fall in the interval µ− 3σ to µ+3σ. This characteristic is illustrated in Figure 3.2.

Based on this geometric characteristic, we develop an improvements to model a speech

spectral envelope as follows, and the diagram of our method is shown in Figure 3.3.

First, from a speech spectral envelope, we start to estimate spectral-GMM param-

eters with the initial 18 Gaussian components. The requirement of the initial number

of Gaussian components is that the number of components be high enough to model

the speech spectral envelope well. Note that the initial Gaussian components depend on

the sampling frequency. We assume that if the linear sum of two Gaussian components

has only one peak, these two Gaussian components are dependent, and also that, if the

linear sum of two Gaussian components has two peaks, these two Gaussian components

are independent. After we get the spectral-GMM parameters in the first iteration, we

check whether or not all Gaussian components are independent components. If not, we

divide the spectral-GMM parameters into two groups. The first group models the spec-

tral shape of the speech spectral envelope, and the other group models the spectral peaks

of the speech spectral envelope. On the basis of the geometric characteristics of normal

distribution, i.e. the empirical rule, we assume that a Gaussian component m is a spec-

tral shape factor if there are at least two other Gaussian components located between

[−3µm, 3µm], where µm is the mean of this Gaussian component m. If two Gaussian com-

ponents i, j are dependent spectral peaks, we merge these two Gaussian components by

the following equations.

µij =
αiµi + αjµj

αi + αj

(3.2)
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Figure 3.3: Diagram of our proposed method for modeling the speech spectral envelope.

σ2
ij =

αi(σ
2
i + (µij − µi)

2) + αj(σ
2
j + (µij − µj)

2)

αi + αj

(3.3)

where µi, σi, αi and µj, σj, αj are the means, standard deviations, and mixture weights of

Gaussian components i and j, respectively. After merging Gaussian components, a new

process of estimating spectral-GMM parameters is executed, with the condition that the

initial parameters for the new process are current Gaussian components. The process of

spectral-GMM estimation continues to iterate, and terminates when all Gaussian com-

ponents are independent components. Obviously, this algorithm always converges, since

after each iteration, the number of Gaussian components decreases by at least 1. An

example of the spectral envelope restored by our proposed method is illustrated in Figure

3.4.

3.2.4 Spectral envelope modeling using asymmetric Gaussian

mixture model

Zolfaghari et al. [166, 167, 170] proposed a technique to fit a Gaussian mixture model

to a smoothed magnitude spectrum of a speech signal. As mentioned above, the ability

50



0 500 1000 1500 2000 2500 3000 3500 4000
0

0.002

0.004

0.006

0.008

0.01

P
ro

ba
bi

lit
y 

de
ns

ity

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8
x 10

−4

Frequency (Hz)

M
ag

ni
tu

de

Figure 3.4: Example of the spectral envelope restored by our proposed method: the thin
lines indicate Gaussian components, the bold line indicates the restored spectral envelope
(top), and STRAIGHT spectral envelope (bottom).

to independently control parameters of each Gaussian component enables a precise esti-

mate of the spectral envelope, a wide variety of modifications, as well as independently

controlling formants. In this model, Zolfaghari et al. assumed that formants could be

represented by Gaussian distributions. However, mixture of Gaussians does not always

fit any distribution of patterns.

To overcome this drawback, we utilize asymmetric Gaussian mixture model (AGMM)

to model a speech spectral envelope, instead of using Gaussian mixture model. The main

advantage of AGMM is that we can independently modify both sides of each asymmetric

Gaussian component.

Asymmetric Gaussian mixture model

The normal distribution, also called the Gaussian distribution, is an important family

of continuous probability distributions, and has been applicable in many fields. Many

measurements, ranging from psychological to physical phenomena (in particular, thermal

noise) can be approximated, to varying degrees, by the normal distribution. The nor-

mal distribution is the most widely used family of distributions in statistics, and many

statistical tests are based on the assumption of normality. In probability theory, normal

distributions arise as the limiting distributions of several continuous and discrete fami-

lies of distributions. In addition, the normal distribution maximizes information entropy
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Figure 3.5: Example of Gaussian and AG distribution: Gaussian (left), and asymmetric
Gaussian (right).

among all distributions with known mean and variance, which makes it be the natu-

ral choice of underlying distribution for data summarized in terms of sample mean and

variance.

However, the normal distribution and the Gaussian mixture model do not always fit

any distribution of patterns. In the literature, to increase the accuracy rate, some methods

[13, 63] use asymmetric Gaussian (AG), instead of using Gaussian distribution, and they

get some promising results. The asymmetric Gaussian can be defined as follows.

N (z; µ, σ2
1, σ

2
2) =

1√
2π

1
1
2
(σ1 + σ2)

{
exp

(− (z−µ)2

2σ2
2

)
if z < µ

exp
(− (z−µ)2

2σ2
1

)
if µ ≤ z

(3.4)

Kato et al. [63] represented the asymmetric Gaussian distribution in another form as

shown in Eq. (3.5).

N (z; µ, σ2, r) =
2√
2π

1√
σ2(r + 1)

{
exp

(− (z−µ)2

2σ2

)
ifz > µ

exp
(− (z−µ)2

2σ2r2

)
otherwise

(3.5)

where µ, σ2, r are parameters of N (z; µ, σ2, r), and µ, σ, r are called mean, standard devi-

ation, and shape adjustment factor of AG component, respectively. In the same manner

as Gaussian, the d-dimensional AG has a latent variable z ∈ Rd, and the observation vari-

able x is modeled using z and an orthonormal matrix Φ ∈ Rd×d : x = Φz. The difference

between the AG and the Gaussian is the distribution of the latent variable z. Examples

of Gaussian and AG are shown in Figure 3.5.

It is easy to realize that AG is an extension of Gaussian, since AG with r = 1 is equiv-

alent to Gaussian. Moreover, AG also has the “68-95-99.7 rule” or the “empirical rule”.

The rule is described as follows. About 68% of values drawn from an AG distribution

N (z; µ, σ2, r) fall in the interval µ − rσ to µ + σ, about 95% of the values fall in the

interval µ− 2rσ to µ + 2σ, and about 99.7% fall in the interval µ− 3rσ to µ + 3σ. This

characteristic is illustrated in Figure 3.6.

Like the Gaussian distribution, the AG can not represent densities with multiple
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Figure 3.6: Illustration of the Empirical rule of AG.

modes. It is therefore straightforward to consider a mixture of AG, which is able to model

complex data structures with a linear combination of local AGs. The overall density of

the M-component mixture model is written by

p(x) =
M∑

m=1

αmN (x; µm, σ2
m, rm) (3.6)

where M is number of mixture components, N (x; µm, σ2
m, rm) is the mth local AG, and

{αm}M
m=1 are mixture weights satisfying 0 ≤ αm ≤ 1 and

∑M
m=1 αm = 1.

EM-based spectral envelope modeling using asymmetric Gaussian mixture

model

The main purpose of this subsection is to find an optimal parameter set of asymmetric

Gaussian mixture model to fit to the speech spectral envelope. The parameters of a prob-

ability density function are the number of AGs M, the mean µm, the standard deviation

σm, the weighting factors αm, and shape adjustment factor rm of each AG function. To

find these parameters to optimally fit a certain probability density function for a set of

data, an iterative algorithm, the EM algorithm [30], is often used.

The technique to estimate spectral-AGMM parameters is similar to the technique to

estimate spectral-GMM parameters, which is described in Subsection 2.5.2. Except that

we use the AG distribution to present the density, instead of using Gaussian distribution.

Asymmetric Gaussian distribution is described as follows.

f(xk|i, φi) = N (xk, µi, σ
2
i , ri)

=
2√
2π

1√
σ2

i (ri + 1)

{
exp

(− (x−µi)
2

2σ2
i

)
ifx > µi

exp
(− (x−µi)

2

2σ2
i r2

i

)
otherwise

(3.7)

where µi is the mean, σi is the standard deviation and ri is the shape adjustment factor.

Maximization of the Q-function is achieved by maximizing each term in Eq. (2.34) with
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respect to αi and φi. The following equation is obtained from the second term of Eq.

(2.34).

∂Q1(Φ, Φ)

∂φi

=
N∑

k=1

P (xk)P (i|xk, φi)
∂

∂φi

[logf(xk|i, φi]

= 0 (3.8)

Differentiating for µi, σ2
i and ri in Eq. (3.8), and setting it equal to zero, we obtain new

parameter estimates µi, σ2
i and ri

µi =

∑
P P (xk)P (i|xk, φi)xk +

∑
Q P (xk)P (i|xk, φi)xkr

2
i∑

P P (xk)P (i|xk, φi) +
∑

Q P (xk)P (i|xk, φi)r2
i

(3.9)

σ2
i =

∑
P P (xk)P (i|xk, φi)

(xk−µi)
2

r2
i∑N

i=1 P (xk)P (i|xk, φi)

+

∑
Q P (xk)P (i|xk, φi)(xk − µi)

2

∑N
i=1 P (xk)P (i|xk, φi)

(3.10)

N∑
i=1

P (xk)P (i|xk, φi)vir
3
i

−
∑

P

P (xk)P (i|xk.φi)(xk − µi)
2ri

−
∑

P

P (xk)P (i|xk.φi)(xk − µi)
2 = 0 (3.11)

where P = {∀xk|xk ≤ µi} and Q = {∀xk|xk > µi}. From the first term of Eq. (2.34), the

mixture weights are formulated as follows

αi =
1

N

N∑

k=1

P (xk)P (i|xk, φi) (3.12)

Using the EM algorithm, we can estimate the spectral-AGMM parameters to model

the shape and the peaks of the speech spectral envelope. Like spectral-GMM parameters,

spectral-AGMM parameters are also related to formant information.

3.2.5 Experiments and results

In this subsection, we conduct experiments to evaluate our proposed modelings of the

speech spectral envelope. We evaluate the improvement of spectral peak estimation using

Gaussian mixture model in the first part, and the speech spectral envelope modeling using

asymmetric Gaussian mixture model in the second part. In both experiments, we compare
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Table 3.1: Analysis conditions for experiments of testing methods

STRAIGHT

Sampling frequency 8 kHz
Window length 40 ms
Window shift 2 ms
FFT points 1024

our methods with the original method for estimating spectral-GMM parameters from a

speech spectral envelope [167].

Evaluation of the improvement of spectral peak estimation using Gaussian

mixture model

To evaluate the effectiveness of our proposed method, we conducted some experiments.

We used an objective measure and a subjective test to evaluate the quality of synthesized

speech which was restored by our proposed method. We compared our proposed method

with the original GMM method. The objective measure used here is the average log

spectral distortion (LSD) between STRAIGHT spectra and the spectral envelopes recon-

structed from the original GMM method, and from our proposed method, respectively.

This criterion is a function of the distortion introduced in the spectral density of speech

in each particular frame. Log spectral distortion between source and target for the nth

frame, Dn, is defined (in dB) as follows.

Dn =

√
1

Fs

∫ Fs

0

[10log10(Pn(f))− 10log10(P̂n(f))]2df (3.13)

where Fs is the sampling frequency; Pn(f) and P̂n(f) are the power spectrum correspond-

ing to the nth frame of the source and the nth frame of target, respectively. In this subsec-

tion, Pn(f) is the nth STRAIGHT power spectrum, and P̂n(f) is the nth power spectrum

which is reconstructed from the original GMM method, and our proposed method. The

results are provided in terms of average log spectral distortion and percentage outliers.

For the objective test, both methods used an approximate number of Gaussian com-

ponents. A set of 150 sentence utterances of the ATR Japanese speech database [2] was

selected as the speech data. This dataset spoken by 6 speakers (3 male & 3 female) is re-

sampled at 8 kHz sampling frequency. The analysis conditions for these experiments are

shown in Table 3.1. The number of Gaussian components in the original GMM method

is 9, which is approximately the average number of Gaussian components in our proposed

method (9.1). Table 3.2 gives a comparison of the log spectral distortion results the

original GMM method and our proposed method. Experimental results indicate that the

performance of our proposed method is better than that of the original GMM method.

For the subjective test, we randomly presented each of four utterances restored from

both the original GMM method and our proposed method to eight Japanese graduate

students with normal hearing ability, and asked them to rate the perceptual quality of

the speech on a five-point scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). Figure 3.7

55



Table 3.2: Average LSD, and percentage number of outlier frames obtained from (1) the
original GMM method and (2) our proposed method.

Method
Avg. LSD 0-2 dB 2-4 dB >4 dB

(dB) (%) (%) (%)
Original GMM method 2.6878 18.820 73.082 8.098
Our proposed method 1.9004 66.996 30.262 2.742

Figure 3.7: Comparison of listening test results for the compared methods.

shows the average scores, which indicate that the speech quality of our proposed method

is better than that of the original GMM method.

Evaluation of speech spectral envelope modeling using asymmetric Gaussian

mixture model

Experiments were performed to determine the effectiveness of modeling speech spectral

envelope using spectral-AGMM method. In this part, we compare the quality of the

spectral envelopes restored by using our proposed method with the spectral envelopes

restored from spectral-GMM parameters [166, 167, 170] by using an objective test and a

subjective test.

The objective measure used here is also log spectral distortion (LSD), as shown in

Eq. (3.13). In this part, Pn(f) is the nth STRAIGHT power spectrum, and P̂n(f) is the

nth power spectrum which is reconstructed from one of two kinds of spectral parameters,

spectral-GMM and spectral-AGMM. The results are also provided in terms of average log

spectral distortion and percentage outliers.

A set of 150 sentence utterances of the ATR Japanese speech database [2] was selected

as the speech data. This dataset spoken by 6 speakers (3 male & 3 female) is re-sampled

at 8 kHz sampling frequency. The analysis conditions for these experiments are shown in

Table 3.3. Table 3.4 gives a comparison of the log spectral distortion results between our

proposed method and the spectral-GMM method. Results indicate that the performance
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Table 3.3: Analysis conditions for experiments of AGMM performance

STRAIGHT

Sampling frequency 8 kHz
Window length 40 ms
Window shift 2 ms
FFT points 1024

GMM method Iteration of EM algorithm 30 times
AGMM method Iteration of EM algorithm 30 times

Table 3.4: Average LSD, and percentage number of outlier frames obtained from the
spectral-AGMM and spectral-GMM methods. The first line in each row is the result
of the spectral-GMM method, and the second line is the result of the spectral-AGMM
method.

Number of Avg. LSD 0-2 dB 2-4 dB > 4 dB
components (dB) (%) (%) (%)

4
4.94 0.24 34.13 65.63
4.92 0.34 34.27 65.39

6
3.87 1.90 62.45 35.65
3.85 2.93 61.48 35.59

8
3.24 6.17 75.82 19.01
3.20 9.99 71.49 18.52

10
2.83 13.82 76.32 9.86
2.72 23.29 67.05 9.66

12
2.49 26.54 68.06 5.40
2.34 41.80 52.90 5.30

14
2.21 43.47 53.06 3.47
2.03 60.26 36.54 3.10

of our proposed method is better than that of the method using GMM parameters. Note

that results of the average LSD in Table 3.4 were calculated for whole frames of all

utterances which include both voiceless and voiced frames. One example of restored

spectral envelopes from the two methods is illustrated in Figure 3.8.

For the subjective test, we randomly presented a set of four kinds (2 male & 2 female)

of synthesized sounds including utterances synthesized from both AGMM and GMM

methods with different components (i. e. 4, 6, 8, 10, 12, 14) to eight Japanese graduate

students with normal hearing ability, and asked them to rate the perceptual quality of

the speech on a five-point scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). Fig. 3.9

shows the average scores, which indicate that the speech quality of our proposed method

is slightly better than that of GMM method.
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Figure 3.8: Comparison of fitting in the STRAIGHT smoothed spectrum by using GMM
(10 components), and AGMM (10 components). The solid line is a STRAIGHT spectrum
of a frame, dash-dot line is AGMM fitting in the STRAIGHT spectrum, and the dashed
line is GMM fitting in the STRAIGHT spectrum

3.2.6 Conclusions

In this section, we have presented two improvements of modeling of a speech spectral

envelope using Gaussian mixture model. In the first improvement, our proposed method

not only models the speech spectral envelope well, but also ensures an one-to-one corre-

spondence between spectral peaks and Gaussian components, which provides advantages

when modifying the spectral envelope in both dimensions, frequency and amplitude. In

the second part, we use spectral-AGMM parameters to model a speech spectral envelope,

instead of using spectral-GMM parameters. Since both sides of asymmetric Gaussian

component can be independently modified, spectral-AGMM parameters have been found

to be fitted to a speech spectral envelope better than spectral-GMM parameters. In

addition, this modeling gives more flexibilities to modify a speech spectral envelope.

3.3 Modeling of the speech spectral sequence

3.3.1 Introduction

Modeling of the speech spectral sequence plays an important role in spectral modification.

We should add acoustic constraints to this modeling for two reasons.

The first reason is that we have to control natural evolution of spectral parameters

when altering duration of speech. Several approaches are available in the literature for

time-scale modification. Altering the time-scale of a speech signal can be achieved in

the time domain [156], or frequency domain [33]. Time-domain techniques are based

on overlap-add (OLA) methods [156]. These techniques first segment the waveform into

a series of overlapping frames by windowing the speech signal with a suitable window
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Figure 3.9: Comparison of mean opinion scores (MOSs) over varying number of Gaussians
in the mixture using spectral-AGMM method and spectral-GMM method.

function. To perform time-scale modification, some of the windowed segments are either

replicated or omitted. In these cases, the information about the pitch markers is not

used for splitting the speech signal into short segments. As a result, the periodicity due

to pitch is not preserved well after time-scale modification [125]. Therefore, these tech-

niques tend to perform poorly when large modification factors must be used (e.g., factors

greater than ± 20% to ± 30%) [76]. Frequency-domain techniques are based on short-time

Fourier transform (STFT) or phase vocoder methods [33]. These algorithms require high

computation costs, but are capable of providing high-quality output. However, they still

suffer from some distortion, mainly due to the effects of “phase dispersion” [114]. That

is, while the scaled signal has the same frequency, the phases between the components

change, resulting in a different wave shape. In the STRAIGHT method [65], the analysis

algorithm does not extract phase information. Its reconstruction algorithm adopts the

minimum phase assumption for the spectral envelope, and further applies all-pass filters

to reduce the buzz timbre of the reconstructed signal. This method offers high-quality

modified speech signals without introducing the artificial timbre. However, this approach

still processes speech signals frame by frame, and speech manipulation is performed by

using interpolation functions. This method does not consider the temporal evolution of

parameters when modifying speech signals.

The second reason is that, when performing spectral modification, if unexpected mod-

ifications happen, there are discontinuities, which leads to degradation of modified speech.

Some methods have been proposed to solve the discontinuities of modified speech. For

example, to maintain a continuous transformation in consecutive frames, Chen et al. [23]

employ a median filter and a low pass filter to smooth the converted features along the

time axis. However, applying these filters could lead to a loss of temporal resolution, and

it was a relatively crude implementation.
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This section proposes a framework to model the speech spectral sequence in the time-

frequency domain. In the following subsection, we describe the overview of the temporal

decomposition technique [5, 113], which is utilized to model the speech spectral sequence.

3.3.2 Temporal decomposition

A shortcoming of conventional spectral modification methods is that they do not take into

account the correlation between frames after modification. There are some clicks in the

modified speech because of discontinuous spectral contours. Therefore, we employ TD to

deal with the problem.

In articulatory phonetics, speech can be described as a sequence of distinct articulatory

gestures. Each gesture produces an acoustic event that should approximate a phonetic

target. Adjacent gestures overlap in time, which results in overlap of these phonetic

targets.

Atal proposed a method based on the temporal decomposition of speech into a sequence

of overlapping target functions and corresponding event targets [5], as given in Eq. (3.14).

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (3.14)

where ak is the spectral parameter vector corresponding to the kth event target. The

temporal evolution of this target is described by the kth event function, φk(n). ŷ(n) is

the approximation of the nth spectral parameter vector y(n), and is produced by the TD

model. N and K are the number of frames in the speech segment, and the number of

event functions, respectively (NÀK ).

To modify the speech spectra, we only need to modify the event targets ak and the

corresponding event functions φk(n), instead of modifying the speech spectra frame by

frame. The smoothness of modified speech is ensured by the shape of the event functions

φk(n). This feature leads to easy modification of the speech spectra, as well as ensuring

the smoothness of the speech spectra between frames, and thereby enhances the quality

of modified speech.

The original method of TD is known to have two major drawbacks, high computational

cost and high parameter sensitivity to the number and locations of events. A number of

modifications have been explored to overcome these drawbacks. In this study, we employ

the MRTD algorithm [113]. The reasons for using the MRTD algorithm in this work are

twofold: (i) the MRTD algorithm enforces a new property on event functions, named the

“well-shapedness” property, to model the temporal structure of speech more effectively

[113]; (ii) event targets can convey the speaker’s identity [111]. In the MRTD algorithm,

LSF parameters are chosen for the input of TD, because of their spectral sensitivity

(an adverse alteration of one coefficient results in a spectral change only around that

frequency [117]) and their stability and interpolation advantages (LSFs result in low

spectral distortion when being interpolated and/or quantized [116]). In this section, LSF

parameters are extracted from spectral envelope information of STRAIGHT [65]. The

STRAIGHT spectra are suitable for TD, because they are smooth in the time-frequency

domain.
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3.3.3 Modeling of the event function using polynomial fitting

New method for identifying the event locations

The MRTD algorithm uses a spectral stability criterion to determine the initial event

locations [113]. It is assumed that each acoustic event that exists in speech gives rise

to a spectrally stable point in its neighborhood. Therefore, the locations of the spec-

trally stable points and the corresponding spectral parameter sets can be used as good

approximations of event locations and event targets, respectively. This algorithm is auto-

matically performed, and the subsequent computation of refined event targets and event

functions is much less demanding than the traditional TD method. This algorithm is

useful for applications in speech coding [113], and speaker identification [111]. However,

this algorithm does not ensure one-to-one correspondence between events and phonemic

units. This correspondence can give some advantages in voice transformation (e.g. align-

ment between two utterances), speech perception (e.g. sharing the event functions, event

targets), etc. Therefore, it requires a new method for identifying the event locations.

In [109, 133], a new method for determination of event locations based on phonemes has

been proposed. In our method, we use labeled data of utterances to segment speech signals

into phonemes. Each phoneme is divided into K equal segments, and the K + 1 points

marking these segments are used for identifying the event locations. For requirements of

each application, we adjust the number of event functions in each phoneme.

New method for modeling of the event function

To control the event functions, the event functions should be modeled. The MRTD

algorithm enforces the “well-shapedness” property of event functions. That is, the event

functions in the MRTD are monotonic during the transition from one event towards the

next. In addition, the MRTD method employs the restricted second order TD model, in

which only two event functions at any moment of time can overlap and all event functions

sum up to one [113]. Therefore, to model the event function, polynomial fitting for the

event function is performed by using the nonlinear least square method as follows.

Z = −
(X

c

)M

+ e (3.15)

where e is the maximum value of φ, and e is equal to 1. Z is equal to 0 when

X = c (3.16)

where c is the duration of two consecutive events. The polynomial fitting was done in

0 ≤ φ ≤ 1. The value of M indicates slope of event function. Shape of the event function

can be changed according to the values of c and M . As a result, it is possible to control the

event function. Figure 3.10 shows an example of modeled event function by the proposed

method for an event function extracted by MRTD.
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Figure 3.10: A fitted curve (the solid line) using the non-linear least square method for an
event function (the dashed line) (top), and a time-scale modification of this event function
(bottom).

3.3.4 Proposed modeling of the speech spectral sequence

One of the advantages of TD is that it ensures the smoothness of modified speech sig-

nals. However, if event targets are represented by linear prediction (LP) coefficients, such

as LSF coefficients, we meet difficulties in performing spectral modification. To over-

come these drawbacks, we use spectral-GMM parameters [109, 166, 167, 170] to model

each event target. Based on TD and spectral-GMM, we propose a new modeling of

speech spectral sequence for speech modification which can deal with these two draw-

backs of conventional spectral modification methods, the insufficient smoothness of the

modified spectra between frames, and the ineffective spectral modification. In addition,

since glottal and vocal tract information are not independent, modifying them separately

often degrades the quality of modified speech signals. Therefore, a high-quality analy-

sis/modification/synthesis framework, STRAIGHT, is utilized in this study.

Proposed modeling

The processing flow of our proposed method is as follows, and is shown in Figure 3.11.

First, STRAIGHT [65] decomposes input speech signals into spectral envelopes, F0,

and AP. Since the spectral envelopes can be further analyzed into LSF parameters, MRTD

[113] is employed in the next step to decompose the LSF parameters into event targets and

event functions. To identify the event locations, we have presented a new method based on

the phoneme as described in 3.3.3. The event functions are modeled by using Eq. (3.15).

Since the event targets are valid LSF parameters [113], the spectral envelope of each event
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Figure 3.11: Diagram of proposed modeling of speech spectral sequence based on temporal
decomposition and Gaussian mixture model.

target can be restored, and then the spectral envelopes are converted to spectral-GMM

parameters. By using spectral-GMM parameters to model the event targets, we can

flexibly perform modifications of the event targets. The same event functions evaluated

for the spectral parameters are also used to describe the temporal pattern of the F0,

gain, and AP. The modified event targets are then re-synthesized as modified LSF by TD

synthesis. In the following step, the modified LSF parameters are synthesized as spectral

envelopes by LSF synthesis. Finally, STRAIGHT synthesis is employed to output the

synthesized speech. Note that our proposed method is integrated with the STRAIGHT

method, it therefore can use the merits of the STRAIGHT to modify the F0.

3.3.5 Merits of our modeling in speech modification

Spectral modeling is very important, since it determines that which and how features of

speech signals can be modified. In the previous subsection, we propose the modeling of

speech spectral sequence for spectral modification. In this subsection, we present how to

perform time-scale modification and spectral modification, two of the three most popular

kinds of speech modification.

Time-scale modification

In our method, spectral dynamics is represented by using event functions of the TD algo-

rithm. Moreover, event functions are modeled by using the polynomial fitting technique

as in Eq. (3.15). Since event functions can be seen as temporal evolution of spectral

parameters, to perform time-scale modification, we need to change length of each event

function. From Eq. (3.15), we can modify the duration of the speech segment by changing
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the value of c. We modify the values of M to alter the slope of the event function. By

changing the values of c and M , we can control the evolution of all important parameters

of speech signals (i.e. F0, gain, AP, and spectral parameters). Therefore, it enhances the

quality of modified speech. An example of time-scale modification of an event function is

also shown in Figure 3.10. In this example, to show the flexibility of our proposed method,

we only altered the shape of the right side of the event function by the modification factors

of c and M 3 and 3.9 times, respectively. In addition, we can ensure the smoothness of

modified speech between frames by controlling the shape of event functions.

Spectral modification

Formants are some of the most important of speech. Controlling formants can change

characteristics of speech. In this subsection, we discuss how to modify amplitudes of

spectral peaks. Modification of spectral frequencies is discussed in Chapter 5. Spectral-

GMM parameters meet most requirements of a spectrum representation for speech mod-

ification. Those are preciseness and stability, which ensure to model and reconstruct the

speech spectral envelope precisely, locality (without affecting the intensity of frequencies

further away from the point of manipulation), and flexibility and ease of manipulation.

We now present a new method to control amplitude of spectral peaks. The algorithm for

modifying amplitudes of spectral peaks is described as follows, and is shown in Figure

3.12.

First, we determine the spectral peak which need to be modified. When estimating

spectral-GMM parameters, we do not apply any constraints to ensure the one-to-one

correspondence between spectral peaks and Gaussian components. That is why there are

some Gaussian components contributing to the same spectral peak. In our algorithm,

we merge these Gaussian components to one Gaussian component by using the following

conditions.

• If linear sum of two Gaussian component, i and j, have more than one peak, we

consider that these Gaussian components are independent.

• If linear sum of two Gaussian components, i and j, have only one peak, we con-

sider that these Gaussian components are dependent, and we merge these Gaussian

components to one Gaussian component by using following equations.

µij =
αiµi + αjµj

αi + αj

(3.17)

σ2
ij =

αi(σ
2
i + (µij − µi)

2) + αj(σ
2
j + (µij − µj)

2)

αi + αj

(3.18)

where µi, σi, αi and µj, σj, αj are the means, standard deviations, and mixture

weights of the Gaussian components i and j, respectively.

The above iterative process continues until there is only one Gaussian component used

to model the desired spectral peak. We easily can control properties of this spectral peak,
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Figure 3.12: Diagram of our proposed method for modifying amplitudes of spectral peaks

such as modifications of amplitude or bandwidth. An example of amplitude modification

of the first three formants is shown in Figure 3.13. In this example, we increase the

amplitudes of the first three formants by 2, 3, and 2.5 times, respectively.

In summary, one of advantages of modeling of the speech spectral envelope using

spectral-GMM parameters is that we can flexibly control the speech spectral envelope.

This is a major advantage of spectral-GMM parameters if comparing with conventional

representations of speech spectral envelope, such as LP coefficients or non-parametric

representations.

3.3.6 Experiments and results

In our proposed modeling of the speech spectral sequence, since we use spectral-GMM

parameters to model each event target, the order of LSFs has to be high enough to

precisely restore the spectral envelope. Via a small experiment, by calculating the average

log spectral distortion (LSD) between STRAIGHT spectra and the spectral envelopes
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Figure 3.13: Example of the amplitude modification of the first three formants by 2, 3,
and 2.5 times, respectively. 24 Gaussian components (M=24) are used to model this
speech spectral envelope.

restored from LSFs with different orders in a set of 250 sentence utterances of the ATR

Japanese speech database [2] at sampling frequency of 16 kHz, we chose the LSF order of

40 in this framework. With this order, the average LSD is smaller than 1 dB.

A set of 100 sentence utterances of the ATR Japanese speech database [2] was selected

as the speech data. This speech dataset is spoken by 4 speakers (2 male & 2 female) re-

sampled at 16 kHz sampling frequency.

To evaluate the performance of our proposed analysis/synthesis method, we compare

the quality of synthesized speech restored by our method with that of the framewise-GMM

method [167]. In the framewise-GMM method [167], we estimated the spectral-GMM pa-

rameters from the STRAIGHT spectrum frame by frame. In this section, we used the

perceptual evaluation of speech quality (PESQ) score (ITU-T P.862) to evaluate the

quality of synthesized speech. The PESQ uses a sensory model to compare the original,

unprocessed signal (reference signal) with the degraded signal from a network or an analy-

sis/synthesis system. The PESQ scores are calibrated using a large database of subjective

tests. Having high correlation (ρ > 0.92) with subjective listening tests, the PESQ can

be used reliably to predict the subjective speech quality of codec in a very wide range

of conditions, including those with background noise, analogue filtering, and/or variable

delay [128]. The score of PESQ ranges from -0.5 to 4.5. The higher the score, the better

the perceptual quality. We used the original sounds as the reference signals, and the

synthesized utterances restored by STRAIGHT, the framewise-GMM method, and our

proposed method as the degraded signals. Since the average number of Gaussian com-

ponents in our proposed method is 9.2, we chose 9 Gaussian components to model each

speech spectral envelope in the framewise-GMM method. The average PESQ results are

shown in Table 3.5. These results indicate that the quality of synthesized speech of our
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Table 3.5: Average PESQ for analysis/synthesis methods.

STRAIGHT method 3.56
Framewise-GMM method 3.03
Proposed method 3.32

proposed method is better than that of the framewise-GMM method. Moreover, in our

proposed method, both the speech spectra (i.e. the spectral evolution and the speech

spectral envelope) and the temporal evolution of the excitation parameters (i.e. F0, gain,

and AP) can be modeled, which gives the flexibility to control these parameters.

3.3.7 Conclusions

In this section, we have presented high-quality analysis/synthesis methods based on tem-

poral decomposition for speech modification. In our proposed methods, we utilize TD to

model the spectral evolution, and spectral-GMM parameters to model the event targets.

Our proposed methods not only effectively describe the temporal trajectories between

frames, but also flexibly model the event targets. Moreover, processing rules are more

effectively applied, since we only need to process the event targets, instead of processing

frame by frame, and the event targets may be associated with ideal articulatory positions.

Moreover, the same event functions evaluated for the spectral parameters are also used to

describe the temporal pattern of the F0, gain, and AP. We then model the event functions

by using polynomial fitting. These models give the flexibility to control the speech signals

in both time and frequency domains.

3.4 Summary

In this chapter, we have presented our solutions to the first issue of spectral modification,

the lack of efficient spectral modelings for speech modification.

First, we have presented the two improvements of modeling of speech spectral envelope.

In the first improvement, we not only model the speech spectral envelope well but also

ensure a correspondence between spectral peaks and Gaussian components. In the second

improvement, we use asymmetric Gaussian mixture model to model the speech spectral

envelope.

Second, we have presented a new method for modeling speech spectral sequence, and

have discussed the advantages of our method. In our proposed modeling of the speech

spectral sequence, apart from well modeling of speech signals, it is potential to alter

duration and perform efficient spectral modification.
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Chapter 4

Spectral Smoothing for

Concatenative Speech Synthesis

based on Temporal Decomposition

The purpose of this chapter is to solve the second issue of spectral modification, i.e. the in-

sufficient smoothness of modified spectra between frames. When producing speech sounds,

the articulators of human beings move slowly, which makes speech signals change grad-

ually. If unexpected modifications happen, there are discontinuities of modified speech,

and the quality of speech degrades. This chapter presents the TD algorithm as an efficient

model to control the smoothness of synthesized speech, and confirms that the reduction

of discontinuities in concatenation points improves the quality of synthesized speech in

concatenative speech synthesis.

4.1 Introduction

In the process of generating audible speech from a textual representation, a Text-to-

Speech (TTS) system first converts text into a linguistic representation, which is then

used to generate an appropriate acoustic waveform. This second step is achieved by us-

ing a speech synthesis model that describes the relationship between linguistic units and

acoustic features. These speech synthesis models vary in their complexity. The first in-

telligible synthesizer used an approach called formant synthesis, which utilizes relatively

simple models of the glottal source and vocal tract. Model parameters can be generated

either by rule [72] or from a database [86]. Most aspects of speech are controllable, includ-

ing the degree of articulation and characteristics of the speaker. The resulting speech is

highly intelligible, but is often judged as not very natural. In an effort to increase natural-

ness without decreasing flexibility, researchers have increased the complexity of the speech

synthesis model to take into account more physiological and physical details about the

speech production process; this approach is called articulatory synthesis [131]. Unfortu-

nately, it is difficult, in practice, to generate the high-dimensional parameter trajectories

which are necessary to drive articulatory synthesis models, because the relationships be-

tween linguistic units and parameter trajectories are complicated and cannot be learned
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easily. Both formant and articulatory synthesis are examples of parametric synthesis.

The most successful TTS approach to-date is called concatenative synthesis. In this

approach, natural speech utterances of a single speaker must first be recorded and stored

in an acoustic inventory. During synthesis, individual portions of speech are retrieved

from the inventory, optionally modified, and then concatenated in the desired sequence.

Intelligibility and naturalness of speech are very high in the concatenative synthesis ap-

proach [16]. However, output speech is limited by the contents of the acoustic inventory

(not just the linguistic content, but also the emotional state of the speaker, degree of

articulation, etc.), and inevitable concatenation errors can lead to audible discontinu-

ities. To overcome the problems of limited content and discontinuities, researchers either

significantly increase the size of the database to include more variability, or introduce

additional modeling to modify and thus control the natural speech signal. In the former

case, we need to spend a big part of the effort on preparing the database. It has to be

correctly designed to cover all the variability of the language, and well recorded for the

system to have high voice quality. These sometimes are difficult to perform, since it is

time-consuming and expensive. In the latter case, models that include prosodic control of

pitch and duration are common [144]. In addition to prosodic modifications, researchers

have also proposed spectral modifications, for example smoothing spectral balance dis-

continuities at concatenation points, expressed as energies in four bands [93], smoothing

formant discontinuities [22, 82, 94], and controlling the degree of articulation [159].

To improve the quality of concatenative speech synthesis, spectral smoothing methods

are proposed in the literature. One important issue in spectral smoothing is to determine

which circumstances smoothing should be performed. If two segments have a sufficiently

close spectral match, distortion caused by smoothing may negate the performance gain.

Moreover, many smoothing techniques are inappropriate for use with unvoiced speech.

Another issue is to determine the best time span over which to interpolate. The funda-

mental frequency remains continuous if inserted data is equal to an integer number of

pitch periods.

In this section, we review some basic smoothing techniques which show encouraging

results.

Conkie and Isard [27] introduce the optimal coupling technique which allows the seg-

ment boundaries to move to improve the spectral match between adjacent segments. In

this algorithm, we do not modify the existing speech, we only scan the boundaries of two

speech units to find out which points of these units are most suitable. Spectral discon-

tinuity measures are often used to determine the amount of mismatch. Although this

technique is simple and easy to implement, it may cut an important part of a sound.

Another method also does not perform audio signal interpolation but instead mask

discontinuities. The continuity effect is a psychoacoustic phenomenon that is suggested

here as a possible method for spectral smoothing. When two sounds are alternated, a

less intense masked sound may be heard as continuous despite being interrupted by a

more intense masking sound. The sensory evidence presented to the auditory system

does not make it clear whether or not the obscured sound has continued. Psychologists

call this effect “closure” [20, 97]. However, this technique does not provide great spectral

smoothing in all situations, and sometimes it still possesses noisy quality.
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Waveform interpolation (WI) is a speech-coding technique which takes advantage of

the gradual evolution of the shape of pitch-period waveforms. The WI coder operates on

a frame-by-frame basis. In each segment, the pitch track is calculated and characteristic

waveforms are extracted. Each characteristic waveform is typically one pitch period long,

but the length may be an integer number of periods. In coding, characteristic waveforms

are extracted from the original signal at regular time intervals. This method is simple,

but it does not consider formant locations. However, it is useful on LP residual.

LP interpolation techniques are often used to smooth LP-filter coefficients in LP coding

(LPC) and sometimes also for speech synthesis. The basic strategy is to model the speech

signal as separate spectral and residual (filter and source) components and to adjust each

component separately. Here, we perform LP spectral parameter interpolation in one of

several domains, while the residual is interpolated using WI. This technique is regarded

as one of the most effective spectral smoothing methods.

4.2 Related work

In the literature, there are many spectral smoothing methods which interpolate LP coef-

ficients of LP-related features. In [119], Plumpe et al. propose a HMM-based smoothing

technique. This technique represents a speech signal as being composed of a number

of frames, where each frame can be synthesized from LSF coefficients. Each frame is

represented by a state in an HMM, where the output distribution of each state is a Gaus-

sian random vector consisting of x and ∆x. The set of LSF vectors that maximizes the

HMM probability is the representation of the smoothed speech output. However, a large

training database is required to estimate the HMM parameters. In [119], the training

database used for the experiments contains over 7,000 sentences from a single speaker.

This is the limitation of this technique. Heng and Wenju [53] proposed a new kind of

LPC parameters by divide the frequency into two parts: low and high frequency parts.

They then use high order of LPC to model the low frequency part and low order of LPC

to model the high frequency part. After representing the spectral envelope by this kind

of LPC parameters, they apply this presentation to spectral smoothing. However, this

method is only effective when the total of LPC order is constant. Moreover, there is a

gap between two parts of frequencies, which degrade the quality of synthesized speech.

To reduce concatenation mismatch, Wouters and Macon [161] propose a method which

control spectral dynamics. In this approach, synthesis is performed by combining infor-

mation from two tiers of speech units, denoted concatenation units and fusion units. The

concatenation units specify initial estimates of the spectral trajectories for an utterance,

while the fusion units characterize the spectral dynamics at the join points between con-

catenation units. These two unit tiers are fused during synthesis to obtain natural spectral

transitions throughout the synthesized speech. However, this method needs to prepare a

fusion unit for each concatenation point. Kain et al. [62] also proposed a new method

of controlling spectral in concatenative speech synthesis which has same idea with the

work of Wouters and Macon [161]. They smooth the trajectory of formant frequencies.

In [62], it is not necessary to prepare the fusion units. Apart from that, this method

considers the smoothness of energy. However, since this method use formant frequencies
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as parameters to interpolate between two segments, some steps in this method need to be

manually performed. Therefore, a new method for concatenative speech synthesis which

is automatically performed is needed.

4.3 Proposed method

4.3.1 Overview of our proposed method

Spectral dynamics

One of issues of spectral modification is discontinuities of spectral parameters if unex-

pected modifications happen. One of efficient ways to solve the discontinuities of spec-

tral parameters is control of spectral dynamics. Spectral dynamics is widely applied in

many areas in speech signal processing, such as in speech recognition [124], speaker ver-

ification [14, 21, 139], speech coding [100], text-to-speech [22, 62, 161], voice conversion

[34, 146, 147].

In the viewpoint of engineering, speech is a signal continuously changing in a time.

Spectral dynamics, which refers to the temporal characteristics in spectral information, is

a very important feature of speech. Spectral dynamics provides most information about

phonetic properties of speech sounds (i.e. formant transitions). These correlations can

be captured to some extent by augmenting the original set of acoustic features (static

features) which dynamic features.

The dynamic features are often referred to as time derivatives or deltas. The simplest

way to calculate spectral dynamics is computing the difference between the feature values

of two consecutive frames.

∆yt = yt+1 − yt (4.1)

where yt is the spectral feature of frame t, such as MFCC, LSF, LPC. We also can calculate

the spectral dynamics within several frames as follows.

∆yt = yt+U − yt−U (4.2)

where U typically takes a value of 1 or 2 (look forward and backward one or two frames).

Although time difference features have been used successfully in many systems, they

are sensitive to random fluctuations in the original static features, and therefore tend to

be “noisy”. In [124], a more robust measure of local change is obtained by applying linear

regression over a sequence of frames as follows.

∆yt =

∑D
i=1 i(yt+i − yt−i)

2
∑D

i=1 i2
(4.3)

The delta features described in Eqs. (4.1), (4.2), and (4.3) are the first-order time

derivatives. We can in turn calculate the second-order time derivatives ∆∆yt (referred to

as delta-deltas) from the first-order time derivatives.
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TD as a framework for modeling spectral dynamics

Studying on modeling of spectral dynamics has been attractive sciences and engineers in

the area of speech signal processing. There are two compelling reasons for carrying out

dynamic speech modeling. First, mathematical modeling of speech dynamics provides an

effective tool in the scientific methods of studying the speech chain. Second, advancement

of human language technology, especially which in automatic recognition of natural-style

human speech is also expected to benefit from comprehensive computational modeling of

speech dynamics.

In the literature, a hidden Markov model (HMM) is well-known for being a typical

model for modeling spectral dynamics. A HMM can be used to represent a given speech

segment in a stochastic manner. However, the HMM model requires a large database for

modeling the spectral dynamics. This requirement is not suitable for this application,

since we have a limited data.

In 1983, Atal proposed a method based on the temporal decomposition of speech into

a sequence of overlapping event functions and corresponding event targets [5]. Temporal

decomposition (TD) can be seen as a model of speech spectral evolution where a sequence

of spectral parameters is described as a linear combination of a limited set of vectors

(event targets). Event function between two event targets can be seen as interpolation

of these event targets, and is a way to model transitions between successive sounds. In

a TD process, we estimate event targets and event functions based on only this speech

segment, and we do not need training data. Therefore, in this dissertation, we employ

TD [5, 113] to control the spectral dynamics. In the following sections, we describe our

proposed method based on TD to reduce the mismatch at concatenation points.

4.3.2 Proposed method

Since controlling spectral dynamics can improve the quality of concatenation speech, we

propose a new method for concatenative speech synthesis based on temporal decomposi-

tion [5, 113]. Our algorithm is described as follows, and is shown in Figure 4.1.

First, STRAIGHT [65] decomposes each speech segment into spectral envelopes, F0

(fundamental frequency) information, and aperiodic indices. Since the spectral envelopes

can be further analyzed into LSF parameters, MRTD is employed in the next step to

decompose the LSF parameters of each speech segment into event targets and event

functions. The same event function evaluated for LSF parameters are used to decompose

the fundamental frequency and gain to get fundamental frequency targets and gain targets.

In the ideal case, the last target of the first speech segment and the first target of second

speech segment are identical. However, in concatenative speech synthesis, two event

targets are often different. We need to modify these targets to smooth the transition

between two speech segments. Since each event target is valid LSFs, we should modify

event targets so that they become valid LSFs. In our algorithm, the modified event target

is calculated by applying following equation.

LSFmodified
i = βLSF last ET

i + (1− β)LSF first ET
i (4.4)
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Figure 4.1: Diagram of our proposed method.

where i = 1 . . . P , P is the order of LSF. The LSF last ET and LSF first ET are the

LSF parameters of the last event target of the first speech segment and the first event

target of the second speech segment, respectively. β is the weight factor, and satisfies

0 ≤ β ≤ 1. We can adjust the value of β to control the degree of modification of

each concatenation part in accordance with their importance. After combination of the

last event target of the first speech segment and the first event target of the second

speech segment, we also modify the fundamental frequency targets, and gain targets to

smooth all of the most important parameters in the concatenation point. The modified

event targets, modified fundamental frequency targets, and modified gain targets are

then re-synthesized as modified LSFs, modified fundamental frequency information, and

modified gain information by TD synthesis, respectively. In the next step, the modified

LSF parameters and modified gain information are synthesized as spectral envelopes by

LSF synthesis. Finally, STRAIGHT synthesis is employed to output the synthesized

speech. Note that when we modify these targets, the spectral and source information of

adjacent frames around on the concatenation point are also modified, and the smoothness

is ensured by the shape of the event functions.
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Figure 4.2: Results of subjective tests of concatenative speech synthesis.

4.4 Experiments and results

Stimuli consisted of the five Japanese vowels (/a/, /e/, /i/, /o/, and /u/) in a consonant-

vowel-consonant (CVC) context. We selected a dataset consisting of five words containing

the five Japanese vowels from the ATR Japanese speech database [2]. We exchanged the

vowels in these words, and smoothed the borders by using different methods. Some

synthesized words were meaningless. The main analysis conditions for these experiments

are as follows. Sampling frequency is 16 kHz, and the order of LSF is 32.

To evaluate the performance of our proposed method, we performed subjective ex-

periments regarding speech quality. We compared our proposed method with two other

methods. In the first method, we only concatenated speech segments together (the raw

concatenation method), and in the second method, we only smoothed spectral parameters

by using TD, but we did not smooth F0 and energy (TD-based LSF smoothing method).

We presented the synthesized sounds to eight Japanese graduate students with normal

hearing ability, and asked them to rate the perceptual quality of the speech on a five-point

scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). Results of the subjective tests are

shown in Figure 4.2. These results indicate that the quality of words modified by using

our proposed method is the best in all three methods. Figure 4.3 shows the parts of the

LSF contours before and after modification at the concatenation points by replacing the

vowel “u” in the word “takumi” by the vowel “e” in the word “jiten”.

4.5 Conclusions

In this chapter, we have presented a framework for controlling the smoothness of modified

speech. In our solution, we employ the TD algorithm to control the spectral dynamics,

one of the main sources of discontinuities in synthesized speech. On the application side,
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Figure 4.3: Parts of the LSF contours before and after modification at the concatenation
points by replacing the vowel “u” in the word “takumi” by the vowel “e” in the word
“jiten”. The dot line indicates the LSF contours of the two speech units before modifica-
tion. The solid line indicates the LSF contours of the two speech units after modification
by using our proposed method.

we propose a new interpolation method to smooth the discontinuities between speech

segments at concatenation points. Our proposed method not only deals with the spectral

discontinuities but also solves the discontinuities of fundamental frequency and energy.

Experimental results prove that the TD algorithm is utilized as an efficient model to

ensure the smoothness of synthesized speech, and also confirm the effectiveness of our

proposed method in concatenative speech synthesis.
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Chapter 5

Rule-based Approach to Spectral

Modification

The purpose of this chapter is to solve the third issue of spectral modification, i.e. the

ineffective spectral modification. In this chapter, we propose a new efficient rule-based

algorithm of spectral modification, which performs directly on a spectral envelope. In

Chapter 3, spectral-GMM parameters are used to model the spectral envelope. Spectral-

GMM parameters are related to formant information. The formant features are some

of the most important parameters in characterizing speech, and control of formants can

effectively modify the spectral envelope. To modify the spectral-GMM parameters in

accordance with formant scaling factors, it is necessary to find relations between formants

and the spectral-GMM parameters. This chapter first presents a new algorithm to modify

spectral-GMM parameters in accordance with formant frequencies. We then apply our

algorithm to two areas, emotional speech synthesis which requires modification of both

formant frequency and power, and voice gender conversion which requires a large amount

of spectral modification.

5.1 Introduction

Spectral modification techniques are used to perform a variety of modifications to speech

spectra, such as manipulations of the formant structures, amplitude manipulations. Since

spectral processing is closely linked to human perception, it is an effective way to perform

sound processing. It can be applied in many areas. Spectral modification methods are a

powerful technology for customizing Text-to-Speech (TTS) systems, such as by converting

source features to target features [1, 143], changing a male voice into a female voice and

vice versa [77], and applying to emotional speech synthesis [66]. Spectral modification

techniques are often applicable to automatic speech recognition tasks [49], and speech

enhancement [15].

The basic idea of spectral processing is to convert a time-domain digital signal into

its representation in time-frequency domain. Most of the approaches start by develop-

ing an analysis/synthesis technique from which the speech signal is reconstructed with

minimum loss of sound quality. Then, the main issues have to be resolved: what kind of
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representation and which parameters are chosen for the application of the desired speech

processing. The challenge of spectral modification is to modify the spectral/acoustical

features without degrading the speech quality.

A variety of spectral modification methods have been discussed in the literature. They

can be classified into two popular approaches: linear prediction (LP)-based methods

[94, 99] and frequency warping methods [151]. LP-based methods are often affected by

the pole interaction problem suffered by pole modification techniques. An iterative al-

gorithm for overcoming pole interaction during formant modification was developed by

Mizuno et al. [94]. This method produces spectral envelopes with desired formant ampli-

tudes at the formant frequencies. However, the amplitude and bandwidth of each formant

cannot be independently modified, since each formant’s bandwidth is dependent on the

magnitude of the corresponding pole. Recently, a method for directly modifying formant

locations and bandwidths in the line spectral frequency (LSF) domain has been developed

[99]. We refer to the method in [99] as the LSF-based method. By taking advantage of

the nearly linear relationship between the LSF coefficients and formants, modifications

are performed based on desired shifts in formant frequencies and bandwidths. However,

the main drawback, i.e. the lack of control over the spectral shape, has not been solved.

Frequency warping methods, such as by Turajlic et al. [151], give high quality of modi-

fied speech. However, frequency warping methods meet difficulties in modifying spectral

peaks, such as preserving shapes of peaks, and emphasizing spectral peaks around 3 kHz

in transformation of speaking voice into singing voice, since they do not estimate spectral

peaks. Moreover, frequency warping methods do not allow formants to merge or split,

which is often desired in formant modification processes [78].

In addition, some methods mentioned above [94, 99] only mention how to modify the

speech spectral envelope in a frame, and they [94, 99, 151] rarely deal with constraints

between frames after modification. This limitation may cause a discontinuity problem

between adjacent frames. As a result, there are some clicks in the modified speech when

unexpected modifications happen in some frames. Moreover, Knagenhjelm and Kleijn

[73] point out that spectral discontinuities between adjacent frames are one of the major

sources of quality degradation in speech coding systems. Therefore, this problem should

be solved to enhance the quality of modified speech.

In this chapter, we employ a new modeling of speech spectral sequence based on

temporal decomposition (TD) [5, 113] and spectral-GMM [166, 167, 170] in Section 3.3.

In this speech spectra model, we employ the modified restricted temporal decomposition

(MRTD) algorithm [113] to model the spectral evolution. We then use spectral-GMM

parameters [167] to model each event target. Note that the spectral-GMM parameters

used here are to approximate a spectral envelope, which are different from those often

used to model the distribution of acoustic features in state-of-the-art methods for voice

conversion. The question is now how to modify the event targets. In the next section, we

present a new algorithm to answer this question.
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Figure 5.1: Block diagram of our spectral modification algorithm.

5.2 Proposed spectral modification algorithm

Control of formants is an effective way to perform modification of a speech spectral enve-

lope. Spectral-GMM parameters extracted from the spectral envelope are spectral peaks,

which may be related to formant information. To modify the spectral-GMM parameters

in accordance with formant scaling factors, it is necessary to find relations between for-

mants and the spectral-GMM parameters. When estimating spectral-GMM parameters

from a spectral envelope, we just try to minimize the distance between the histogram

of the spectral envelope and the Gaussian mixture model. As a result, there may be

some components which contribute to one peak of the spectral envelope restored from the

spectral-GMM parameters, which make it difficult to modify the spectral-GMM parame-

ters.

In this section, based on the geometric characteristic of the Gaussian distribution, we

propose a new algorithm for modifying GMM parameters in accordance with formant fre-

quencies. The spectral modification algorithm is described as follows, and is corresponding

to Figure 5.1.
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We first extract spectral-GMM parameters from the smooth spectral envelope. In the

next step, we find the peaks of the spectral envelope reconstructed from the spectral-GMM

parameters. Since not all these peaks are formants, we have to decide how much these

peaks are shifted. For spectral modification, the first formants are most important, and

often considered for modification. In this study, we also focus on modifying factors related

to the first four formants. We isolate spectral regions of the input signal by dividing it

into four non-overlapping bands (0 - 800 Hz, 800 - 2500 Hz, 2500 - 3500 Hz, 3500 -

sampling frequency/2 Hz) which cover the first four formant frequency ranges [62]. The

scaling factor of each peak is the scaling factor of the formant to which the peak belongs.

Based on the geometric characteristics of normal distribution, i.e. the empirical rule, we

find which Gaussian components contribute to this peak. If this peak is located between

[µm−3σm; µm +3σm], where µm is the mean and σm is the standard deviation of Gaussian

component m, we regard Gaussian component m as contributing to this peak. We shift

the mean parameter of this Gaussian component by the scaling factor of this peak. In

this algorithm, we only modify the mean parameters of Gaussian components, and we

do not modify the other parameters of Gaussian components (i.e. standard deviations

and mixture weights). Note that mean parameters are sorted in ascending order, and

every mean parameter is shifted only once. After shifting the mean parameters of the

Gaussian components, we reconstruct the modified spectral envelope. Consequently, we

can independently modify each spectral peak. An example of our proposed algorithm

applied to a spectrum is shown in Figure 5.2. For comparison with our method, an

example of formant modification of the LSF-based method [99] is shown in Figure 5.3. In

the LSF-based method, since attributes of a formant depend on properties of a conjugate

pole pair, when we change formant frequencies, amplitudes of a speech spectral envelope

also change. On the contrary, we can control the spectral shape using our method.

5.3 Experiments and results

In this section, to evaluate the effectiveness of our proposed algorithm spectral modifica-

tion, we investigate it in two areas, emotional speech synthesis which requires modification

of both formant frequency and power in Subsection 5.3.1, and voice gender conversion

which requires a large amount of spectral modification in Subsection 5.3.2. In the both

applications, we employ our modeling of speech spectral sequence in Subsection 3.3. Note

that we employ the local minima of the spectral feature transition rate (SFTR) based on

LSF parameters [69, 102] to automatically identify the event locations, and the spectral-

GMM parameters [164, 167] to model each event target. We then apply our algorithm of

spectral modification to modify event targets.

5.3.1 Application to emotional speech synthesis

In this subsection, we investigate our spectral modification method for emotional speech

synthesis, where formant frequencies are shifted by small scaling factors (below 8 percent),

and power envelopes need to be modified.
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Figure 5.2: Example of our spectral modification algorithm applied to a spectrum: ∆F1 =
30%, ∆F2 = −10%, ∆F3 = 20%, and ∆F4 = 15%.

Speech is one of the most natural methods for human beings to convey linguistic con-

tents. In addition, it is also one of the useful methods for conveying emotion. Speech is

probably the only method that can convey linguistic contents and the speaker’s emotion

simultaneously. In synthesized speech databases, there are two important requirements,

i.e. intelligibility and naturalness. Therefore, the need for increasing naturalness becomes

more palpable. One of the aspects of naturalness most obviously missing in synthetic

speech is appropriate emotional expressivity. Attempts to add emotion effects to synthe-

sized speech have been attractive to many researchers.

Many earlier studies of expressive speech only focused on statistical correlations be-

tween expressive speech and acoustic features without taking into account the fact that

human perception is vague rather than precise [58]. Huang and Akagi [57, 58] propose a

multi-layer approach to modeling perception of expressive speech. Unlike most other stud-

ies that deal with the direct relationship between emotional speech and acoustic features,

this model consists of three layers, emotional speech, semantic primitives, and acoustic

features. This model is a rule-based conversion system, and therefore it is necessary to

control each parameter independently.

In [57, 58], it was necessary to modify both power envelopes and formants. In the

standard spectral modification techniques, such as [99], when formant frequencies are

shifted, the magnitude of the speech spectrum is also changed accordingly. It is difficult

to independently modify both power and formant frequencies with the defined scaling fac-

tors. To overcome this drawback, we employ our spectral modification method. Since our
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Figure 5.3: Example of formant modification algorithm of the LSF-based method [99]
applied to a spectrum: ∆F1 = 30%, ∆F2 = −10%, ∆F3 = 20%, and ∆F4 = 15%.

method uses spectral-GMM parameters to directly model and modify the spectral enve-

lope, the magnitude of the spectral envelope is almost the same when formant frequencies

are shifted, and each parameter’s value can be modified independently. In addition, the

smoothness of synthesized speech is ensured by using TD.

To verify the effectiveness of our spectral modification method, we conducted a lis-

tening experiment to compare it with the LSF-based method [99], which enabled a high

level of control of formant characteristics. Both the LSF-based method and our spectral

modification method had been applied in [57, 58], while other processes and morphing

rules were kept the same. A neutral utterance was used to morph emotional utterances,

i.e. cold anger, hot anger, sadness, and joy. The analysis conditions are listed in Table

5.1.

Table 5.1: Analysis conditions for experiments of emotional speech synthesis.

STRAIGHT

Sampling frequency 22.05 kHz
Window length 40 ms
Window shift 1 ms
FFT points 1024

LSF-based method LSF order 24
Proposed method Gaussian components 24
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Figure 5.4: Evaluation measure of Scheffe’s paired comparison (five grades: -2, -1, 0, 1
and 2).
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Figure 5.5: Subjective listening results for emotional speech synthesis.

The subjective test was carried out using Scheffe’s method of paired comparison [130].

In this subsection, five grades from -2 to 2 were used, as shown in Figure 5.4. Eight

Japanese graduate students known to have normal hearing ability were recruited for the

listening experiment. Paired stimuli A and B were presented to each listener, and listeners

were asked to grade stimuli according to his/her perception of speech quality. Experi-

mental results are shown in Figure 5.5. According to a two-tailed t-test, these results are

statically significant at a 95% confidence level (p-value= 9.2 · 10−3). These experimental

results also indicate that the speech quality of our proposed method is better than that

of the LSF-based method [99]. In this application, since scaling factor is small (less than

8 percent), the difference of the results between the LSF-based and TD-GMM methods

is small.

5.3.2 Application to voice gender conversion

In Subsection 5.3.1, our proposed spectral modification method was effectively applied

to shift the small formant frequencies, below 8 percent. In this subsection, we explore

the effectiveness of our spectral modification method in a voice gender conversion (VGC)

system which requires much spectral modification, about 20 percent.

The aim of voice gender conversion is to modify female (male) speech so that it sounds

as if it was spoken by a male (female). Voice gender conversion has applications in voice

output systems such as text to speech synthesis, multimedia voice applications, or in

voice gender normalization for improved speech compression or recognition. The voice
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gender conversion challenge is to convert the gender-related parameters of the speech

signal without affecting smoothness and naturalness.

A typical male vocal tract is about 17.5 cm in length (i.e. from vocal cords to lips)

while that of a female is about 15.2 cm. The adult male larynx is about 1.2 times the size of

that of the female. During puberty the male larynx undergoes a change in shape (Adam’s

apple protrusion) such that the adult male vocal cord membrane length reaches about 1.6

times that of the female. Analysis of male and female voiced utterances shows that the

female formant frequencies are about 15 % higher than male. This difference is in close

agreement with the male-to-female vocal tract length ratio. Female pitch is generally

about 1.7 times that of male. This difference is mainly attributed to the difference in

vocal cord membrane length although other factors such as male/female differences in the

way in which the cords open and close are believed to be relevant also [145]. A detailed

explanation of the speech production mechanism can be found in [132].

For a long time, it was believed that pitch was the dominant cue in voice gender

perception. However, Childers and Wu [26] showed that grouped formant information

gave a higher automatic gender distinction success rate than pitch information. Therefore,

both the glottal and vocal tract related features of the source speech signal need to be

modified in voice gender conversion systems.

A variety of approaches to voice gender conversion have been discussed in the litera-

ture. Most voice gender conversion methods are based on a parametric source-filter model

of speech production [6, 59, 77]. In [6] and [77], formant modification is done by linear

frequency scale mapping applied to the spectral envelope. This does not reflect accurately

the frequency difference between male and female, and the quality of converted speech is

not very natural. To overcome the disadvantages of linear frequency scale mapping, Jung

et al. [59] refined the method proposed in [77] by splitting the speech signal into two

complementary frequency bands to separate F4 from the other formants, and modifying

each sub-band with different formant scaling factors. However, this method still uses

LP (linear prediction) coefficients to represent and modify the spectral envelope. Due

to the limitation of standard LP-based techniques in independently modifying important

formant characteristics such as amplitude and bandwidth, the quality of speech is not

enhanced.

In addition, all methods mentioned above modify spectral envelope and fundamental

frequency frame by frame, and rarely apply any constraints between frames. When there

are unexpected modifications in some frames, the modified speech may be not smooth.

As a result, there are some clicks in the converted speech, which leads to degradation of

speech quality.

Our perception of spoken-voice gender relies heavily on the phonation or voicing pro-

cess, which is associated mainly with vowel sounds. We first extracted the fundamental

frequencies, and the first four formant frequencies from the five Japanese vowels spoken

by two speakers (one male & one female) in the ATR Japanese speech database [2]. We

then used these values to formulate the scaling factors for our VGC system. In this sub-

section, we used labeled data of each utterance to identify the distance between an event

location and vowels. The scaling factors for an event target is the scaling factors of the

vowel which was nearest to this event target.
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Table 5.2: Analysis conditions for experiments of VGC system.

STRAIGHT

Sampling frequency 12 kHz
Window length 40 ms
Window shift 1 ms
FFT points 1024

LSF-based method LSF order 14
Framewise-GMM method Gaussian components 14
Proposed method Gaussian components 14

To evaluate the performance of our proposed system, we conducted a listening exper-

iment. We compared the performance of our system with the performance of two other

systems. All three systems used STRAIGHT to modify fundamental frequencies. In the

first system, the LSF-based method [99] was employed to modify formant frequencies

(STRAIGHT+LSF). In the second system, speech spectra were modified frame by frame

using only the framewise-GMM method, without using TD (STRAIGHT + framewise-

GMM method).

A set of 50 sentence utterances of the ATR Japanese speech database was selected

as the speech data. This dataset spoken by 2 speakers (one male & one female) was

re-sampled at 12 kHz sampling frequency. The analysis conditions are listed in Table 5.2.

We randomly presented the synthesized sounds of each of six utterances which had

been spoken by two speakers (one male & one female), to eight Japanese graduate students

with normal hearing ability, and asked them to identify the gender of the person who was

speaking, and to rate the perceptual quality of the speech on a five-point scale (1: bad,

2: poor, 3: fair, 4: good, 5: excellent). The average scores are shown in Table 5.3.

When comparing our proposed method (STRAIGHT + TD-GMM) with the first method

(STRAIGHT + LSF), a two-tailed t-test at a 95% confidence level shows that the speech

quality of our proposed method is superior to that of the first method for both kinds of

conversions (p-value = 1.0 · 10−4 for male to female conversion, and p-value = 1.7 · 10−5

for female to male conversion). In this application, since scaling factor is large (more than

20 percent), the difference of the results between the LSF-based and TD-GMM methods

is large. The LSF-based method cannot give acceptable voice quality, since the quality of

most converted speech signals is diminished by a discernible buzzy sound. Our proposed

method produces better voice quality than the other methods. The speech quality of the

second method (STRAIGHT + framewise-GMM) and our proposed method are almost

equivalent (p-value of a two-tailed t-test at a 95% confidence level for male to female

and female to male conversions are 0.7529 and 0.6802, respectively). According to the

experimental results in Subsection 4.1, our proposed method is better than the framewise-

GMM method in terms of spectral modeling. In this application, there are no reference

speakers, and the modified speech of the framewise-GMM and our proposed methods are

hardly perceptually distinguishable. The reason is that we used the same scaling factor

for every frame in a vowel in this application. Therefore, the smoothness of spectra is

preserved in voiced frames when modifying, and the effectiveness of TD is not shown
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Table 5.3: Subjective listening results for VGC system (1) STRAIGHT + LSF (2)
STRAIGHT + framewise-GMM (3) our proposed system (STRAIGHT + TD-GMM).

Type of conversion
Correct gender Quality evaluation

identification (%) score
(1) (2) (3) (1) (2) (3)

Male to Female 83.3 93.8 93.8 2.73 3.15 3.19
Female to Male 100 100 100 3.10 3.58 3.63

clearly. It should be noted that both the second method and our proposed method used

the algorithm in Section 5.2 to perform spectral modification.

5.4 Conclusions

In this chapter, we have presented an efficient algorithm for modifying spectral-GMM

parameters in accordance with formant scaling factors. Our proposed algorithm performs

spectral modification directly on the speech spectral envelope, and it produces the high

quality of spectral modification. Our proposed algorithm is especially useful when we

change the speech spectral envelope by large factors, while conventional methods can not

make great changes. The experimental results prove the effectiveness of our proposed

algorithm.

There is however an issue which still remains to be solved. In this chapter, we only

change mean parameters of Gaussian components to perform spectral modification. It

is well-known that amplitudes and bandwidth of spectral peaks are also important. The

next stage of this research is how to change other Gaussian components (i.e. standard

deviations and mixture weights) to modify amplitudes and bandwidth of spectral peaks.
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Chapter 6

Statistical Approach to Spectral

Modification

This chapter continues to solve the third issue of spectral modification, i.e. the ineffective

spectral modification. In Chapter 5, we propose a new efficient algorithm of spectral

modification which belongs to the rule-based approach. In this chapter, we improve a

statistical approach. The statistical approach to spectral modification has been applied

in many areas of speech technology, such as speaker adaptation [134], spectral voice

conversion [23, 34, 37, 61, 74, 81, 107, 143, 148, 163], noise reduction [101]. This chapter

improve the GMM-based spectral voice conversion method. In our proposed method, we

improve the parameters of the converting function by adding constraints to the estimation

of GMM parameters, and enhance the transformation stage by employing the model of

temporal evolution of spectral parameters.

6.1 Introduction

The aim of voice conversion is to convert a speaker voice (source speaker) to sound as if

it were the voice of a defined speaker (target speaker). Applications of voice conversion

systems can be found in several fields, such as Text-to-Speech customization, automatic

translation, education, medical aids and entertainment.

In voice conversion, we have focused on improving both speech intelligibility and

speaker’s identity. Until now, the quality of speech intelligibility can be acceptable, but

speaker’s identity of converted utterances is far from natural. Researchers study on the

relationship between voice individuality and certain acoustic features. Technology of voice

conversion nowadays tries to convert spectral information, fundamental frequency, energy,

duration. The diagram of a typical voice conversion system is shown in Figure 6.1.

The voice conversion process can be decomposed into two stages: the training pro-

cedure and the transformation procedure. In the training procedure, we first prepare

training data. Depending on the conversion technology, the training data can be parallel

(text-dependent) or non-parallel data (text-independent). The parallel data is the data

of the same sentences which are uttered by both source and target speakers, whereas in

the non-parallel data, the spoken utterances by the source and target speakers need not
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Figure 6.1: General architecture of a voice conversion system.

be the same. We then align utterances of the source and target speakers. For the parallel

data, the utterances of the source and target speakers can be automatically aligned by

some algorithms, such as the dynamic time warping (DTW) algorithm, the hidden Markov

models (HMM) technique. For the non-parallel data, the biggest challenge is how to align

the corresponding training data. After aligning the data, we apply mathematic/statistical

models to obtain conversion functions. The text-dependent voice conversion gives higher

quality than text-independent voice conversion. However, the parallel data is not always

available in real-life applications. In the transformation procedure, the system applies the

conversion function to transform new input utterances of the source speaker.

The core process in a voice conversion system is the transformation of the spectral

envelope of the source speaker to match that of the target speaker. There are many

statistical methods which have been proposed to implement the transform function for

converting source features to target features, such as codebook-based conversion [1], neural

network-based conversion [157], hidden Markov model (HMM)-based conversion [67], and

Gaussian mixture model (GMM)-based conversion [23, 34, 37, 61, 74, 81, 107, 143, 148,

163]. Among those techniques, the vast majority of the current voice conversion systems

focus on data-driven GMM-based transformation on the spectral aspects of conversion.

Research results found in the literature have shown that the GMM-based methods can

be successfully used in voice conversion. These methods are still regarded as robust and

capable of producing high speech quality [163].

87



For the conversion of fundamental frequency, many studies [37, 38, 147] apply linear

conversion techniques. They assume that fundamental frequency is characterized by a

log-normal distribution. In the training procedure, they calculate the average value µ and

variance σ of logf0 for both source and target speakers. The conversion of fundamental

frequency is done by following equation.

logf converted
0 = µtarget +

σtarget

σsource
(logf source

0 − µsource) (6.1)

Some researchers also apply GMM-based methods to convert fundamental frequency,

such as [52]. Other studies [36, 52] investigate the correlation between fundamental fre-

quency and spectral information, and then apply the GMM-based methods to estimate

the fundamental frequency from the converted spectral information.

Along with conversions of spectral information and fundamental frequency, energy

and duration information are also investigated to convert. However, because of lack of

modeling of these features, we only perform simple conversion. For example, in [37,

38], power conversion is done by constant multiplicative factors for sub-bands of speech

spectrum. Durations are kept the same to the utterances of source speaker, or duration

conversion is done by multiplying by the average factors of each phoneme.

In this dissertation, we focus on spectral voice conversion, one of core process in a

voice conversion system. In the next parts, we formulate the problems of spectral voice

conversion, and then present our solution.

6.2 Problem formulation

Among spectral voice conversion methods, GMM-based methods are widely used. Al-

though the GMM-based voice conversion methods can give reasonably acceptable speech,

the quality of converted speech is still far from natural. Three major problems remain to

be solved, i.e. insufficient precision of GMM parameters, insufficient smoothness of the

converted spectra between frames, and over-smooth effect in each converted frame. This

section deals with the first two of the three drawbacks in a GMM-based voice conversion

system, the insufficient precision of GMM parameters, and the insufficient smoothness of

the converted spectra between frames.

A GMM-based voice conversion method normally includes two parts, a training pro-

cedure and a transformation procedure. In the training procedure, the methods are often

based on parallel training data, where both the source and target speakers utter the

same sentences. In this case, the dynamic time warping (DTW) algorithm or the hid-

den Markov models (HMM) technique are often used to align the two signals to extract

matching source and target training vectors. Both unstable frames, which often come

from transition parts between phonemes, and stable frames are used to model the distri-

bution of acoustic features. This leads to addition of noise to the GMM parameters. To

overcome this drawback, some solutions have been proposed. Kumar and Verma [74] ex-

plicitly partition acoustic space of a speaker into phones by using the phonetic alignments.

After that, GMM parameters are used for finer modeling of each phone. This approach

can prevent the interference of frames between phones. However, it still uses unstable
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frames in each phone. Liu et al. [81] segment frames according to each phoneme, and

eliminate unstable frames in each phoneme by proposing a method for identifying stable

frames based on limitation of maximal variation range for the first three formant frequen-

cies. After getting the stable frames, Liu et al. also use GMM parameters to model the

distribution of acoustic features. Nguyen and Akagi [107] use event targets as spectral

vectors to estimate GMM parameters, instead of using spectral parameters of aligned

frames. However, all methods in [74, 81, 107] do not take into account the relations be-

tween frames when estimating the GMM parameters. The GMM parameters therefore

are more precisely estimated when being considered the relations between frames.

In the transformation procedure, there are two main drawbacks, i.e. insufficient

smoothness of the converted spectra between frames, and over-smooth effect in each con-

verted frame. Until now, most voice conversion methods perform voice transformation

function frame by frame. This means that to convert one frame, the information about

past and future frames is not relevant. This may cause a discontinuity problem between

adjacent frames when unexpected modifications happen in some frames. As a result,

there are some clicks in the converted speech. Moreover, Knagenhjelm and Kleijn [73]

pointed out that spectral discontinuities between adjacent frames were one of the major

sources of quality degradation in speech coding systems. Some approaches to deal with

this problem were discussed. To maintain a continuous transformation in consecutive

frames, Chen et al. [23] smooth the converted features along the time axis by employing

a median filter and a low pass filter. However, applying these filters can lead to a loss

of temporal resolution, and it is a relatively crude implementation. Duxans et al. [34]

include dynamic information in their GMM-based voice conversion system to take into

the relations between frames. However, according to Duxans et al. [34], this method does

not improve the performance of a GMM-based voice conversion system. Therefore, the

discontinuity problem between adjacent frames should be solved to enhance the quality

of converted speech. The problem of over-smooth effect happens in each converted frame,

because of the statistical averaging operation [148]. Some works attempted to solve it

[23, 148, 163], but defining solutions for this problem is beyond the scope of this section.

This section addresses two of the three main issues mentioned above, the insufficient

precision of GMM parameters, and the insufficient smoothness of the converted spectra

between frames. We propose a new spectral voice conversion method based on temporal

decomposition (TD) [5, 113] and GMM [61, 143]. In our proposed method, we employ

the modified restricted temporal decomposition (MRTD) algorithm [113] in both training

and transformation procedures. We extract a set of phoneme-based features of event

targets. We then use them as spectral vectors for training to take into the relations

between spectral parameters in each phoneme, and to avoid using spectral parameters

in transition parts. In the transformation procedure, we only need to convert event

targets, instead of converting spectral parameters frame by frame, and the smoothness

of converted speech is ensured by the shape of the event functions. In addition, since

the fundamental frequency and vocal tract information are not independent, modifying

them separately often degrades the quality of converted speech. Therefore, a high quality

analysis-synthesis framework, STRAIGHT [65] is utilized in this section.

89



6.3 Conventional GMM-based voice conversion

As previously mentioned, the GMM-based voice conversion methods are found to be supe-

rior to other methods. In this section, we describe the basic GMM-based voice conversion

method which is employed as our baseline system. A GMM-based voice conversion method

often includes two parts, the training procedure and the transformation procedure.

6.3.1 Training procedure

The source speech is represented by a time sequence X = [x1,x2, ...,xn], where xi is a D

dimensional feature vector for the ith frame, i.e. xi = [x1, x2, ..., xD]T . The target speech

is represented by a time sequence Y = [y1,y2, ...,ym], where yj = [y1, y2, ..., yD]T . The

DTW algorithm is then adopted to align source features with their counterparts in target

series to obtain feature pair series Z = [z1, z2, ..., zq] where zq = [xT
i ,yT

j ]T .

The distribution of Z is modeled by Gaussian mixture model, as in Eq. (6.2).

p(z) =
M∑

m=1

αmN (z; µm, Σm) = p(x, y) (6.2)

where M is the number of Gaussian components. N (z; µm, Σm) denotes the 2D dimension

normal distribution with the mean µm and the covariance matrix Σm. αm is the prior

probability of z having been generated by component m, and it satisfies 0 ≤ αm ≤ 1,∑M
m=1 αm = 1. The parameters (αm, µm, Σm) for the joint density p(x, y) can be estimated

using the expectation maximization (EM) algorithm [30].

6.3.2 Transformation procedure

The transformation function that converts source feature x to target feature y is given

by Eq. (6.3).

F (x) = E(y|x) =

∫
yp(y|x)dy

=
M∑

m=1

pm(x)

(
µy

m + Σyx
m (Σxx

m )−1(x− µx
m)

)
(6.3)

pm(x) =
αmN (x; µx

m, Σxx
m )∑M

m=1 αmN (x; µx
m, Σxx

m )
(6.4)

where µm =

[
µx

m

µy
m

]
, Σm =

[
Σxx

m Σxy
m

Σyx
m Σyy

m

]
, and pm(x) is the probability of x belonging to the

mth Gaussian component.
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6.4 Temporal decomposition

A shortcoming of the conventional GMM-based voice conversion methods is that they do

not take into account the correlation between frames in both training and transformation

procedures. As a result, the precision of estimated GMM parameters is degraded, and

there are some clicks in the converted speech because of discontinuous spectral contours.

Therefore, we employ TD to deal with the problem.

In articulatory phonetics, speech is described as a sequence of distinct articulatory

gestures, each of which produces an acoustic event that should approximate a phonetic

target. Due to the overlap of the gestures, these phonetic targets are often only partly

realized.

Atal [5] proposed a method based on the temporal decomposition of speech into a

sequence of overlapping target functions and corresponding event targets, as given in Eq.

(6.5).

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (6.5)

where ak is the speech parameter corresponding to the kth event target. The temporal

evolution of this target is described by the kth event function, φk(n). ŷ(n) is the approx-

imation of the nth spectral parameter vector y(n), and is produced by the TD model.

N and K are the number of frames in the speech segment, and the number of event

functions, respectively (NÀK ).

This chapter also employs the MRTD algorithm [113], one of improvements of the

TD algorithm. In the MRTD algorithm, LSF parameters are chosen for the input of TD

because of their sensitivity (an adverse alteration of one coefficient results in a spectral

change only around that frequency) and efficiency (LSFs result in low spectral distortion

when being interpolated and/or quantized). In this chapter, LSF parameters are extracted

from spectral envelopes of STRAIGHT [65]. The STRAIGHT spectra are suitable for TD,

because they are smooth in the time-frequency domain.

In a voice conversion system, we need to align utterances of source and target speakers.

The original MRTD algorithm does not ensure an one-to-one correspondence between

event locations and phonemic units. This makes it difficult to align parallel training

data in voice conversion systems. Therefore, we use the algorithm which is described in

Subsection 3.3.3. This algorithm for identifying the event locations is based on phonemes.

To increase the accuracy of phoneme segmentation, this algorithm is effectively used when

labeled data of utterances are available. Each phoneme is divided into four equal segments,

and the five points marking these segments are used for identifying the event locations.

Specially, since we can represent each phoneme by five event targets, these five event

targets of each phoneme can be regarded as a “voice font”. It should be noted that we

can easily increase the quality of synthesized speech by increasing the number of event

locations in each phoneme.
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6.5 Proposed spectral voice conversion method

6.5.1 Spectral parameters

The overall shape of the spectral envelope provides an effective representation of the vo-

cal tract characteristics of the speaker. However, the dimension of the spectral envelope

is rather high, and it is not effective for direct use in a voice conversion system. We

therefore often use another representation of the spectral envelope. MFCC coefficients

are used to represent the spectral envelope in [74, 143, 148], while line spectral frequency

(LSF) coefficients are used in [23, 34, 37, 61, 163] for the reason that LSFs have better

linear interpolation attributes. In our voice conversion system, we choose LSFs for the

representation of the spectral envelope. The reason for selecting LSFs is that these pa-

rameters closely relate to formant frequencies, but in contrast to formant frequencies they

can be estimated quite reliably. Also, they have good interpolation characteristics, and

a badly predicted component adversely affects only a portion of the frequency spectrum.

Moreover, they are easily integrated with the MRTD algorithm, which uses LSFs as its

input.

6.5.2 Proposed method

As previously mentioned, our proposed method focuses on spectral voice conversion, and is

based on the GMM method [61, 143]. The processing flow of our spectral voice conversion

system, which includes training and transformation procedures, is described as follows,

and is shown in Figure 6.2.

In the training procedure, STRAIGHT [65] decomposes input speech signals into spec-

tral envelopes, F0 (fundamental frequency) information, and aperiodic components (AP).

Since the spectral envelopes can be further analyzed into LSF parameters, MRTD [113] is

employed in the next step to decompose the LSF parameters into event targets and event

functions. Note that the method for determination of event locations is from [133]. Each

phoneme is represented by five event targets, and a vector of phoneme-based features of

event targets EV = [aT
1 , aT

2 , aT
3 , aT

4 , aT
5 ], where ak(1 ≤ k ≤ 5) is the kth event target in

each speech segment (a phoneme), can be a good vector to present the relations between

event targets in a phoneme. Moreover, each event target ak in the MRTD algorithm [113]

is a valid LSF coefficient. An important property of LSFs {LSFi} is that they are ordered

(0, π), as follows.

0 < LSF1 < LSF2 < . . . < LSFP < π (6.6)

where P is the order of LSF. To prevent a bad initialization in estimation of GMM

parameters, we normalize the vectors of phoneme-based features of event targets extracted

from each phoneme in utterances of source and target speakers, EVx and EVy, as follows.

EVx = [aT
x1, a

T
x2 + π, aT

x3 + 2π, aT
x4 + 3π, aT

x5 + 4π]T (6.7)

EVy = [aT
y1, a

T
y2 + π, aT

y3 + 2π, aT
y4 + 3π, aT

y5 + 4π]T (6.8)
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Figure 6.2: Diagram of our proposed voice conversion method training procedure (top),
and transformation procedure (bottom).

where axk, ayk are the kth event targets in each phoneme of the source and target speak-

ers, respectively. As a result, the vectors EVx and EVy are ordered (0, 5π). All the

phoneme-based features are then aligned according to each phoneme, and modeled by

GMM parameters in Eq. (6.2).

In the transformation procedure, normalized phoneme-based features are also ex-

tracted from each utterance of the source speaker by using STRAIGHT and MRTD.

We then convert each of the normalized phoneme-based features by using Eq. (6.3), and

convert back to event targets. The converted event targets are re-synthesized as converted

LSF by MRTD synthesis. In the following step, the converted LSF parameters are synthe-

sized as spectral envelopes by LSF synthesis. Finally, STRAIGHT synthesis is employed

to output the converted speech. Note that this section does not deal with prosodic, energy

conversion. Therefore, to implement a complete voice conversion system, our proposed

method should be integrated with some methods for prosodic, energy conversion, such as

in [37, 148].

6.6 Experiments and results

6.6.1 Experimental conditions

The corpus used for the experiments is a dataset consisting of 460 sentences spoken

once each by two speakers (one male & one female) in the MOCHA-TIMIT English

speech database [162]. The speech data was recorded at 16KHz sampling rate. In our
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Table 6.1: Analysis conditions for experiments on the voice conversion methods.

Sampling frequency 16 kHz
Window length 40 ms
Window shift 1 ms
FFT points 1024
LSF order 18
Gaussian components 20

experiments, two different voice conversion tasks were investigated: male-to-female, and

female-to-male conversion. For each kind of conversion, we used 300 pair utterances for

training, and 30 other pair utterances for evaluation.

To evaluate the performance of our proposed method, we performed an objective test,

and also subjective evaluation experiments regarding speech quality and speaker individ-

uality. We compared our proposed method (the phoneme-based TD+GMM method) with

two other methods. The first method used for comparison is the conventional method

(the GMM method) [61, 143]. The second method used for comparison also used event

targets for training, and the transformation procedure was performed for each event target

(the TD+GMM method). The difference between the second method and our proposed

method is that the second method does not take into account the relations between event

targets in training and transformation procedures. Since we only focus on spectral voice

conversion, we automatically copy the prosody information and energy from the utter-

ances of the target speaker to converted utterances. In addition, because the problem of

the over-smooth effect in each converted frame is outside the scope of this section, with-

out loss of generality, all three methods utilize the same transformation mapping function

of the conventional method [61, 143] (see Eq. (6.3)). The analysis conditions for these

experiments are shown in Table 6.1.

6.6.2 Objective test

We use LSF performance index PILSF for the objective test. This measure is defined as

follows.

PILSF = 1− ELSF (t(n), t̂(n))

ELSF (t(n), s(n))
(6.9)

where t(n) represents the utterance of the target speaker, s(n) represents the utterance

of the source speaker, and t̂(n) represents the converted utterance. ELSF (t(n), t̂(n)) is

the mean transform LSF error, and ELSF (t(n), s(n)) is the mean inter-speaker LSF error,

defined as follows.

ELSF (A,B) =
1

L

L∑

l=1

√√√√ 1

P

P∑
i=1

(
LSF l,i

A − LSF l,i
B

)2

(6.10)
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Table 6.2: Objective results for the voice conversion methods (1) Conventional method
(GMM method) (2) TD+GMM method (3) our proposed method (Phoneme-based
TD+GMM method).

Type of conversion
LSF performance index

(1) (2) (3)
Male to Female 0.3692 0.3819 0.4013
Female to Male 0.3517 0.3745 0.3829

Table 6.3: MOS results for voice conversion methods (1) Conventional method (GMM
method) (2) TD+GMM method (3) our proposed method (Phoneme-based TD+GMM
method).

Type of conversion
Mean opinion score
(1) (2) (3)

Male to Female 3.17 3.50 3.89
Female to Male 2.67 3.13 3.67

where L is the number of frames, P is the order of LSF, and LSF l,i is the LSF component

i in the frame l.

PILSF = 0 indicates that the output of the system is no more similar to the target

than the source is, whereas PILSF = 1 indicates that the output of the system is identical

to the target. In general, a higher value for PILSF suggests a better system.

The results of this objective test are shown in Table 6.2. These results indicate that the

performance of our proposed method is significantly better than that of the conventional

method, and also better than that of the second method (the TD+GMM method).

6.6.3 Subjective tests

Subjective tests concerning speech quality and speaker individuality were carried out. Six

graduate students known to have normal hearing ability were recruited for the listening

experiments.

In the test of speech quality, we randomly presented each of ten converted utterances

from both kinds of conversion (male-to-female and female-to-male) to listeners, and asked

them to rate the perceptual quality of the speech on a five-point scale (1: bad, 2: poor,

3: fair, 4: good, 5: excellent). Table 6.3 shows the average scores, which indicate that

the speech quality of our proposed method (the phoneme-based TD+GMM method) is

superior to that of the conventional method (the GMM method), and also better than

that of the second method (the TD+GMM method).

In the test of speaker individuality, an ABX test was conducted. A represents the

source speaker, B represents the target speaker, and X represents the converted speech,

which supplied from each one of the three test systems. The listeners were asked to select if

95



Table 6.4: ABX results for voice conversion methods (1) Conventional method (GMM
method) (2) TD+GMM method (3) our proposed method (Phoneme-based TD+GMM
method).

Type of conversion
ABX score

(1) (2) (3)
Male to Female 4.06 4.17 4.50
Female to Male 3.44 3.56 4.00

X was closer to A or B, and adjusted the score from 1 to 5 according to his/her perception

of speaker individuality when comparing. The score of 1 means that the converted speech

is very similar to the source speaker, and the score of 5 means that the converted speech

is very similar to the target speaker. Results of the ABX test are shown in Table 6.4.

These results also indicate that the speech individuality of converted utterances of our

proposed method is the most similar to the target speaker among the three methods. It

should be noted that the score of the test of speaker individuality is rather high because

in this section, we only focus on spectral conversion, and we therefore copied prosodic

information and energy from utterances of the target speaker for all three methods.

6.7 Conclusions

In this chapter, we have continued to present another solution for the third issue of spectral

modification, the ineffective spectral modification. We improve the GMM-based spectral

voice conversion method, one kind of the statistical approach to spectral modification.

We deal with the two of three main drawbacks of conventional GMM-based voice spectral

conversion methods, the insufficient precision of GMM parameters, and the insufficient

smoothness of the converted spectra between frames. Our proposed method considers the

relations between frames when estimating GMM parameters by using a set of phoneme-

based features of event targets as spectral vectors for training. Therefore, our approach

can improve the precision of GMM parameters. Our proposed method also ensures the

smoothness of converted speech by performing the conversion procedure for event targets,

instead of converting the spectral parameters frame by frame. The experimental results

prove the effectiveness of our proposed method.

There are however issues which still remain to be solved. Although prosodic conver-

sion, and duration conversion are outside of the scope of this section, they are important

features for the realization of speaker personality, and to improve the natural quality of

converted speech. Prosodic conversion, duration conversion, and the problem of over-

smooth effect in each converted frame is considered in our future work.
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Chapter 7

Summary and Future Work

In this chapter, we conclude the dissertation with summaries and discussions of future

work.

7.1 Summary of the dissertation

This dissertation aims to propose spectral modelings and spectral modification algorithms

to improve the quality of modified speech in the area of voice transformation.

Most high-quality methods of speech modification process speech signals in the time-

frequency domain. In conventional spectral modelings, frames are modeled independently,

and there is no models of temporal evolution of parameters. In the time axis, most meth-

ods of speech modification process speech signals frame by frame, and do not consider the

temporal evolution. Therefore, they do not ensure the smoothness of synthesized speech

after modification. In addition, they either do not guarantee to keep the natural evolu-

tion of parameters of speech signals. These limitations degrade the quality of modified

speech. In the frequency axis, speech modification methods often process the spectral

envelope which is estimated from DFT. They then apply the rule-based approach or the

statistical approach to modify the spectral envelope. The rule-based approach needs small

training data, but this approach does not reflect natural characteristics of speech signals.

Moreover, it meets difficulties in modifying the formants or the spectral shape. Although

the statistical approach produces high quality of modified speech, it requires large train-

ing data. In addition, it works based on mathematical and statistical algorithms, some

acoustic constraints need to be added to discover all most interesting and understand-

able rules in the analyzed data set. Therefore, spectral modification methods including

both the statistical approach and the rule-based approach do not offer great flexibilities

and effectiveness in modifying speech signals. Three main issues which need to be solved

consist of the lack of efficient spectral modelings for speech modification, the insufficient

smoothness of modified spectra between frames, and the ineffective spectral modification.

This dissertation consists of seven chapters in which the four main chapters 3, 4,

5, 6 have described and solved three main problems of spectral modification which are

mentioned above. Chapter 3 has solved the problem of lack of efficient spectral modelings

for speech modification. Chapter 4 has dealt with the problem of insufficient smoothness of
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modified spectra between frames. Chapters 5 and 6 have solved the problems of ineffective

spectral modification. On the application side, we have improved the quality of modified

speech in four main areas, concatenative speech synthesis in Chapter 4, emotional speech

synthesis, voice gender conversion in Chapter 5, and spectral voice conversion in Chapter

6. The main works in this dissertation can be summarized as follows.

In Chapter 3, we have focused on solving the first issue, i.e. the lack of efficient

spectral modelings for speech modification. To modify the speech spectra, we first have

to develop an analysis/synthesis technique. Speech analysis extracts features which are

pertinent for different applications, while removing irrelevant aspect of the speech. The

analysis/synthesis method is very important, since it decides what kind of representation

and which parameters we can choose to modify. The most essential property of speech is

the spectral contents (including resonance peaks) which change continuously over time.

The physical reason underlying such an essential property is the continual motion of the

articulators that forms a time-varying acoustic filter responsible for the generation of

the speech waveform. To characterize this type of property, we need a time-frequency

representation.

We first introduces two improvements in modeling speech spectral envelope. Although

spectral-GMM parameters [166, 167, 170] are flexible to control the speech spectrum, the

original method does not ensure an one-to-one correspondence between spectral peaks and

Gaussian components. In addition, GMM does not always fit any distribution of patterns,

so it is meaningful to provide another probability model which can be chosen instead of

GMM. In the first improvement, we not only model the speech spectral envelope well but

also ensure a correspondence between spectral peaks and Gaussian components. In the

second improvement, we use asymmetric Gaussian mixture model to model the speech

spectral envelope. This chapter also presents a new method for speech spectral sequence

modeling in the time-frequency domain. Our proposed modeling of speech spectral se-

quence is potential to allow to ensure the smoothness of modified speech, and to perform

efficient spectral modification.

In Chapter 4, we have focused on solving the second issue, i.e. the insufficient smooth-

ness of modified spectra between frames. To ensure the smoothness of modified speech

signals, one of efficient ways is to control spectral dynamics. Knagenhjelm and Kleijn [73]

point out that spectral dynamics is more important than spectral distortion in human

perception. Therefore, control of spectral dynamics improves the quality of synthesized

speech. In this dissertation, we employ the temporal decomposition technique [5, 113] to

control spectral dynamics in concatenative speech synthesis to addresses the mismatch

between concatenation units in a concatenative speech synthesis system.

The most successful TTS approach to-date is called concatenative synthesis. Output

speech is limited by the contents of the acoustic inventory, and inevitable concatenation

errors can lead to audible discontinuities. Since preparing a large acoustic inventory is

expensive and time-consuming, one research direction is smoothing mismatches between

concatenation units when having a limited database. For discontinuities at boundary

points, spectral mismatch is one of the main problems should be solved. Therefore, in

this part, we solve the mismatch of spectral, gain, F0 information at concatenation points.

In Chapters 5 and 6, we have focused on solving the third issue, i.e. ineffective spectral
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modification. In Chapter 5, we develop a new efficient rule-based spectral modification

algorithm. In Chapter 6, we improve the GMM-based spectral voice conversion method,

one kind of the statistical approach.

In Chapter 5, we present a new efficient algorithm for spectral modification and its

applications. In Chapter 3, we propose a new model of the speech spectral sequence for

speech modification. This chapter solves the next step in stages of speech modification,

i.e. how to modify the spectral-GMM features. Formant frequency is one of the most

important parameters in characterizing speech, and control of formants can effectively

modify the spectral envelope. Spectral-GMM parameters extracted from the spectral

envelope are spectral peaks, which may be related to formant information. To modify

the spectral-GMM parameters in accordance with formant scaling factors, it is necessary

to find relations between formants and the spectral-GMM parameters. After proposing

a new algorithm for spectral modification, we evaluate the effectiveness of our proposed

algorithm in two areas, emotional speech synthesis which requires modification of both

formant frequency and power, and voice gender conversion which requires a large amount

of spectral modification.

Chapter 6 focuses on dealing with drawbacks in a Gaussian mixture model (GMM)-

based voice conversion system. In state-of-the-art voice conversion systems, GMM-based

spectral voice conversion methods [143] [61] are regarded as some of the best systems.

However, the quality of converted speech is still far from natural. There are three main

reasons for the degradation of the quality of converted speech: (i) modeling the distribu-

tion of acoustic features in voice conversion often uses unstable frames, which degrades

the precision of GMM parameters (ii) the transformation function may generate discon-

tinuous features if frames are processed independently (iii) over-smooth effect occurs in

each converted frame. Chapter 6 solves the first two of these three drawbacks, insuffi-

cient precision of GMM parameters and insufficient smoothness of the converted spectra

between frames.

In summary, this dissertation focuses on spectral modification of speech in the area

of voice transformation. We propose a framework for speech modification to solve three

main problems of spectral modification, i.e. lack of efficient spectral modelings for speech

modification, insufficient smoothness of the modified spectra between frames, and inef-

fective spectral modification. The main contributions of this dissertation are as follows.

First, we can flexibly control spectral dynamics of speech signals, which is one important

property for ensuring the smoothness of speech signals, and performing time-scale mod-

ification. Second, our algorithm performs spectral modification directly on the speech

spectral envelope, which is easy to convert, and does not produce artifacts. Third, we

add a phoneme constraint to the GMM-based spectral voice conversion method, which

improves the quality of converted speech.

Although we only focus on improving the quality of modified speech in the area of

voice transformation, we can apply our work in other fields of speech signal processing,

such as speech recognition, speech perception, speaker verification and identification. In

our work, we model temporal evolution of spectral parameters. We also model directly

a speech spectral envelope. These modelings allow us to effectively and flexibly perform

time-scale modification and spectral modification. These two operations are employed in
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most areas of speech technology.

7.2 Further research directions

In this dissertation, we have discussed the advantages of temporal decomposition [5, 113]

and spectral-GMM parameters [104, 106, 107, 108, 109, 166, 167, 170] in spectral modeling

and speech modification. Some research topics can be further investigated from our

research. We give some suggestions as follows.

Spectral voice conversion

Until now, many methods have been proposed to improve the quality of converted speech

signals. However, the quality is far from natural. One of solutions to improve the quality

of converted speech signals is the combination of the GMM-based spectral voice conversion

and frequency warping conversion, such as [37, 38, 81]. It is well-known that frequency

warping methods produce a high-quality speech signals. However, frequency warping

methods often decrease the speaker identity, since it is difficult to chose warping factors

for each frame. When converting speech signals, they often chose the same warping

factors for a number of frames. This implementation is not good, since speech signals

change continuously when human beings produce speech sounds. On the contrary, the

GMM-based statistical conversion methods increase the speaker identity, but decrease the

quality of converted speech signals. In [37, 38, 81], although the combination of GMM-

based statistical conversion and frequency warping conversion is employed, the quality still

need improving, since they only warp the speech spectral envelope in frequency dimension.

The relation of amplitudes between frequency bins is not discussed. Therefore, the quality

of converted speech is not high enough. In our work, we use spectral-GMM parameters

to model the speech spectral envelope. This modeling allows us to flexibly modify the

speech spectral envelope in both dimensions, frequency and amplitude. It is interesting

to investigate spectral-GMM parameters as parameters for frequency warping.

In addition, most spectral voice conversion methods use LSFs [23, 34, 37, 61, 107,

108, 163] or MFCCs [74, 143, 148] as features for training and converting. Although

these studies get promising results, one of drawbacks of these coefficients is that relations

between these coefficients in a speech spectral envelope are difficult to control. This

characteristic effects the control over the spectral shape of the speech spectral envelope.

That is one of reasons for degradation of converted speech signals. As we mentioned above,

spectral-GMM parameters are rather independent. Changing values of each Gaussian

component only effects to formants and the part of the spectral shape located around the

mean value. Therefore, it is also interesting to investigate spectral-GMM parameters as

spectral parameters, instead of using LSFs or MFCCs, in spectral voice conversion.

Speech recognition and speaker recognition

Some studies [19, 68, 111] already focused on the application of temporal decomposition

in speech recognition. However, most studies only used event targets as good features
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for speech recognition [19, 68] or speaker recognition [111]. Although event targets are

found as superior features than conventional features (e.g. MFCCs), these studies have

not investigated the combination of static features and dynamic features. Many studied

[14, 21, 124, 139] have shown that only the joint use of static and dynamic information can

lead to performance improvement in areas of speech and speaker recognition. Moreover,

because spectral dynamics calculated from two consecutive frames is sensitive to random

fluctuations in the original static features, some studies [17, 21, 150] use spectral dynamic

information which is obtained by linking spectral dynamics across multiple frames, and

they got promising results. In our analysis/synthesis method [109], M indicates a slope

of an event function. Therefore, M can be seen as dynamic information between multiple

frames. It is interesting to investigate the combination of event targets and the values of

M in speech and speaker recognitions.

Application of spectral-GMM parameters to vocal tract length normalization

in speech recognition

One of the major factors affecting the performance of speaker independent speech recog-

nition is the variability in speech signal arising due to the physiological differences of

vocal tract of speakers. To increase the accuracy rates of speech recognition, we need to

perform acoustic feature speaker normalization. The most popular speaker normalization

technique is vocal-tract length normalization (VTLN). A natural issue is the choice of

the warping function, which specifies the relationship between the frequency axis used to

represent spectra produced by the “standard” speaker and the frequency axis describing

the spectral productions of a new speaker. When examining normalization techniques,

the important issues are the choice of warping function and how it is selected. In the

literature, many studies [35, 49, 158] proposed vocal tract length normalization to im-

prove accuracy rate in speech recognition. However, until now, most methods only deal

with frequency normalization. They rarely consider amplitude normalization. Amplitude

parameters are so important [54]. As mentioned above, spectral-GMM parameters are

flexible to control both frequency and amplitude axes. Spectral-GMM parameters were

investigated in speech recognition area [28, 141, 142]. In [141, 142], mean features of

spectral-GMM parameters were combined with MFCC to make good features in speech

recognition. While in [28], mean parameters of Gaussian components were used to nor-

malize frequency axis. However, these approaches [28, 141, 142] did not take advantages

of spectral-GMM parameters to normalize amplitude axis. Therefore, it is of interest

to investigate spectral-GMM parameters in speaker normalization, both frequency and

amplitude axes.

Speech enhancement

In this dissertation, we dealt with spectral-GMM parameters in speech modification.

Moreover, spectral-GMM parameters are also investigated in speech coding [168] [169],

speech recognition [141] [142]. In modeling speech spectral envelope using spectral-GMM

parameters, we based on the geometric characteristics of formants that can be represent by

Gaussian distribution. Applications of geometric features have been investigated in speech
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signal processing. For example, in [32, 112, 113], geometric interpretation is employed to

ensure the monotonic characteristic of event functions of TD. In [83], Lu and Loizou

proposed a new geometric approach to spectral subtraction for eliminating the audible

musical noise. In [90], Master presented a model using spectral-GMM parameters to model

a DFT magnitude spectrum combining multiple harmonic sources. This model was then

used to perform signal separation, recovering the independent component sounds from

the original combined sounds. Therefore, it is interesting to investigate spectral-GMM

parameters in speech enhancement, due to the geometric characteristics of spectral-GMM

parameters.

Applications of temporal decomposition and spectral-GMM parameters to

speech perception

We already discussed the temporal decomposition and spectral-GMM parameters in speech

modification. In [109, 133], we proposed a new method to identify event locations based

on phoneme, and a new method to model event functions. This leads to the merits

that we can easily exchange event targets and event functions between two speakers or

two emotional styles of a speaker, or changing the temporal evolution. In addition, in

[104, 106, 109], we used spectral-GMM parameters to model an event target. Our pro-

posed methods provide flexible tools for investigation of speech perceptions. For example,

we can apply our methods in the following experiments.

• Investigate the transitions of vowels and consonants to speech perception by sharing

or changing event functions.

• Investigate the change of amplitude of spectral peaks to speech perception.

• Explore the temporal cues on speech perception by sharing or changing the temporal

evolution.

Improving the estimation of spectral-GMM parameters

In this dissertation, we discussed the advantages of spectral-GMM parameters in speech

modification. When estimating the spectral-GMM parameters, the EM algorithm [30] is

used. The EM algorithm for Gaussian mixture models often gets caught in local maxima

of the likelihood which involve having too many Gaussians in one part of the space and

too few in another, widely separated part of the space. Therefore, we have not ensured

the one-to-one correlation between Gaussian components and formants. Some techniques,

such as [152], in the area of machine learning can be investigated for improving estimation

of spectral-GMM parameters.

Others

In [109, 133], we presented some improvements of the MRTD algorithm, such as iden-

tification of event locations based on phoneme, and modeling of event functions. These

improvements bring advantages in modifying spectral information and duration. More-

over, speech spectrum modeling using spectral-GMM parameters [104, 106, 107, 108, 109,
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166, 167, 170] gives flexibilities to control the speech spectrum. It is interesting to inves-

tigate TD and spectral-GMM parameters in emotional speech synthesis and conversion

of speaking voices to singing voices in the following directions.

• In [57, 58], Huang and Akagi proposed a three-layer model for expressive speech

perception. In this model, Huang and Akagi investigated acoustic features in the

third layer. Although they already investigated most acoustic features which have

been found to be strongly correlated with emotion, such as F0, energy, three first

formant frequencies, there is still another important kind of features which need

to be explored for improving the quality of the synthesized speech. Those are

amplitudes of the first two harmonics (H1, H2). These features have been also

found strongly correlated with emotion, and they are investigated in many studies

in the area of emotion, such as [71]. In addition, the amplitudes of the first three

formants (A1, A2, and A3) are related to voice quality. We can estimate H1, H2,

A1, A2, and A3, but it is difficult to modify the spectrum by their desired factors if

using conventional representations of speech spectrum (i.e. LP coefficients or non-

parametric representation). Investigation of spectral-GMM parameters in [57, 58]

is our future work.

• For the conversion of speaking voices to singing voices, in [129], Saitou et al. pointed

out that emphasizing spectral peaks around 3 kHz should be done in the stage

of spectral modification. However, they employed the STRAIGHT spectrum to

represent the spectrum information. Since the STRAIGHT spectrum is a non-

parametric representation, this work is manually done by using weighting functions.

In addition, we also need to modify duration of vowels in their transition parts.

In [129], using STRAIGHT spectra makes it less flexible. In Chapter 3 of this

dissertation, we can flexibly modify duration by using TD. Therefore, it is also

interesting to explore TD and spectral-GMM parameters to automatically carry

out some steps of the conversion of speaking voice to singing voice in [129].
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