JAIST Repository

https://dspace.jaist.ac.jp/

Title	e 変調伝達関数に基づく骨導音声のプラインド回復法に 関する研究				
Author(s)	衣笠,光太				
Citation					
Issue Date	2009-03				
Туре	Thesis or Dissertation				
Text version	author				
URL	http://hdl.handle.net/10119/8094				
Rights					
Description	Supervisor:鵜木祐史 准教授,情報科学研究科,修士				

Japan Advanced Institute of Science and Technology

修士論文

変調伝達関数に基づく骨導音声のブラインド回復 法に関する研究

北陸先端科学技術大学院大学 情報科学研究科情報処理学専攻

衣笠 光太

2009年3月

修士論文

変調伝達関数に基づく骨導音声のブラインド回復 法に関する研究

指導教官 鵜木 祐史 准教授

審查委員主查 鵜木 祐史 准教授
 審查委員 赤木 正人 教授
 審查委員 党 建武 教授

北陸先端科学技術大学院大学 情報科学研究科情報処理学専攻

710021衣笠光太

提出年月: 2009年2月

Copyright \bigodot 2009 by Kota Kinugasa

概 要

骨導マイクは発話による頭部の振動をピックアップし,音声を収録するものである.頭蓋 骨と空気のインピーダンスの差が非常に大きい事から,骨導マイクは外部雑音の影響を受 けることなく音声を収録することが可能である.しかし,骨導マイクを使って収録された 音声(骨導音声)は,音質が悪く,音声明瞭度が低い.そのため,骨導音声を利用して音 声コミュニケーションを行うには,骨導音声の音質や明瞭度を回復する必要がある.

骨導音声は高い周波数帯域ほどパワー減衰することがわかっているため,骨導音声の音 質改善の最も簡単な手法として,高域強調が用いられている.しかし,骨導音声の減衰作 用は複雑であり,高域強調のみでは補えない.クロススペクトル法や長時間 Fourier 変換 などの逆フィルタ法と呼ばれる方法もあるが,これらの手法はエコーなどのアーティファ クトを生み出してしまう上,気導音声の情報を必要とするためブラインド処理ではない. 高騒音環境下では気導音声を録音することが非常に難しいため,骨導音声回復法は,ブラ インド処理であることが必要である.

一方,ブランド処理である骨導音声回復法として,線形予測分析に基づく骨導音声回復 法が提案されている.この手法は,骨導音声の周波数成分を非常によく回復することが できたが,事前に学習を必要とする手法である.また,骨導音声を利用して音声コミュニ ケーションを行うことを考えた際,最も重要視すべきは音声明瞭度であり,音声明瞭度を 直接回復できる手法が望まれる.

音声明瞭度を回復する手法として,MTFに基づく骨導音声回復法がある.この手法は, 音声明瞭度と関係のあるMTFに基づいており,音声明瞭度を直接回復することができる. しかし,気導パワーエンベロープと骨導パワーエンベロープ間のMTFをどのようなモデ ルで表現するのが最適か明らかにされていない.また,この手法は,骨導音声回復に気導 音声の情報を必要とし,ブラインド処理になっていない.

本研究では、MTF に基づくブラインド骨導音声回復法を提案する.まず、気導/骨導 データベースを用いて気導パワーエンベロープと骨導パワーエンベロープ間の変換関係の 解析を行い、気導パワーエンベロープと骨導パワーエンベロープの振幅比を回帰曲線で近 似できることを明らかにした.また、この回帰曲線は観測点のみに依存し、話者や発話内 容にはほぼ依存しないことを明らかにした.次に、気導/骨導データベース内の音声から 求めた MTF と3つのモデルをフィッティングすることで、気導エンベロープと骨導エン ベロープ間の MTF をモデリングした.このモデルは2つのパラメータを持っており、減 衰特性を制御するパラメータbは先行研究により推定法が提案されている.ゲインを制御 するパラメータaは、解析結果より近似曲線を用いることで気導音声の情報なしに決定す ることが可能である.これらの結果から、MTF に基づく処理体系のブラインド骨導音声 回復法を提案した.

最後に、シミュレーションにより提案法の評価を行い、提案法が骨導音声の音質、明瞭 度を回復できている事を確認した.

目 次

第1章	序論	1
1.1	はじめに	1
1.2	研究の背景	1
1.3	MTF に基づく骨導音声回復法...............................	2
	1.3.1 変調伝達関数	2
	1.3.2 パワーエンベロープ逆フィルタ法	3
	1.3.3 MTF に基づく骨導音声回復法	3
	1.3.4 残された課題	5
1.4	研究の目的	6
1.5	本論文の構成	6
第2章	骨導/気導パワーエンベローブ間の変換特性	7
2.1	気導/骨導データベース	7
2.2	骨導/気導エンベロープ間の変換特性の解析	7
2.3	解析結果の考察	9
2.4	気導パワーエンベロープと骨導パワーエンベロープ間の MTF のモデリング	17
箆3音	MTF に其づくブラインド骨道辛吉回復法	28
77 7	MTF モデルのパラメータ a と h の 決定 古法	28
0.1	MII C N O N O N O N C O N C N C N C N C N O N C N O N O N O N O	$\frac{20}{28}$
	3.1.1 パラノーク $100 () () () () () () () () () ($	<u>73</u>
3.0	の行為になっていたのの代定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
0.2		40
第4章	提案法の評価	47
4.1	評価方法	47
4.2	評価結果	48
	/+=A	
弗 5草		59
5.1	本研究で明らかにしたこと	59
5.2	今後の課題	59

図目次

1	.1	気導音声と骨導音声の間の伝達特性の定義. (1) 波形レベル間の伝達特性, (2) パワーエンベロープ間の伝達特性	. 4
1	.2	変調フィルタバンクを用いた MTF に基づく骨導音声回復法の概要	. 5
2 2	.1 .2	気導/骨導データベース構築の際の音声の収録環境(数字1~5は観測点). 全観測点での解析結果 (実線:平均,破線:平均±標準偏差).(a)相関 係数,(b) SNR,(c) MTFの回帰直線の傾き,(d) 伝達関数,(e)パワーエ ンベロープの平均パワーの比(パラメータ1/a ² _n),(f) 各チャンネル毎の	. 9
		$e_y^2(t)$ の平均(点線は相対パワーが-40 dB下がった位置を表す)	. 11
2	.3	観測点1での解析結果.体裁は図2.2と同じ	. 12
2	.4	観測点2での解析結果.体裁は図2.2と同じ	. 13
2	.5	観測点3での解析結果. 体裁は図2.2と同じ	. 14
2	.6	観測点4での解析結果.体裁は図2.2と同じ	. 15
2	.7	観測点5での解析結果.体裁は図2.2と同じ	. 16
2	.8	実際の MTF とモデルの比較. MTF without internal noise:内部雑音を取 り除いた MTF $e_h(t) = at \exp(-bt)$:指数関数 $e_h(t) = a \exp(-bt)$:先行研究 で用いられているモデル LPF:ローパスフィルタ MTF:気導/骨導音声デー	
		タベースのデータから求めたの MTF	. 18
2	.9	内部雑音を除去したパワーエンベロープ. (a) 骨導音声 (b) 内部雑音 (c) 内	
		部雑音除去後の骨導音声のパワーエンベロープ.	. 19
2	.10	内部雑音を除去した骨導音声の変調スペクトル (実部). (a) 骨導音声の変調スペクトル (b) 内部雑音の変調スペクトル (c) 内部雑音除去後の骨導音	
		声の変調スペクトル	. 20
2	.11	内部雑音を除去した骨導音声の変調スペクトル (虚部). (a) 骨導音声の変	
		調スペクトル (b) 内部雑音の変調スペクトル (c) 内部雑音除去後の骨導音	
		声の変調スペクトル	. 21
2	.12	MTFを表現するのに最も適切なモデル $a^2 \exp(-2bt)$ と気導/骨導データベー	
		ス内の全音声から求めた MTF との RMS 誤差の平均と標準偏差(実線:平	
		均 破線: 平均 ± 標準偏差 (std))	. 22
2	.13	データベース内の音声から求めた MTF に, MTF を表現するのに最も適切	
		なモデル a ² exp(-2bt) をフィッティングした際のモデルの回帰直線の傾き	
		(実線: 平均 破線: 平均 ± 標準偏差) (観測点 1)	. 23

2.14	データベース内の音声から求めた MTF に,MTF を表現するのに最も適切	
	なモデル a ² exp(–2bt) をフィッティングした際のモデルの回帰直線の傾き	
	(実線: 平均 破線: 平均 ± 標準偏差) (観測点 2)	24
2.15	データベース内の音声から求めた MTF に,MTF を表現するのに最も適切	
	なモデル a ² exp(-2bt) をフィッティングした際のモデルの回帰直線の傾き	
	(実線:平均 破線:平均 ± 標準偏差) (観測点 3)	25
2.16	データベース内の音声から求めた MTF に,MTF を表現するのに最も適切	
	なモデル a ² exp(-2bt) をフィッティングした際のモデルの回帰直線の傾き	
	(実線:平均 破線:平均 ± 標準偏差) (観測点 4)	26
2.17	データベース内の音声から求めた MTF に,MTF を表現するのに最も適切	
	なモデル a ² exp(–2bt) をフィッティングした際のモデルの回帰直線の傾き	
	(実線:平均 破線:平均 ± 標準偏差) (観測点 5)	27
0.1		
3.1	ハフメータ a の平均の回帰田線と、 発話内谷ことの最適なハフメータ a の (有)、 PM(2) 調査の変わり標準信差(相測に 1)	20
9.0		29
3.2	ハフタータ a の平均の凹炉田線と、 光品内谷ことの取週なハフメータ a の は b DMC 記言の正均 b 価準信差(短週上の)	20
0.0		30
3.3	ハフメータ a の平均の回帰田線と、 発話内谷ことの最週なハフメータ a の はい RN(2)記述の正地に標準信葉(短期にな)	0.1
0.4		31
3.4	ハフメータ a の平均の回帰田線と、 発話内谷ことの最週なハフメータ a の はい RN(2)記述の正的に標準信葉(短期上)	22
05		32
3.5	ハフメータ a の平均の回帰田線と、 発話内谷ことの最週なハフメータ a の はい RN(2)記述の正わい標準信葉(短期にた)	
0.0		33
3.6	ハフメータ a の平均の回帰田線と、話者ことの最適なハフメータ a の値と	0.4
0 7	RMS 誤差の平均と標準偏差(観測点 1)	34
3.7	ハフメータ a の平均の回帰田線と、話者ことの最適なハフメータ a の値と	م ح
0.0	RMS 誤差の平均と標準偏差(観測点 2)	35
3.8	ハフメータ a の平均の回帰田線と、話者ことの最適なハフメータ a の値と	0.0
0.0	RMS 語 $ = 0 + $	36
3.9	ハフメータ a の平均の回帰田線と、話者ことの最適なハフメータ a の値と	07
0.10	RMS 語 $ = 0 + $	37
3.10	ハフメータ a の平均の回帰田線と、話者ことの最適なハフメータ a の値と	00
0.11	RMS 誤差の平均と標準偏差(観測点 5)	38
3.11	実際の a の 個の RMS 誤差か小さい話者(観測点 3,話者 2)のハラメータ	20
0.10		39
3.12	天除の a の 個の RMS 誤 た	10
0.10		40
3.13	観測 只3,話 有3のハワーエンペローノのハワーの 半均.上:気 導音声ト:	
	「 肖	41

3.14	観測点 3, 話者 2 のパワーエンベロープのパワーの平均.上: 気導音声 下:	
	骨導音声	42
3.15	周波数ドメインでのパラメータBの推定	44
3.16	パラメータBの推定法の比較. restored1: 時間ドメインでのパラメータ推	
	定 restored2: 周波数ドメインでのパラメータ推定	45
4.1	提案法による SNR の改善度	49
4.2	提案法による相関の改善度	50
4.3	提案法による MTF の回帰直線の傾きの改善度	51
4.4	提案法による変調度1の MTF と骨導/回復音声の RMS 誤差の改善度	52
4.5	提案法による伝達関数の改善度	53
4.6	LSD による総合評価.BCspeech: 骨導音声,MTF previous: 従来の MTF	
	に基づく骨導音声回復法, MTF nonblind: 気導音声の情報を用いてパラ	
	メータ <i>a</i> を求めた提案法, MTF blind: 提案法	54
4.7	LP-LSD による総合評価. 体裁は, 図 4.6 と同じ	55
4.8	ケプストラム距離による総合評価.体裁は,図 4.6 と同じ.......	56
4.9	メルケプストラム距離による総合評価.体裁は,図4.6と同じ	57
4.10	明瞭度を考慮した LSD による総合評価. 体裁は, 図 4.6 と同じ	58

表目次

2.1	気導/骨導音声の収録条件	8
2.2	骨導パワーエンベロープと気導パワーエンベロープのパワー比に対する観	
	測点毎の近似曲線のパラメータ	10

第1章 序論

1.1 はじめに

工場や作業現場といった高騒音環境下では、空気伝播された音声(気導音声)は騒音 にの影響で歪んでしまい、音声によるコミュニケーションや、音声認識などの音声アプリ ケーションを阻害する.作業の安全化や効率化のため、高騒音環境下での音声による円滑 なコミュニケーションを可能とする方法や、騒音に頑健な音声アプリケーションの開発が 求められている.現在までに、雑音抑圧法や音圧強調、特殊マイクを用いて音声を録音す る方法など数多くの方法が提案されている.中でも骨導マイクを用いて音声を収録する 方法は、外部雑音の影響を受けることなく音声を収録可能であり、非常に有効な手法であ る.これは、頭蓋骨と空気のインピーダンスの差が非常に大きい事から、骨導マイクは外 部雑音の影響を受けることなく音声を収録できるからである.

しかし,骨導マイクを使って収録された音声(骨導音声)は,空気とは減衰特性の異な る頭部の骨や皮膚を伝って伝達されることから,音質が悪く,音声明瞭度が低い[1],[2]. そのため,音声了解度の低下や,音声認識装置の認識率の低下を招いてしまう[3].骨導 音声を利用して音声コミュニケーションを行う,あるいは音声アプリケーションを動作さ せるには,骨導音声の明瞭度を気導音声と同等に回復する必要がある.高騒音環境下での 問題は,マンマシンの問題と,マンマンの問題に大きく分かれるが,本研究では,マンマ ンの方を取り扱う.そのため,音声が人間に明確に伝わっているかの指標である音声明瞭 度に着目した.

1.2 研究の背景

骨導音声は、高い周波数帯域ほどパワーが減衰することが分かっている.そのため、骨 導音声の音質改善の最も簡単な手法として現在用いられているのが高域強調である.しか し、骨導音声の減衰作用は、骨導マイクを設置する位置や、話者、発話内容などにより複 雑に変化するため [4]、[5]、[6]、高域強調ではその変化に対応することができない.

この問題に対処した方法として、クロススペクトル法 [7], [8] や長時間 Fourier 変換 [9] を用いて骨導音声と気導音声の間の伝達特性を求め、その逆特性を利用して音声回復を 行う方法がある.また、伝達特性を適時学習しながら適応フィルタリングにより音声回復 を行う手法も提案されている [10]. 逆フィルタリング法と呼ばれるこれらの方法 [7], [8], [9], [10] は、骨導音声の周波数成分を回復させるが、同時にエコーといったアーティファ クトを生み出してしまう問題点がある上,気導音声の情報を必要とするため,ブラインド 処理ではない.高騒音環境下では気導音声を録音することが非常に難しいため,骨導音声 回復法は,ブラインド処理であることが必要である.

一方, 鵜木らは, 気導音声と骨導音声の間の変換関係を伝達特性とみなし, 気導・骨導 音声を同時収録した大規模データベースを用いて変換関係の解析を行い、骨導音声の音 質・明瞭度の改善方法を検討してきた [11]~[15]. 彼らの研究のコンセプトは、音源フィ ルタモデルを仮定し、線形予測分析と変調伝達関数 (MTF) の二つの側面から分析を行こ とである.これらの解析の結果, 鵜木らは音源信号ではなくフィルタ情報の回復が骨導音 声の回復に重要であることを明らかにした.また、これに基づき2つの手法が提案されて いる.一つは、Vuらが提案した周波数領域での線形予測分析に基づく骨導音声回復法で ある[11]. この手法は、ブラインド処理を実現している. しかし、この手法は学習の過程 を必要としており、回復精度は学習に依存してしまうため、多様な環境に対処し難い.ま た、骨導音声を利用して音声コミュニケーションを行うことを考えた際、最も重要視すべ きは音声明瞭度であり、音声明瞭度を直接回復できる手法が望まれる。もう一つは、木村 らが提案した時間領域での MTF に基づく骨導音声回復法である [12]. この手法は,音声 明瞭度と関係のある MTF に基づいており、音声明瞭度を直接回復することができ、骨導 音声を利用して音声コミュニケーションを行うために非常に有効な手法である.よって, 本研究では変調伝達関数に基づいた手法に着目した.しかし、この手法は、骨導音声回復 に気導音声の情報を必要とするためブラインド処理になっていない.

1.3 MTFに基づく骨導音声回復法

1.3.1 変調伝達関数

円滑に音声コミュニケーションを行うためには音声明瞭度を高く保つ必要がある.音声 明瞭度を定量的な物理指標から予測する MTF に基づく音声明瞭度予測理論が,Houtgast と Steeneken により提案されている [16]~[18]. これは,音声の時間エンベロープを入出 力とした時の伝達関数である MTF の変調度から音声明瞭度を予測する方法である. MTF を音声伝達指数 (STI) に変換することで,MTF と音声明瞭度が直接関係づけられる [19]. Houtgast と Steeneken は入力パワーエンベロープ $e_x^2(t)$,出力パワーエンベロープ $e_y^2(t)$ を 以下の式で定義した.

$$e_x^2(t) = \overline{I_x^2}(1 + \cos(2\pi f_m t)),$$
 (1.1)

$$e_y^2(t) = \overline{I_y^2} \{ 1 + m(f_m) \cos(2\pi f_m(t-\tau)) \}$$
(1.2)

ここで、 $\overline{I_i^2}$ と $\overline{I_o^2}$ は、入出力の強度、 f_m は変調周波数、 τ は位相である.また、 $m(f_m)$ が MTF である.この MTF は、以下の式で定義されている.

$$m(f_m) = \frac{\left|\int_0^\infty h^2(t) \exp(-j2\pi f_m t)dt\right|}{\int_0^\infty h^2(t)dt}$$
(1.3)

1.3.2 パワーエンベロープ逆フィルタ法

Drullmanにより,音声明瞭度に最も重要な影響を与えるのは時間エンベロープである ということが示されている [20]. このことから,MTF に着目し,変調度を回復させる方 向にパワーエンベロープを回復させることで音声の明瞭度を直接回復できる可能性があ る.この点に着目し,広林らは残響の影響を受けた音声の明瞭度を回復させる手法として パワーエンベロープ逆フィルタ法を提案した [21].MTF の逆フィルタ $E_h^{-1}(z)$ は以下の様 に表現される.

$$E_h^{-1}(z) = E_x(z)/E_y(z)$$
(1.4)

ここで, $E_h(z)$, $E_x(z)$, $E_y(z)$ はそれぞれ $e_h^2(t)$, $e_x^2(t)$, $e_y^2(t)$ の z 変換, $e_h^2(t)$ は, 入出力 をパワーエンベロープとしたときのシステムのインパルス応答である. パワーエンベロー プ逆フィルタ法では, 逆フィルタは Schroeder の確率論的近似インパルス応答 [22] を用い て以下の式で定義されている. [12]

$$e_h(t) = a \exp(-6.9t/T_R)$$
 (1.5)

ここで、aはゲインを制御するパラメータ、 T_R は残響時間である.a、 T_R については、以下の式で求められる.

$$a = \sqrt{\frac{1}{T_R} \int_0^T e_x^2(t)/e_y^2(t)dt} / \int_0^T \exp(-13.8t/T_R)dt}$$
(1.6)

$$\hat{\mathbf{T}}_{\mathrm{R}} = \max\left(\underset{0 \le \mathrm{T}_{\mathrm{R}} \le \mathrm{T}_{\mathrm{R},\max}}{\operatorname{argmin}}\left\{\int_{0}^{\mathrm{T}}\min(\hat{\mathbf{e}}_{\mathrm{x}}, \mathrm{T}_{\mathrm{R}}^{2}(t), 0)\mathrm{d}t\right\}\right)$$
(1.7)

ここで、 $\hat{e_x}, T_R^2(t)$ は T_R を関数として回復されたパワーエンベロープ、 $T_{R,max}$ は T_R の 上限、 \hat{T}_R は残響時間の推定値である。 T_R の推定式については古川らによって提案された 方法である [23]. これは、パワーエンベロープが負の値を持たないこと、また無音区間の パワーエンベロープの値が 0 であることに着目した手法である。パワーエンベロープ逆 フィルタ法はパワーエンベロープの山谷を強調させるため、 T_R の値を大きくとっていく と、パワーエンベロープが負の値を持つようになる。つまり、パワーエンベロープが負の 値を持つ直前の T_R が最適な T_R の推定値となる。パワーエンベロープ逆フィルタによる 回復は以下の式で表される。

$$\hat{E}_x(z) = \frac{E_y(z)}{a^2} \left\{ 1 - \exp\left(-\frac{13.8}{T_R \cdot f_s}\right) \right\} z^{-1}$$
(1.8)

ここで、 $\hat{E}_x(z)$ は逆フィルタにより回復されたパワーエンベロープである.

1.3.3 MTF に基づく骨導音声回復法

木村らは、Drullmanの考えに基づき、骨導音声の明瞭度を回復するのには時間エンベ ロープの回復が重要であると考えた.解析を行った結果から、気導パワーエンベロープ (1) Signal waveform [y(t)=x(t)*h(t)]

図 1.1: 気導音声と骨導音声の間の伝達特性の定義. (1) 波形レベル間の伝達特性, (2) パワーエンベロープ間の伝達特性.

と骨導パワーエンベロープの間の MTF はローパス特性であることを明らかにし、気導パ ワーエンベロープと骨導パワーエンベロープの間の伝達特性を図 1.1 のように定義するこ とでパワーエンベロープ逆フィルタ法を骨導音声の回復に適応した.ここで、 $e_h(t)$ はパ ワーエンベロープ逆フィルタ法で用いた $e_h(t)$ と同じものである.骨導音声回復の概要を 図 1.2 に示す.音声は N チャンネル等帯域フィルタバンクによって時間エンベロープ $e_x(t)$ と $e_y(t)$,キャリア $c_x(t)$ と $c_y(t)$ に分割される.ここで、信号 x(t) と y(t) は以下のように 表現される.

$$x(t) := \sum_{n=1}^{N} x_n(t) = \sum_{n=1}^{N} e_{x_n}(t) \cdot c_{x_n}(t)$$
(1.9)

$$y(t) := \sum_{n=1}^{N} y_n(t) = \sum_{n=1}^{N} e_{y_n}(t) \cdot c_{y_n}(t)$$
(1.10)

ここで, $x_n(t) \ge y_n(t)$, $e_x(t) \ge e_y(t)$, $c_x(t) \ge c_y(t)$, はそれぞれフィルタバンクにより帯 域分割された信号,時間エンベロープ,キャリアである.パワーエンベロープは以下の式

図 1.2: 変調フィルタバンクを用いた MTF に基づく骨導音声回復法の概要.

で算出される.

$$e_{y_n}^2(t) = \operatorname{LPF}[|y_n(t) + j\operatorname{Hilbert}(y_n(t))|^2]$$
(1.11)

$$c_{y_n}(t) = y_n(t)/e_{y_n}(t)$$
 (1.12)

ここで、Hilbert(・)はヒルベルト変換を、LPF[・]はカットオフ周波数 20-Hz[24]~[26]の ローパスフィルタを表す. $e_x(t) \ge c_x(t)$ も同様の方法で算出される.以降はパワーエンベ ロープ逆フィルタ法の流れと同様である.ここで、木村らは解析結果より気導パワーエン ベロープと骨導パワーエンベロープ間の相関係数が 0.8 以上かつ気導パワーエンベロープ の相対パワーが – 20 dB 以内の時のみ逆フィルタによる骨導音声回復を行い、それ以外の 範囲で気導パワーエンベロープの相対パワーが – 40 dB の範囲まではパラメータ aを用い たゲイン補正のみを行うと回復条件を定めた.

1.3.4 残された課題

MTFに基づく骨導音声回復法では、MTFはSchroederの確率論的近似インパルス応答 を用いて表現されているが、この形で表現される MTF が骨導音声の回復にパワーエンベ ロープ逆フィルタ法を応用する際に適切かどうかの議論はなされていなかった.また、パ ラメータ a を導出するためには気導音声の情報を必要とするため、この手法はブラインド 処理になっていない.気導音声の収録が難しい状況で骨導音声を利用する事を考えた際、 これは大きな問題である.この2点を解決しない限り、実環境でのMTFに基づく骨導音 声回復は行なうことができない.

1.4 研究の目的

骨導音声を利用した音声コミュニケーションを実現するには、ブラインド処理で骨導音 声の音声明瞭度を回復させなければならない. そのような骨導音声回復法は今までに提案 されていない. そこで、本研究は、MTFに基づくブラインド骨導音声回復法の提案を目 指す. MTFの概念に基づくことにより、骨導音声の音声明瞭度を直接回復することを可 能とする. 気道パワーエンベロープと骨導パワーエンベロープの間の変換関係の解析を行 うことにより、変換関係を表現する最適な MTF を明らかにし、その逆特性を利用した逆 フィルタにより骨導音声の回復を行う. また、逆フィルタは話者や発話内容に依存せず、 気導音声の情報を必要としないように設計し、手法をブラインド処理にする.

1.5 本論文の構成

第2章では、気導パワーエンベロープと骨導パワーエンベロープ間の変換関係の解析を 行い、解析の結果に基づいて MTF を表現できる最適なモデルの提案を行う.第3章では 第2章で述べたモデルのパラメータを、気導音声の情報を必要とせずに決定する方法を述 べ、MTF に基づく骨導音声回復法をブラインド処理に改良する.第4章では、提案法の 評価を行う.最後に、第5章では、まとめと今後の展望を記す.

第2章 骨導/気導パワーエンベロープ間 の変換特性

MTF に基づき骨導音声の回復を行うには,適切な形の逆フィルタをどのように設計す るかという問題がある.本研究では,気導パワーエンベロープと骨導パワーエンベロープ 間の変換特性の解析を行い,気導パワーエンベロープと骨導パワーエンベロープ間の関係 を MTF モデルで表現し,適切な逆フィルタの設計を行う.

2.1 気導/骨導データベース

本研究では、気導パワーエンベロープと骨導パワーエンベロープ間の変換特性の解析を 行うため、気導/骨導データベースを用いる [13]. 表 2.1 にデータベースの構築に使用し た機材、図 2.1 に収録環境を示す.データベースに収録されている音声は、5 つの観測点 (1: 下顎横, 2: こめかみ、3: 頬骨、4: 額、5: 頭頂部)で収録された. 観測点 1~4 はマ イク C、観測点 5 はマイク B、気導音声はマイク A を用いて収録されている. 発話内容は NTT データベース [27] から 4 つの親密度 [28] 毎に 25 単語ずつ選ばれた. 話者は男性女性 各 5 名である.

2.2 骨導/気導エンベロープ間の変換特性の解析

気導パワーエンベロープと骨導パワーエンベロープ間の変換特性の解析を行う際に,以 下の項目に着目した.

• 気導/骨導パワーエンベロープ間の相関係数

$$\operatorname{Corr}(e_x^2, e_y^2) = \frac{\int_0^T (e_x^2(t) - \overline{e_x^2(t)})(e_y^2(t) - \overline{e_y^2(t)})dt}{\sqrt{\left\{\int_0^T (e_x^2(t) - \overline{e_x^2(t)})^2 dt\right\} \left\{\int_0^T (e_y^2(t) - \overline{e_y^2(t)})^2 dt\right\}}}$$
(2.1)

Measurement site	Soundproof room	
Number of pick-up points	5	
Number of speakers	10	
Recorder	MARANZ, PMD671	
Coding method	PCM	
Sampling frequency	48 kHz	
Sample size	16 bits	
Number of channels	2 (Left:AC, Right:BC)	
Mic. A for AC speech	SONY, C536P	
Mic. power supply A	SONY, AC148F	
Mic. B for BC speech	TEMCO, HG-17	
Mic. C for BC speech	TEMCO, SK-1	
Mic. amp. B & C	Handmade	
Speakers (4 set)	JBL, CM62	

表 2.1: 気導/骨導音声の収録条件.

• 気導/骨導パワーエンベロープ間の SNR

$$SNR(e_x^2, e_y^2) = 10 \log_{10} \frac{\int_0^T (e_x^2(t))^2 dt}{\int_0^T (e_x^2(t) - e_y^2(t))^2 dt}$$
(2.2)

• MTF

$$M(\omega) = \left| \int e_h^2(t) \exp(-j\omega t) dt \right| \int e_h^2(t) dt \right|$$
(2.3)

$$a = 10 \log_{10} \left(\int_0^T e_y^2(t) / \int_0^T e_x^2(t) dt \right)$$
(2.4)

• 気導/骨導音声間の伝達関数

$$H(\omega) = \mathcal{F}[y(t)] / \mathcal{F}[x(t)]$$
(2.5)

ここで, *F*[•] は長時間フーリエ変換である.先行研究で,木村らにより観測点5で収録された音声についての解析がすでに行われている.本研究では,全観測点について解析を行う.これにより,観測点毎の骨伝導の影響の差が明らかとなる.

図 2.1: 気導/骨導データベース構築の際の音声の収録環境(数字1~5は観測点).

2.3 解析結果の考察

全観測点での解析結果を図2.2に示す.また、観測点毎に骨導音声の性質が変わること が先行研究により明らかとなっているため、各観測点毎の結果を図 2.3~2.7 に示し、観 測点毎の差について考察する.ここで、(a)相関係数、(b)SNR、(c)MTFの回帰直線の傾 き、(d)気導音声と骨導音声の伝達関数、(e)骨導パワーエンベロープと気導パワーエン ベロープの平均パワーのパワー比(パラメータa), (f) 骨導パワーエンベロープの平均パ ワーを表し、実線は平均、破線は平均±標準偏差を示す.また、(a)、(c)の図において、 1~10 チャンネルの値が他のチャンネルと比較して大きく異なった値を持っているのは、 振幅変調の定義を満たさない範囲であるため、エンベロープが上手く抽出できていないた めである. 図 2.2 の (a) と (b) 及び (f) から, 音声のパワーが低い帯域では相関も低い という傾向が見て取れる. 各観測点毎に見ていくと、観測点1と5は高周波数成分があま り上手く録音できておらず、観測点2.3.4は高周波数成分がよく録音できているのがわ かる. 図 2.2 の (c) は 1~10 Hz までの範囲の MTF に対して回帰直線を引き,その傾き をプロットしたものである. MTF の範囲を 1~10 Hz と限定したのは、10 Hz 以上の範囲 の MTF は血流や伝送系の持つ雑音,あるいはノイズフロア,その他録音時の外乱 [29] と いった内部雑音の影響を受けるためである.ここで、MTFの回帰直線の傾きが正であれ ば MTF はハイパス特性, 負であればローパス特性であることを意味している. 図 2.2 の (f) と見比べると、骨導パワーエンベロープの相対パワーが -30~-40 dB 以内の範囲ま で MTF はローパス特性を示している. 骨導パワーエンベロープの相対パワーが -40 dB 以下になると相対的に内部雑音が大きくなり、パワーエンベロープの形状に大きな影響を

表 2.2: 骨導パワーエンベロープと気導パワーエンベロープのパワー比に対する観測点毎 の近似曲線のパラメータ.

		観測点1	観測点2	観測点3	観測点4	観測点5
パラメータ	С	-17.5	-17.1	-15.8	-11.8	-13.8
パラメータ	d	8.54	7.98	7.90	6.74	9.48

与えるため、骨導パワーエンベロープの相対パワーが -40 dB 以下になると MTF の回帰 直線の傾きが正の値になる傾向がある. さらに骨導パワーエンベロープの相対パワーが 減少すると、MTFの0Hzの成分(直流成分)が内部雑音の影響で増加するため、再び MTFの回帰直線の傾きが負の値を持ち始めると考えられる.考察の結果、内部雑音の影 響がなければ MTF はローパス特性であると示唆される. 観測点毎に見ても、この傾向は 変わらずに見られる.図2.2の(d)は骨伝導の影響がローパス特性であることを示して いる. 観測点毎に見ると、細かい傾向は違うものの骨伝導の影響はローパス特性であるこ とに変わりはなかった. 図 2.2 の (e) は骨導パワーエンベロープと気導パワーエンベロー プの平均パワーのパワー比であり、逆フィルタ法に用いられているパラメータ*a*である。 これも、伝達関数と同じく骨伝導の影響がローパス特性であることを表している. 各観測 点毎に見ていくと、音声の高周波数成分を比較的よく録音できる観測点2と3は平均の値 の形が非常に似ていることがわかる.また、観測点1と4については、低域側で多少の誤 差があるものの、観測点2と3と平均の値が同じような傾向である、観測点5は、もっと も音声の高周波数成分を録音できていない箇所であり、また録音に使用したマイクも異な るため、他4つの観測点と少し誤差が大きいものの、平均の値の形状は他の4点と似てい る.この結果から、骨導パワーエンベロープと気導パワーエンベロープの平均パワーのパ ワー比 (パラメータ a) は、回帰曲線で近似することができるのではないかと考えられた. (e) の図に点線で記されている曲線が、 $1/a_n^2 = cn^{-1} + d$ というフィルタバンクのチャン ネル数を従属変数とする関数でパワー比の平均を近似したものである. 各観測点毎のパラ メータ c と d の値を表 2.2 に示す.図(e)から,回帰曲線はパワー比の平均と非常によく フィットしていることがわかる.以上の考察から、骨伝導の影響はローパス特性であるこ と. 観測点2,3,4は音声の高周波成分を比較的良好に録音することができ、骨導マイク で音声を収録する場合に良い点であること. 骨導パワーエンベロープと気導パワーエンベ ロープ間の MTF の特性は全帯域においてローパス特性であるということ. 骨導パワーエ ンベロープと気導パワーエンベロープのパワー比は cn⁻¹ + d という関数で近似可能であ る事が示唆された.

図 2.2: 全観測点での解析結果(実線: 平均, 破線: 平均±標準偏差). (a) 相関係数, (b) SNR, (c) MTFの回帰直線の傾き, (d) 伝達関数, (e) パワーエンベロープの平均パワーの比(パラメータ $1/a_n^2$), (f) 各チャンネル毎の $e_y^2(t)$ の平均(点線は相対パワーが-40 dB 下がった位置を表す).

図 2.3: 観測点1での解析結果.体裁は図 2.2 と同じ.

図 2.4: 観測点2での解析結果. 体裁は図2.2と同じ.

図 2.5: 観測点3での解析結果. 体裁は図 2.2 と同じ.

図 2.6: 観測点4での解析結果.体裁は図 2.2 と同じ.

図 2.7: 観測点5での解析結果. 体裁は図 2.2 と同じ.

2.4 気導パワーエンベロープと骨導パワーエンベロープ間の MTFのモデリング

気導パワーエンベロープと骨導パワーエンベロープ間の MTF を表現するのに最適なモ デルが明らかとなっていないため、本研究では、実際の MTF を表現する最適なモデルに ついての考察を行う. 前節での解析結果から気導パワーエンベロープと骨導パワーエンベ ロープの間の MTF がローパス特性であることが示唆されたため、MTF を表現するのに適 切であろうと思われるローパス特性を持った3つのモデル(指数関数 $e_h(t) = at \exp(-bt)$, 先行研究で用いられているモデル $e_h(t) = a \exp(-bt)$, ローパスフィルタ) を, データベー スの音声から求めた MTF に対して Trust region 法と共役勾配法を用いてフィッティング をかけることにより、MTFを表現する最適なモデルを求めた. 図 2.8 は、データベース の音声から求めた MTF. 骨導音声から内部雑音を除去した MTF. フィッティングを行っ た3つのモデルを示したものである。事前に行った解析の結果より、MTFの特性はロー パス傾向にあることが分かっている.また,先行研究で利用されている MTF モデルは指 数関数表現である事から、この3つのモデルを採用した. データベースの音声から求めた MTF は形状が非常に波打っている.これは、骨導音声に内部雑音が乗っている影響であ る.内部雑音を除去したパワーエンベロープを図2.9に、この3つのパワーエンベロープ をフーリエ変換し、実部と虚部にわけて表示したものを図 2.10、2.11 に示す.内部雑音を 取り除くと MTF の形状の揺れが抑えられているため、MTF の形状が波打つ原因が内部 雑音であることがわかる.図2.8をみると、a exp(-bt)が最もデータベースの音声から求 めた内部雑音を除去した MTF にフィットしていることがわかる.データベース内の音声 から求めた MTF に対し、データベースの音声から求めた MTF とモデルの各変調周波数 毎の誤差のRMSが最小になるようにフィッティングを行った結果, a exp(-bt)が最もデー タベースの音声から求めた MTF にフィットしていることわかった. 図 2.12 に, a exp(-bt) のモデルとデータベースの音声から求めた MTF をフィッティングした際の RMS を全デー タに対して求めた結果を,図 2.13~2.17 にフィッティングを行った際の,モデルの回帰直 線の傾きを各観測点ごとに求めた結果の平均と標準偏差を示す.実線は平均.破線は平均 ±標準偏差を示す. RMS 誤差の標準偏差が大きいのは, MTF の回帰直線の傾きが正の 場合や、内部雑音の影響により MTF の形状が非常に大きく波打っている場合があるため である. また、10 チャンネルまでの RMS 誤差の平均が大きいのは、フィルタバンクが振 幅変調の定義を満たさない範囲であるためである.本研究では、3つのモデルの中で最も RMS 誤差の小さかった a exp(-bt)が、MTF を表現できる最も適したモデルとした.この モデルを用いた逆フィルタは以下の式で定義した.

$$E_{h}^{-1}(z) = \frac{1}{a^{2}} \left\{ 1 - \exp\left(-\frac{2b}{f_{s}}\right) \right\}$$
(2.6)

ここで, f_sはサンプリング周波数 (本研究では 16 KHz) である. MTF の回帰直線の傾き を見ると,各観測点において気導パワーエンベロープと骨導パワーエンベロープのパワー

図 2.8: 実際の MTF とモデルの比較. MTF without internal noise:内部雑音を取り除い た MTF $e_h(t) = at \exp(-bt)$: 指数関数 $e_h(t) = a \exp(-bt)$: 先行研究で用いられている モデル LPF: ローパスフィルタ MTF:気導/骨導音声データベースのデータから求めたの MTF.

比と同様の傾向を示しており、骨導音声のパワーが減衰すればするほど、MTF はより大きくローパス傾向を示す事がわかる.

図 2.9: 内部雑音を除去したパワーエンベロープ. (a) 骨導音声 (b) 内部雑音 (c) 内部雑音 除去後の骨導音声のパワーエンベロープ.

図 2.10: 内部雑音を除去した骨導音声の変調スペクトル (実部). (a) 骨導音声の変調スペクトル (b) 内部雑音の変調スペクトル (c) 内部雑音除去後の骨導音声の変調スペクトル.

図 2.11: 内部雑音を除去した骨導音声の変調スペクトル (虚部). (a) 骨導音声の変調スペクトル (b) 内部雑音の変調スペクトル (c) 内部雑音除去後の骨導音声の変調スペクトル.

図 2.12: MTF を表現するのに最も適切なモデル *a*² exp(-2*bt*) と気導/骨導データベース 内の全音声から求めた MTF との RMS 誤差の平均と標準偏差(実線:平均 破線:平均 ± 標準偏差 (std)).

図 2.13: データベース内の音声から求めた MTF に, MTF を表現するのに最も適切なモ デル $a^2 \exp(-2bt)$ をフィッティングした際のモデルの回帰直線の傾き(実線:平均 破線: 平均 ± 標準偏差) (観測点 1).

図 2.14: データベース内の音声から求めた MTF に, MTF を表現するのに最も適切なモ デル $a^2 \exp(-2bt)$ をフィッティングした際のモデルの回帰直線の傾き(実線:平均 破線: 平均 ± 標準偏差) (観測点 2).

図 2.15: データベース内の音声から求めた MTF に, MTF を表現するのに最も適切なモ デル *a*² exp(-2*bt*) をフィッティングした際のモデルの回帰直線の傾き(実線:平均 破線: 平均 ± 標準偏差) (観測点 3).

図 2.16: データベース内の音声から求めた MTF に, MTF を表現するのに最も適切なモ デル *a*² exp(-2*bt*) をフィッティングした際のモデルの回帰直線の傾き(実線:平均 破線: 平均 ± 標準偏差) (観測点 4).

図 2.17: データベース内の音声から求めた MTF に, MTF を表現するのに最も適切なモ デル *a*² exp(-2*bt*) をフィッティングした際のモデルの回帰直線の傾き(実線:平均 破線: 平均 ± 標準偏差) (観測点 5).
第3章 MTFに基づくブラインド骨導音声回復法

従来の MTF に基づく骨導音声回復法では,MTF モデルのパラメータと回復条件の判定のために気導音声の情報を必要とした.本研究では,解析結果から気導音声の情報なし に上記の2点を決定できるよう手法の改良を行う.

3.1 MTF モデルのパラメータ *a* と *b* の決定方法

3.1.1 パラメータ a の決定方法

気導音声の情報なしに骨導音声を回復するのに最適なモデルのパラメータ a と b を設 定する.パラメータaについては、解析結果から図 2.3~2.7の (e) に示すように回帰曲線 $1/a_n^2 = cn^{-1} + d$ で表現することが可能であるため、観測点毎にデータから学習して回帰 曲線を求めることで気導音声の情報なしに設定することができると考えられる. この回帰 曲線が話者や発話内容によらず一意に定める事ができるかどうか、データより求めたパ ラメータ a と回帰曲線との RMS 誤差を求め、話者及び発話内容ごとに RMS 誤差の平均 と標準偏差の比較を行った、図 3.1~3.5 は、各観測点で収録された音声の発話内容ごとの RMS 誤差を表示したものである.この図から、一部の単語を除き、各観測点において誤 差に大きな差は見られなかった、また、全ての観測点において誤差が大きなな単語という ものは確認されなかったため、回帰曲線は発話内容によらない可能性が示された、図3.6 ~3.10は、各観測点で収録された音声の話者ごとの RMS 誤差を表示したものである.こ の図から、一部の話者を除き、各観測点において誤差に大きな差は見られなかった.他の 話者と RMS 誤差の大きい話者について、パラメータ a の平均を RMS 誤差の小さな話者 のものと比較してみた.図3.12が誤差の大きな話者、図3.11が誤差の小さな話者のパラ メータ a の平均である. 誤差の小さな話者のパラメータ a の平均は, 今までに発表されて いる骨導音声の先行研究の結果と一致する高域減衰の形になっているのに対し、誤差の 大きな話者のパラメータ a の平均は 40~60 チャンネル (1600~2400 Hz) の成分を多く持 ち、高域減衰とは言いがたい、図 3.13 に RMS 誤差の大きな話者の気導パワーエンベロー プと骨導パワーエンベロープのパワーの平均を、図 3.14 に RMS 誤差の小さな話者の気導 パワーエンベロープと骨導パワーエンベロープのパワーの平均を示す.この図からも、誤 差の大きな話者は骨導音声の 40~60 チャンネル (1600~2400 Hz) の成分以外が大きく減

図 3.1: パラメータ a の平均の回帰曲線と,発話内容ごとの最適なパラメータ a の値と RMS 誤差の平均と標準偏差(観測点 1).

少し,骨伝導の影響は高域減衰とはいえないように見える.このことから,骨伝導以外の 影響で特定の話者のパラメータ*a*が他の話者と比較して大きくずれる結果となっている可 能性が考えられる.今回の考察では,話者の身体的特徴に関するデータが無いため,特定 話者のパラメータ*a*がその他の話者と大きく異なる原因は特定できなかったが,観測点ご とに設定した回帰曲線使ってモデルのパラメータ*a*を設定しても,ほとんどの話者に対し て効果があることが明らかとなった.

図 3.2: パラメータ a の平均の回帰曲線と,発話内容ごとの最適なパラメータ a の値と RMS 誤差の平均と標準偏差(観測点 2).

図 3.3: パラメータ *a* の平均の回帰曲線と,発話内容ごとの最適なパラメータ *a* の値と RMS 誤差の平均と標準偏差(観測点 3).

図 3.4: パラメータ a の平均の回帰曲線と,発話内容ごとの最適なパラメータ a の値と RMS 誤差の平均と標準偏差(観測点 4).

図 3.5: パラメータ *a* の平均の回帰曲線と,発話内容ごとの最適なパラメータ *a* の値と RMS 誤差の平均と標準偏差(観測点 5).

図 3.6: パラメータ *a* の平均の回帰曲線と,話者ごとの最適なパラメータ *a* の値と RMS 誤 差の平均と標準偏差(観測点 1).

図 3.7: パラメータ *a* の平均の回帰曲線と,話者ごとの最適なパラメータ *a* の値と RMS 誤 差の平均と標準偏差(観測点 2).

図 3.8: パラメータ *a* の平均の回帰曲線と,話者ごとの最適なパラメータ *a* の値と RMS 誤 差の平均と標準偏差(観測点 3).

図 3.9: パラメータ *a* の平均の回帰曲線と,話者ごとの最適なパラメータ *a* の値と RMS 誤 差の平均と標準偏差(観測点 4).

図 3.10: パラメータ *a* の平均の回帰曲線と,話者ごとの最適なパラメータ *a* の値と RMS 誤差の平均と標準偏差(観測点 5).

図 3.11: 実際の *a* の値の RMS 誤差が小さい話者(観測点 3,話者 2)のパラメータ *a* の 平均.

図 3.12: 実際の *a* の値の RMS 誤差が大きい話者(観測点 3,話者 3)のパラメータ *a* の 平均.

図 3.13: 観測点 3, 話者 3 のパワーエンベロープのパワーの平均. 上: 気導音声下: 骨導音声.

図 3.14: 観測点 3, 話者 2 のパワーエンベロープのパワーの平均. 上: 気導音声下: 骨導音声.

3.1.2 パラメータ b の決定方法

パラメータbについては、従来法で用いられていた推定法より精度の良い推定法が平松 と鵜木により提案されている [30]. この手法は、元々残響時間推定のために提案された手 法であるが、本研究で用いる MTF モデルと平松と鵜木が用いた MTF モデルは同じモデ ルであるため、この手法を用いて MTF のパラメータbを推定することが可能である. 図 3.15 にパラメータb推定法の概念を示す. 図 3.15 の上段は 4 Hz のサイン波のパワーエン ベロープとその変調スペクトルの図である. この図から、主要な変調周波数と、直流成分 の変調周波数が共に 0 dB であることがわかる. 下段は、上段の波形をローパスフィルタ により減衰させた信号のパワーエンベロープと変調スペクトルである. この図から、主要 な変調周波数の成分は減少しているが、直流成分の変調周波数は変わらずに 0 dB である ことがわかる. このことから、直流成分の変調周波数と、主要な変調周波数が同じ値にな るように逆フィルタで回復した際の MTF モデルのパラメータを求めることで、b の値を 推定することが可能である. これより、パラメータbの推定値bは以下の式で表現される.

$$\hat{b} = \arg\min_{b} \left(\left| 20 \log_{10}(\hat{E}_y(0)) + 20 \log_{10}(M(f_{dm}, b)) - 20 \log_{10}(\hat{E}_y(f_{dm})) \right| \right)$$
(3.1)

ここで、*f*_{dm} は骨導音声の主要な変調周波数を、*Ê*_y(·) は逆フィルタにより回復されたパ ワーエンベロープである.実際に、従来の推定法で推定されたパラメータ b を用いて骨導 音声の回復を行った場合と、平松と鵜木により提案されたパラメータ b を用いて骨導音声 の回復を行った場合での MTF の回復量の差を比較した.図 3.16 はその結果である.平松 と鵜木により提案された推定法を用いた方が、MTF の回復精度が良いことがわかる.

図 3.15: 周波数ドメインでのパラメータBの推定.

図 3.16: パラメータ B の推定法の比較. restored1: 時間ドメインでのパラメータ推定 restored2: 周波数ドメインでのパラメータ推定.

3.2 回復条件の変更

木村により提案された従来法では、気導パワーエンベロープと骨導パワーエンベロープ 間の相関係数が0.8以上かつ気導パワーエンベロープの相対パワーが – 20 dB 以内の時の み逆フィルタによる骨導音声回復を行い、それ以外の範囲で、気導パワーエンベロープの 相対パワーが – 40 dB の範囲まではゲイン補正を行うと条件を定めている.これは、気導 パワーエンベロープと骨導パワーエンベロープ間の相関係数が高い箇所に対して回復は 必要でなく、また、音声のパワーの低い箇所は音声の成分があまりないため、これも回復 の必要がないと判断したためであった.この条件を判定するためには気導音声の情報を必 要とするため、骨導音声の情報のみで判定でき、骨導音声回復に適切な条件に変更する. まず、気導パワーエンベロープと骨導パワーエンベロープ間の相関係数が高い箇所につい ては、回復を行うことによってわずかではあるが改善があるため、回復範囲から除外する 必要はなかった.次に、気導パワーエンベロープの相対パワーが-40 dB 以下の範囲にお いても音声の成分は確かに存在するため、全帯域における回復が必要であることがわかっ た.しかし、骨導音声の相対パワーが 40 dB 以上減少すると、内部雑音の影響をうけて MTF の直流成分が増加してしまい、b の値の推定が妨害されてしまう.よって、本研究で は回復条件を以下のように設定する.

- 骨導パワーエンベロープの相対パワーが −40 dB 以内の範囲で逆フィルタを用いて 回復を行う.
- 上記の範囲以外の全範囲では、ゲイン補正のみを行う.

MTF に基づく骨導音声回復法にこの2点の変更を加える事により、気導音声の情報を必要とすることなく、MTF の概念に基づいて骨導音声の回復を施す事が可能となった.

第4章 提案法の評価

4.1 評価方法

気導/骨導データベース内の全ての音声 (話者 10 名,単語数 100 個,観測点 5 箇所の計 5000 単語) を用いてシュミレーションにより提案法の客観評価を行う.音声は,骨導音声, 提案法で回復された骨導音声,気導音声の情報を用いてパラメータ a を求めた提案法で回 復された骨導音声,木村らが提案した手法で回復された骨導音声の4 種類を用いた.提案 法で手法の回復精度を評価するために,SNR,相関係数,MTFの回帰直線の傾き,変調 度1の MTF と回復音声あるいは骨導音声の MTF の誤差の RMS,伝達関数を用いる.ま た,総合評価として,音質の評価を行うため,対数スペクトル歪 (LSD),線形予測係数を 用いて求めた LSD(LP-LSD),ケプストラム距離 (CD),メルケプストラム係数 (MFCCD). 明瞭度を評価する尺度として,音声明瞭度を考慮した LSD (ILSD) [31] を用いる.総合 評価の評価尺度は以下の式で表現される.

• LSD

$$LSD = \frac{1}{F} \sum_{j=0}^{F} \sqrt{\frac{2}{f_{s}} \sum_{\omega}^{fs/2} \left[20 \log_{10} \left(\frac{S_{x}(\omega, j)}{S_{y}(\omega, j)} \right) \right]^{2}}$$
(4.1)

• LP-LSD

$$LP - LSD = \frac{1}{F} \sum_{j=0}^{F} \sqrt{\frac{1}{24} \sum_{i=0}^{24} (20 \log_{10}(\alpha_{x}(i,j)) - 20 \log_{10}(\alpha_{y}(i,j)))^{2}}$$
(4.2)

• CD

$$CD = \frac{1}{F} \sum_{j=0}^{F} \sum_{i=0}^{16} \sqrt{(\beta_{x}(i,j) - \beta_{y}(i,j))^{2}}$$
(4.3)

• MFCCD

MFCCD =
$$\frac{1}{F} \sum_{j=0}^{F} \sum_{i=0}^{12} \sqrt{(\gamma_{x}(i,j) - \gamma_{y}(i,j))^{2}}$$
 (4.4)

• ILSD

$$\text{ILSD} = \frac{1}{F} \sum_{j=0}^{F} W(\omega) \sqrt{\frac{2}{f_{s}} \sum_{\omega}^{fs/2} \left[20 \log_{10} \left(\frac{\text{R}_{x}(\omega, j)}{\text{R}_{y}(\omega, j)} \right) \right]}$$
(4.5)

音声はいずれも時間フレーム分割され,各フレーム毎に求めた評価尺度の値を平均したものを各音声の値としている. Fはフレーム分割数, f_s はサンプリング周波数 (16 kHz) である. LSD は 25 ms 毎に音声をフレーム分割した. $S(\omega)$ は 400 点 FFT で算出されたスペクトログラムである. LSDLP は 25 ms 毎に音声をフレーム分割した. 線形予測係数は 24次用いた. $\alpha(i,j)$ は線形予測係数を用いて求めたスペクトル包絡成分である. CD は、サンプリング点 512 点毎に時間分割した. $\beta(i,j)$ はケプストラム係数であり,16次までの係数を用いた. MCD はサンプリング点 256 点毎に時間分割した. $\gamma(i,j)$ はメルケプストラム係数であり,12次までの係数を用いた. ILSD はサンプリング点 512 点毎に時間分割した. $R(\omega,j)$ は、クリティカルバンドで帯域分割され、512 点 FFT により算出されたスペクトログラムである. W(ω) は、周波数に応じて変化する重み付け関数である.

4.2 評価結果

図4.1~4.5に、提案法による回復結果の一例を示す.実線は骨導音声の結果、破線は提案 法により回復された音声の結果である.この図から,提案法により確かに音声回復が行わ れていることが見て取れる. また, 相関が改善されていることから, 時間ドメインでのパ ワーエンベロープの歪を回復できていることがわかる.次に,図4.6~4.9に気導/骨導デー タベース内の全音声を用いた音質の総合評価の結果を示す.評価対称の音声は、骨導音声、 提案法で回復した音声,パラメータ a を気導音声の情報を使って求め、提案法により回復 した音声,先行研究で木村により提案された従来法で回復した音声の4つである。 リファ レンスはいずれも気導音声である.全ての結果において,骨導音声より提案法の数値が低 くなっていることから、提案法が骨導音声の音質を改善できていることを示している、ま た、従来法と比較すると、提案法はブラインド法であるにもかかわらず LSD、LP-LSD、 CDにおいて、同等の結果となった、最後に、表 4.10 に音声明瞭度の総合評価の結果とし て,音声明瞭度を考慮した LSD の結果を示す.骨導音声より提案法の数値が低くなって いることから、提案法が骨導音声の音声明瞭度を改善できていることがわかる。観測点1 と5において,提案法による改善度合いが気導音声の情報を用いてパラメータ a を求めた 提案法と比較して大幅に小さいのは、解析の際に考察したとおり、回帰曲線と実際の aの 値の RMS が他の観測点と比較し大きいためである.しかし,骨導音声の高域を良く収録 できる観測点2,3,4については提案法により骨導音声の改善がしっかりとなされている のがわかる.この結果から、提案法は骨導音声の回復に確かな効果があることが示され、 骨導音声の高域をよく収録できる、骨導マイクを装着するのに適していると思われる点で 収録した音声に対しては、事前に学習を行うことによりブラインドで非常に精度良く回復 を行うことが可能であることが示唆された.

図 4.1:提案法による SNR の改善度.

図 4.2: 提案法による相関の改善度.

図 4.3: 提案法による MTF の回帰直線の傾きの改善度.

図 4.4: 提案法による変調度1の MTF と骨導/回復音声の RMS 誤差の改善度.

図 4.5: 提案法による伝達関数の改善度.

図 4.6: LSD による総合評価. BCspeech: 骨導音声, MTF previous: 従来の MTF に基づ く骨導音声回復法, MTF nonblind: 気導音声の情報を用いてパラメータ *a* を求めた提案 法, MTF blind: 提案法.

図 4.7: LP-LSD による総合評価. 体裁は、図 4.6 と同じ.

図 4.8: ケプストラム距離による総合評価. 体裁は,図 4.6 と同じ.

図 4.9: メルケプストラム距離による総合評価. 体裁は、図 4.6 と同じ.

図 4.10: 明瞭度を考慮した LSD による総合評価. 体裁は,図 4.6 と同じ.

第5章 結論

5.1 本研究で明らかにしたこと

本研究では、MTFに基づいた処理体系で骨導音声をブラインドで回復できる方法を提 案し、その有効性を明らかにした.

気導パワーエンベロープと骨導パワーエンベロープの間の変換関係を解析し,その変換 関係は,MTFで表現するとaexp(-bt)という2つのパラメータa,bを持つ関数で表現で きることを明らかにした.次に,観測点毎にパラメータaがフィルタバンクのチャンネル 数を従属変数として持つ回帰曲線1/a²_n = cn⁻¹ + dで近似できることを明らかにした.こ の回帰曲線を用いることにより,パラメータaを気導音声の情報を必要とすることなく決 定できた.また,この回帰曲線は発話内容に依存せず,一部話者を除いた大多数の話者で パラメータaは一致することが明らかとなった.これにより,話者や発話内容によらない MTFに基づいた骨導音声ブラインド回復法を提案した.最後に,提案法の客観評価をシ ミュレーションにより行い,提案法が骨導音声の音質,明瞭度の改善に確かに有効である ことを明らかにした.

5.2 今後の課題

今回の検討では,話者,発話内容によらず音声を回復できる可能性が示唆されたが,こ れはあくまで限られたデータベース内でしか検証されていない.よって,今後別の話者, 発話内容を収録した更なるデータを用いて提案法の有用性を検証する必要がある.また, 提案法は回復音声の時間長の制限を設けていない,どの程度の長さの音声まで回復可能か について,議論する必要がある.また,提案法は時間ドメインでの歪を回復する手法であ る.これと,Vuらにより提案されている周波数ドメインでの歪を回復する線形予測分析 に基づく回復法を組み合わせることで,時間-周波数方向の歪を同時に回復できる可能性 がある.

謝辞

本研究を進める上で大変熱烈なご指導を下さった指導教官である鵜木祐史准教授に甚大 なる感謝の意を表します.また,研究室会議など,様々な場面でご助言くださった赤木教 授に感謝の意を表します.さらに,研究に対して様々なご助言を下さいました李助教,研 究室の先輩方,苦楽を共にした研究室の諸氏にも感謝の意を表します.

参考文献

- [1] 熊下 正照, 島村 徹也, 鈴木 誠史, "骨導マイクを用いて収録した音声の性質," 日本音 響学会講演論文集. 2-Q-3, pp.269–270, March 1996.
- [2] 北森 進, 滝沢 正浩, "明瞭度試験による骨導音声の分析," 電子情報通信学会論文誌, vol. J72-A, no. 11, pp. 1764–1771, Nov. 1989.
- [3] 衣笠 光太, ルー シュガン, ヴ タング タット, 鵜木 祐史, 赤木 正人, "線形予測分析 に基づいた骨導音声ブラインド回復法の総合評価: Lombard 効果による影響につい て," 日本音響学会講演論文集, 1-R-8, Sep. 2008.
- [4] 齋藤 裕, 新垣 拓也, 長尾 優, 福島 学, 石光 俊介, 柳川 博文, "振動ピックアップ型マイ クロホンを用いた収音音声の装着部位による変化," 日本音響学会講演論文集, 3-P-22, pp. 623–624, Sept. 2002.
- [5] 加村 健一郎, 齊藤 裕, 福島 学, 石光 俊介, 柳川 博文, "振動ピックアップ型マイクに よる収録音声の特性補正について," 日本音響学会講演論文集, 1-Q-13, pp. 661–662, Mar. 2002.
- [6] Maranda McBride, Meghan Hodges and Jon French, "Intelligibility differences between male and female bone conducted speech when presented in high noise environments," J. Acoust. Soc. Am.. vol. 122, isuue 5, p.3064, Nov. 2007.
- [7] Takeshi Tomikura. and Tetsuya Shimamura., "A study on improving the quality of voice of bone conduction," *Proceedings 2003 spring meeting on Acoustical Society of Japan*, 2-Q-14, pp. 401–402, 2003.
- [8] Shunsuke Ishimitsu, Hironori Kitakaze, Yasuyuki Tsuchibushi, Hirofumi Yanagawa, and Manabu Fukushima, "A noise-robust speech recognition system making use of body-conducted signals," *Acoustical Science and Technology*, vol. 25, no. 2, pp. 166– 169, 2004.
- [9] Toshiki Tamiya. and Tetsuya Shimamura, "Reconstruct Filter Design for Bone-Conducted Speech," Proc. ICSLP2004, vol. II, pp. 1085–1088, Oct. 2004.

- [10] 石光 俊介, 高家 陽介, 堀畑 聡, 北風 裕教, 柳川 博文, "適応フィルタを用いた骨導音 明瞭度向上の基礎研究," 日本音響学会講演論文集, 1-Q-23, pp. 681–682, Mar. 2002.
- [11] Tat Thang Vu, Germine Seide, Masashi Unoki, and Masato Akagi, "Method of LPbased blind restoration for improving intelligibility of bone-conducted speech," *Proc. Interspeech2007*, pp. 966–969, Antwerp, Belgium, Aug. 2007.
- [12] Kenji Kimura, Masashi Unoki, and Masato Akagi, "A study on a bone-conducted speech restoration method with the modulation filterbank," NCSP05, pp. 411–414, Honolulu, USA, Mar. 2005.
- [13] Tat Thang Vu, Kenji Kimura, Masashi Unoki, and Masato Akagi, "A study on restoration of bone-conducted speech with MTF-based and LP-based model," *Japan Signal Processing*, vol. 10, no. 6, pp. 4070–417, Nov. 2006.
- [14] Tat Thang Vu, Masashi Unoki, and Masato Akagi, "A study on an LP-based model for restoring bone-conducted speech," the International Conference on Communications and Electronics (*Proc. ICCE' 2006*), pp. 294–299, Hanoi, Vietnam, Oct. 2006.
- [15] Tat Thang Vu, Masashi Unoki, and Masato Akagi, "A study on the LP-based blind model in restoring bone-conducted speech," *IEICE Technical Report*, SP2007-189, pp. 53–58, Mar. 2008.
- [16] T. Houtgast and H. J. M. Steeneken, "The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility," J. Acoust. Soc. Am., vol. 54, Issue 2, pp. 557, 1973.
- [17] T. Houtgast, H. J. M. Steenken and R. Plomp, "Predicting Speech Intelligibility in Rooms from the Modulation Transfer Function. I. General Room Acoustics," Acustica. vol. 46, 1980.
- [18] T. Houtgast, H. J. M. Steenken, "A review of the MTFconcept in room acoustic and its use for extimating speech intelligibility in audioria," J. Acoust. Soc. Am., vol. 77, No. 3, pp. 1069–1077, Mar. 1985.
- [19] 小椋 靖夫, 浜田 晴夫, 三浦 種敏, "音場における音声伝送品質のための MTF と STI について," 日本音響学会誌, 40巻3号, pp. 181–191, Mar. 1984.
- [20] R. Drullman, "Temporal envelope and fine structure cues for speech intelligibility," J. Acoust. Soc. Am., vol. 97, pp. 585–592, Jan. 1995.
- [21] 広林 茂樹, 野村 博昭, 小池 恒彦, 東山 三樹夫, "パワーエンベロープ伝達関数の逆 フィルタ処理による残響音声の回復,"電子情報通信学会論文誌, vol. J81-A, no. 10, pp. 1323–1330, Oct. 1998.

- [22] M. R. Schroeder, "Modulation transfer function: definition and measurement," Acustica., vol. 49, pp. 179–182, 1981.
- [23] M. Unoki, M. Furukawa, K. Sakata, and M. Akagi, "An improved method based on the MTF concept for restoring the power envelope from a reverberant signal," *Acoust. Sci. & Tech.* vol. 25, no. 4, pp. 232–242, 2004.
- [24] T. Arai, M. Pavel, H. Hermansky, and C. Avendano, "Syllable intelligibility for temporally filtered LPC cepstral trajectories," J. Acoust. Soc. Am., vol. 105, no. 5, pp. 2783–2791, May 1999.
- [25] N. Kanedera, T. Arai, H. Hermansky, and M. Pavel, "On the importance of various modulation frequencies for speech recognition," *Proc. Eurospeech97*, pp. 1079–1082, Rhodes, 1997.
- [26] 金寺登,荒井隆行,船田哲男,"変調スペクトルの重要な成分のみを選択的に用いた 雑音に強い音声認識,"電子情報通信学会論文誌,vol. 84, no. 7, pp. 1261–1269, July 2001.
- [27] Database for speech intelligibility testing using Japanese word lists. NTT-AT, March 2003.
- [28] Shuichi Sakamoto, Naoki Iwaoka, Yoiti Suzuki, Shigeaki Amano and Tadahisa Kondo, "Complementary relationship between familiarity and SNR in word intelligibility test," *Acoustical Science and Technology*, vol. 25, no. 4, pp. 290–292, 2004.
- [29] 北風 裕教, 村中 裕貴, 石光 俊介, "体内伝導音声認識システム構築に関する一考察," 日本音響学会講演論文集, 1-10-20, pp. 539–540, March 2004.
- [30] Sota Hiramatsu, and Masashi Unoki. "A Study on the Blind Estimation of Reverberation Time in Room Acoustics," J. Signal Processing, vol. 12, no.4, pp. 323–326, July 2008.
- [31] ANSI S3.5-1997, "American National Standard Methods for Calculation of the Speech Intelligibility Index," 1997.
研究実績

- 衣笠 光太, ルー シュガン, ヴ タング タット, 鵜木 祐史, 赤木 正人, "線形予測分析 に基づいた骨導音声ブラインド回復法の総合評価: Lombard 効果による影響につい て,"日本音響学会講演論文集, 1-R-8, Sep. 2008.
- Kota Kinugasa, Masashi Unoki and Masato Akagi, "An MTF-based blind restoration method for improving intelligibility of bone-conducted speech," *NCSO09*, Honolulu, USA, Mar. 2009.