JAIST Repository

https://dspace.jaist.ac.jp/

Title gobdooooooooooooooooooao

Author(s) ooo, oooooa

Citation

Issue Date 2009-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10119/ 8096
Rights

Description Supervisor: goooo, ooooooo, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Basing on Model Checking Techniques to Generate Testcases

Nguyen Tam Thi Minh (0710023)

School of Information School,
Japan Advanced Institute of Science and Technology

February 5, 2009

Keywords: Spin, Promela, Testcase, W-method, Conformance.

1 Introduction

In software development, besides following processes in right order such as requirement
analysis, design, implementation, and so on; developers are also interested in guaranteeing
the quality of those processes. Although designers accomplished their jobs well, it is not
guaranteed that the implementation process is right, i.e. following designed specifications.
In practice, testing using Testcases is one of the effective methods for this problem.

In this research, we will propose an algorithm to automatically generate Testcases from
design model for testing the conformity of implementation with design model. So far we
verified the correctness of a design model by model checking tool Spin. To conform to
Spin[2], the design model is described in Promela language. From the model in Promela
(Promela description), we will propose a method to automatically generate Testcase.

2 Related Work

In related research, we will present W-method, a method of conformance testing, and two
approaches which automatically generate Testcases from formal specifications, e.g. model
checking and Model Based Testing (MBT).

W-method is a method of testing the conformity of Implementation with its Specifi-
cation based on automata theory. This method assumes that Specification and Imple-
mentation may be modeled as Finite State Machine (FSM). So, testing the conformity of
Implementation with its specification means that testing the conformance of two FSMs.
Furthermore, this method assumes that the FSM is 1) completely specified, 2) minimal,
3) every state is reachable in practice. These assumptions themselves limit the application
of W-method on in fact.

MBT builds a model from requirement to derive Testcases for the system. The model
is built by designers, and its correctness is unverified. As a result, different models may
derive from the same requirement, and all are not correct. If valuation of test result is not
good, it is necessary to consider rebuilding the model and Testcase generation algorithm.

Copyright © 2009 by Nguyen Tam Thi Minh

Model checker generates Testcases by applying mutation analysis. The mutation anal-
ysis is a method for building the inconsistencies between model and the temporal logic
constraints. When model checker processes an inconsistency, it generates a counterexam-
ple - a sequence of reachable states beginning in a valid initial state and ending with the
property violation state. The counterexample is used as a Testcase. However, it is hard
to build the set of counterexamples coveraging all paths of model. Thus, this method is
incomplete.

3 Approach

In this research, we adatp W-method[1] to propose a frame for testing conformance be-
tween Implementation and Promela description. Promela description and Implementation
are modeled as FSM. Then, testing conformance between Implementation and Promela
description becomes testing conformance between two FSMs. Moreover, we propose a
method which automatically generate Testcases from Promela description by using the
search function in Spin. Hence, we redefine FSM based on Promela description.

To evaluate the proposal method, we carry out real experiment on Kitchen Timer[3].
The design model in Promela of Kitchen Timer is available, and its correctness has been
verified by Spin.

4 Proposal Method

4.1 Frame for Conformance Testing

The frame for testing conformity of Implementation and Promela description consists of
three major steps:

Step 1. model Promela description as FSM. We offer some regulations for modeling
Promela description as FSM. In this research, we focus on the Promela description
which has only one internal process.

Step 2. model Implementation as FSM. We assume that the Implementation is C pro-
gram, and its internal state is observable. And the Impelementation is model as FSM
based on the observable states. To derive unique FSM from the Implementation, we
normalize the way of drawing data describing the observable states.

Step 3. test the conformance of two FSMs, D and M. The conformance of D and M
means that M = D. In this research, we assume that Iy = Ip and S(M) = S(D),
where [, is the set of input symbols in M, Ip is the set of input symbols in D,
S(M) is the set of states in M, and S(D) is the set of states in D. Basing on these
assumptions, we propose a method for testing M = D by adapting W-method.

4.2 Automatic Testcase Generation based on Promela Description

The process of automatically generating Testcase from Promela description consists of
three steps:

1) label the branchs of search tree in Spin with a tuple (input symbol, output symbol,
next state). In this step, we embed C code into Promela description to print the
tuple (input symbol, output symbol, next state) at each branch.

2) compile the Promela description which contains embbeded C code. We compile this
Promela description with ~-DCHECK option. This compilation prints what the verifier
does at each step during the verification process in more detail. Also, it contains
what the search tree traverses at each step during the verification process in more
detail. In addition, the result of compilation is stored into file dcheck.out.

3) automatically generate Testcase from file dcheck.out. We build a program Testcas-
eGenerator as a Testcase generation tool in this research. TestcaseGenerator pro-
cesses file dcheck.out, and generates the set of Testcases.

5 Experiment

By using the process of automatically generating Testcase from Promela description, we
generated the set of Testcase in Kitchen Timer. The set contains 1155 Testcases.

After generating the set of Testcases, we implemented Kitchen Timer based on its
Promela description. To have the assumption Iy, = Ip, C program of Kitchen Timer han-
dles only three events corresponding to three messages in Promela description. However,
it is more complicated to have the assumption S(M) = S(D). Therefore, we implemented
Kitchen Timer on three Implementation Patterns to consider this assumption.

1) Pattern 1 (Liymp = Lprometa Vimp = Vpromela) 1s the simplest case. In this pattern,
Kitchen Timer was implemented as Promela description. Thus, it is easy to have
the assumption S(M) = S(D).

2) Pattern 2 (Limp > Lpromela Vimp = VpPromeia) 18 Implementation Pattern of real
Kitchen Timer. In this pattern, the strings describing redundant labels were replaced
by the labels corresponding to Promela description. Then we had the assumption

S(M) = S(D).

3) Pattern 3 (Lymp = Lprometa Vimp > Vpromeia) 1 the most complicated case. In this
pattern, one state in Promela description is implemented by several states. We only
considered these states in series. To have the assumption S(M) = S(D), we defined
special symbols and reprensetations, and offer their correspondence relation. When a
Testcase is run on the Implementation, if these symbols or representations are found,
their correspondence relation is applied to have the assumption S(M) = S(D).

In this research, we considered the above Implementation patterns, and offered solutions
corresponding to each pattern to have the assumption S(M) = S(D). However, there are
many Implementation patterns in fact. In the future, we will consider other Implementa-
tion patterns.

6 Conclusion

This research adapted W-method to propose a method for automatically generating Test-
cases from design model, and offered a frame for testing conformance of the model and
its Implementation by using generated Testcases. Because the design model is described
in Promela, this method is also called a method for automatically generating Testcases
from Promela description. Furthermore, we carried out the real experiment on Kitchen
Timer to valuate the proposal method.

This research contributed a testcase generation method to software testing. This
method removed the problem as the problem in MBT, and overcome obstacles in W-
method. The method automatically generates testcase from Promela description by using
search function in Spin, so that it is practicable.

References

[1] T. Chow,” Testing software design modeled by finite state machines” , IEEE Trans.
Software Eng., vol. SE-4, pp. 178-187, Mar, 1978.

[2] Holzmann, G. J.(2004). The SPIN Model Checker: Primer and Reference Manual.
Boston: Addison-Wesley.

3] (2007, December 3).
, pp- 133-140.

