JAIST Repository

https://dspace.jaist.ac.jp/

Title	変調伝達関数に基づいた雑音抑圧に関する研究	
Author(s)	山崎,悠	
Citation		
Issue Date	2009-03	
Туре	Thesis or Dissertation	
Text version	author	
URL	http://hdl.handle.net/10119/8099	
Rights		
Description	Supervisor:鵜木 祐史, 情報科学研究科, 修士	

Japan Advanced Institute of Science and Technology

修士論文

変調伝達関数に基づいた雑音抑圧に関する研究

北陸先端科学技術大学院大学 情報科学研究科情報処理学専攻

山崎 悠

2009年3月

修士論文

変調伝達関数に基づいた雑音抑圧に関する研究

指導教官 鵜木 祐史 准教授

審查委員主查 鵜木 祐史 准教授 審查委員 赤木 正人 教授 審查委員 徳田 功 准教授

北陸先端科学技術大学院大学 情報科学研究科情報処理学専攻

0710073 山崎 悠

提出年月: 2009年2月

Copyright © 2009 by Yamasaki Yutaka

概要

我々は普段, 色々な音が混在する実環境で生活している.この実環境下で, 人々は音を 聴くことによって, 重要な情報を得ている.例えば, 音楽を聴くことで心を豊かにしたり, 音声を発声, 聴いたりすることによって, コミュニケーションを取っている.しかし, 実 環境で観測される音楽や音声信号は, 雑音や残響が混在した状態で観測される. 雑音や残 響によって, 音声信号は歪み, 音質や音声明瞭度が低下する.そのため, 雑音や残響の影 響を取り除くことは, 音声認識システムや補聴システムの前処理といった音声信号処理で 重要な研究課題である.

これまでの研究は, 雑音環境下または残響環境下で取り組まれ, 数多くの手法が提案されている.代表的な手法として, 雑音環境下では, 雑音成分を周波数領域で差し引く Boll のスペクトルサブトラクション法や Paliwal と Basu のカルマンフィルタリング, 残響環境下では, 室内伝達特性の最小位相成分を取り除く Neely と Allen の手法やマイクロホンアレーを用いて, 逆フィルタリングをする三好と金田の MINT 法が知られている.しかしながら, 雑音や残響が混在する実環境では, これらの手法が, 有効に機能するとは考えにくい. 最近になり, 雑音・残響環境下での雑音・残響抑圧法も提案されている.木下らは, 雑音に対してはスペクトル減算を残響に対しては線形予測を用いて, 縦列的に抑圧する手法を提案した.しかし, 雑音と残響を同時に抑圧するためには, 雑音・残響環境下で共通に扱える特徴あるいは特性が必要である.

MTFは,信号の伝送路の特徴を時間強度包絡線の変調度で関係づけるものである.HoutgastとSteenekenは,MTFを利用して音声明瞭度を予測する体系を提案した.この音声明 瞭度は,人間がコミュニケーションを取る上で非常に重要な要素である.この理論体系 は,雑音・残響による音声明瞭度の低下を考慮している.そのため,MTFを用いること で,音声明瞭度を考慮した雑音・残響抑圧法の提案が期待できる.

鵜木らは,MTFに基づく残響抑圧法を提案した.彼らの手法は,残響環境下に限定して回復処理を行なっている.この手法は残響によって低下した音声明瞭度を約30%ほど改善することができる.この手法にMTFに基づく雑音抑圧法を組み込むことにより,雑音・残響環境下でのMTFに基づいた音声回復処理法の提案が望める.

本研究では, 雑音・残響環境での人間の円滑なコミュニケーションの達成を目指した雑 音・残響抑圧法の提案を最終目標とし, 音声明瞭度を考慮した MTF に基づく雑音抑圧法 を提案する. 雑音の影響を受けた入力パワーエンベロープは, 変調度だけでなく振幅も影 響を受けているため, 変調度に関係する MTF を回復するだけでなく振幅も回復すること で, 観測パワーエンベロープから入力パワーエンベロープを得る. 振幅に関しては, 振幅 補正値を掛けることで回復する. 変調度に関しては, MTF の逆数 (IMTF)を掛けることで 回復する. これにより雑音の抑圧を行なう.

IMTFを求めるには MTFを算出しなければならない. 雑音環境下での MTFを算出する には,入力パワーエンベロープの平均値が必要となるため,この平均値の推定を行なう必 要がある.まず無音声区間から,雑音パワーエンベロープの平均値を得る.そして,音声 区間の平均値から,求めた雑音パワーエンベロープの平均値を引くことで,入力パワーエ ンベロープの平均値を算出し,MTFを推定した.

提案法を評価するために,評価シミュレーションを行った.評価に用いる音声は,ATR データベースにある男性5名,女性5名,計10名の話者が発話した3単語とした.SNR が20,10,5,0,-5dBになるように白色,ピンク,バブル雑音を付加した.1つのSNR に対して雑音をそれぞれ100個用意した.評価項目として,相関値,パワー比の改善度, 対数スペクトル距離(LSD)と音声明瞭度と関係の取れた重み付きLSDを用いた.その結 果,パワー比の改善度ではSNRが低くなるごとに増加した.またLSDでは最大約31dB ほど,重み付きLSDでは最大約8dBの改善が見られた.相関値は大きな違いは認められ なかった.以上のことからMTFに基づく雑音抑圧法が時間強度包絡線と信号回復の点で, 雑音音声の回復に寄与していることを示した.

目次

第1章	序論	1
1.1	背景	1
1.2	目的	2
1.3	本論文の構成.................................	2
第2章	従来の雑音抑圧法	4
第3章	変調伝達関数 (MTF)	7
3.1	MTFの原理 (概念)	7
3.2		7
3.3	残響環境での MTF	8
3.4	雅音・残響環境での MTF	10
笋∕/咅	MTFに其づいたパローエンベロープ逆フィルタ注	11
ガサ 早 11		11
4.1	にちの土成週程 · · · · · · · · · · · · · · · · · · ·	11
4.2		11
4.5		14
4.4	$\operatorname{MIF} \mathbb{C} \cong \mathcal{I} \setminus \mathcal{I} = \mathcal{I} \setminus \mathcal{I} = \mathcal{I} \oplus \mathcal{I} + \mathcal{I} \oplus \mathcal{I} = \mathcal{I} \oplus \mathcal{I} = \mathcal{I} \oplus $	14
第5章	提案法	15
5.1	雑音・残響抑圧の処理体系	15
5.2	雑音抑圧法を提案する際の問題点	15
5.3	提案法のコンセプト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
5.4	MTF に基づいた雑音抑圧法	16
	5.4.1 MTF に基づいた雑音抑圧法の原理	16
	5.4.2 雑音環境での MTF の推定	17
5.5	音声信号への適応と帯域分割処理	19
5.6	パワーエンベロープを差し引く手法	22
笛(音	堤家注の評価	7 2
ガリ早 61		23 72
6.2	ホロ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23 24
0.2	和木しちず ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24

	6.2.1	相関 , SNR の改善度による評価	24
	6.2.2	LSD による評価	25
	6.2.3	重み付け LSD による評価..........................	25
第7章	結論		44
第 7 章 7.1	結論 本研究	で明らかにしたこと	44 44

図目次

2.1	入力音声 $x(t)$,観測音声 $y(t)$ と従来法を施した音声(SNR0dB,音声は/aikawarazz	u/) 6
3.1 3.2 3.3	雑音環境下での MTF	8 9 10
4.1 4.2	伝達関数の構成 (a) は信号の場合. (b) はパワーエンベロープの場合. ... 信号とパワーエンベロープの関係	12 13
5.1 5.2	MTF に基づた雑音抑圧法の構成 パワーエンベロープでの MTF に基づいた雑音抑圧法の流れ . (a) から (e) の 実線は各式でのパワーエンベロープの状態 , (f) は観測パワーエンベロープ	16
5.3 5.4	に $1/m(f_m)$ 倍した場合.破線は,入力パワーエンベロープ	18 u/) 20 21
6.1 6.2 6.3	提案法:白色雑音での相関値とパワー比の改善度	26 27 28
6.4 6.5 6.6	ウィナーフィルタ:白色雑音での相関値とパワー比の改善度 ウィナーフィルタ:ピンク雑音での相関値とパワー比の改善度 ウィナーフィルタ:バブル雑音での相関値とパワー比の改善度	29 30 31
6.7 6.8	SS 法:白色雑音での相関値とパワー比の改善度	32 33
6.96.106.11	SS 法:バブル雑音での相関値とパワー比の改善度	34 35 36
6.116.126.13	MMSE-STSA:バブル雑音での相関値とパワー比の改善度 白色雑音でのLSDの改善度	37 38
6.14 6.15	ピンク雑音での LSD の改善度	39 40
 6.16 6.17 	白色雑音での重み付き LSD の改善度	41 42

6.18	バブル雑音での重み付き LSD の改善度		43
------	----------------------	--	----

第1章 序論

1.1 背景

我々は普段, 色々な音が混在する実環境で生活している.この実環境下で, 人々は音を 聴くことによって, 重要な情報を得ている.例えば, 音楽を聴くことで心を豊かにした り, 音声を発声, 聴いたりすることによって, コミュニケーションを取っている.このよ うに, 音を聴くということは我々の生活において重要である.しかし, 実環境で観測され る音楽や音声信号は, 雑音や残響が混在した状態で観測される. 雑音や残響によって, 音 声信号は歪み, 音質や音声明瞭度が低下する.これにより, 円滑なコミュニケーションが 阻害されたり, 音声認識システムや補聴システムの処理精度が低下する.これらを実環境 で, 円滑または精度良く行なうためには, 雑音や残響の影響を取り除く必要がある. 雑音 や残響抑圧の研究は, これまでに数多く行なわれてきており, 現在でも, 音声信号処理で 最も重要な課題の一つとして, 研究が行なわれ続けている.

これまでの研究は, 雑音環境下または残響環境下のいずれかで取り組まれ, 数多くの手法が提案されている.代表的な手法として,残響環境下では,室内伝達特性の最小位相成分を取り除く Neely と Allen の手法 [1] やマイクロホンアレーを用いて,逆フィルタリングをする Miyoshi と Kaneda の MINT 法 [2] や Wang と Itakura の回復信号と音声信号の誤差を最小にする帯域分割逆フィルタ [3] が知られている.雑音環境下では,雑音成分を周波数領域で差し引く Boll の SS 法 [4] やウィナーフィルタ [5] を用いた雑音抑圧法 [6][7],カルマンフィルタリング [8] による Paliwal と Basu の抑圧法 [9], Ephraim と Malah による推定短時間振幅スペクトルの平均2 乗誤差を最小にする MMSE-STSA 法 [10], McAulay と Malpass の音声振幅スペクトルの最尤推定量を使用した ML 法 [11] がある.これらの手法は音声認識システムの前処理 [12][13] にも用いられており,近年でもその改良法 [14][15]が提案され続けている.しかし,雑音と残響が混在する実環境を考慮した場合,これらの雑音や残響抑圧法が,有効に機能するとは考えにくい.

最近になり, 雑音・残響環境下での抑圧法も検討, 提案されている. 吉田らは雑音・残 響環境で荒井らの定常部抑圧法 [16] の評価をしている [17].彼らによると, 定常部抑圧 法により, 雑音・残響環境で音声明瞭度の保持ができると述べている.しかし, 定常部抑 圧法は, 呈示する前の音声に処理を施す手法である.そのため, 実環境で観測した音声を 処理する補聴システムや音声認識システムの前処理とするものではない. 雑音・残響環境 で音声を処理する手法として, Kinoshita らは雑音に対してはスペクトル減算を残響に対 しては線形予測を用いて, 縦列的に抑圧する手法を提案した [18].また, 吉岡らは雑音抑 圧と残響抑圧を協調して行なうために,観測音声のモデルを周波数領域で設定し,最尤推 定法で求めたパラメータを用いて音声の回復を行なう手法[19]とその改良法[20]を提案 している.これらの手法は雑音と残響を同時に抑圧する手法ではない.同時に雑音と残響 を抑圧するためには,雑音・残響環境下で共通に扱える特徴あるいは特性が必要である.

変調伝達関数 (MTF: Modulation Transfer Function) は,信号の伝送路の特徴をパワーエ ンベロープの変調度で関係づけるものである.Houtgast と Steeneken は,MTFを利用して 音声明瞭度 [21] を予測する体系 [22]-[24] を提案した.この理論体系は,MTF から音声伝 達指数 (STI: Speech Tranmisson Index)[25][26] に変換することで,音声明瞭度と直接関係 がとられており,雑音環境のみ残響環境のみだけではなく,雑音・残響環境での音声明瞭 度の低下を考慮している.そのため,雑音・残響環境を考慮しているMTFを用いること で,雑音・残響の同時抑圧法を提案できる可能性がある.

MTFに基づいて残響時間のブラインド推定 [27] や残響環境での音声認識 [28] が行なわれている.広林らは,パワーエンベロープの逆フィルタリングを行なうことで残響抑圧を行なった [29].Unokiらは,広林らの手法を再検討し,新たに MTF に基づく残響抑圧法 [31]-[33]を提案した.彼らの手法は,残響環境下に限定して回復処理を行なっている. Unokiらの手法は残響によって低下した音声明瞭度を約 30%ほど改善することができる [33].ここで Unokiらの手法に,MTF に基づく雑音抑圧法を組み込むことができれば,雑音・残響環境下での MTF に基づいた音声回復処理法を提案することができる.

1.2 目的

著者の目標は, 雑音と残響を同時に抑圧可能な音声回復法を提案することである.その ため, 本研究では, 雑音により低下した MTFを復元することで, MTFに基づく雑音抑圧 法を提案する. 雑音の影響を受けた入力パワーエンベロープは, 変調度だけでなく振幅も 影響を受けているため, 変調度に関係する MTFを回復するだけでなく振幅も回復するこ とで, 観測パワーエンベロープから入力パワーエンベロープを得る.この手法は, 雑音抑 圧法ではあるが, 従来の雑音抑圧法とは違い, MTFに基づいていることにより, 雑音だ けでなく残響についても考慮できる可能性がある.

1.3 本論文の構成

本論文は,全7章により構成されている.以下に各章の概要を述べる.第1章では,本 研究の背景である,残響や雑音に関する抑圧法と目的について述べる.第2章では,従来 の雑音抑圧法について簡潔に述べる.第3章では,本研究で重要な概念であるMTFにつ いて説明する.提案法で用いる雑音環境でのMTFについて述べ,MTFが雑音・残響環境 を考慮していることを示す.第4章では,提案法で用いる,MTFに基づいた伝達系,信 号とパワーエンベロープの関係とパワーエンベロープの抽出法について述べ,MTFに基 づいた雑音抑圧法を提案する際に指針となったパワーエンベロープの逆フィルタ法について述べる.第5章では,雑音・残響抑圧法の処理体系についてのコンセプトを述べる.また,雑音抑圧法を提案する際の問題点を明らかにしたうえで解決し,MTFに基づいた雑音抑圧法を提案する.第6章では,提案法の評価を行なう.第7章では,本研究で明らかにしたこと,本研究の今後の課題と展望について述べる.

第2章 従来の雑音抑圧法

従来の雑音抑圧法について,簡単に述べる.雑音環境での手法なので,信号の伝達系は,y(t) = x(t) + n(t)の関係を用いる.そのスペクトルは $Y(\omega) = X(\omega) + N(\omega)$ となる.また,推定入力スペクトルは

$$\hat{X}(\omega) = G(\omega)Y(\omega) \tag{2.1}$$

$$G(\omega) = 1 - \frac{N(\omega)}{Y(\omega)}$$
(2.2)

となる.ここで $G(\omega)$ はゲイン関数である.ただし,式 (2.2) は理想的なゲイン関数である. これから説明する手法は,着目するスペクトルとゲイン関数の求め方が違えど,式 (2.1) により,入力情報を得る.

ウィナーフィルタリング

ウィナーフィルタリングは Wiener が提案したウィナーフィルタを用いて, 雑音抑圧を 行なう手法で, 音声信号と推定した音声信号のパワースペクトルの平均2 乗誤差を最小と する手法である.パワースペクトルの関係とゲイン関数は,

$$|Y(\omega)|^{2} = |X(\omega)|^{2} + |N(\omega)|^{2}$$
(2.3)

$$|\hat{X}(\omega)|^2 = G_{WF}(\omega)|Y(\omega)|^2$$
(2.4)

$$G_{WF}(\omega) = \frac{|X(\omega)|^2}{|\hat{X}(\omega)|^2 + |N(\omega)|^2}$$
(2.5)

となる.ここで,精度良くフィルタリングが行われるためには,入力信号と雑音信号が無相関であることが重要である.

Spectral Subtraction(SS)法

SS法は観測信号の振幅スペクトルから雑音の振幅スペクトルの推定平均値を差し引く ことで入力振幅スペクトルを得る手法である.振幅スペクトルの関係とゲイン関数は

$$|Y(\omega)| = |X(\omega)| + |N(\omega)|$$
(2.6)

$$|\hat{X}(\omega)| = 1 - \frac{G_{SS}(\omega)}{|Y(\omega)|}$$
(2.7)

$$G_{SS}(\omega) = 1 - \frac{|\hat{N}(\omega)|}{|Y(\omega)|}$$
(2.8)

となる.また,SS法は $|\hat{N}(\omega)|$ を $|Y(\omega)|$ から差し引くことでも $|\hat{X}(\omega)|$ を得ることができる.

MMSE-STSA法

MMSE-STSA 法はウィナーフィルタリングの様に,平均2乗誤差を最小にする手法で ある.しかし,パワースペクトルではなく,音声信号と推定した音声信号の振幅スペクト ルであり,位相に関しても考慮されている.振幅スペクトルの関係とゲイン関数は,

$$|Y(\omega)| = |X(\omega)| + |N(\omega)|$$
(2.9)

$$\hat{X}(\omega) = G_{MMSE}(\omega)|Y(\omega)| \cdot \exp\{j \angle Y(\omega)\}$$
(2.10)

$$G_{MMSE}(\omega) = \frac{(\pi v)^{1/2}}{2\gamma} \exp\left(\frac{-v}{2}\right) \left[(1+v)I_0\left(\frac{v}{2}\right) + vI_1\left(\frac{v}{2}\right) \right]$$
(2.11)

となる.ここで, $I_0(\cdot) \ge I_1(\cdot)$ は変形ベッセル関数を, $\angle Y(\omega)$ は位相スペクトルである.また,

$$v = \frac{\xi}{1+\xi}\gamma, \quad \xi = \frac{\sigma_x^2}{\sigma_n^2}, \quad \gamma = \frac{|Y(\omega)|^2}{\sigma_n^2}$$
(2.12)

である.ここで, σ_x^2 , σ_n^2 は入力スペクトルと雑音スペクトルの分散, ξ は事前 SNR, γ は 事後 SNR である.以上が比較に用いる従来法の簡単な説明である.詳細について,SS法 は文献[4]を,ウィナーフィルタリングは文献[7],MMSE-STSA法は文献[10][14]に記述 されている.図(2.1)は入力音声(/aikawarazu/)に,SNR 0 dBとなるように雑音を加算し た観測音声と前述の雑音抑圧法を観測音声に施した結果の信号波形である.図から,雑音 が抑圧されているのが見て取れる.

図 2.1: 入力音声 x(t), 観測音声 y(t) と従来法を施した音声 (SNR 0 dB, 音声は/aikawarazu/)

第3章 変調伝達関数(MTF)

MTFの概念は,入出力信号のパワーエンベロープの変調度と伝達系の特性の関係を説明するためにHoutgastとSteenekenによって提案された.この概念は,音声明瞭度への伝達系の効果を評価するための概念として室内音響学において紹介された.

3.1 MTFの原理(概念)

Houtgast と Steeneken は,入出力のパワーエンベロープを

$$\mathbf{Input} = \overline{I_i^2} (1 + \cos(2\pi f_m t)), \qquad (3.1)$$

Output = $\overline{I_o^2} \{1 + m(f_m) \cos(2\pi f_m(t-\tau))\},$ (3.2)

と定義した [22]-[24].ここで, $\overline{I_i^2}$ と $\overline{I_o^2}$ は,入出力の強度, f_m は変調周波数, τ は位相を表す. $m(f_m)$ は変調周波数 f_m の変調度である.この $m(f_m)$ が雑音や残響の影響を受けることで変化し,この変化が変調度に相当することからMTFと呼ばれる.MTFはSTIに変換されることで,音声明瞭度と直接関係が持たれる.

3.2 雑音環境でのMTF

雑音環境での MTF について説明する.入力パワーエンベロープ $e_x^2(t)$ を

$$e_x^2(t) = \overline{e_x^2}(1 + \cos(2\pi f_m t))$$
 (3.3)

とすると, 雑音が加算された場合の観測パワーエンベロープである $e_v^2(t)$ は,

$$e_{y}^{2}(t) = \overline{e_{x}^{2}} \{1 + \cos(2\pi f_{m}t)\} + e_{n}^{2}(t)$$
(3.4)
$$(\overline{2} + \overline{2}) (1 + e_{n}(t)) + (2 + e_{n}(t))$$

$$= \left(e_x^2 + e_n^2\right) \{1 + m(f_m)\cos(2\pi f_m t)\}$$
(3.5)

となる.ここで $e_n^2(t)$ は雑音信号のパワーエンベロープである.但し, $e_n^2(t)$ は時間に一定 と仮定されているため, $e_n^2(t) = \frac{1}{T} \int_0^T e_n^2(t) dt$ である.ここで T は信号長である.また,雑 音環境での MTF, $m(f_m)$ は下記式で与えられる.

$$m(f_m) = \frac{\overline{e_x^2}}{\overline{e_x^2} + \overline{e_n^2}} = \frac{1}{1 + 10^{-(\text{SNR})/10}},$$
(3.6)

図 3.1: 雑音環境下での MTF

但し, SNR = $10 \log_{10}(\overline{e_x^2}(t)/\overline{e_n^2}(t))$ dB である. 雑音環境での MTF は, f_m に依存しない. 例 えば, SNR= -5 dB の場合, $m(f_m) = 0.24$ である. (図 3.1)

3.3 残響環境でのMTF

残響環境での MTF は, 下記式で与えられている.

$$m(f_m) = \frac{\left|\int_0^\infty h^2(t) \exp(-j2\pi f_m t)dt\right|}{\int_0^\infty h^2(t)dt}$$
(3.7)

ここで h(t) は室内インパルス応答であり, Schroeder の確率論的近似インパルス応答 [34] を用いれば, h(t) は

$$\mathbf{h}(t) = \exp\left(-\frac{6.9t}{T_R}\right) \cdot n_h(t) \tag{3.8}$$

図 3.2: 残響環境下での MTF

と表すことができる.ここで T_R はパワーが 60 dB 減衰するまでの時間,残響時間である. $n_h(t)$ はキャリアでランダム変数である.式 (3.8) を式 (3.7) に代入すると,残響環境での MTF を下記式で表すことができる.

$$m(f_m) = \left[1 + \left(2\pi f_m \frac{T_R}{13.8}\right)^2\right]^{-1/2}$$
(3.9)

この式 (3.9) と図 (3.2) より, 残響環境での MTF は, 変調周波数 f_m と残響時間 T_R に依存 しており, その特性はローパス特性を示している.

図 3.3: 雑音・残響環境下での MTF

3.4 雑音・残響環境でのMTF

雑音・残響環境での MTF は,式(3.1),(3.2)の関係と式(3.6),(3.7)より下記のように 表せれる.

$$m(f_m) = \left[1 + \left(2\pi f_m \frac{T_R}{13.8}\right)^2\right]^{-1/2} \times \left(1 + 10^{-(\text{SNR})/10}\right)^{-1}.$$
(3.10)

このように, MTF に着目すれば, 雑音・残響の影響を同時に考慮することができる.図 (3.3) は雑音・残響環境での MTF である.残響環境時の MTF と同じ様に指数減衰してい くが, 雑音の影響分だけ低下した状態から減衰している.本研究では, 雑音環境を想定し ているため, 雑音環境での MTF に特化する.

第4章 MTFに基づいたパワーエンベ ロープ逆フィルタ法

4.1 信号の生成過程

本研究では,MTFに基づいて,観測信号をy(t),入力信号をx(t),インパルス応答を h(t),雑音をn(t)として,以下のようにモデル化した(図(4.1(a))).但し,本研究では, 雑音のみを取り扱うため,インパルス応答の影響は無いものとしている.

$$\mathbf{y}(t) = \mathbf{h}(t) * \mathbf{x}(t) + \mathbf{n}(t)$$
(4.1)

$$\mathbf{h}(t) = e_h(t)\mathbf{c}_h(t) \tag{4.2}$$

$$\mathbf{x}(t) = e_x(t)\mathbf{c}_x(t) \tag{4.3}$$

$$\mathbf{n}(t) = e_n(t)\mathbf{c}_n(t) \tag{4.4}$$

$$\langle \mathbf{c}_l(t), \mathbf{c}_l(t-\tau) \rangle = \delta(t-\tau)$$
 (4.5)

ここで, $e_x(t)$, $e_h(t) \ge e_n(t)$ は, $\mathbf{x}(t)$, $\mathbf{h}(t) \ge \mathbf{n}(t)$ のエンベロープ, $\mathbf{c}_x(t)$, $\mathbf{c}_h(t) \ge \mathbf{c}_n(t)$ は キャリアでランダム変数, 〈·〉は集合平均である.

4.2 信号とパワーエンベロープの関係

前項でのモデルでは,下記の様に2乗集合平均を取ることで,観測パワーエンベロープ $e_{y}^{2}(t)$ を得ることができる.

$$\langle \mathbf{y}^2(t) \rangle = \langle \mathbf{h}^2(t) * \mathbf{x}^2(t) \rangle + \langle \mathbf{n}^2(t) \rangle$$
 (4.6)

ここで $\left< \mathbf{y}^2(t) \right>$ は,

$$\langle \mathbf{y}^2(t) \rangle = \langle e_y^2(t) \mathbf{c}_y^2(t) \rangle$$
 (4.7)

$$= e_y^2(t) \left\langle \mathbf{c}_y^2(t) \right\rangle \tag{4.8}$$

$$= e_y^2(t)$$
 (4.9)

図 4.1: 伝達関数の構成 (a) は信号の場合. (b) はパワーエンベロープの場合.

となっている.但し, $\langle \mathbf{c}_y^2(t) \rangle = \delta(0) = 1$ である. $\langle \mathbf{n}^2(t) \rangle$ についても同様にして $e_n^2(t)$ を得ることができる.また, $\langle \mathbf{h}^2(t) * \mathbf{x}^2(t) \rangle$ については,

$$\left\langle \mathbf{h}^{2}(t) * \mathbf{x}^{2}(t) \right\rangle = \left\langle \left\{ \int_{-\infty}^{\infty} \mathbf{h}(t-\tau) \mathbf{x}(\tau) d\tau \right\}^{2} \right\rangle$$
(4.10)

$$= \left\langle \int_{-\infty}^{\infty} e_x(\tau_1) \mathbf{c}_x(\tau_1) e_h(t-\tau_1) \mathbf{c}_h(t-\tau_1) \right\rangle$$
$$\int_{-\infty}^{\infty} e_x(\tau_2) \mathbf{c}_x(\tau_2) e_h(t-\tau_2) \mathbf{c}_h(t-\tau_2) d\tau_1 d\tau_2 \right\rangle$$
(4.11)

$$= \int_{-\infty}^{\infty} e_x(\tau_1) e_h(t-\tau_1) \int_{-\infty}^{\infty} e_x(\tau_2) e_h(t-\tau_2) \\ \langle \mathbf{c}_x(\tau_1) \mathbf{c}_x(\tau_2) \rangle \langle \mathbf{c}_h(t-\tau_1) \mathbf{c}_h(t-\tau_1) \rangle d\tau_1 d\tau_2$$
(4.12)

ここで, $\tau_1 = \tau_2 = \tau$ とすると, 式 (4.5) との関係より

$$\left\langle \mathbf{h}^{2}(t) * \mathbf{x}^{2}(t) \right\rangle = \int_{-\infty}^{\infty} e_{x}(\tau_{1})e_{h}(t-\tau_{1}) \int_{-\infty}^{\infty} e_{x}(\tau_{2})e_{h}(t-\tau_{2}) \\ \delta(\tau_{2}-\tau_{1})^{2}d\tau_{1}d\tau_{2}$$

$$(4.13)$$

$$= \int_{-\infty}^{\infty} e_x^2(\tau) e_h^2(t-\tau) d\tau \qquad (4.14)$$

$$= e_x^2(t) * e_h^2(t)$$
 (4.15)

となる.これにより式(4.6)は,

$$e_{y}^{2}(t) = e_{h}^{2}(t) * e_{x}^{2}(t) + e_{h}^{2}(t)$$
(4.16)

となり,式(4.1)の信号の関係と式(4.16)パワーエンベロープの関係が等しくなる.本研 究では,このパワーエンベロープの関係(図4.1(b))を用いる.但し,雑音環境を想定して いるため,残響 $e_b^2(t)$ の影響は無いものとしている.

図 4.2: 信号とパワーエンベロープの関係

図 4.2 は式 (4.1) と式 (4.16) の信号とパワーエンベロープの関係を時間波形で示した例 である.但し,残響の影響はないものとしている.図 4.2(a) は入力信号,(c) は雑音信号, (e) は観測信号である.入力信号に雑音信号が加算されて観測信号になっている.また(b) は入力パワーエンベロープ,(d) は雑音パワーエンベロープ,(f) は観測パワーエンベロー プである.信号と同様に,入力パワーエンベロープに雑音パワーエンベロープが加算され て,観測パワーエンベロープになっているのが分かる.

4.3 パワーエンベロープの抽出法

MTF に基づく雑音抑圧法を提案するには,観測信号 y(t) から,観測パワーエンベロー プである $e_y^2(t)$ を抽出する必要がある.本研究では,以下の方法で出力信号 y(t) から,パ ワーエンベロープを抽出する.

$$\hat{e}_{y}^{2}(t) = \mathbf{LPF} \left[|y(t) + \mathbf{JHilbert}\{y(t)\}|^{2} \right]$$
(4.17)

ここで LPF[·] はローパスフィルタ, Hilbert(·) はヒルベルト変換である.この方法は信号の瞬時振幅の計算に基づいている.また,パワーエンベロープの高周波成分を取り除くために,後処理としてローパスフィルタリングを行なう.ローパスフィルタのカットオフ周波数は20 Hz とした.この手法は Unoki ら [31] によって有効性が示されている.またカットオフ周波数は, Arai ら [35] や金寺ら [36][37] によって,音声知覚と音声認識では,1~16 Hz の変調周波数が重要であるという報告に基づいて設定した.

4.4 MTF に基づくパワーエンベロープ逆フィルタ法

広林 [29], Unoki[31]-[33] らが行なったパワーエンベロープ逆フィルタ法について説明 する.彼らは残響環境を想定しているため,式(4.16)は,

$$e_{v}^{2}(t) = e_{h}^{2}(t) * e_{x}^{2}(t)$$
(4.18)

となる.式 (3.8) から, $e_h(t) \in e_h^2(t) = a \exp\left(-\frac{6.9t}{T_R}\right)$ とする.式 (4.16) も式 (4.18) も実際には,離散時間で利用するため,周波数変換として,z変換を用いる.連続時間 *t* を離散時間系列 *k* とし,z変換を Z[·] とすると, $e_h^2(t)$ はz領域で

$$\mathbf{Z}[e_h^2(k)] = \frac{a^2}{1 - \exp\left(-\frac{13.8}{T_R \cdot f_s}\right) z^{-1}}$$
(4.19)

と表現される [31] . ここで, f_s はサンプリング周波数である.また,式 (4.18)の関係が $\mathbf{Z}[e_y^2(k)]/\mathbf{Z}[e_x^2(k)] = \mathbf{Z}[e_h^2(k)]$ となることから,入力パワーエンベロープの変調スペクトルは,

$$\mathbf{Z}[e_x^2(k)] = \frac{\mathbf{Z}[e_y^2(k)]}{a^2} \left\{ 1 - \exp\left(-\frac{13.8}{T_R \cdot f_s}\right) \right\} z^{-1}$$
(4.20)

で求めることができる.このように,パワーエンベロープ逆フィルタ法はインパルス応答の逆特性を用いて,入力パワーエンベロープを得る手法である.ここで,残響環境での MTFの算出式である式(3.7)より,残響環境でのMTFは,インパルス応答をフーリエ変換し,その直流分で正規化することであり,伝達関数と考えることができる.パワーエン ベロープ逆フィルタ法は,z領域ではあるが,観測パワーエンベロープの変調スペクトル を伝達関数で割っている.つまりは,MTF,1/m(fm)を観測変調スペクトルに掛けること でMTFを回復していることと等しい.

第5章 提案法

5.1 雑音・残響抑圧の処理体系

本研究の目標である雑音・残響の同時抑圧処理を行なうには,4章で述べたパワーエン ベロープ逆フィルタ法が1/m(fm)を掛けることで,残響抑圧を行なっていることから,3 章で述べた雑音・残響環境でのMTF(式(3.10))の逆数を掛けることができれば,入力パ ワーエンベロープを推定し,雑音・残響抑圧ができる.ここで,残響環境では,Unokiら が既にMTFに基づいたパワーエンベロープ逆フィルタ法を実現しているが,雑音環境で は,抑圧法は提案されていない.雑音・残響抑圧法の実現するには,まずMTFに基づい た雑音抑圧法の検討がされるべきである.そこで本研究で,Unokiらと同様に1/m(fm)倍 することで雑音抑圧を行なう手法を提案する.

5.2 雑音抑圧法を提案する際の問題点

MTF に基づく雑音抑圧法を提案する際に,以下の問題点が挙げられる.

- 1. 雑音により影響を受けているのは,パワーエンベロープの変調度だけではない.
- 2. MTFを算出するのに入力パワーエンベロープの情報が必要である.

1つめの問題について, 雑音により, 入力パワーエンベロープの変調度だけではなく, 振幅も影響を受けているため, ただ単に変調度を回復するために, MTFの逆数である $m(f_m)$ を観測パワーエンベロープに掛けるだけでは,入力パワーエンベロープが得られない.2つめの問題について, 雑音環境下のMTFの算出には式(3.6)より,入力の情報である $\overline{e_x^2}$ が必要である.そのため, 雑音環境でのMTFを推定しなければならない.この2つの問題点を解決すれば, MTFに基づく雑音抑圧法を提案できる.

5.3 提案法のコンセプト

提案法のコンセプトは, 雑音の影響を受けて低下した MTFを回復することで, 観測パワーエンベロープ $e_y^2(t)$ から入力パワーエンベロープ $e_x^2(t)$ を得ることである. 具体的には $1/m(f_m)$ を掛けることで, MTFを回復するが, 観測パワーエンベロープ $e_y^2(t)$ は, 雑音に

より変調度だけではなく,振幅も影響を受けている.そのため,変調度の回復を行なう前に,振幅の回復を行なう.

5.4 MTF に基づいた雑音抑圧法

5.4.1 MTF に基づいた雑音抑圧法の原理

図 5.1: MTF に基づた雑音抑圧法の構成

MTFに基づいた雑音抑圧法は図 (5.1) に示す手順で行なわれる. 観測パワーエンベロー プ $e_y^2(t)$ は,雑音の影響により,振幅と変調度に影響を受けていることが式(3.5)より分かる.そこで,振幅と変調度の回復を行なうことが,MTFに基づいた雑音抑圧法となる.まず振幅の補正を行なう.

$$\mathbf{OV} = \frac{\overline{e_x^2}}{\overline{e_x^2 + e_n^2}}$$
(5.1)

式 (5.1) は,振幅回復のための補正値である.この式 (5.1) を式 (3.5) にかける.これにより,次のような式を得る.

$$\overline{e_x^2} + \overline{e_x^2} \cdot m(f_m) \cdot \cos(2\pi f_m t)$$
(5.2)

式 (5.2) は,式 (3.5) から振幅が回復された状態になっている.この状態から低下した変調度を,1/ $m(f_m)$ を掛けることで回復するが,式(5.2) に対して,そのまま 1/ $m(f_m)$ を掛けると回復した振幅が再び影響を受けてしまう.そのため,式(5.2)の第2項に対して,1/ $m(f_m)$ を掛けなければならない. $\overline{e_x^2}$ は,式(5.2)時のパワーエンベロープの時間平均値であるため,容易に得ることができる.式(5.2)から, $\overline{e_x^2}$ を差し引くと

$$\overline{e_x^2} \cdot m(f_m) \cdot \cos(2\pi f_m t) \tag{5.3}$$

となる.式(5.3)の状態にして,1/m(fm)を掛けて,変調度の回復が行なえる.

$$\overline{e_x^2} \cdot m(f_m) \cdot \cos(2\pi f_m t) \times \frac{1}{m(f_m)} = \overline{e_x^2} \cdot \cos(2\pi f_m t) \times \frac{1}{m(f_m)}$$
(5.4)

そして,差し引いていた $\overline{e_x^2}$ を加算すると

$$\overline{e_x^2} \cdot \cos(2\pi f_m t) \times \frac{1}{m(f_m)} + \overline{e_x^2} = \overline{e_x^2}(1 + \cos(2\pi f_m t))$$
(5.5)

となる,結果として入力パワーエンベロープ $e_x^2(t)$ を得ることができる.最後に負のパワーが無いという仮定から,負の値になっている部分を0にする.この過程がMTFに基づく 雑音抑圧法である.図(5.2)の(a)から(e)は,観測パワーエンベロープと式(5.2)から式(5.5)までのパワーエンベロープ(実線)である.(f)は観測パワーエンベロープに対して,単に $1/m(f_m)$ を掛けた場合のパワーエンベロープである.破線は入力パワーエンベロープ を表している.単に $1/m(f_m)$ 倍を行なっただけでは,入力パワーエンベロープを得ること ができないのが,図(5.2(f))から見て取れる.また,図(5.2(e))より,提案法が入力パワーエンベロープを精度良く推定できていることが分かる.

5.4.2 雑音環境での MTF の推定

式 (3.6) より, MTF の算出には, $\overline{e_x^2} \ge \overline{e_n^2}$ が必要になる. $\overline{e_n^2}$ は無音声区間から推定を行なう. $\overline{e_x^2}$ は推定した $\overline{e_n^2}$ を $\overline{e_y^2}$ から差し引くことで得る. これにより雑音環境での MTF を 算出する.

図 5.2: パワーエンベロープでのMTF に基づいた雑音抑圧法の流れ.(a)から(e)の実線は 各式でのパワーエンベロープの状態,(f)は観測パワーエンベロープに1/m(f_m)倍した場合.破線は,入力パワーエンベロープ.

5.5 音声信号への適応と帯域分割処理

音声信号のパワーエンベロープは,全帯域において共変調してはいない.音声信号に対してMTFに基づく雑音抑圧処理を行なう時には,音声のパワーエンベロープが共変調でない場合を考慮しなければならない.そこで帯域分割処理を行なうことで,共変調とみなせる帯域毎に分割し,各帯域毎にMTFに基づく雑音抑圧法を施す必要がある.帯域分割幅については,キャリアの無相関性とMTFのパワーエンベロープの関係がトレードオフであるため,両者の条件を満たす帯域幅を決定しなければならない.条件を満たす帯域幅については,Unokiら[31]によって検討されており,1チャンネルあたりの帯域幅は100 Hz が良いとしている.これに基づき提案法も帯域幅を100 Hz とした.図(5.3)は,提案法をSNR 0 dB の雑音音声(/aikawarazu/)に施した結果の信号波形である.雑音が抑圧されているのが見て取れる.図(5.4)は提案法のブロック図である.提案法を行なう手順は

- 1. 観測音声を,定帯域フィルタバンクで1チャンネルあたり100Hz毎に帯域分割処理 を行なう.
- 2. 帯域分割した観測音声からパワーエンベロープ $e_{y}^{2}(t)$ を抽出する.
- 3. パラメータを推定する.また,抽出したパワーエンベロープを用いてキャリアを抽 出する.
- 4. 各パワーエンベロープに対して回復処理を行ない,パワーエンベロープを回復する.
- 5. キャリアと掛け合わせて, 合成処理を行うことで推定入力信号を得る.

となっている.

図 5.3: 入力音声 x(t), 観測音声 y(t) と提案法を施した音声 (SNR 0 dB, 音声は/aikawarazu/)

図 5.4: 提案法のブロック図

5.6 パワーエンベロープを差し引く手法

提案法は雑音パワーエンベロープの平均値を観測パワーエンベロープから差し引く手法と等価である.これは,式(4.16)と雑音パワーエンベロープが時間に対して一定という 仮定より

$$e_{y}^{2}(t) = e_{x}^{2}(t) + e_{n}^{2}(t)$$

= $e_{x}^{2}(t) + \overline{e_{n}^{2}}(t)$ (5.6)

観測パワーエンベロープを上記の式で表すことができる,この式 (5.6) から雑音パワーエンベロープの平均値を差し引けば,

$$e_{v}^{2}(t) - \overline{e_{n}^{2}}(t) = e_{x}^{2}(t)$$
(5.7)

となり,入力パワーエンベロープを得る.そのため結果としては,提案法と等価となる. パワーエンベロープを差し引く手法は,雑音パワーエンベロープを差し引くことしかでき ず,残響の影響を抑えることは不可能である.しかし,提案法はMTFに基づいているた め,同じ概念に基づいているUnokiらの手法と組み合わせる事で残響の影響を抑えられる 可能性がある.

第6章 提案法の評価

この章では,提案法が雑音に対して効果があるか調べるために,評価シミュレーション を行なう.パワーエンベロープの相関値とパワー比の改善度を用いて,観測パワーエン ベロープ $e_y^2(t)$ からパワーエンベロープが回復できているか評価する.また雑音音声から, どれだけ音声を回復できたかを調べるために,対数スペクトル距離を用いて評価する.

6.1 条件

評価に用いる音声は,ATR データベース [38] にある男性 5 名 (mau,mht,mnm,mtm, mtt),女性 5 名 (faf,ffs,fkn,fsu,fyn),計 10 名の話者が発話した単語 (/aikawarazu/, /shinbun/,/joudan/)とした.SNR が 20,10,5,0,-5 dB になるように白色雑音を付加し た.1 つの SNR に対して白色,ピンク,バブル雑音をそれぞれ 100 個用意した.そのため 雑音が加算された出力信号であるy(t)の総数は, $10 \times 3 \times 5 \times 100 \times = 45000$ となった.こ れらの音声に,1チャネルあたり 100 Hz で帯域分割処理をおこない,提案法を帯域ごと に施した.データベースのサンプリング周波数が2 kHz であるため,総チャネル数は 100 チャネルである.MTF の推定は,無音声区間と音声区間の切り分けが理想的にできたも のとして行った.また従来の雑音抑圧法との効果を比較するために,ウィナーフィルタリ ング [6],SS 法 [4], MMSE-STSA 法 [10] を用いた.

評価項目として, 各チャンネルにおける相関値(Corr), パワー比(SNR)の改善度, 対数 スペクトル距離(LSD)と音声明瞭度と関係が取られている重み付けをしたLSD[39]を用 いた.相関値, パワー比とLSDは下記式で表される.

$$\operatorname{Corr}(e_{x}^{2}, \hat{e}_{x}^{2}) = \frac{\int_{0}^{T} \left(e_{x}^{2}(t) - \overline{e_{x}^{2}(t)}\right) \left(\hat{e}_{x}^{2}(t) - \overline{\hat{e}_{x}^{2}(t)}\right) dt}{\sqrt{\left\{\int_{0}^{T} \left(e_{x}^{2}(t) - \overline{e_{x}^{2}(t)}\right) dt\right\} \left\{\int_{0}^{T} \left(\hat{e}_{x}^{2}(t) - \overline{\hat{e}_{x}^{2}(t)}\right) dt\right\}}}$$
(6.1)

$$SNR(e_x^2, \hat{e}_x^2) = 10 \log_{10} \frac{\int_0^T (e_x^2(t))^2 dt}{\int_0^T (e_x^2(t) - \hat{e}_x^2(t))^2 dt}$$
(6.2)

$$LSD = \sqrt{\frac{1}{W} \sum_{\omega}^{W} \left(20 \log_{10} \frac{|S_x(\omega)|}{|\hat{S}_x(\omega)|} \right)^2}$$
(6.3)

ここで, $\overline{e_x^2}$ は $e_x^2(t)$ の平均, $e_x^2(t)$ と $\hat{e}_x^2(t)$ は入力パワーエンベロープと回復されたパワーエンベロープ,Wは周波数の上限(10 kHz), $S_x(\omega)$ には入力信号の振幅スペクトル, $\hat{S_x}(\omega)$

は,観測信号,提案法を施した信号の振幅スペクトルである.パワーエンベロープの相関 とパワー比を調べることで,パワーエンベロープがどのくらい復元できたか,LSDの改 善度を調べることで,どのくらい雑音音声を回復したか,重み付きLSDの改善度を調べ ることで,音声明瞭度がどのくらい改善されたか,客観的に評価できる.

6.2 結果と考察

6.2.1 相関, SNRの改善度による評価

各図のバーが相関値の改善度とパワー比の改善度の平均値を,エラーバーがその標準偏 差を示している.横軸は帯域分割した際のチャネルナンバー,縦軸は相関値とパワー比の 改善度である.

提案法について,図6.1 は白色雑音,図6.2 はピンク雑音,図6.3 はバブル雑音による 結果である.相関値は雑音の種類に関係なく,おおむね±0.15 に分布している,これは回 復後のパワーエンベロープが,回復前のパワーエンベロープから雑音パワーエンベロープ の平均パワー分を差し引いたものであるため,パワーエンベロープの形に,あまり影響を あたえないためである.パワー比の改善度について,白色雑音の場合,SNR が低くなる につれて,パワー比の改善度が増加している.低帯域側のチャネルにおいて,改善度が低 いのは,音声の主要な成分が低域にあるため,低帯域側での SNR が元々高いため,改善 度として少量になっているためである.ピンク雑音の場合も白色雑音と同様の傾向を示し ている.バブル雑音の場合,白色,ピンク雑音の場合よりもバブル雑音の改善度は低いも のとなってはいる.バブル雑音は,音声の足し合わせから成る雑音であるため,時間軸上 での雑音パワーエンベロープの分散が大きい.これにより提案法の効果が,白色,ピンク 雑音よりも低くなっている.しかし,SNR が低くなるごとに改善度が増加する傾向は見 られ,効果はある.

これらの結果より,提案法は雑音が付加された観測パワーエンベロープからパワーエン ベロープを復元する点において効果があることが言える.

従来法との比較について, 白色雑音, ピンク雑音の場合, SNR -5 dB の時に, パワー比 の改善度において, 提案法は従来法より劣る傾向が見られるが, SNR 20 dB 時のように, 改善度が大幅にマイナスになることはない. 相関値の改善度に関しては, 提案法も従来法 も同程度である. バブル雑音の場合は, SNR 0 dB と SNR が低い時でも従来法の改善度と 比べ, パワー比の改善度が劣ることはなく, SNR 20 dB では, 改善度の差は顕著に現れて いる. また相関値の改善度に関して, 従来法では、高めの周波数帯域では改悪の傾向が見 られるが, 提案法では, 改悪の傾向は見られない.

これらのことから,提案法は,雑音付加時より,パワー比が改悪にならない分,他の手法よりパワーエンベロープを回復する点で優れている.

6.2.2 LSD による評価

図 6.13 は白色雑音,図 6.14 はピンク雑音,図 6.15 はバブル雑音による結果である.各 図のバーが LSD の改善度の平均値をエラーバーがその標準偏差を示している.

提案法について,3種類の雑音ともSNRが低くなるにつれて改善度が増加している.白 色雑音の場合,最大で約31dBの改善度が見られる.ピンク雑音の場合は約28dBの改善 度,バブル雑音の場合は約11dBの改善度となっている.バブル雑音,SNRが20dBの 場合に改悪の傾向が見られる.これはSNR20dBと雑音成分が音声成分に比べて少ない ため雑音パワーエンベロープの引き過ぎによるものと考えられる.

このことから雑音信号から音声信号を回復する点で,提案法は効果があることが示された.

従来法との比較について, SS 法と MMSE-STSA 法と比較すると, バブル雑音の SNR - 5 dB の時に約2 dB の差があるが, 他の SNR, 雑音の場合では, ほぼ同じ改善度であることが確認できる.ウィナーフィルタリングと比較する.白色, ピンク雑音では, SNR が低くなるほどに,提案法の改善度よりも従来法の改善度が大きくなっているため,ウィナーフィルタリングによる手法の方が優れている.しかし, バブル雑音では改善度の差は, ないと言ってもよいほどになくなっており, バブル雑音に関しては同程度の効果と考えられる.

このことより, LSD において,提案法はウィナーフィルタリングには劣る傾向があるが, SS 法, MMSE-STSA 法と同程度の効果があることが示された.

6.2.3 重み付け LSD による評価

図 6.16 は白色雑音,図 6.17 はピンク雑音,図 6.18 はバブル雑音による結果である.各 図のバーが重み付け LSD の改善度平均値をエラーバーがその標準偏差を示している.

提案法について,3種類の雑音ともSNRが低くなるにつれて改善度が増加している.白 色雑音の場合,最大で約8dBの改善度が見られる.ピンク雑音の場合は約8dBの改善度, バブル雑音の場合は約5dBの改善度となっている.

従来法との比較について,ピンク雑音とバブル雑音の場合,提案法は従来法と同程度の 改善度であることが分かる.白色雑音の場合,SNRが低くなるにつれて,ウィナーフィ ルタリングに対して最大で約3dBほど劣る傾向がみられる.しかし,LSDの改善度での 評価よりも提案法とウィナーフィルタリングの差は少ない.

このことにより,重み付きLSDにおいて,提案法は白色雑音の場合,ウィナーフィル タリングには劣る傾向があるが,SS法,MMSE-STSA法と同程度の効果があること,ピ ンク雑音とバブル雑音の場合では,従来法と同程度の効果があることが示された.

図 6.1: 提案法:白色雑音での相関値とパワー比の改善度

図 6.2: 提案法: ピンク雑音での相関値とパワー比の改善度

図 6.3: 提案法:バブル雑音での相関値とパワー比の改善度

図 6.4: ウィナーフィルタ:白色雑音での相関値とパワー比の改善度

図 6.5: ウィナーフィルタ:ピンク雑音での相関値とパワー比の改善度

図 6.6: ウィナーフィルタ:バブル雑音での相関値とパワー比の改善度

図 6.7: SS 法:白色雑音での相関値とパワー比の改善度

図 6.8: SS 法:ピンク雑音での相関値とパワー比の改善度

図 6.9: SS 法:バブル雑音での相関値とパワー比の改善度

図 6.10: MMSE-STSA:白色雑音での相関値とパワー比の改善度

図 6.11: MMSE-STSA: ピンク雑音での相関値とパワー比の改善度

図 6.12: MMSE-STSA: バブル 雑音での 相関値 とパワー比の 改善度

図 6.13: 白色雑音での LSD の改善度

図 6.14: ピンク雑音での LSD の改善度

図 6.15: バブル雑音での LSD の改善度

図 6.16: 白色雑音での重み付き LSD の改善度

図 6.17: ピンク雑音での重み付き LSD の改善度

図 6.18: バブル雑音での重み付き LSD の改善度

第7章 結論

7.1 本研究で明らかにしたこと

本研究では,MTFの概念とUnokiらが提案したパワーンベロープ逆フィルタ法の有用 性を確認し,実現にまでは至っていないが,MTFに基づく雑音・残響抑圧法の基本とな る処理体系を明らかにした.

雑音・残響抑圧法を実現するのに必要である,MTFに基づいた雑音抑圧法を提案する際の問題点を明らかにし,これらを解決したうえで,観測した雑音音声の情報のみから音声の回復処理を行なうMTFに基づいた雑音抑圧法を新たに提案した.

白色雑音,ピンク雑音,バブル雑音がそれぞれ付加された音声を用いて,提案手法を評価した結果,パワーエンベロープの相関値とパワー比の改善度より,パワーエンベロープを復元する点で雑音に対して効果があること,LSDの改善度より,音声信号を復元する点で効果があることを明らかにした.また,音声明瞭度と関係の取れた重み付きLSDの改善度より,音声明瞭度を復元していることを明らかにした.これにより,提案手法は雑音音声に対する雑音抑圧手法として有用であることが明らかになった.また,従来の雑音抑圧法との比較により,パワーエンベロープを復元する点で従来法より優れており,SS法とMMSE-STSA法に対してLSD,重み付きLSDの改善度の点で同等の効果が得られることを明らかにした.

7.2 本研究における今後の課題と展望

パワーエンベロープの回復精度向上

評価シミュレーションの結果から,提案法は,音声明瞭度に関係しているMTFを回復 しているにもかかわらず,LSDや音声明瞭度と関係が取られている重み付きLSDにおい て,ウィナーフィルタリングに劣る傾向がみられた.これは,提案法を施すことで,客観 的に音質や音声明瞭度の改善が行なわれたが,その効果が不十分であるからと考えられ る.提案法の効果が不十分になってしまった原因は,雑音パワーエンベロープが時間領域 で定常なのではなく,時間軸に対して変動しているためである.これにより,雑音パワー エンベロープの平均値より高い値をもった雑音成分が,提案法では抑えきれずに残ってし まっている.但し,SNR が20,10 dB と高めの帯域では,雑音の動きを無視できる.こ の問題に対して,カルマンフィルタを用いることで,雑音パワーエンベロープの動きに対 応できる可能性がある.但し,パワーエンベロープに対して,MTFに基づいてカルマンフィルタ処理を行なう必要がある.

キャリア成分の回復

提案法は,パワーエンベロープの回復を行なっているが,キャリア成分の回復は行なっていない.より精度良く音声を回復するためには,キャリア成分の回復を行なう必要がある.回復方法として,Unokiら[33]が提案している基本周波数を用いたキャリア再生成法を雑音環境に適応させることで,キャリア成分の回復ができる可能性がある.

雑音・残響抑圧法の提案

Unokiらの手法 [31]-[33] と提案法を組み合わせる事で, 雑音・残響抑圧法の提案できる可能性がある.ただ単に提案法の後に Unoki らの手法を施した場合は, 縦列的な処理になってしまい, 雑音・残響の同時抑圧法の提案ができない.1つの見解として,式(3.10)の MTFを逆フィルタリングすることで同時抑圧法を提案できると考える.ただし, 1/m(f_m)を掛ける際には,提案法と同様に,振幅に影響を及ぼさず,変調度のみに対して行なわれなければならないと考えられる.

音声認識システムや補聴システムへの応用

MTFに基づいている Unoki らの残響抑圧法 [33] は, 音声明瞭度を最大で約 30% ほど回 復できることが分かっている.また, Luら [28] によって Unoki らの手法が残響環境下で の音声認識の前処理に有効であることが分かっている.このことから, Unoki らの残響抑 圧法は,音声認識システムや補聴システムに応用すれば,システムの精度向上へ寄与でき ると考えられる.残響環境か雑音環境の違いはあるが, Unoki らと同様に MTF に基づい ている提案法も音声認識システムや補聴システムの精度向上に寄与できると考えられる

謝辞

本研究を進めるにあたり,多大な助言と懇切丁寧かつ,熱心な御指導をして頂きました 鵜木祐史准教授に心から感謝致します.本研究を進めるにあたり,多大な助言と熱心な指 導をして頂きました赤木正人教授に心から感謝致します.本研究に関して多大な助言をし て頂いた李軍峰助教,博士後期課程の羽二生篤氏,木谷俊介氏に心より感謝致します.有 意義な討論,助言を賜った赤木・鵜木研究室の皆様方に心から感謝いたします.

参考文献

- [1] S. T. Neely, J. B. Allen, "Invertibility of a room impulse response," *J.Acoust. Soc. Am.*, Vol. 66, No. 1, pp. 166–169, July 1979.
- [2] M. Miyoshi, Y. Kaneda, "Inverse filterting of room acoustics," *IEEETrans. ASSP.*, Vol. 36, No. 2, pp. 145–152, Feb. 1988
- [3] H. Wang, F. Itakura, "Realisation of acoustic inverse filtering through multi-microphone sub-band processing," *IEICE Trans.*, Vol. E75-A No. 11, pp. 1474–1483.
- [4] S. F. Boll, "Suppression of acoustic noise in speech using spectral subtraction," *IEEE Trans. ASSP.*, Vol. 27, No. 2, pp. 113–120, 1979
- [5] 片山 徹,応用カルマンフィルタ,朝倉書店,2000, pp.66-82.
- [6] P. Scalart, J. V. Filho, "Speech enhancement based on a priori signal to noise estimation," *ICASSP*'96, Vol. 2, pp. 629–632, 1996.
- [7] 石田 隆晃,田口 亮,"データ依存型ウィナーフィルタの帯域分割処理による音声信 号の雑音抑圧,"電子情報通信学会技術研究報告,Vol. 105, No. 426, pp.19–24, 2005.
- [8] 西山 清, 中野 道雄, パソコンで解くカルマンフィルタ, 丸善, 1993.
- [9] K. K. Paliwal, A. Basu, "A speech enhancement method based on Kalman filtering," *ICASSP*'87, Vol. 1, pp. 177–180, 1987.
- [10] Y. Ephraim, and D. Malah, "Speech Enhancement using a minimum mean-square error short-time spectral amplitude estimator," *IEEE Trans. ASSP.*, Vol. ASSP-32, No. 6, pp.1109-1121, Dec. 1984.
- [11] R. J. McAulay, M. L. Malpass, "Speech enhancement using a soft-decision noise suppression filter," *IEEE Trans. ASSP.*, Vol. 28, No. 2, pp. 137–145, Apr. 1980.
- [12] 北岡 教英,赤堀一郎,中川聖一,"スペクトルサブトラクションと時間方向スムージングを用いた雑音環境下音声認識,"電子情報通信学会論文誌, Vol. J83-D-2, No. 2, pp. 500–508, Feb. 2000.

- [13] 藤本 雅清, 有木 康雄, "カルマンフィルタに基づく音声信号推定法を用いた雑音環 境下での音声認識,"電子情報通信学会論文誌, Vol. J85-D-2 No. 1, pp. 1–11, Jan 2002.
- [14] 加藤正徳,杉山昭彦,芹沢昌宏,"重み付き雑音推定とMMSE STSA 法に基づく高 音質雑音抑圧,"電子情報通信学会論文誌, Vol. J87-A, No. 7, pp. 851–860, Jul 2004.
- [15] 上村 益永,高橋 祐,猿渡 洋,鹿野 清宏,"高次統計量を利用したミュージカルノイ ズ計量尺度に基づくスペクトル減算法の自動最適化,"日本音響学会講演論文集,pp. 691–694, Sep. 2008.
- [16] 荒井 隆行,木下 慶介,程島 奈緒,楠本 亜希子,喜田村 朋子,"音声の定常部抑圧の 残響に対する効果,"日本音響学会講演論文集,pp. 449–450, Oct. 2001.
- [17] 吉田 航,程島 奈緒,荒井 隆行,"雑音・残響環境下における音声明瞭度改善のため の定常部抑圧処理の評価,"日本音響学会講演論文集, pp. 493–496, Sep. 2008.
- [18] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, "Multi-step linear prediction based speech enhancement in noisy reverberant environment," Proc. *Interspeech-2007.*, pp. 854–857, Aug. 2007.
- [19] 吉岡 拓也,中谷 智広,三好 正人,"雑音と残響の同時抑圧による音声強調,"日本音 響学会講演論文集,pp. 731–732, Mar. 2008.
- [20] 吉岡 拓也,中谷 智広,三好 正人,"雑音・残響抑圧を目的とした線形フィルタに非線 形フィルタを後置させた系の最適化法,"日本音響学会講演論文集,pp. 845–846, Sep. 2008.
- [21] 戸井田 義徳, "空間内における音声情報伝達,"日本音響学会誌, 51 巻 4 号, pp. 312–316, 1995.
- [22] T. Houtgast and H. J. M. Steeneken, "The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility," *Acoustica.*, Vol. 28, pp. 66–73, 1978.
- [23] T. Houtgast, H. J. M. Steenken and R. Plomp, "Predicting Speech Intelligibility in Rooms from the Modulation Transfer Function. I. General Room Acoustics," *Acoustica.*, Vol. 46, pp. 60–72, 1980.
- [24] T. Houtgast, H. J. M. Steenken, "A review of the MTFconcept in room acoustic and its use for extimating speech intelligibility in audioria," *J.Acoust. Soc. Am.*, Vol. 77, No. 3, March 1985.
- [25] 小椋 靖夫, 浜田 晴夫, 三浦 種敏, "音場における音声伝送品質のための MTF と STI に ついて,"日本音響学会誌, 40 巻 3 号, pp. 181–191, Mar. 1984.

- [26] 中島立視, "音声の明瞭度指標 (STI) の測定," 日本音響学会誌, 49 巻 2 号, pp. 103–110, 1993.
- [27] 平松 壮太, 鵜木 祐史, "変調伝達関数に基づいた残響時間のブラインド推定法の検討,"日本音響学会聴覚研究会資料, Vol. 37, No. 11, pp. 855–860, Jan. 2008.
- [28] L. Xugang, M. Unoki, and M. Akagi, "Comparative evaluation of modulation-transferfunction-based blind restoration of sub-band power envelopes of speech as a front-end processor for automatic speech recognition systems," *Acoust. Sci. & Tech.*, Vol. 29, No. 6, pp. 351–361
- [29] 広林 茂樹,野村 博昭,小池 恒彦,東山 三樹夫,"パワーエンベロープ伝達関数の逆 フィルタ処理による残響音声の回復,"電子情報通信学会論文誌,Vol. J81-A, No. 10, pp. 1323-1330, Oct. 1998.
- [30] M. Unoki, K. Sakata, and M. Akagi, "A speech dereverberation method based on the MTF concept," *Eurospeech2003* in Geneva, pp. 1417–1420, 2003.
- [31] M. Unoki, M. Furukawa, K. Sakata, and M. Akagi, "An improved method based on the MTF concept for restoring the power envelope from a reverberant signal," *Acoust. Sci. & Tech.* Vol. 25, No. 4, pp. 232–242, 2004.
- [32] M. Unoki, K. Sakata, M. Furkawa, and M. Akagi, "A speech dereverberation method based on the MTF concept in power envelope restoration," *Acoust. Sci. & Tech.*, Vol. 25, No. 4, pp. 243–254. 2004.
- [33] M. Unoki, M. Toi, and M. Akagi, "Development of the MTF-based speech dereverberation method using adaptive time-frequency division," *Proc. Forum Acusticum2005* in Budapest, pp. 51–56, 2005.
- [34] M. R. Schroeder, "Modulation transfer function: definition and measurement," *Acoustica.*, Vol. 49, pp.179–182, 1981.
- [35] T. Arai, M. Pavel, H. Hermansky, and C. Avendano, "Syllable intelligibility for temporally filtered LPC cepstral trajectories," *J.Acoust. Soc. Am.*, Vol. 105, No. 5, pp. 2783–2791, May 1999.
- [36] N. Kanedera, T. Arai, H. Hermansky, and M. Pavel, "On the importance of various modulation frequencies for speech recognition," *Eurospeech97* in Rhodes, pp. 1079–1082, 1997.
- [37] 金寺登,荒井隆行,船田哲男,"変調スペクトルの重要な成分のみを選択的に用いた雑音に強い音声認識,"電子情報通信学会論文誌, Vol. 84, No. 7, pp. 1261–1269, Jul. 2001.

- [38] T. Takeda, Y. Sagisaka, K. Katagiri, M. Abe, and H. Kuwabara, Speech Database User's Manual, ATR Tecnical Report, TR-I-0028, 1988.
- [39] ANSI S3.5-1997, "American National Standard Methods for Calculation of the Speech Intelligibility Index," 1997.

発表

Y. Yamasaki, M. Unoki, "A study on the noise suppression method based on the MTF concept," 2009 RISP International Workshop on Nonliear Circuits and Signal Processing, Mar 2009.