
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Cooperative Mobile Robots Simulation Engine for

the Neko Distributed Systems Prototyping

Framework

Author(s) Sangsubhan, Smath

Citation

Issue Date 2009-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/8104

Rights

Description Supervisor: Defago Xavier, 情報科学研究科, 修士

Cooperative Mobile Robots Simulation Engine for

the Neko Distributed Systems Prototyping

Framework

By Smath Sangsubhan

A thesis submitted to

School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial fulfillment of the requirements

for the degree of

Master of Information Science

Graduate Program in Information Science

Written under the direction of

Associate Professor Xavier Defago

March, 2009

Cooperative Mobile Robots Simulation Engine for

the Neko Distributed Systems Prototyping

Framework

By Smath Sangsubhan (710037)

A thesis submitted to

School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial fulfillment of the requirements

for the degree of

Master of Information Science

Graduate Program in Information Science

Written under the direction of

Associate Professor Xavier Defago

and approved by

Associate Professor Xavier Defago

Professor Mineo Kaneko

Research Professor Tomoji Kishi

February, 2009 (Submitted)

Copyright c© 2009 by Smath Sangsubhan

Abstract
Programming groups of robots and ensuring their proper interactions and coordination

is extremely complex and still poorly understood. The difficulty of developing robots

system is due to two major factors: First, there is little control on the environment and

real-world experiments are too costly (e.g., simulating earthquake environment for rescue

robots). Second, there is little programmatic support for development and reuse of spe-

cialized software components and protocols, which make development of robots system

become time-consuming and difficult to maintain. Hence, there is a strong need for pro-

totyping tools as support for both research and application development.

Simulator for robots or distributed system is not a new study field. Currently a great

number of them are existing. We can separated those simulators in to two groups.First

group, Robot simulator, most of them provide simulation environment for robot movement

and sensor network system in 2D or 3D graphical animation. However, their main concern

is only about robots motions. As a result, Implementation of communication mechanism

is very difficult and time-consuming. Second group, Network simulator. These simulator

allow us to do the simulation of communication on network and help us research in many

things such as, message delay or the bottom neck of network. Even though some of them

provide support for mobile ad-hoc network, it is still difficult to fully implement mobile

robots application on them. In order to evaluate a simulation of distributed algorithm on

mobile robots application, we need a simulator that fully support both of mobility and

communication.

This has became an inspiration to my research. It was a starting point of the idea to

present a new rapid prototyping tool for evaluating distributed algorithm on cooperative

mobile robots system.

1

Contents

1 Introduction 4

2 Background 5

2.1 Existing Simulators . 5

2.2 Neko framework . 6

3 Simulator Model 8

3.1 Mobile Robots . 9

3.1.1 Motion Modules . 10

3.1.2 Sensors . 13

3.2 Virtual Environment . 13

3.3 Collision . 14

3.4 Robot’s Communications . 15

3.5 Microprotocol Framework . 17

3.6 Discrete Event Simulation Engine . 20

4 Simulator Architecture 23

4.1 Overall Architecture . 23

4.2 Components . 24

4.2.1 Motion Modules . 24

4.2.2 Sensors . 26

4.2.3 Managers . 29

4.2.4 Virtual World . 31

4.3 Events . 32

4.3.1 Motion Event . 32

4.3.2 Sensor Event . 33

4.3.3 Collision Event . 33

2

4.4 Collision Detection . 34

4.5 Output . 38

4.5.1 Log File . 39

4.5.2 Animating Visualization . 39

5 Example Simulations 42

5.1 Random Movement . 42

5.2 Autonomous Gathering Formation . 44

5.3 Using Communication to Ask for Help . 47

6 Developer Guide 52

6.1 Configuration File . 52

6.2 Robots Initializer . 53

6.3 Available Motion and Sensor Commands 55

6.3.1 Motion Commands . 55

6.3.2 Sensor Commands . 55

7 Conclusion and Future Works 56

7.1 Conclusion . 56

7.2 Future Works . 57

7.3 References . 58

3

Chapter 1

Introduction

Recently, mobile robots system plays an importance role for supporting human in many

ways. For instance, dangerous and high-risk works such as mining or rescue support. Or

it might be a routine work that make our daily life more comfortable such as factory

work or cleaning. However, development of robots system is never be easy and very time-

consuming. Then a question that arises is, How can we effectively develop mobile robots

system? This became my inspiration and my ultimately goal to provide an effective rapid

prototyping approach.

From year to year, mobile robots system has been intensively researched and being used

in many field of works. Nowadays, robots are capable of doing many things even some

difficult works that human could not do. Consequently, in order to let robots perform

those tasks, the implementation of complex algorithms is unavoidable. Moreover, consid-

ering cost/performance, the cooperation between multiple robots may be implemented in

some situation. However, more complexity in mechanism means more time-consuming in

development. So, in order to evaluate the system, rapid prototyping approach is a very

effective way. Consequently, a simulation tool is necessary.

However, in a complex model, the evaluating scope is not limited to just mobility,

but including the communication. In order to support wider range of simulation, our

research will support the simulation of both mobility and communication and ensures the

consistency of integrating support for mobility and communication.

4

Chapter 2

Background

2.1 Existing Simulators

The simulation of robot and distributed system are not a new study field, currently there

are many of related simulators existing. We separated those simulators in to two groups.

First group is robot simulator, most of them provides the simulation of robot movement

and sensoring system in 2D or 3D graphic animation. However, their concern is only about

robot motion and related factors. Theirs limitation are that, they do not support complex

communication of robots, especially the communication for a distributed algorithm. The

simulators that are categorized in to this group are for instance, PLAYER/STAGE[2]:

Multi-robot and distributed sensor simulator and WEBOTS[3]: 3D realistic-based robot

simulation tool.

Second group is network and communication simulator. These simulators allow us to

do the simulation of communication on network and help us research in many things

such as, message delay, error or network bandwidth. Some of them also provide mobile

ad-hoc network simulation feature. However, their original purpose is mainly to be used

for network system, not robot. If we want to use them with robot system, we still have

to implement many things by ourselves, which is very time-consuming. The example of

simulator in this category are, NS2[4]: Network Simulation 2 and Omnet++[5]: A C++-

based simulation environment for network system.

We can clearly see that those simulators in both groups are having their own strong

points and trade-offs. With this research, we want to present another mobile robot simu-

5

lator that combined the best of two worlds together. The main purpose of our simulator

is to be used for prototyping distributed-algorithm on cooperative autonomous mobile

robots.

In the next section, I would like to explain about a simulator called Neko[1], which its

framework and its philosophy will be used in our research.

2.2 Neko framework

Neko is a distributed algorithm prototyping framework, which provides many useful fea-

tures for network and distributed algorithms simulation. Neko integrated with discrete

event simulation engine and contains a collection of distributed algorithm protocols, which

is ready to be instantly used. Moreover, Neko can simulate the application both on the

real network and simulated network. Recently, it was re-factored by considering more

about the philosophy of protocol reusability and encapsulation and tends to provide most

flexibility for developer. Unfortunately, at the moment Neko provides no support for node

movement, which is indispensable for robot system development. Therefore, in order to

inherit those abilities of Neko to robots system, we have developed a simulation engine

for mobile robots on the top of Neko framework.

Protocol

Protocol

Protocol

Protocol

Protocol

Protocol

PROCESS 0 PROCESS n

...

NekoProcess

deliverdeliversend send

NETWORK (Real or Simulated)

NekoProcess

Figure 2.1: Neko’s overall model

More concretely say in software level, Neko is a Java programming framework for de-

veloping and evaluating distributed protocols using message passing framework. Appli-

6

cations are connected as the composition of cooperating protocols, connected by a send

and deliver operation.

• Library of protocols

An extensive library of distributed algorithm (aka. protocols) has been developed

and included within Neko. They are ready to be used in any application. More

precisely, these protocols are called microprotocols. The philosophy about them

will be talked about in section 3.5.

consensus

group membership

atomic broadcast

failure detectors

etc.

reliable broadcast

Figure 2.2: Neko’s protocols library

• Real or simulated network

Neko supports both simulation on real network and simulated network. As for the

simulated, there are many types of simulated network that we can use. For instance,

random delay network, metric network or reliable network.

masterslave = a.org slave = b.org

prepareprepare

noyes

abort abort

Figure 2.3: An example of simulation running on Neko’s real network mode

7

Chapter 3

Simulator Model

In this chapter, we are going to talk about the specification of simulator model. The figure

3.1 shows overall model after we have integrated mobile robot engine with the original

Neko’s model. As for robots engine, we have 2 layers which are interface layer and virtual

world layer.The interface layer provides control for robots mobility and sensor modules to

user.Virtual world layer is the layer of simulated world that robots are existing in. As a

result, the integration of mobility and communication can be ensured. We can let robot

move in virtual world while having them send/receive messages using Neko.

VIRTUAL WORLD
interact

Protocol

Protocol

Protocol

Protocol

Protocol

Protocol

PROCESS 0 PROCESS n

...

NekoProcess

deliverdeliversend send

NETWORK (Real or Simulated)

NekoProcess
NekoRobot

Mobility

INTERFACE

Sensor

NekoProcess
NekoRobot

Mobility

INTERFACE

Sensor

: Robots Engine

: Neko Framework

Figure 3.1: Overall Model after integrated robots engine with Neko

8

Next we will explain about each components in this model. The simulator’s model can

be divided as the following sections,

3.1 Mobile Robots

Mobile robots are the objects those have the capability to move around in their environ-

ment and are not fixed to one physical location as industrial robots, which usually are

attached to a fixed surface.

In this simulator, robots are designed based on the real physical robots model. To

say specifically, each mobile robot is represented as a the process that logically has its

own memory, processing unit and control separately from other robots. In software level,

robots contain the following programmatic data informations. For an example of robot

definition please refer to figure 3.2.

(0,0)y

x

Robot ID = 2

 = 0°r2

C2

Robot ID = 1

 = 45°

r1

C1

Figure 3.2: Robot id 1 facing to 45 degree and robot id 2 facing to 0 degree

• ID Number

A unique identity number of each robot in the simulation system.

• Size

Size (or to say volume) of the robot, represent by using radius value. Currently this

simulator supports only the circular-shaped robot which has same length in both

width and height.

9

• Angle

Angle, is the degree of angle that robot is facing to at a certain time. The angle will

be calculated from the origin point (0,0) count anti-clockwise to the target angle.

3.1.1 Motion Modules

Firstly, the most important thing for the mobile robot system is their motions. Robots

motions are represented with vector movement. In this simulator, we describe a robots

motion as a vector from the their depart coordination to their destination. See figure 3.4

for more understanding.

Robot 1

Robot 2

wheel-based
motion module

leg-based
motion module

turn

forward

backward

move
digonal

move
straight

move side

..

Figure 3.3: An example of varies motion modules.

Motion module is the module that let robot move in the virtual environment. The

motion module is also can be called actuator in physical robot. It it is the module that

will tell how a robot move. A robot may attached difference motion modules from the

others and using totally difference motion patterns. For instance, a wheel-based robot

and a spider-shape robot might be attached with difference motion module and move dif-

ferently. Furthermore, depending on developer,a robot might be attached with multiple

motion modules and provides varies motion pattern.

Each motion module consists of one motion pattern or many motion patterns that they

are providing. For instance, a wheel-based robot’s motion module may provide a turn,

10

 = 90°

r1

C1

(0,0)

y

x

r1

NewC1

F(t) = VectorNC 1

Figure 3.4: A motion vector that was generated by the motion module.

R1

x

y

(0,0)

R1

R1
X(t start)

X(t)

X(t finish)

: motion vector at a certain time

: motion path

Figure 3.5: An example of motion vector calculation.

forward and backward motion pattern. See figure 3.3 for an instance of motion module.

A motion pattern’s main task is vector calculating and generating. To put it simply, it

get a motion request from robot, then calculate the vector of motion from that request.

Therefore, any motion pattern that can be calculated with the mathematic equation can

be created as a motion pattern. Developers are allowed to create their own motion pat-

tern for robots as long as that motion pattern can be described in equation and return

the correct motion vector for the robot at a certain time. See figure 3.5 for the vector

calculation mechanism in each motion pattern.

Currently, our simulator provides a basic motion module which designed based on the

movement of wheel-based robot. A basic motion module (or to say a default motion

module) contains three motion patterns, which should sufficient for testing distributed

11

robots algorithm that concentrate on the interaction between robots or groups of them.

However, as previously said, developers are also having the option to develop their own

motion pattern in the case that the evaluation of complex motion is necessary. As long

as the developers follow the philosophy of the framework, the extended motion patterns

can be seamlessly integrated to the this simulator easily.

The calculation of default motion module that was integrated to this simulator can be

derived into the following equation,

NewCoordination = DepartCoordination +
−−−−−→
V elocity ∗ t (3.1)

Alternatively, we can rewrite this equation into the following short notation term.

X(t) = X(0) + �V ∗ t (3.2)

X(t) refers to robot’s position at the time t while X(0) represents the position of its

position before start moving and �V is the speed vector that contains direction.

As for the default motion module, it provides these following motion patterns,

• TURN

A motion pattern that let robot turn around itself by using its center point as a

turning pin point. The calculation for this motion pattern is nothing than a addition

of angles. The motion vector produced by this motion pattern is a unit vector that

contains only direction (because when turning robot stay in the same place).

• FORWARD

A motion pattern that allow robot to move to the direction that it is facing to.

Since the robot just moving straight with this motion pattern, the angle will be the

same as depart angle.

• MOVETO

A motion pattern that combine a turn and a forward motion pattern together. It

works with global positioning system by calculating angle that it needed to turn

to the destination coordination, then do the turn motion pattern to that target

angle,then after the turning is finished, it move forward to the destination coordi-

nation.

12

3.1.2 Sensors

Sensor is a module that let robot ask information of itself, other robots or environment

from the system. Robots are separately running from the others. They have no any

shared memory or shared processing unit. Therefore it has to request the information of

surrounding environment via its sensors. In this simulator we divided sensors into two

groups as the following.

• Pull-model based sensors (a.k.a. Query-based sensors)

ROBOT
 1

SENSOR
MANAGER

" I want to know my coordination "

" OK. Here is your coordination "

Figure 3.6: An example of pull-model based sensor.

These sensors are the query-based sensors. They will receive a sensor request from

robot at a certain time, then wait for the reply from the system and forward that

reply after it came to robot. These sensors are called pull-model based sensors.

Examples of sensors in this category are gps sensor and view sensor.

• Push-model based sensors (a.k.a. Notification-based sensors)

SENSOR
MANAGER

ROBOT
 2

ROBOT
 1

" Someone's in your view ! "V

Figure 3.7: An example of push-model based sensor.

These sensors are opposite with above query-based sensors. They will automatically

repeat the sensoring mechanism with the time-interval for each sensoring period.

They works asynchronously with robots after they have been activated. While they

13

are re-sensoring with a interval period, if the interrupt condition has become true

they will send an interrupt message to robots and give them a sensor’s reply message.

These sensors are called push-model based sensors. An example of a sensor in the

category is a proximity sensor. Proximity sensor will interrupt and send a sensor

message to robot if there is other robot try to get into the sensor range (aka. sensor’s

view size) of this robot.

3.2 Virtual Environment

Virtual environment (also know as virtual world)is the virtual plane-area that is simulated

based on the real-world model’s space. It is a space that robots are existing and moving

in. All of the actions from robots are happening in this simulated world. In this simulator,

virtual world based on the Cartesian coordinate system which composed of the x-axis and

y-axis. The virtual world might be limited for the size in x-axis and y-axis, or might be

an infinity space.

3.3 Collision

Collision is the event that a robot collide with another object and lead to the collision’s

effect between those objects. Actually in mobile robots system, collision can be cate-

gorized into two groups, which are collision between robots and collision between robot

and obstacles. However, currently our simulator support only the detection of collision

between robots.

This collision happen by the one or more robots moving near to the other until the

distance between their’s border is become zero, that made robots borders are touching

together (also known as collision). We also can separate the collision between robots into

two subgroups, which are the collision between moving robots, and the collision between a

moving robot and a idling robot. As for the second case, when a robot is not moving and is

in idle state, it will become an obstacle for the other robots those are moving in the system.

The other collision that our simulator does not support but should be mentioned is the

collision between robot and obstacle. This group of collision is the collision that occur

between a robot and an obstacle object in virtual world. As previously said, the virtual

world might not be only a simply plane space. It might be a space that consists of many

14

obstacle objects in its area. The obstacle might be a object that is simulated from the

real-world’s objects such as a rock, a car or even a wall. Whatever that are, they all do

the same role, that is, blocking a moving robot from going further.

In fact, considering real-world model, obstacle object may be very vary and not limited

to just the objects those blocking robots way. For instance, a river may not block a robot

from moving but just slow its movement down (in the case that robot failure from wetting

is not considered). Or another example, a hole that robot can fall into and partly damage,

or even completely fall and disappear from the system. However, our simulator’s aim is

to making the framework as simple as it can in order to reduce the complexity in user’s

setting. Hence, currently our simulator does not provide support for such a complex ob-

stacle yet.

3.4 Robot’s Communications

After we have talked about robots components and their virtual world, in this section we

are going to talk about their communication.

As previously described in chapter 2, Neko’s original purpose is for rapid prototyping

distributed algorithm. In order to simulate the environment for those distributed algo-

rithms, network management ability has a very important role for this field of simulations.

In order to support those simulations, Neko provide the ability to allow user to experiment

their algorithm on both real network and simulated network. Neko also concentrates on

the reusability and encapsulation of communication’s protocols which this feature can be

considered as Neko’s strongest point.

After we have successfully developed the mobility model on the top layer of Neko, we

moved to the next phase and integrated it with Neko’s communication framework. As a

result our simulator now support both robots mobility and their message transmissions.

Now we go back to mobile robot’s world. In the cooperative mobile robots simulation,

in some models the motioning and sensoring might not enough for evaluating an algorithm

because we are not simulating just one robot. We are talking about multiple groups of

robots which each group might consists of a very big amount of robots like one thousand

15

or ten thousand robots. In order to effectively controls those robots and increase the

throughput for this robot system, the cooperation between them is an extremely crucial

factor.

We have known that the cooperation between them is very importance, but how can

they cooperate to each others? There are two methods that they can provides cooper-

ation to each others. First is by using a sensor. A robot might use a sensor to check

the situation around them and if necessary it may provide help for other robots. For an

instance, a leader robot uses a view sensor to check number of robots in a certain area. If

some robots are falling behind it will wait for them. If all robots have already gathered

in the destined area, a leader robot will start moving and lead the group to the next

target. Other than using sensor, the second method is by using communication which

is the main purpose of this section. Since each robots are having their own processing

unit and memory, they do not have a shared memory so that they can share information

together. In order to share a certain information to other robots, a robot has to do the

transmission (aka. communication).

robot
1

robot
3

robot
2

send() at T
0

receive() at T
1

receive() at T
2

INTERFACE

NETWORK

NEKO's NETWORK

Figure 3.8: An example of a robot broadcasting a message to other two robots

In this simulator, Neko’s network framework has been used for simulating communica-

tion environment. As we see in the figure 3.8, in the interface layer we can see a robot

16

broadcasted a message to other robots at time T0. However, in the back-end mechanism

the robot did not send a message to other robots directly. It sent a message to Neko’s sim-

ulated network (as seen in figure 3.8 as network layer). Then the simulated network will

generate delay of message and order of receivers based on the communication algorithms

(aka. microprotocols, will be explained in the next section) that have been using. After

that, the message will be successfully delivered to the target robots eventually, which is

the delivering of messages at T1 and T2 in the example in figure 3.8.

3.5 Microprotocol Framework

In this section, we are going to talk about the philosophy of a framework called micropro-

tocol framework. The Neko distributed algorithm prototyping toolkit that we extended

the mobility model for, was entirely based on the microprotocol framework’s philosophy.

Or to say it concretely, Neko was firstly developed on the traditional protocol stacks and

was re-factored to completely support microprotocol framework later.

Before getting in to the detail of microprotocol framework, we would like to briefly

talk about the traditional protocol stacks. Protocol stacks have been used as a set of

collaborating components which these components are called layers. The arrangement of

layer’s order and communication patterns are fixed, which made each layer can only com-

municate with the layers directly above and below itself. In order to solve this limitation

and provides more flexibility and reusability in framework, the newer framework with new

philosophy has been proposed. The framework is called microprotocol framework.

Microprotocol framework, is the framework that permitting the use of finer grained

components called microprotocols. Microprotocols are small structuring units that are

self-contained and clear in what service that are providing. The basic promise of micro-

protocol framework is a full separation of concerns between programming microprotocols

and composing them. Therefore these two tasks can be carried out by different people

with a minimal interaction. This feature can be called multi-level programming. For more

understanding see figure 3.9.

From the figure 3.9, the finer grained structuring unit (left side) is called microproto-

cols. The people who define the definition and develop these microprotocols are called

17

μp

Microprotocol Composite
Protocol

Application

Composite
Protocol

Composite
Protocol

Composite
Protocol

μp

μp
μp

μp

μp
μp

Figure 3.9: Multi-level programing support in microprotocol framework

microprotocols programmers.

Next, the components in the middle part of this figure is called composite protocols.

Depends on the author the name calling this type of components might difference. Other

developers sometime calls them as complex microprotocols or protocol layers.

Composite protocol is the set of multiple microprotocols and their interconnections.

Developers in this programming level are called microprotocols composers. Microprotocol

composers are able to plug microprotocols together, without having to know or change

the code of the microprotocols.

Last, the final part on the right side is an application. The application consists of mul-

tiple composite protocols that are working together while linking by the interconnections

between them. Though normally developer in this programming level is usually the same

team with microprotocol composer, however in a complex application the application pro-

grammers may be assigned to this programming level separating from composers.

In figure 3.10 we created an example of distributed algorithm for communication using

microprotocol’s philosophy. This application consists of 4 microprotcols that are providing

their own services, which are the following units.

• Atomic Broadcast

This protocol module implements atomic broadcast (aka. Total-order broadcast).

18

NETWORK

Process 1 (Robot 1)

...

Atomic
Broadcast

μP

Consensus

μP

Failure
Detection

μP

Leader
Election

μP

Process n (Robot n)

Atomic
Broadcast

μP

Consensus

μP

Failure
Detection

μP

Leader
Election

μP

Figure 3.10: An example of application using microprotocol’s philosophy

The mechanism is to deliver a message to all receiver nodes same order with sending

order. It interacts with consensus module both for solving consensus and failure

detection purpose.

• Consensus

This protocol module implements an algorithm for solving consensus problem. It

interacts with failure detection module to monitor and detect an unreliable node.

It also interacts with leader election in case that the new leader is needed.

• Leader Election

This protocol module suggests a new leader to application. It interacts with con-

sensus to ensure same agreement for all nodes.

• Failure detection

This protocol module implements a failure detection based on network condition.

For ex., using ping messages. It interacts with consensus for permitting the same

agreement on suspected node.

In previous example of microprotocol-based application, with the advantage of micro-

19

protocol framework, the composer does not needed to know the programming code in each

microprotocols. The composer can easily create a complex application by just plugging

microprotocols together without having to change the code in microprotocols.

Now we have talked both mobility model for mobile robots system and communication

framework on Neko. As a result, the combination of mobility model and microprotocols-

based communication framework of Neko make it possible for developers to create a

prototype of complex application of cooperative mobile robots system. We believe that

this approach will lead us to more effective way for rapid prototyping cooperative mobile

robots application which has the needs for evaluating on both mobility and communica-

tions algorithms.

3.6 Discrete Event Simulation Engine

The engine of this simulator is implemented based on the discrete event simulation en-

gine. Discrete event simulation is a simulation system that represented as a chronological

sequence of events. Each event occurs at an instant time and make a change of state

to the system. Since each event happen in an instance time, the mechanism do not pay

attention to the interval between events. Only the event at a certain time will be recorded

and marked to the system. Some other reference report also called the time-management

system for discrete event simulation engine as time-warp mechanism.

Originally the discrete event simulation’s philosophy was suitable for the system that

the change of state can be marked to the system as a new event. However, as for mobile

robots system, when we want to implement the discrete event simulation system to robots

simulation engine, there were several difficulties in implementation which will be spoken

in the following part.

Unlike physical-time system that use the sequence time system like the real world’s

time (see fig.3.11), the discrete event simulation engine’s time-warp mechanism cannot

provide the information of system’s state in the interval period between two events (see

fig.3.12). For the system like network simulation system, there might be no problem with

marking only message in/out events. But, considering robot system, marking only their

depart and arrive event is the same meaning with robot are doing the teleportation (aka.

warping).

20

node 1

node 2

ev2

ev0

ev1

ev3

9:45 12:1510:11 11:20

: send

: send : receive

: receive

Figure 3.11: An example of physical time system.

at 9:45

ev 0
 : send

ev1
ev3 ev2

ORDER: ev0 ev1 ev2 ev3

event
queue

Figure 3.12: An example of virtual time system in discrete event simulation

In mobile robot system, each robot is alway moving on the coordination in virtual

space. That means their positions (or to say states in the system) are always changing.

Therefore, in some situation the information from the marked depart event and arrive

event might be inadequate. For an example, a robot depart from point A at 7th second

and will arrive at point B at 10th second. However, what if we want to let the sensor

check the position of this robot at 8th second? Since the system only marked the depart

and arrive event, how can we know the exact position of this robot at 8th second? See

the figure of this example situation at fig.3.13

As for the solution, we can get the information on that interval-period between two

events by using vector calculation. As previously said, a robot’s motion can be repre-

sented as a vector of movement. All vectors of movement in this simulation system can

21

ROBOT 1 S A

VIRTUAL
TIME

0 .. 7 8 9 10 ..

S : Start Moving Event : Arriving EventA: Sensor Event

Figure 3.13: A figure shows robot requesting sensor while it is moving

be derived with the equation from equation 3.2 which is X(t) = X(0) + �V ∗ t. While X(t)

refers to robot’s position at the time t and X(0) represents the position of its position

before start moving and �V is the speed vector that contains direction. As a result, with

the above equation we can get exact coordination of a robot at any time t and be able to

solve the previous positioning query problem.

However, on the good side, in spite of the lacking of state’s information in the interval

period between two events, marking robot’s motion as a depart and arrive event will dra-

matically increase the speed of simulation. For example, if we implement the simulation

of a group of robots with physical-time based simulator. In the case that robot’s speed is

extremely slow or the distance to move is very far, the simulation might take a very long

time to finish all robots actions. But, with the discrete event simulation engine’s virtual

time system, the system will jump to the arrive events of all robots in an instant time.

As a result, with the discrete simulation engine’s mechanism the simulation time can be

incredibly shortened.

22

Chapter 4

Simulator Architecture

The content in this chapter is about the system architecture implemented in this simulator.

The explanation starts from overall big-picture of the simulator system then concretely

detailed about each component and then an explanation about output from simulation.

4.1 Overall Architecture

The structure consists of three layers. Algorithm layer, interface layer and engine layer.

Algorithm layer is the top-level layer which each robot’s algorithm is defined and imple-

mented in this layer. To put it simply, in this layer developers only concern about the

moving algorithm for each robot. Next layer is the interface layer, the layer that play the

role of interface between developer and robot’s programmatic codes. Last is the bottom

layer, the engine layer. This layer represents back-end core engine of the simulator. All

requests received from interface layer are handled here and then processed into simulation

output. For more understanding refer to figure 4.1.

The simulator composed of the following core components,

• Motion Modules

The modules that allow robots to move.

• Sensors

The modules that help robots ask information from the system.

• Managers

The modules in the back-end engine that entirely manage their own field of tasks.

23

SENSORACTUATORSENSORACTUATOR SENSORSENSORSENSORSENSOR

MotionCommand

Motion/Sensor
Request

Motion/Sensor
Request

Motion
Command

Sensor
 Command

Sensor Event Motion /
Collision

Event

Motion
Manager

Collision
Detector

Sensor Command

Sensor
Manager

Algorithm 1 Algorithm 2

Robot n

ACTUATORSENSOR

Virtual World

Robot 1

ACTUATORSENSOR

Queued
Event

Event
Manager

Sensor
 Reply

Sensor Reply

...

...

Algorithm
Layer

Interface
Layer

Engine
Layer infomation

request
infomation

request

Figure 4.1: Overall structure of simulation system

• Virtual World

The virtual space simulating logical world for all robots.

In the next section we are going to explain these components in the detail.

4.2 Components

4.2.1 Motion Modules

Motion module is a component that allow a robot to move in the virtual world. Since the

basic model of this module has already been talked in chapter 3, in this section we are

going to explain about the programmatic mechanism.

As been said previously, the simulator is based on the discrete event simulation’s phi-

losophy. That means all of the actions from robots will be translated in to records of

changes in system’s state at a certain time, which these records will be called events.

24

For robots motions, we translate their motion requests to motion events by using mo-

tion manager, then register these events into event queue. When a motion request is

translated to motion events, normally two events will be produced. These events are start

event and finish event. However, some complex motions may required to produce more

than traditional start event and end event. For an instance, a MOVETO motion request

(moving robot to the target destination) may requires start-turning event, finish-turning

event, start-forwarding event and finish-forwarding event.

Considering more complex motion patterns those might be extended to the simulator

in the future, we provide an interface for the motion module which requires user to define

two operations (aka. methods in JAVA). The first operation is the calculation part of

the motion module, which required to be able to provide the coordination of a robot

at any time t. With the event-based simulation system, events will instantly happen at

certain time. However, robots are always moving and resulting in the change of their

global coordinations. Hence a method to calculate robots position at any target time

is necessary for each motion. The returned value is a MotionVector datatype, which is

a vector of motion of that robot at time t. Second operation is the returning of array

of motion events occur from the motion. As previously said, a complex motion may

produces multiple events other than start and finish event, considering extendability, the

declaration of this operation is unavoidable. See reference figure at fig.4.2.

calMotionVector()
getMotionEvent()

<<Interface>>
MotionInterface

calMotionVector()
getMotionEvents()

motionName
TurnMotion

calMotionVector()
getMotionEvents()

motionName
Forward Motion

Figure 4.2: Motion modules in UML diagram

TURN Motion

A motion that turn a robot with a target degree in angle. Related calculations are the

following,

25

NewAngle = (PreviousAngle +
−−−−−−−−−→
TurnV elocity ∗ t)%2π (4.1)

NewCoordination = DepartCoordination (4.2)

Events happened from this motion : Start-turn and finish-turn event.

FORWARD Motion

A motion that make robot moving forward in to the direction that it is facing to with a

certain distance. Related calculations are as the following,

NewAngle = PreviousAngle (4.3)

NewCoordination = DepartCoordination +
−−−−−→
V elocity ∗ t (4.4)

−−−−−→
V elocityX−axis = MoveSpeed ∗ cos(angle) (4.5)

−−−−−→
V elocityY −axis = MoveSpeed ∗ sin(angle) (4.6)

Events happened from this motion: Start-forward and finish-forward event.

MOVETO Motion

A motion that combined tun motion and forward motion together. Make robot move to

a destination point by calculating the degree needed to turn and distance to move, then

do the turning and forwarding sequentially.

Events happened from this motion:

Start-turn, finish-turn, start-forward and finish-forward event.

4.2.2 Sensors

The next components that we are going to talk in this section are sensors. Sensor is

a module that robots use for asking information from the system (or environment). A

robot usually equipped with more than one sensor module. In programmatic software

level, a mobile robot may be represented as the collection of multiple sensors which are

integrated into a moving object. Without sensors, a robot can not know the information

of the outside world.

26

doSensor()
calReply()

AbstractSensor

doSensor()
calReply()

sensorName
GPS Sensor

doSensor()
calReply()

sensorName
View Sensor

activate()
inactivate()
setTimeInterval()

<<Interface>>
Push Sensor

activate()
inactivate()
setTimeInterval()
calReply()

sensorName
timeInterval

Proximity Sensor

Figure 4.3: Sensor modules in UML diagram

In this simulator we divided sensors into two groups as following.

Pull Model’s Sensor

Sensors in this group is called push-model’s sensors. They will work using a query-based

mechanism, which is sending a sensor request to system and then wait for the reply to

return back to the requester robot.

As for the mechanism of pull-sensoring operation in this simulator, first a robot uses

its sensor and request for an information of the system. For instance, a position request

or surrounding view request. After that, the request will be sent to sensor manager and

transform into a sensor event waiting for the time to be triggered. After the sensor event

has been triggered, the requested sensor will use informations of the system it get pro-

vided by sensor manager, then calculate the result for this request and then return a

reply to requester robot as a SensorReply datatype. Since the reply answer’s datatype

may be difference depending on the sensor’s type. For instance, gps sensor might return

a Point2D position of requester robot but view sensor will return an array of positions of

robots in view range. Hence, the message containing in SensorReply will be stored as a

instance of Object class in java. It will be correctly casted into the right datatype before

return the reply to the requester robot.

Each sensor will be extended from the provided sensor abstract class. A sensor is

needed to define two operations which are doSensor() method and calReply() method. A

doSensor() method is the main interface method providing to the robot (or to say to the

27

user). A robot will ask for a sensor request using this method, then a sensor reply will

eventually returned to the robot. Due to the vary types of sensors, parameters required

by this method are difference. For instance, a gps sensor may not require any parameter

for sensoring operation, but a view sensor requires the range of view in order to perform

sensoring operation. Next operation that is needed to be declared is named calReply()

method. This method is the back-end calculation part of each sensor. After a sensor

event is triggered, this method will be called in order to calculate the reply for a certain

request at a event’s trigger time. See figure 4.3 for more understanding.

The following sensors are the pull model-based sensors those are provided in the simu-

lator as default modules.

• GPS sensor

A sensor that provide robot’s global coordination at request time.

• View sensor

A sensor that return an array of position of robots those are in the range of sensor’s

view size.

• Proximity sensor

A sensor that return an array of distance to objects in the range of sensor’s view size.

Note that the proximity sensor can be both pull model-based and push model-based

sensor.

Push Model’s Sensor

Sensors in this group are called push model’s sensors. They are sensors that waiting for

an activation, and after they have been activated they will automatically do the sensoring

operation with a time interval until they get inactivated or the simulation is finished.

The push model-based sensor will not always return the sensor reply to a robot every

time they do sensoring, but they will return the sensor reply to a robot only when the

interrupt condition has become true. For instance, though a proximity sensor was set to

re-sensoring in every 5 second of time interval, it will interrupt a robot and return the

sensor reply only when there is a robot come closer into the sensor’s view range in order

to warn the robot before the collision happen.

Except the re-activating with a time interval mechanism, the main sensoring operation

is similar to previously spoken pull model-based sensors. Therefore the push model-based

28

sensors extends an abstract sensor class as pull model-based sensors do. However, in or-

der to support for the re-activation mechanism, they are required to implements another

interface called PushSensorInterface. See figure 4.3 for more understanding.

Below are the push model-based sensors those are provided in the simulator as default

modules.

• Proximity sensor

A sensor that will send an interrupting sensor reply to warn a robot if there is

another robot come closer into sensor’s view range.

• Contact sensor

A sensor that will warn a robot if a robot has touched with other robots or objects.

4.2.3 Managers

After we have known the motion and sensor modules, in this section we are going to

explain about the manager classes. These manager hander the requests from robot and

manage the system in the back-end. They also provide the collection of many useful meth-

ods for the other modules in their management area. Because of the data encapsulation,

only the manager-class’s components have authority to access to virtual world’s informa-

tions. The other modules are allowed only to request those information via their manager.

The manager classes in this simulator are as the following.

Motion Manager

Motion manager is the core component that handle entire motion operations for all robots.

Motion manager provides many of useful functions those related to robot mobility. It also

responsible for the collision detection for the robots. The task of motion manager starts

right after there is a motion request sent from robot. It will update the system’s state

(aka. all robots statuses) to current time before doing any calculation. Then it will

analyze the motion request that received from requester robot and transform into motion

events. At this point, motion manager have known that there was a change to the system.

Therefore it will detect for the collision which may happen from the new motion request.

If there will be any collision occur, it will create the collision event and ask event manager

to register both the new motion events and the collision event to event queue. If there

29

was no any collision found it will just register only the new motion events. See figure 4.4

for reference.

Receive
MotionRequest

Update Statuses

Detect Collision

isThereCollision?

START

Register
Collision Events

Initial
Motion Events

Register
Motion Events

FINISH

no

yes

Figure 4.4: Flow chart of the motion manager’s working mechanism for one motion request

Sensor Manager

Sensor manager controls most of the main operations relating to sensor system. It starts

the work after the sensor request was sent from a robot. Before do any calculation, it

update the system’s state to current time same way with motion manager do. Then it

will create the sensor event from the sensor request it received from the robot and then

ask event manager to register this sensor event to event queue. In the same time, it checks

whether this sensor request is a push sensor request or pull sensor request. If this request

was a request from pull sensor, it will register the new sensor event and the task will

finish here. However in the case of push sensor request, an optional task of re-activating

sensor is needed. Therefore, if this request is a push sensor request, after the new sensor

event has been registered, it will wait for the time interval of the requester push sensor

and then repeat the sensor operation again at the next time interval. It will repeat this

30

mechanism until that push sensor is inactivated or the simulation has finished. See figure

4.5 for reference.

Receive
sensor request

Create
sensor event

Register
sensor event

isPushSensor?

START

Wait for
Time Interval

yes

no

FINISH

sensor event
is triggered

Return sensor
reply to

requester robot

Interrupt
condition =

true?

Interrupt robot
and return

sensor reply

no

yes

Figure 4.5: Flow chart of the sensor manager’s working mechanism

Event Manager

Event manager is the manager that controls all of the task related to events in the system.

It has an event queue that stores all of the events of the system. All of the operations

related to event management has to be done by the event manager only. The main services

that it is providing are event registering and event canceling/removing. It also provides

a function to return an array of events stored in the queue for any target robot in the

case that developer want to check the future-events of a robot before performing an extra

action.

4.2.4 Virtual World

Virtual world is a logical space that robots are existing in. It is a almighty module that

knows everything about the robots without having to be told from the other modules. It

31

is the heart of the simulation engine which storing all of the robots statuses at the current

simulation time. The state of each robots will be updated from time to time (specifically

say, every time a new event is triggered). The virtual world ensures that the statuses

of all robots storing in itself will always up-to-date with the current simulation time. A

direct access from an external module to virtual world’s database is strictly prohibited

due to the data encapsulation. Only the manager-class’s components have the authority

to access its database.

4.3 Events

All of the state changing (aka. check point) in the system are represented as events.

Every time an event is triggered, something happens and mark the change of state to the

system. Except for the sensor event that will just ask the information from the system

and then return that data to the requester robot. In this section, we are going to explain

about the detail of each event.

However, before that we have to know that there are two types of event in this simulator

which are eventually-happen event and conditional event.

• Eventually-Happen Event

Events in this group are the traditional event that eventually-happen in the system.

The events will be marked with the trigger time. Whatever happen, as long as the

simulation has not been terminated, they will certain happen at their trigger time.

The events in this group are, motion-start event and sensor event.

• Conditional Event

Events in this group are as its name, in some condition they might not happen

in the system and get removed from the event queue. For an instance, a collision

event that has been registered to system at t0 and should happen at t3, will be

canceled if the robot change its motion path before t3. Because it has changed its

path before the collision take place. In contrast, if the collision event happened, the

motion-finish event will be canceled instead. In conclusion, events in this groups

are motion-finish event and collision event.

4.3.1 Motion Event

A motion event represents the change of a robot’s position and its status. It will be

marked to the system whenever it get triggered. Below is the flowchart show operations

32

related to motion events since the time event is created until it finished its task and is

removed from the event queue. A motion request from robot will be processed into a

motion-start event and a motion-finish event.

Motion Event
is created and

registered

Wait until
trigger time

Motion Event
is triggered

START

FINISH
Motion Event
is removed

Virtual World
is updated

Figure 4.6: Flow chart of the operations related to motion events

4.3.2 Sensor Event

A sensor event is like a request of a snapshot of the system. It will not mark any new

state to the system like motion event do, but it will do a snapshot of the system, get

information from the system at a certain time, then process this information, transform

the information into sensor reply and return to requester robot. Below is the flowchart

show operations related to sensor events since the time event is created until it finished

its task and is removed from the event queue.

Sensor Event
is created and

registered

Wait until
trigger time

Sensor Event
is triggered

START

FINISH
Sensor Event
is removed

Sensor Reply
is generated and
returned to robot

Figure 4.7: Flow chart of the operations related to sensor events

4.3.3 Collision Event

Collision event is a difference from motion event and sensor event. Because collision event

is a conditional event. To put it simply, even a collision event has already been registered

into the system, depending on the condition of the robot, this collision event might not

33

happen and get canceled. The condition that make a collision event get canceled is the

changing in motion of a robot after the collision event was registered. For instance, robot

A and robot B are moving. With current direction and velocity, the collision between them

was detected at t0 and should happen at the time t2. However, at the time t1 (which t1

happen before t2) robot B has changed it movement and go to a difference coordination.

At this point, the previous collision will become invalid and has to be canceled. The

motion manager has to do the collision detection again in time t1. Below is the flowchart

show operations related to collision events since the time event is created until it finished

its task and is removed from the event queue.

no

yes

Collision Event
is created and

registered

Wait until
trigger time

Collision Event
is triggered

START

FINISH

Virtual World
is updated

is there new
motion request
before trigger

time?

Collision Event
is canceled

Collision Event
is removed

All Future Events
of this robot are

canceled and removed

Figure 4.8: Flow chart of the operations related to collision events

4.4 Collision Detection

In this section we are going to explain about the collision detection mechanism using in

this simulator. Collision detection operation has a very importance role in motion robot

simulation. Because many of robots algorithms have the ultimately goal to effective utilize

their limited resource. Therefore, if a collision occurred in system that means we are losing

our resource in some ways (robots, energy or even a time). Because of that reason, we

aware of the important of the collision detection in the robot simulation system and have

integrated this mechanism into our simulator’s engine.

Before get into the detail of the mechanism used in our simulator, we would like to

talk about the popular mechanism being used for collision detecting. We divided the

methods that frequently used for detecting collision in robots simulation into two groups

34

as following.

• Detecting using time slice

This type of detection mechanism has been using in a number of mobile robot sim-

ulators including Player/Stage[2]. It works by slicing the time period that a robot

do moving action into many smaller time intervals. Then repeatedly detect for the

collision at every time interval. To put it simply, it is the mechanism that put

many checkpoints into the system to observe each robot’s movement. For instance,

a robot requests to do a movement action which will start at 1stsecond and finish in

10thsecond. The collision detector knows that this motion will consume 10seconds

to finish. However, it does not know where and when the collision will occur. There-

fore it slices that 10seconds period in to many smaller time intervals. Let’s assume

that it sliced with the time interval of 2second. Hence, the collision will be checked

at 3rdsecond , 5thsecond, 7thsecond and 9thsecond.

t
start

t
finish

1 10

: Motion Event

Figure 4.9: Before doing the time slicing

t
start

t
finish

1 102 3 4 5 6 7 8 9

: Checkpoint for collision detection

Figure 4.10: After the time slicing have done

This method has both advantages and trade-offs. The good side is, the mechanism

itself is easy to implement because the detector does not have to consider about

the future-events. It just let the system run and perform the detection at every

checkpoints. Furthermore, while using this method we do not have to worry about

the shape of robots. They can be any shape because the detector does not have to

35

predict any collision by using geometrical calculation. It just let the system run and

take a checkpoint at every interval.

However, there are several trade-offs in this method as well. First, the number of

steps in calculating is incredibly big. Because it needs to calculate at every time-

interval, hence the steps number of calculation has became as following,

NumberOfSteps = TimeUsage ÷ IntervalBetweenChecking (4.7)

The other drawback for this method is the accuracy in detecting. The bigger time

interval between each checkpoint the less accuracy in detecting. For instance, let’s

use the above example that a robot want to do a movement action from 1stsecond

to 10thsecond. Let’s assume that a collision should happen in 8thsecond if the robot

does not change its course. With the time-slice method, if the time interval is equal

or less than 1second, it should be able to successfully detect a collision at 8thsecond.

However, in the case that interval period is bigger than 1second, the collision might

not be found. Let’s demonstrate with 3seconds interval period. In this case the

detector will do the checking at 4thsecond, 7thsecond and 10thsecond. As a result,

no collision was found. Or it might be found but later than the time that it should

happen which is 8thsecond. Using extremely small interval period may solve this

problem in some case, however the steps number of calculation will incredibly in-

creased and the efficiency of the simulator will dramatically drop.

With above drawbacks of this method, we decided to implements out simulator’s

collision detector with other method which will be explained in the following part.

• Detecting using mathematic equation

This detection method is the method that uses mathematic calculation. The detec-

tor will use current statuses of all robots for detecting the collision that will happen

in the future. We knows that a robot’s motion can be represented as a motion

vector at a certain time. More precisely say, their motion vector at a certain time

can be calculated from the equation X(t) = X(0) + �V ∗ t while X(t) is the position

of th robot at time t. Therefore, the detector will use this equation to calculate the

collision that will occur in the future. From now we are going to talk about how

can it detect for the collision using mathematic equations.

36

We will simulate a situation that two robots are moving from their start coordina-

tions to the difference destinations. Let’s assume that we knows that the collision

will eventually happen between these two robots. See figure 4.11 for reference.

R1

R2

R1

R2

r 1
r 2

t 0

t'0

t n

t'n

t'ct c =

t c

t 0

t n

Rx

r x

: start time

: collision time

: finish time

: robot

: radius of robot

Figure 4.11: An example of a situation that collision will eventually happen

From the figure 4.11, robot 1 (R1) with the radius size r1 has started moving at t0

and will finish this motion at tn. On the other hand, robot 2 (R2) with the radius

size r2 has started moving at t′0 and will finish its moving at t′n.

First thing that we have to know is, what is the condition that make this two robots

collide each other? The answer is, when two robots border are touching together.

More precisely say, when the distance from center point of robot 1 to center point

of robot 2 is less than the sum of their radius length. This condition can be written

as the following.

distanceFromCenterPointR1toR2 <= r1 + r2 (4.8)

We knows that the coordination of a robot can be calculated using X(t) = X(0)+�V ∗t,
hence we can transform above condition into the following equation.

37

distance(XR1(t), XR2(t)) <= r1 + r2 (4.9)

Which can be derived into another form as the following.

|XR1(t) − XR2(t)| <= r1 + r2 (4.10)

With the above equation we can calculate the collision between these two robots.

However, the problem is we do not know time that they will collide together. If we

do not know the collision time we can not complete above equation. Therefore, we

have to find this missing puzzle first.

After have been considering figure 4.11 carefully, we realize that the collision time

for both robots has to be the same. We knows both robots velocity and also their

depart coordination, therefore we can find the collision time using these informations

which can be derived as following equation.

|(XR1(tstart) + �VR1 ∗ tcollision) − (XR2(t
′
start) + �VR2 ∗ tcollision)| <= r1 + r2 (4.11)

Now we can solve the equation and get collision time. As a result, after we know

collision time, we can calculate the collide position of these two robots as well.

Though this method provide a precise calculation for collision time and collision

positions and also consumes only one calculating step for each pair’s detection, the

trade-off for this method is that it can only be used for robots those are in the

sphere-shape.

4.5 Output

In this section, we will explain about the simulation out from our simulator. In this

simulator, the main output is a log file in text format. For those who familiar with Neko’s

logging format, the main pattern of the log is similar with Neko’s. With the discrete

event simulation engine, each event will mark the change to system and will be recorded

as a line in the log file. However, mobile robots simulation is difference from network

38

simulation. Checking the correctness of each robot’s motion with just only log-file is a

tough work and consume a lot of time especially when simulating with a great number of

mobile robots. Therefore in order to help developer evaluate their application faster and

easier, we also provides the animating visualization as an optional choice as well. From

now we are going to explain both the log file and animating visualization in details.

4.5.1 Log File

Below are the pattern of the log file produced by our simulator. Each number represents

status of the following value orderly. time — R# — pos — des — angle — turn — distance

— tSpeed — mSpeed — condition

Figure 4.12: A path of log file from gathering algorithm

This example log is a log from gathering algorithm (refers to section 5.2). There was no

any communication between them. There were only the sensor requesting and robots moving

actions. As we can see in the header of the log file. The values from left to right are time, robot

id, current position, destination, current angle, degree to turn, distance left to move, turn speed,

move speed and condition. There also are some another patterns that do not appear in this log

such as message sending, receiving and push-model sensor event.

4.5.2 Animating Visualization

The next is the animating visualization. The example of animation can be found in below

pictures. These figures are the animation from the gathering algorithm. The first figure (fig.4.13)

happen before and second figure (fig.4.14). Though it is difficult to show th motion with captured

39

screen, we can see that most of the robots are trying to move to the centroid point between their

coordinations. The animating visualization is based and produced from the log file. It will read

each checkpoint of robots and then generate into the waypoints of moving.

Each robot will be labeled with their id number. Their sizes in the animation panel are de-

pends on the length of their radius. Also several settings for the animation environment such

as framerate or panel size are also available. We will talk about this in section 6.1.

Though animating visualization is definitely useful in many ways such as education, presen-

tation or even in evaluation. However, the calculating for animation consumes a lot of resource

and time. Displaying animation means the system has to emulate itself into time-slicing system

and lead to the dropping in calculating performance. It also ageists the advantages of discrete

event simulation system’s philosophy. Therefore, in the complex simulation, we recommend to

turn off the visualization feature.

40

Figure 4.13: An animation output from the gathering algorithm (Before)

Figure 4.14: An animation output from the gathering algorithm (After)

41

Chapter 5

Example Simulations

In this chapter, we will demonstrate three examples of the simulations which consists of Random

movement, autonomous gathering formation and using communication to ask for help. Source

code for each application also included and can be found right after the algorithm explanation.

5.1 Random Movement

The first application is the most simple one. As its name, in this algorithm robots will random

new destination and then move to this destination. After they have reached at their destination

point, they will repeat the same step, which is random a new destination and move there. They

will doing this pattern repeatedly until they have reach the finish condition which is the time

limit or finish condition.

This is an algorithm for this application

while (currentTime <= LimitedTime){
Point2D de s t i n a t i on = randomDestination () ;

double moveSpeed = randomMoveSpeed () ;

double turnSpeed = randomTurnSpeed () ;

moveTo(de s t ina t i on , turnSpeed , moveSpeed) ;

}
Below is the visual output of this application, a part of log file and source code. The appli-

cation was tested by using 100 robots run with random move speed and turn speed.

42

Figure 5.1: An animation output from the random movement algorithm

Figure 5.2: A log file output from the random movement algorithm

package l s e . neko . robots im . a lgor i thm ;

import java . awt . geom . Point2D ;

import l s e . neko . robots im . robot . NekoRobot ;

/∗∗
∗ A simple random a lgor i thm . Speed and d e s t i n a t i o n o f robo t s w i l l be randomed .

∗

43

∗ SETTING: 10−20 robo t s wi th random bornpoint i s recommended

∗
∗ @author Smath

∗/
public class RandomMovement extends AbstractAlgorithm {

public RandomMovement(NekoRobot robot) {
super (robot) ;

}

protected void doMotion () {

double moveSpeed = 10 ;

double turnSpeed = 30 ;

//Keep the minimum speed at a c e r t a i n va lue .

//Otherwise , i f the speed i s randomed and become l i k e 0.00001

// i t w i l l t ake very long time to run animation .

double minSpeed = 3 ;

//random movespeed and turnspeed with the lower bound

moveSpeed = moveSpeed ∗ Math . random () + minSpeed ;

turnSpeed = moveSpeed ∗ Math . random () + minSpeed ;

//random de s t i n a t i o n

Point2D . Double d e s t i n a t i on = new Point2D . Double () ;

d e s t i n a t i on . x = 800 ∗ Math . random () ;

d e s t i n a t i on . y = 800 ∗ Math . random () ;

// implements the motion

actuator . moveTo(de s t ina t i on , moveSpeed , turnSpeed) ;

}
}

5.2 Autonomous Gathering Formation

The second application has been briefly said in the previous chapter, it is called gathering forma-

tion. To put it simply, it is a algorithm that try to make all robots gather at the closest position

as much as they can. If robots have no volume and represented by a point, this algorithm will

take a finite time until all robots are close enough and completely be the same position, which

44

we might reversely say that they will not become one gathering point in an infinite time. Why

not? Because they are alway moving. That made sensoring phase of each robot happens in

the difference timing. Consequently the centroid point will always changing from time to time.

However in the realistic world, robots do have volume (size). The more they com closer, the

high possibility collision will occur. Therefore when we implemented this application, we will

enable the ghost mode (refer section 6.1) to ignore all collisions.

Below is the algorithm for this application. An almighty sensor that can tell all robots

coordinations is required in this application. We used the gps sensor to get all those positions

(we can use view sensor with very-wide sensor range as well).

while (currentTime <= LimitedTime){
Point2D [] a l l p o s = gps . getAl lPos () ;

Point2D cen t ro id = getCentro id (a l l p o s) ;

double moveSpeed = randomMoveSpeed () ;

double turnSpeed = randomTurnSpeed () ;

moveTo(centro id , turnSpeed , moveSpeed) ;

}
In this example, we used 10 robots with ghostmode enabled (means no collision occur). The

followings are visual output, a part of log file and source code orderly.

Figure 5.3: An animation output from the gathering algorithm

45

Figure 5.4: A log file output from the gathering algorithm

package l s e . neko . robots im . a lgor i thm ;

import java . awt . geom . Point2D ;

import l s e . neko . robots im . robot . NekoRobot ;

/∗∗
∗ In t h i s a l gor i thm robo t s w i l l use gps sensor to ge t p o s i t i o n o f the o ther robots

∗ then c a l c u l a t e con t ro id between them and move to t ha t c en t ro i d po in t .

∗ They w i l l do t h i s mechanism rep ea t e d l y u n t i l reach s top cond i t i on .

∗
∗ SETTING: more than 3−5 robo t s wi th random bornpoint and ghostmode on

∗ (Otherwise , they w i l l c o l l i d e wi th o ther robo t s very f a s t .)

∗
∗ @author Smath

∗/
public class Gathering extends AbstractAlgorithm {

public Gathering (NekoRobot robot) {
super (robot) ;

}

protected void doMotion () {

46

double moveSpeed = 3 ;

double turnSpeed = 30 ;

Point2D . Double [] a l lPo s = gps . g e tA l lPo s i t i o n (0) ;

Point2D . Double c en t r o id = getCentro id (a l lPo s) ;

double minSpeed = 3 ;

moveSpeed = moveSpeed ∗ Math . random () + minSpeed ;

turnSpeed = moveSpeed ∗ Math . random () + minSpeed ;

actuator . moveTo(centro id , moveSpeed , turnSpeed) ;

}

/∗∗
∗ re turn cen t ro i d po in t between a l l r o bo t s coord ina t i ons .

∗/
private Point2D . Double getCentro id (Point2D . Double [] a l lPo s) {

double sumx = 0 ;

double sumy = 0 ;

for (int i = 0 ; i < a l lPo s . l ength ; i++) {
sumx = sumx + a l lPo s [i] . x ;

sumy = sumy + a l lPo s [i] . y ;

}

double x = sumx / a l lPo s . l ength ;

double y = sumy / a l lPo s . l ength ;

return new Point2D . Double (x , y) ;

}
}

5.3 Using Communication to Ask for Help

The last example application is an algorithm that using the communication between robots

and let them remotely ask the other robots to do some task. In this application, the task is a

47

motion to go to desired coordination. Since our purpose for this application is to ensure the

consistency of message sending/receiving when using simultaneously with robots mobility. As

for the network, we used Neko’s simulated random network with random lamda equals 10. Since

we want to get rid of complexities, we did not consider mutual exclusion in this application. In

this application, robots will not move on their own. They will wait for a order from other robot

telling them where to go. When robots send orders to the others, the messages will be sent

using multicast mechanism (from multiple sender robots to multiples receiver robots). However,

when robots receive a message, they will not consider about order of the sending or messages

stocked in the queue. They will pick the fist message that arrive to them and then do the task

requested from that message.

The following is the algorithm from this application.

while (currentTime <= LimitedTime){
// r e qu e s t i n g phase

Point2D goto = randomPois i t ion () ;

send (gotoMessage) to a l l robots except myse l f ;

// wa i t ing phase

wait for an order from somebody ;

order = r e c e i v e () ;

Point2D r eqPo s s i t i on = order . getContent () ;

double moveSpeed = randomMoveSpeed () ;

double turnSpeed = randomTurnSpeed () ;

moveTo(reqPos i t i on , turnSpeed , moveSpeed) ;

}
In this example, we used 10 robots implemented with Neko’s simulated random network. The

followings are visual output, a part of log file and source code orderly.

48

Figure 5.5: An animation output from the using communication to ask help algorithm

package l s e . neko . robots im . a lgor i thm ;

import l s e . neko . robots im . robot . NekoRobot ;

import l s e . neko . NekoMessage ;

import l s e . neko . MessageTypes ;

import java . u t i l .Random ;

import java . awt . geom . Point2D ;

/∗∗
∗ In t h i s a lgor i thm , we w i l l t e s t the co r r e c tn e s s o f message sending / r e c e i v i n g .

∗ After have been i n i t i a l i z e d , a l l r o bo t s w i l l random a de s t i n a t i o n .

∗ Then they w i l l ask the o ther robo t s to go the r e by sending a mu l t i c a s t message .

∗ After the message was sent , they w i l l t r y to r e c e i v e a message t ha t come f i r s t .

∗ Then , they w i l l see the content o f t h a t message and go to t ha t r e que s t ed d e s t i n a

∗ NOTE: This a l gor i thm used Neko ’ s a c t i v e r e c e i v e r mechanism .

∗

49

Figure 5.6: A log file output from the using communication to ask help algorithm

∗ SETTING: mu l t i p l e robo t s (more than two i s sugge s t ed) wi th random bornpoint .

∗
∗ @author Smath

∗/
public class TestCommunication extends AbstractAlgorithm {

// message t ype s used by t h i s a l gor i thm

private stat ic f ina l int GOTO = 1225 ;

// r e g i s t e r i n g the message t ype s and a s s o c i a t i n g names wi th the t ype s .

stat ic {
MessageTypes . i n s t anc e () . r e g i s t e r (GOTO, ”GOTO”) ;

}

public TestCommunication (NekoRobot robot) {
super (robot) ;

}

public void doMotion () {

double moveSpeed = 10 ;

double turnSpeed = 30 ;

int n = robot . getN () ;

int me = robot . getID () ;

50

int [] allButMe = new int [n − 1] ;

for (int i = 0 ; i < n − 1 ; i++) {
allButMe [i] = (i < me) ? i : i + 1 ;

}

//random de s t i n a t i o n and ask someone to go the r e

Point2D . Double des = new Point2D . Double (Math . random () ∗ 700 ,

Math . random () ∗ 700) ;

NekoMessage msg = new NekoMessage (allButMe , get Id () , des , GOTO) ;

send (msg) ;

Random generator = new Random () ;

//Keep the minimum speed at a c e r t a i n va lue .

//Otherwise , i f the speed i s randomed and become l i k e 0.00001

// i t w i l l t ake very long time to run animation .

double minSpeed = 3 ;

turnSpeed = generato r . next Int ((int) turnSpeed) + minSpeed ∗ 2 ;

moveSpeed = genera tor . next Int ((int) moveSpeed) + minSpeed ;

// p i ck the f i r s t message in queue

NekoMessage recvMsg = r e c e i v e () ;

Point2D . Double goTo = (Point2D . Double) recvMsg . getContent () ;

l o gg e r . i n f o (”Someone to ld me to go to : (” + goTo . x + ” , ” + goTo . y + ”) ”) ;

ac tuator . moveTo(goTo , moveSpeed , turnSpeed) ;

}
}

51

Chapter 6

Developer Guide

In this section, we will talk about how to use this simulator. The manual covers the setting of

the system, initialization of robots and available motion and sensor commands list. As for the

example of algorithm files, please refer to chapter 5. Entire source code of algorithm files have

been included in those example simulations.

6.1 Configuration File

Before have the simulation run, first thing that has to do is setting multiple values of the environ-

ment. Setting of the environment can be done through the setting file called robotsim.config.

Below is the available setting parameters.

• Number of robots

Edit the n variable in the following line. n has to be an integer that is greater than zero.

process.num = n

• Robot’s size

Size (or to say volume) of the robot, represent by using radius value. Edit the r variable

in the following line. r has to be an integer that is greater than zero.

robot.size = r

• Born point of robots

We can specific the born point position for each robot. Optionally, we can also let the

system random their born points as well. If the random born point mode has been enabled,

the system will random born points for all robot while ensuring their non-duplicated born

points area (aka. intersection free). To put it simply, with the random mode on, system

guarantees that they will not collide other robots when they are born. With the random

mode disabled, user has to define all born points for robots.

52

bornpoint.random = true/false

if above value = false, the following lines has to be defined. x,y can be both double and

integer value while n is number of the robots.

bornpoint1 = x, y

.

.

bornpointn = x′, y′

• Initializer path

Robots initializer class file. This class also initialize the protocol stack of each robot.

Normally the path of this class should not be changed unless you are familiar with Neko’s

initializer mechanism. Moreover, output log file’s path has to be correctly defined.

process.initilaizer = lse.neko.robotsim.RobotSimInitializer

• Animation setting

Settings related to animation output. Animation can be enabled or disabled.

animation = true/false

animation.framerate = frame(s)/second(simulationT ime)

animation.panel.width = positiveInteger/Double

animation.panel.height = positiveInteger/Double

animation.logpath = /Y OURLOGPATH/yourlogfile.log

• Ghost mode

With the ghost mode enabled, the will be no any collision occur in the system. It is useful

in some algorithms such as gathering algorithm.

ghostmode = true/false

6.2 Robots Initializer

The initializer is the class that will initial robot’s algrithms and protocol stack of each robots for

their communication. For more information on how to compose communication protocols, please

refer to Microprotocol section in 3.5 and Neko’s documents. Breifly, a coomunication protocols is

connecting to other protocols with sending and receiving operation. Below is an example of how

to initialize robots algorithm and communication protocol stack. In this example, Total-ordered

broadcast protocol has been composed with Neko’s simulated network.

package l s e . neko . robots im ;

import l s e . neko . robots im . robot . NekoRobot ;

53

import l s e . neko . NekoProcess ;

import l s e . neko . N ek oP r o c e s s I n i t i a l i z e r ;

import l s e . neko . robots im . a lgor i thm . ∗ ;

import l s e . neko . S ende r In t e r f a c e ;

import l s e . neko . abcast . Lamport ;

import org . apache . java . u t i l . Con f i gura t i ons ;

/∗∗
∗ An i n i t i a l i z e r c l a s s f o r robo t s

∗ @author Smath

∗
∗/

public class Robo tS imIn i t i a l i z e r implements NekoP r o c e s s I n i t i a l i z e r {

public void i n i t (NekoProcess process , Con f i gura t i ons c on f i g)

throws Exception

{
NekoRobot robot = (NekoRobot) p roce s s ;

// a l gor i thm fo r robo t

PathReservation a lgo = new PathReservat ion (robot) ;

a lgo . s e t I d (” pa th r e s e r va t i on ”) ;

// s imu la ted network

Sende r In t e r f a c e net = proce s s . getDefaultNetwork () ;

// lamport t o t a l−ordered broadcas t

Lamport abcast = new Lamport (process , 0) ;

f ina l Object abcast Id = ” abcast ” ;

abcast . s e t I d (abcast Id) ;

// p ro t o co l composi t ion

abcast . se tSender (net) ;

abcast . s e tRec e i v e r (a lgo) ;

a lgo . se tSender (abcast) ;

// launch robo t s and p r o t o c o l s

54

abcast . launch () ;

a lgo . launch () ;

}
}

6.3 Available Motion and Sensor Commands

In this section, we will list all available motion and sensor commands those are equipped to

robots as a default modules. Please note that, developer can always extend their new own

motion and sensor modules. As long as they respect interfaces providing in the framework,

those extended modules should work flawlessly. These commands are ready to be used in the

algorithm class that extends lse.neko.robotsim.algorithm.AbstractAlgorithm abstract class.

6.3.1 Motion Commands

• actuator.forward(movespeed, distance)

• actuator.turn(movespeed, distance)

• actuator.moveTo(destination, movespeed, turnspeed)

6.3.2 Sensor Commands

• GPS sensor: PULL

gps.getSelfPosition(errorFactor): return Point2D.Double

gps.getAllPosition(errorFactor): return Point2D.Double[]

• View sensor: PULL

viewSensor.getRobotsInV iew(viewSize): return Point2D.Double[]

• Proximity sensor: PULL

proximitySensor.getProximityV iew(viewSize): return Point2D.Double[][]

• Proximity sensor: PUSH

NOTE: Interrupt robot(me) if any robot come into viewSize area.

proximitySensor.activate(viewSize): return Point2D.Double[][]

55

Chapter 7

Conclusion and Future Works

7.1 Conclusion

With this research, we have developed a simulation engine for cooperative mobile robot on the

top of Neko framework as its extension. We have tested many considerable factors in order

to provide the most flexibility for developers especially for Neko’s developers. We did not

just developed a new standalone simulator. We have developed this simulator while seriously

considering about how to inherit most of Neko’s strong points such as protocol’s encapsulation,

reusability and many other of its features in to mobile robots world. The works those we have

done can be listed as the following.

• Designed and implemented a framework for representing robots and sensors mechanisms

in discrete event simulation.

• Solve the problem of how to calculate robots coordinations at time t when we know only

tstart and tfinish. The problem was solved by using parametric equations.

• Developed a collision detector which can correctly pre-calculate collision in the future by

using only all robots paths information at current time.

• Solved the problem of how to know the collision time in the future by using parametric

equations and robots radius information.

• Designed and implemented sensor system, with the attempt to cover wide range of simu-

lation’s situation as much we can. As a result, we came up with pull and push model.

• Defined and solved the problem of conditional events. when a future event is registered,

and after that if robots changed their motion paths while this event has not been triggered

yet, this event will be canceled and removed. This type of event is called conditional event.

Events those can be condition events are arrive event and collision event.

56

• Developed multiple motion and sensor modules as default modules, so that basic users

can use the simulator without having to create any new module.

• Prepared many of interface/abstract class for future-developers, so that they can extend

the system without a significant change in the program.

• Designed new pattern of logging file system. Because the traditional logging system in

Neko was developed for just only network simulation.

• Implemented a animation module for generating animating visualization from log file.

• Evaluated the simulator by developed many of example applications.

• Ensured and tested the consistency of using Neko’s communication on mobile robots

application.

• Ensured and tested the using of Neko’s microprotocols composition with mobile robots

application.

7.2 Future Works

In the last section, I would like to talk about the interesting extendable points for the future

development. Some of the extensions mentioned below are in the process of development by the

members of our laboratory.

The first thing that should be extended is the implementation of obstacle object.The next

one is, the visualization for robots communication. The third is improvement of reusability

for motion algorithms those have been written.Same way as the reusability of communication

protocol in Neko, we would like to have a feature to allow user to reuse the old motion algorithm

cooperating with new algorithm without having to re-write the code.

The last one is, considering more about the usability of interface between mobility and com-

munication. For instance, communication has speed parameter and effect its reachable range.Or

communication range may become shorter if the obstacle blocking in the way is very thick.

57

7.3 References

[1] Peter Urban, Xavier Defago, and Andre Schiper. Neko: A single environment to simulate

and prototype distributed algorithms. Journal of Information Science and Engineering,

18(6):981-997, November 2002.

[2] Brian Gerkey, Richard T. Vaughan and Andrew Howard. ”The Player/Stage Project:

Tools for Multi-Robot and Distributed Sensor Systems”. In Proceedings of the 11th

International Conference on Advanced Robotics (ICAR 2003), pages 317-323, Coimbra,

Portugal, June 2003.

[3] Cyber Robotics, Webots, fast prototyping and simulation of mobile robots,

http://www.cyberbotics.com

[4] USC/Information Sciences Institute, Advances in Network simulation, IEEE Computer,

33 (5), pp. 59-67, May, 2000. Superceeds USC tech report 99-702b

[5] Andras Varga, The OMNeT++ Discrete Event Simulation System, In the Proceedings

of the European Simulation Multiconference (ESM’2001). June 6-9, 2001. Prague, Czech

Republic.

[6] Xavier Defago, Samia Souissi: Non-uniform circle formation algorithm for oblivious

mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1-3): 97-

112 (2008)

[7] Rami Yared, Xavier Defago, Matthias Wiesmann, Collision prevention using group com-

munication for asynchronous cooperative mobile robots, AINA’07, pp. 244-249

[8] Samia Souissi, Xavier Defago, Masafumi Yamashita: Gathering Asynchronous Mobile

Robots with Inaccurate Compasses. OPODIS 2006: 333-349

[9] Paeter Urban, Sergio Mena, Xavier Defago, Takuya Katayama: Concurrency in Micro-

protocol Frameworks, Research Report, JAIST, February 2006.

[10] Sergio Mena, Xavier Cuvellier, Christophe Gregoire, Andre Schiper: Appia vs. Cac-

tus: Comparing Protocol Composition Frameworks, Proc. of 22th IEEE Symposium on

Reliable Distributed Systems, October 2003.

58

