
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
サポートベクトルマシンの効率を高めることに関する

研究

Author(s) Nguyen, Dung Duc

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/817

Rights

Description Supervisor:Ho Bao Tu, 知識科学研究科, 博士

Studies on Improving the Efficiency of

Support Vector Machines

by

NGUYEN DUNG DUC

submitted to

Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Supervisor: Professor Ho Bao Tu

School of Knowledge Science

Japan Advanced Institute of Science and Technology

March, 2006

1

Abstract

Motivation and Objective: In recent years support vector machine (SVM) has

emerged as a powerful learning approach and successfully be applied in a wide variety of

applications. The high generalization ability of SVMs is guaranteed by special properties

of the optimal hyperplane and the use of kernel. However, SVM is considered slower

than other learning approaches in both testing and training phases. In testing phase

SVMs have to compare the test pattern with every support vectors included in their

solutions. When the number of support vectors increases, the speed of testing phase

decreases proportionally. To reduce this computational expense, reduced set methods try

to replace original SVM solution by a simplified one which consists of much fewer number

of vectors, called reduced vectors. However, the main drawback of former reduced set

methods lies in the construction of each new reduced vector: it is required to minimize

a multivariate function with local minima. Thus, in order to achieve a good simplified

solution the construction must be repeated many times with different initial values. Our

first objective was aiming at building a better reduced set method which overcomes the

mentioned local minima problem. The second objective was to find a simple and effective

way to reduce the training time in a model selection process. This objective was motivated

by the fact that the selection of a good SVM for a specific application is a very time

consuming task. It generally demands a series of SVM training with different parameter

settings; and each SVM training solves a very expensive optimization problem.

Methodology: Starting from a mechanical point of view, we proposed to simplify

support vector solutions by iteratively replacing two support vectors with a newly created

vector; or to substitute two member forces in an equilibrium system by an equivalent

force. This approach also faces the difficulties caused by the so called pre-image problem

of kernel-based methods where generally there is no exact substitution of two support

vectors in a kernel-induced feature space by image of a vector in input space. However

this bottom-up approach possess a big advantage that the computation of the new vector

involves only two support vectors being replaced, not to involve all vectors as in the

former top-down approach. The extra task of the bottom-up method is to find a heuristic

to select a good pair of support vectors to substitute in each iteration. This heuristic

aims at minimizing the difference between the original solution and the simplified one.

i

Also, it is necessary to design a stopping condition to terminate the simplification process

before it makes the simplified solution too different from the original one, thus the possible

loss in generalization performance can get out of control. For the second problem, our

intensive investigation reconfirmed that different SVMs trained by different parameter

settings share a big portion of common support vectors. This observation suggests a

simple technique to use the results of previously trained SVMs to initialize the search

in training a new machine. In a general decomposition framework for SVM training,

this initialization makes the initial local optimized solution closer to the global optimized

solution; hence the optimization process for SVM training converges more quickly.

Finding and Conclusion: The bottom-up approach leads to a conceptually simpler

and computationally less expensive method for simplifying SVM solutions. We found that

it is reasonable to select a close support vector pair to replace with a newly constructed

vector, and this construction only requires finding the unique maximum point of a uni-

variate function. The uniqueness of solution does not only make the algorithm run faster,

but it also makes the reduce set method easier to use in practice. Users do not have to run

many trials and wonder about different results returned in different runs. Experimental

results on real life datasets shown that our proposed method can reduce a large number

of support vectors and keeps generalization performance unchanged. Comparing with for-

mer methods, the proposed one produced slightly better results, and more importantly it

is much more efficient. For the second problem, experiments on various real life datasets

showed that by initializing the first working set using the result of trained SVMs, the

training time for each subsequent SVM can be reduced by 22.8-85.5%. This reduction is

significant in speeding up the whole model selection process.

ii

Acknowledgments

This work was carried out at Knowledge Creating Methodology Lab, School of Knowl-

edge Science, Japan Advanced Institute of Science and Technology. I wish to express my

gratitude to the many people who have supported me during my work.

I am most grateful to my supervisor, Prof. Ho Tu Bao, for providing me with his help,

supervision and motivation throughout the course of this work. His insight and breadth

of knowledge have been invaluable to me. Without his care, supervision and friendship

I would not be able to complete this work. I want to thank Prof. Kenji Satou, who has

kindly accepted me to do a minor theme research under his supervision.

I wish to express my gratefulness to the official referees of the dissertation, Prof. Kenji

Satou, Prof. Yoshiteru Nakamori, Prof. Tsutomu Fujinami, and Prof. Hiroshi Motoda,

for their valuable comments and suggestions on this dissertation.

I would like to express my appreciation to the Ministry of Education, Culture, Sports,

Science, and Technology of Japan, and the International Information Science Foundation

for providing me the scholarship and the financial support for attending international

conferences.

My special thank goes to the members of the Knowledge Creating Laboratory, and

the many friends of mine in JAIST for providing their helps, a friendly and enjoyable

environment.

Finally, I am indebted to my parents for their forever affection, patience, and constant

encouragement, to my wife for sharing me difficulties and happiness.

To my son, the greatest source of inspiration.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Efforts in Improving the Efficiency of Support Vector Learning 1

1.2 Problem and Contribution . 4

1.3 Thesis Outline . 6

2 Preliminaries on Support Vector Machines 7

2.1 Introduction . 7

2.2 Linear Support Vector Classification . 7

2.2.1 The Maximal Margin Hyperplane 7

2.2.2 Finding the Maximal Margin Classifier 12

2.2.3 Soft Margin Classifiers . 12

2.2.4 Optimization . 13

2.3 Nonlinear Support Vector Classification . 17

2.3.1 Learning in Feature Space . 17

2.3.2 Kernels . 19

2.3.3 VC Dimension and Generalization Ability of Support Vector Machine 21

2.4 Support Vector Regression . 23

2.5 Implementation Techniques . 26

2.6 Summary . 30

3 Simplifying Support Vector Solutions 31

3.1 Introduction . 31

3.2 Simplifying Support Vector Machines . 32

3.2.1 Reducing Complexity of SVMs in Testing Phase 32

3.2.2 Reduced Set Construction . 33

iv

3.2.3 Reduced Set Selection . 35

3.3 A Bottom-up Method for Simplifying Support Vector Solutions 36

3.3.1 Simplification of Two Support Vectors 37

3.3.2 Simplification of Support Vector Solution 43

3.3.3 Pursuing a Better Approximation 46

3.4 Experiment . 46

3.5 Discussion . 50

4 Speeding-up Support Vector Training in Model Selection 54

4.1 Introduction . 54

4.2 Model Selection for Support Vector Machine 55

4.2.1 What is Model Selection . 55

4.2.2 Model Selection for Support Vector Machines 57

4.3 Speeding-up Model Selection SVM . 60

4.3.1 Speeding-up by Improving Search Strategy 60

4.3.2 Speeding-up by Improving Model Evaluation 61

4.4 Speeding-up SVM Training in Model Selection 61

4.4.1 The General Decomposition Algorithm for SVM Training 61

4.4.2 Initializing Working Set . 63

4.5 Experiments . 66

4.6 Discussion . 68

5 Conclusions and Future Work 69

References 72

Publications 80

v

List of Figures

2.1 Margin of a set of examples with respect to a hyperplane. The origin has
−b
‖w‖ perpendicular Euclidian distance to the hyperplane. 8

2.2 Among liner machines, the maximal margin classifier is intuitively preferable. 10

2.3 Two-dimensional example of a classification problem: separate ’o’ from ’+’

using a straight line. Suppose that we add bounded noise to each pattern.

If the optimal margin hyperplane has margin ρ, and the noise is bounded

by r < ρ, then the line will correctly separates even the noisy patterns.[53] 10

2.4 Noisy pattern will be treated softly by permitting constraint violation (e.g.

having functional margin ξ < 1), but the objective function will be penalize

a cost C(1 − ξ), where ξ is functional margin. 13

2.5 An illustration of kernel-based algorithms. By mapping the original input

space to other high dimensional feature space, the linearly inseparable data

may become linearly separable in the feature space. 18

2.6 Three points in R
2 shattered by oriented lines 21

2.7 Gaussian RBF SVMs of sufficiently small width can classify an arbitrary

large number of training points correctly, and thus have infinite VC dimen-

sion [50] . 23

2.8 In ε-SV regression, training examples inside the tube of radius ε are not

considered as mistakes. The trade-off between model complexity (or the

flatness of the hyperplane) and points lying outside the tube is controlled

by weighted ε-insensitive losses. 24

3.1 f(k) = mC
(1−k)2

ij + (1 − m)Ck2

ij with m = 0.4, Cij = 0.7. 39

3.2 Projection of vector z on the plane (xi, xj) in the input space. 40

3.3 Illustration of the marginal difference of a (original) support vector x with

respect to the original and simplified solutions 44

vi

3.4 Illustration of simplified support vector solution using proposed method.

The decision boundaries constructed by the simplified machines with 4

SVs (right-top) and 20 SVs (right-bottom) are almost identical with those

constructed by the original machines with 61 SVs (left-top) and 75 SVs

(left-bottom). The cracked lines represent vectors with approximately 1

marginal distance to the optimal hyperplane. 46

3.5 The first 100 digits in the USPS dataset 47

3.6 Performance comparison between the former top-down the the proposed

bottom-up approach on the USPS dataset. With the same reduction rate

the bottom-up preserved better predictive accuracy, while computational

efficiency is guaranteed by theoretical result. Note: Top-down: the result

of fix-point iteration method in [37] (Phase I); bottom-up: the result of pro-

posed method (Phase I); Phase II: the result of proposed method running

with both two phases optimization. 52

3.7 Display of all vectors in simplified solutions. The original 10 classifiers

trained with polynomial kernel of degree three and the cost C = 10 consist

of 4538 SVs and produce 88 errors (on 2007 testing data). The simplified

10 classifiers consist of 270 vectors and produce 95 errors. The number

below each image indicates the new weight of a reduced vector. 53

4.1 Relations among model complexity (horizontal axis), empirical risk (the

dotted line), and expected risk (the solid line). The dash-dotted line is the

upper-bound on the complexity term (confidence). [73] 56

4.2 Different kernels produce different type of discriminant function. 58

4.3 Trade off between model complexity and empirical risk. 59

4.4 Common support vectors in two different machines learned from three

datasets sat-image, letter recognition, and shuttle: (a) linear machines

learned with different error penalties C = 1 and C = 2, (b) polynomial

machines of degree two and three learned with the same C = 1, (c) RBF

machines learned with different error penalties C = 1 and C = 2. 64

4.5 Illustration of initializing working set using result of previously trained

SVM. The optimized solution for machine (γ = 10, C = 10) (d) can be

reached normally from an random initial solution (a), or more efficiently

from solution of a trained machine (γ = 5, C = 10) or (γ = 10, C = 1). . . . 65

vii

4.6 Reduction in number of required optimization loops and training time on

three datasets sat-image (a-d-g), letter recognition (b-e-h), and shuttle (c-f-

i), and in different situations: the same linear kernel with different cost (a-

b-c), polynomial kernels of different degree with the same cost, and different

RBF kernels with different costs. ”org.” denotes the original method with

randomly working set selection; ”WS” denotes the proposed method. All

measures (average number of loops and training time) are normalized in to

[0, 1]. 67

viii

List of Tables

2.1 Decomposition algorithm for SVM training. 28

3.1 The simplification algorithm . 45

3.2 Reduction in number of support vectors and the corresponding loss in gen-

eralization performance with different values of MMD. Original machines

(the 3rd and 14th lines) were trained on the USPS training data using

Gaussian and polynomial kernels. Errors were evaluated on the testing data. 48

3.3 Experimental results on 45 binary classifiers learned from the USPS dataset

using the first phase of the proposed method. Left-bottom: number of sup-

port vectors in original classifiers/number of vectors in simplified classifiers.

Right-top: number of errors on the test data of original classifiers - simpli-

fied classifiers. 49

3.4 Experimental results on various applications. 50

4.1 Datasets used in experiments . 66

ix

Chapter 1

Introduction

In this chapter we firstly review the many efforts currently being made to improve the

efficiency of the support vector learning approach. After that we mention some limitations

of the previous methods and briefly introduce our solutions in simplifying support vector

solutions and in speeding-up support vector training in a model selection process. Outline

of this thesis will be given in the last section of this chapter.

1.1 Efforts in Improving the Efficiency of Support

Vector Learning

The support vector learning [1, 2, 3, 4] implements the following idea: it finds an optimal

hyperplane in feature space according to some optimization criterion, e.g. it is the optimal

hyperplane that maximizes the distance to training examples in a two-class classification

task, or maximizes the flatness of a function in regression. Thus, training a support

vector machine (SVM) is equivalent to solving an optimization problem in which the

number of variables to be optimized is l, and the number of parameter is l2, where l is the

size of training data. This is apparently an expensive task in both memory requirement

and computational power. Moreover, the optimal hyperplane lies in feature space which

is constructed based on the choice of kernel. Selecting a suitable kernel for a specific

application is still an open problem and SVM users have to do intensive trials of training

and testing with different types of kernel and different values of parameters. Also, since

the feature space does not exist explicitly the hyperplane, e.g. a classifier or a regressor, is

characterized by a set of training examples called support vectors. To test a new pattern

SVMs have to compare it with all these support vectors and this becomes a very time

consuming work when the number of support vectors is large. In short, support vector

is a rather computationally demanding learning approach, and in return, it can produce

1

high generalization ability machines in many practical applications.

There have been different directions to deal with the high resource-demanding prop-

erty of support vector training. The algorithmic approach tries to find intelligent solutions

for a quick convergence to the optimal solution with a limited memory available. From

the observation that the SVM solutions are sparse, or many of training examples do not

play any role in the forming of SVM solutions, chunking and decomposition methods [1, 5]

decompose the original quadratic programming (QP) problem into a series of smaller QP

problems. These method has been shown to be able to handle problems with size exceeding

the capacity of the computer, e.g. RAM memory. The sequential minimal optimization

(SMO) [6] can be viewed as the extreme case of decomposition methods. In each iteration

SMO solves a QP problem of size two using an analytical solution, thus no optimizer is

required. The remaining problem of SMO is to choose a good pair of variable to optimize.

The original heuristics presented in [6] are based on the level of violating the optimal con-

dition. There have been several works, e.g. [7, 8], trying to improve these heuristics. The

general decomposition framework and some other implementation techniques like shrink-

ing, kernel caching have been implemented in most currently available SVM softwares,

e.g. SVMlight [9], LIBSVM [10], SVMTorch [11], HeroSvm [12]. The main obstacle for this

approach is still the huge memory required for storing kernel elements when the number

of training example exceeds a few hundreds of thousands. The second approach to solving

large scale SVM is to parallelize the optimization. The main idea is to split training data

into subsets and perform optimization on these subsets separately. The partial results

are then combined and filtered again into a ”cascade” of SVMs [13, 14], or a mixture of

SVMs [15]. However, the price we must pay is the possibility of losing predictive accu-

racy because the combination of partial SVMs does not guarantee an optimal hyperplane,

thus we might get a machine with lower performance than those trained by other learn-

ing approaches [16]. The third approach is to properly remove ”unnecessary” examples

from training data, thus simultaneously reducing the memory requirement as well as the

training time. The reduced support vector machines method [17, 18] reduce the size of

the original kernel matrix from l × l to l ×m, where m is the size of a randomly selected

subset of training data considered as candidates of support vectors. The smaller matrix

of size l × m (with m is much smaller than l) can be stored in memory, so optimization

algorithms such as Newton method can be applied. Instead of random sampling, different

techniques have been used to intelligently sample a small number of training examples

from training data, e.g. using cross-training [19], boosting [19], clustering [20, 21], active

learning [22, 23, 24], on-line and active learning [22]. Another way to reduce the size of

the optimization problem is applying different techniques to obtain low-rank approxima-

2

tions on the kernel matrix using Nyström method [25], greedy approximation [26], matrix

sampling [26] or matrix decomposition [27]. The drawback of this approach still is that

the resulted machines can only achieve a ”similar” or a comparable performance with the

machines trained on the original training data. There have been also many other efficient

implementation techniques to achieve approximate support vector solutions with a low

cost. The core support machines in [28] reformulates the optimization in SVM training

as a minimum enclosing ball (MEB) problem in computational geometry, and then adopt

an efficient approximate MEB algorithm to obtain approximately optimal solution. In

[29] the authors consider the application of quantum computing to solve the problem of

effective SVM training.

Though training SVMs is computationally very expensive, SVM users have to spend

most time for choosing a suitable kernel and appropriate parameter setting for their

applications, or to deal with the model selection problem. In order to achieve a good

machine, model selection has to solve two main tasks: to conduct a search in model space

(a space of all available SVMs), and to evaluate the goodness of a model. Different search

strategies have been proposed to improve the search, including grid search with different

grid size [30], pattern search [31], and all common search strategies when applicable like

gradient descent [32, 32, 33], genetic algorithms [34]. The difficulty in conducting the

search in model space is that there have been no theories to suggest this type of kernel

will work better than the other on a given domain, or to determine the region of parameter

values where we can find the best one. Another way to speed-up model selection process

is to efficiently evaluate each model in our consideration. In [35], the author proposed

ξα-estimator specially designed for support vector machines. The ξα-estimator is based

on the general leave-one-out method, but it is much more efficient because it does not

require to perform re-sampling and retraining. The open question for model evaluation

is that there is no dominated method in estimating the goodness of a model. In practice,

SVM users estimate error rate of a machine mainly based on cross validation techniques

like k-fold cross validation, which is very time consuming.

One common property between support vector learning and instance-based learning is

that they have to compare all instances included in their solution with the new pattern in

testing phase (these instances are support vectors in SVMs and all training examples in

nearest neighbor machines). Except for linear SVMs where the norm vector of the optimal

hyperplane can be represented by a vector in input space, the solution of a nonlinear

SVM is characterized by a linear combination of support vectors in feature space. Thus

to classify a new pattern, SVMs have to compare it with every support vectors via kernel

calculations. This computation becomes very expensive when the number of support

3

vector is large. The reduced set methods, e.g. [36, 37, 38], try to replace the original

SVM by a simplified SVM which consists of fewer number of support vectors, called

reduced SVs. The support vectors in the simplified solution can be newly created, or

selected from the set of original support vectors. The limitation of this approach lies in

the construction/selection of reduced SVs that faces local minimum problem. Another

approach to speed-up SVMs is to approximate the comparison in the testing phase. In

[39, 40], the authors proposed to treat kernel machines as a special form of k-nearest

neighbor machines. The result of testing phase is based on comparisons with nearest

support vectors, where these SVs are determined in a pre-query analysis. These methods

have been shown to produce very promising speed-up rate, but they require an extensive

pre-query analysis and depend much on very sensitive parameters, thus cause practical

difficulties for real life applications.

In summary, support vector learning is a resource demanding learning approach. There

have been a huge number of works trying to make support vector machines run faster in all

training, model selection, and in testing phases. Our effort described in this dissertation

is two folds: making SVMs run faster in testing phase and speeding-up the support vector

training in a model selection process.

1.2 Problem and Contribution

In comparing with making support vector training and model selection run faster, speeding-

up SVMs in testing phase is practically important, especially for real-time or on-line appli-

cations like detection of objects in streaming video or in image [41, 42, 14, 43, 44, 45, 46],

abnormal events detection [46, 47], real-time business intelligence systems [20]. In these

applications, it is possible to train the machines in hours, or days, but the respond time

must be limited in a restrictive period. The reduced set methods briefly introduced above

have been successfully used for reducing the complexity of SVMs in many applications

like handwritten character recognition [48, 49], face detection in a large collection of im-

ages [14]. However, the main difficulty still lies in the fact that it is impossible to exactly

replace a complicated linear combination of many vectors in feature space by a simple

one, except for linear SVMs. For linear SVMs we can represent the optimal hyperplane

by only two parameters: the norm vector which is also a vector in the input space, and

the bias. For nonlinear SVMs, because the feature space is constructed implicitly then

the normal vector must be represented by a linear combination of images of input support

vectors. The reduced set approach has no way but approximates the original combination

by a fewer number of SVs, called the reduced SVs. In previous methods, constructing

4

each new support vector requires to minimize a multivariate function with local minima.

Because we cannot know the global minimum has been reached or not, the construction

has to repeat the search many times with different initial guesses. This repetition must

be applied for every reduced SV in order to arrive at the final reduced solution, and there

is also no way but to determine the goodness of the reduced solution experimentally.

Our attempt in this research direction is to propose a conceptually simpler and compu-

tationally less expensive method to simplify support vector solutions. Starting from a

mechanical point of view in which if each SV exerts a force on the optimal hyperplane

then support vector solutions satisfy the conditions of mechanical equilibrium [50], and in

an equilibrium system if we replace two member forces by an equivalent one, the stable

state will not change. Thus, instead of constructing reduced vectors set incrementally

like in the previous reduced set methods, two nearest SVs will be iteratively considered

and replaced by a newly constructed vector. This approach leads to the construction

of each new vector only requiring to find the unique maximum point of a one-variable

function on (0,1), and the final reduced set is unique for each running time. Experimental

results showed that this method is effective in reducing the number of support vectors

and preserving generalization performance. To control the possible lost in generalization

performance, we propose a quantity called maximal marginal difference to estimate the

difference between the original SVM solution and the simplified one. The simplification

process will stop before it makes the estimated difference exceed a given threshold.

Our second contribution is devoted for speeding-up the support vector training in

a model selection process. By conducting intensive experiments we reconfirm that two

different machines trained by two different parameter settings, or even two different choices

of kernel, share a big number of support vectors. This observation suggests an inheritance

mechanism in which training a new SVM in a model selection process can benefit from

the results of previously trained machines. In the general decomposition framework, we

propose to initialize each new working set by a set of all SVs found in previously trained

machines. Moreover, if two machines use the same kernel function then one’s solution

can be adjusted and used as the initial point in searching for the the other’s solution.

This initialization makes the first local solution closer to the global solution, and the

decomposition algorithm converges more quickly. Experimental results indicated that

we can reduce 22.8-85.5% the training time without any impact on the result of model

selection.

5

1.3 Thesis Outline

Chapter 2 introduces basic concepts in support vector learning. Especially it em-

phasizes critical properties of the optimal hyperplane and the use of kernel in classical

classification and regression tasks. We intended to discuss in more detail the two most

commonly used kernels: Gaussian RBF and polynomial, and the decomposition algorithm

for SVM training. These fundamentals will be used in other chapters.

Chapter 3 describes attempts in making SVMs run faster in testing phase. Firstly it

reviews existing methods for reducing the complexity of SVMs by reducing the number

of necessary SVs included in SVM solutions. It then describes our proposed bottom-up

method for replacing two SVs by a new one and the whole iterative simplification process,

including a selection heuristic and a stopping condition. Experiments will be reported

next, and this chapter ends with conclusions.

Chapter 4 introduces the model selection problem for support vector machines and

the many efforts in making this process more efficient. It then describes a technique

to speed-up SVM training in a model selection process by inheriting the result among

different SVMs under consideration. Experiments on various benchmark datasets are

described next for illustrating the effectiveness of the proposed method.

Chapter 5 concludes this dissertation with summarization of methodology, contribu-

tion, as well as limitation of the proposed methods. It also figures out open problems for

a further research in future.

6

Chapter 2

Preliminaries on Support Vector

Machines

2.1 Introduction

In this chapter we describe the essences of the support vector learning approach, especially

we emphasize special properties of the optimal hyperplane and the use of kernel as a media

for support vector algorithms to work indirectly in feature space. We also discuss different

implementation techniques for an efficient support vector training.

2.2 Linear Support Vector Classification

We begin to introduce support vector machines (SVMs) by starting from the simplest task:

to build a linear machine on separable data. Suppose we are given a binary supervised

data S =
{
(xi, yi), xi ∈ R

d, yi ∈ {−1, 1} , i = 1, ..., l
}
. Saying that this data is separable

means there exist a linear discriminant function f(x) = w · x + b, where (vector) w is

normal of the hyperplane, b is bias/offset, that correctly separates all the positive from the

negative examples. There have been many learning algorithms that can solve this task,

including Rosenblatt’s Perceptron [51], Fisher’s Linear Discriminant [52], and support

vector machines [1, 3]. In this section we will discuss the solution given by support vector

machine, emphasizing its special properties concerning to the concept of maximal margin

hyperplane.

2.2.1 The Maximal Margin Hyperplane

Firstly, we would like to mention two important notions of functional margin and geo-

metric margin of a training example with respect to a hyperplane as follows

7

Figure 2.1: Margin of a set of examples with respect to a hyperplane. The origin has −b
‖w‖

perpendicular Euclidian distance to the hyperplane.

Definition 1 The functional margin of a training example (xi, yi) with respect to a hy-

perplane
{
x ∈ R

d|f(x) = w · x + b = 0
}

is

ρ̂f (xi, yi) = yi(w · xi + b) (2.1)

In our task of binary classification, ρ̂f (xi, yi) > 0 implies a correct classification. If

yi = 1, then for the functional margin to be large (i.e., for our prediction to be confident

and correct) we need w ·x+ b to be a large positive number. Conversely, if yi = −1, then

for the functional margin to be large we need w · x + b to be a large negative number.

More generally, if yi(w ·x+ b) > 0, then our prediction on this example is correct. Hence,

a large functional margin represents a confident and a correct prediction. For linear

classifier, however, there is one property of functional margin that makes it not a very

good measure of confidence. For example, if we replace w with 2w and b with 2b, then

the decision function does not change since sign(2w ·x+2b) = sign(w ·x+ b). However,

replacing (w, b) with (2w, 2b) multiples functional margin by a factor of 2. In other words

by scaling w and b, we can make the functional margin arbitrarily large without really

changing anything meaningful. Thus, it seems to be reasonable to impose some sort of

normalization such that ‖w‖ = 1, e.g. replacing (w, b) with (w/ ‖w‖ , b/ ‖w‖). In this

case, functional margin becomes geometric margin, that is actually the Euclidean distance

from a point to the hyperplane.

8

Definition 2 The geometric margin of a training example (xi, yi) with respect to a hy-

perplane
{
x ∈ R

d|f(x) = w · x + b = 0
}

is

ρf (xi, yi) = yi(
w

‖w‖ · xi +
b

‖w‖) (2.2)

=
ρ̂f (xi, yi)

‖w‖
Definition 3 The margin of a training set S = {(xi, yi)}i=1...l with respect to a hyperplane{
x ∈ R

d|f(x) = w · x + b = 0
}

is the minimum value of the (geometric) margin over all

training examples

ρf = min
i=1...l

ρf(xi, yi) (2.3)

The hyperplane which support vector machine is looking for is the one with maximum

margin over all hyperplanes, called the maximal margin hyperplane

f ∗ = arg max
f

ρf (2.4)

There are several reasons why this hyperplane possesses a high generalization ability,

or will work well on testing data. Firstly, it is intuitively a good hyperplane. In Figure

2.2, the linear machine with larger margin on the right-hand side is intuitively preferable

because it is likely that the larger margin classifier will classify better an unseen test

point. In Figure 2.3, assuming that all test points are generated by adding bounded

pattern noise to the training patterns. For example, given a training point (x, y), we

generate test points of the form (x + ∆x, y), where ∆x is bounded in norm by some

r > 0. Clearly, if we manage to separate the training set with a margin ρ > r, we will

correctly classify all test points since all training points have a distance of at least ρ to

the hyperplane, the test patterns will still be on the correct side.

The second reason, which is more technical one, is based on the follows one of the

bounds on generalization, the margin percentile bound. If we order the values in the

functional margin distribution

MS(f) = {ρ̂i = yif(xi)}i=1,...,l (2.5)

so that ρ̂1 ≤ ρ̂2 ≤ ... ≤ ρ̂l and fix a number of k < l, the k/l percentile MS,k(f) of MS(f)

is ρ̂k. The following theorem provides a bound on the generalization error in term of k/l

and MS,k(f).

Theorem 1 (theorem 4.19, page 64 in [54]) Consider thresholding real-valued linear func-

tion L with unit weight vectors on an inner product space X and fix ρ ∈ R
+. There is a

constant c, such that for any probability distribution D on X × {−1, 1} with support in a

9

Figure 2.2: Among liner machines, the maximal margin classifier is intuitively preferable.

o

o

o

+

+

+

o

+

r

Figure 2.3: Two-dimensional example of a classification problem: separate ’o’ from ’+’

using a straight line. Suppose that we add bounded noise to each pattern. If the optimal

margin hyperplane has margin ρ, and the noise is bounded by r < ρ, then the line will

correctly separates even the noisy patterns.[53]

10

ball of radius R around this origin, with probability 1 − δ over l random examples S, any

hypothesis f ∈ L has error no more than

errD(f) ≤ k

l
+

√
c

l

(
R2

MS,k(f)2
log2 l + log

1

δ

)
(2.6)

for all k < l.

The above theorem is equivalent to the following one.

Theorem 2 (theorem 7.3, page 194 in [53]) Consider the set of decision functions f(x) =

sign(w · x) (offset b is assumed to be zero for simplicity) with ‖w‖ ≤ Λ and ‖x‖ ≤ R,

for some R, Λ > 0. Moreover, let ρ > 0, and ν denote the fraction of training examples

with margin smaller than ρ/ ‖w‖, referred to as the margin error.

For all distributions P generating the data, with probability at least 1 − δ over the

drawing of the l training patterns, and for all ρ > 0 and δ ∈ (0, 1), the probability that a

test pattern drawn from P will be misclassified is bounded from above, by

ν +

√
c

l

(
R2Λ2

ρ2
ln2 l + ln(1/δ)

)
(2.7)

where c is a universal constant.

The above two theorems say that the probability of an error occurred is bounded by

a sum of the margin error ν, and a capacity term (the
√

... term in (2.7)), with the latter

tending to zero as the number of examples l tends to infinity. The capacity term can be

kept small by keeping R and Λ small, and making ρ large. If we assume that R and Λ

are fixed a priori (e.g. by normalizing training examples to be bound in a ball of radius

1, and normalizing w), the main influence is ρ. As can be seen from (2.7), large ρ leads

to a small capacity term, but the margin error ν gets larger (because ν is the fraction

of training examples with margin smaller than ρ/ ‖w‖). A small ρ, on the other hand,

will usually cause fewer points to have margins smaller than ρ/ ‖w‖, leading to a smaller

margin error; but the capacity penalty will increase correspondingly. The overall message:

try to find a hyperplane f which is aligned such that even for a large ρ, there are few

margin errors. By assuming the data is separable, our maximal margin hyperplane has

largest margin, thus seems to be the best among hyperplanes having zero margin errors

(for handling noisy data, the soft margin classifiers will be discuss in the next section).

Another preference of the maximal margin hyperplane is that, in practice, it works

very well in many applications like text categorization [55], image recognition [42], hand-

written digit recognition [56], Bioinformatics [57, 58].

11

In summary, we have a fair enough of confidence to say that a linear classifier with

large margin has high generalization ability. The confidence comes from intuition, solid

theoretical background, and the success in many practical applications.

2.2.2 Finding the Maximal Margin Classifier

For linearly separable training data, the support vector algorithm simply looks for the

linear function f(x) = w · x + b with a margin as large as possible. Without any loss

in generality, we can force all training examples to have functional margin greater than a

constant ρ = 1

w · xi + b ≥ +1 for yi = +1 (2.8)

w · xi + b ≤ −1 for yi = −1 (2.9)

(2.10)

or equivalently

yi(w · xi + b) − 1 ≥ 0, i = 1, ...l (2.11)

If we call hyperplane H+ : w · x + b = +1, and H− : w · x + b = −1, then the

perpendicular distances from the origin to these hyperplanes are (1− b)/||w|| and (−1−
b)/||w||, or the distance between H1 and H2 is 2/||w||. Thus we can find the hyperplane

which gives maximum margin by minimize ‖w‖2, subject to constraint (2.11)

minimize
1

2
‖w‖2 , (2.12)

subject to yi(w · xi + b) ≥ 1, i = 1, ..., l (2.13)

2.2.3 Soft Margin Classifiers

The above maximal (hard) margin classifier cannot be used in many real world applica-

tions due to a very restrictive requirement: the data is separable. If the data is noisy,

there will be no linear separation, even if we transform the data into a high dimensional

feature space. The main problem with the maximal margin classifier is that it always

produces a consistent hypothesis, that is hypothesis with no training error (the functional

margin is greater than 1). In real life applications where noise can always be present, this

can result in a brittle estimator. In order to find the optimal margin classifier that can

tolerate noises and outliers, we need a ”softer” constraint (2.14) than the ”hard” one in

12

Figure 2.4: Noisy pattern will be treated softly by permitting constraint violation (e.g.

having functional margin ξ < 1), but the objective function will be penalize a cost C(1−ξ),

where ξ is functional margin.

(2.11)

yi(w · xi + b) ≥ 1 − ξi, i = 1, ..., l (2.14)

ξi ≥ 0 (2.15)

The ξi in (2.14) are called slack variables. They permit training examples to have a

functional margin of 1 − ξi, but those with margin less than 1 (or violating the original

”hard” condition) should pay a price of Cξi (or Cξ2
i for 2-norm soft margin) in the

objective function.

min
w,b

1

2
w2 + C

l∑
i=1

ξi (2.16)

The parameter C will balance relative weighting between training error penalty/hard

margin violation and margin largeness. Setting this parameter to be zero is equivalent to

not permitting any margin error, or returning to the hard margin problem.

2.2.4 Optimization

For a consistent description, the (soft) margin optimization problem is rewritten as follows

13

minimizew,b,ξ
1

2
w2 + C

l∑
i=1

ξi (2.17)

subject to −(yi(w · xi + b) − 1 + ξi) ≤ 0, i = 1, ..., l (2.18)

−ξi ≤ 0, i = 1, ..., l (2.19)

The Lagrangian theory is often used to solve quadratic optimization problem like

this, but only with equality constraints. Since our above optimization contains inequality

constraints, we need to transform this primal problem into an alternative description

which is easier to solve than the primal. The transformation and method to find the

optimal hyper plane is briefly described as follows.

Definition 1 Given an optimization problem with convex domain Ω ⊆ R
d

minimize f(w), w ∈ Ω (2.20)

subject to gi(w) ≤ 0, i = 1, ..., k (2.21)

hi(w) = 0, i = 1, ..., m (2.22)

The generalized Lagrangian function is defined as

L(w, α, β) = f(w) +
k∑

i=1

αigi(w) +
m∑

i=1

βihi(w) (2.23)

Definition 2 The Lagrangian dual problem of the primal problem is the following problem

maximize θ(α, β) (2.24)

subject to α ≥ 0 (2.25)

where θ(α, β) = infw∈Ω L(w, α, β)

The relation between the primal and dual problem is that the value of the dual (the

value of the objective function at the optimal solution) is upper bound by the value of

the primal

sup {θ(α, β) : α ≥ 0} ≤ inf {f(w) : g(w) ≤ 0, h(w) = 0} (2.26)

Moreover, if w∗ and (α∗, β∗) are feasible solutions of the primal and the dual respec-

tively, and f(w∗) = θ(α, β), then w∗, (α∗, β∗) solve the primal and the dual problems

respectively. The Kuhn-Tucker theorem says that when the primal objective function f

is convex, and gi, hi are affine functions, then the existence of (α∗, β∗) is the necessary

and sufficient condition for the existence of w∗.

14

Theorem 3 (Kuhn-Tucker) Given an optimization problem with convex domain Ω ⊆ R
d

minimize f(w), w ∈ Ω (2.27)

subject to gi(w) ≤ 0, i = 1, ..., k (2.28)

hi(w) = 0, i = 1, ..., m (2.29)

with f ∈ C1 convex and gi, hi affine, necessary and efficient conditions for a normal point

w∗ to be optimum are the existence of α∗ and β∗ such that

∂L(w∗, α∗, β∗)
∂w

= 0 (2.30)

∂L(w∗, α∗, β∗)
∂β

= 0 (2.31)

α∗
i gi(w

∗) = 0, i = 1, ..., k (2.32)

gi(w
∗) ≤ 0, i = 1, ..., k (2.33)

αi ≥ 0, i = 1, ..., k (2.34)

The primal problem can be transformed into a simpler dual problem by setting to

zero the derivatives of the Lagrangian with respect to primal variables (because this is

necessary condition), and substituting the obtained relations back into the Lagrangian,

hence the dependence on primal variables is removed.

Coming back to our maximal margin optimization problem, the generalized Lagrangian

function is

L(w, b, ξ, α, β) =
1

2
w2 + C

l∑
i=1

ξi −
l∑

i=1

αi(yi(w · xi + b) − 1 + ξi) −
l∑

i=1

βiξi (2.35)

Setting to zero the derivatives of the Lagrangian with respect to primal variables w, ξi

and b, we have the following relations

∂L(w, α, β)

∂w
= w −

l∑
i=1

yiαixi = 0 (2.36)

∂L(w, α, β)

∂ξi
= C − αi − βi = 0 (2.37)

∂L(w, α, β)

∂b
=

l∑
i=1

yiαi = 0 (2.38)

Replacing above relations into the Lagrangian we obtain the dual objective function

15

L(α, β) =
1

2

l∑
i,j=1

yiyjαiαjxi · xj

+C
l∑

i=1

ξi

+

l∑
i,j=1

yiyjαiαjxi · xj − b

l∑
i=1

αiyi︸ ︷︷ ︸
=0

−
l∑

i=1

αiξi +

l∑
i=1

αi

−
l∑

i=1

βiξi

= −1

2

l∑
i,j=1

yiyjαiαjxi · xj

+
l∑

i=1

ξi (C − αi − βi)︸ ︷︷ ︸
=0

+
l∑

i=1

αi

=

l∑
i=1

αi − 1

2

l∑
i,j=1

yiyjαiαjxi · xj (2.39)

The conditions C − αi − βi = 0 and βi ≥ 0 enforce αi ≤ C. We arrive at the dual

optimization which is simpler and easier to solve

maximizeα L(α) =

l∑
i=1

αi − 1

2

l∑
i,j=1

yiyjαiαjxixj (2.40)

subject to

l∑
i=1

yiαi = 0 (2.41)

0 ≤ αi ≤ C, i = 1, ..., l (2.42)

The Karush-Kuhn-Tucker (KKT) complementary conditions (the third condition in

the Kuhn-Tucker theorem) are

αi(yi(w · xi + b) − 1 + ξi) = 0, i = 1, ..., l (2.43)

ξi(αi − C) = 0, i = 1, ..., l (2.44)

These conditions imply that non-zero slack variables ξi �= 0 can only occur when

αi = C, and points for which 0 < αi < C have functional margin of 1 (because ξi = 0).

16

In other words, only active constraints will have non-zero dual variables, and the solution

for the primal depends only on these training points. In support vector learning, the

term support vectors refers to those examples for which the dual variables are non-zero.

Because the value of bias b does not appear in the dual optimization problem, b∗ is chosen

so that yif(xi) = 1 for any i with 0 < α∗
i < C.

The above optimization is a convex programming problem (maximizes a convex func-

tion on a convex domain), thus it has unique optimized solution (w∗, b∗) [59]. Solving

this problem we will arrive at our decision function

y = sign (w∗ · x + b∗) (2.45)

= sign

(∑
αi �=0

yiα
∗
i xi · x + b∗

)
(2.46)

For hard margin classifiers, the box constraints 0 ≤ αi ≤ C is simply replaced by

0 ≤ αi. Readers are suggested to refer Chapter 4 and Chapter 5 in [54] for detail.

2.3 Nonlinear Support Vector Classification

2.3.1 Learning in Feature Space

The limitation of the above machines is that complex real-world applications require more

expressive hypothesis space than linear functions. In other words, the target concept can-

not be expressed as a simple linear combination of the given attribute, but in general

requires that more abstract features of the data be exploited. Multiple layers of thresh-

olded linear functions were proposed as a solution to this problem, and this approach

led to the development of multi-layer neural networks and learning algorithms such as

back-propagation for training such system.

Kernel representations offer an alternative solution by projecting the data into a high

dimensional feature space to increase the computational power of the linear machines

described in previous section. In the above optimization problems, training examples

appear only in the form of dot product between pairs of individuals. By replacing the

dot product with an appropriately chosen kernel function, we can implicitly perform

a non-linear mapping from input space into a high dimensional feature space, and the

maximal margin algorithms will run virtually in the feature space without knowing the

map explicitly. The role of the kernel function in this situation is to calculate the dot

product between two vectors in some (inner product) space, and linear learning algorithms

works on this space indirectly via kernel function. More formally, kernel is defined as

follows

17

Figure 2.5: An illustration of kernel-based algorithms. By mapping the original input

space to other high dimensional feature space, the linearly inseparable data may become

linearly separable in the feature space.

Definition 3 A kernel is a function K, such that for all u, v ∈ X

K(u, v) = Φ(u) · Φ(v) (2.47)

where Φ is a map from input space X to an (inner product) feature space F .

Φ : R
d → F (2.48)

Once we have kernel function calculating dot product between two examples in fea-

ture space, we can find the optimal hyperplane in feature space by solving the following

optimization

maximizeα

l∑
i=1

αi − 1

2

l∑
i,j=1

yiyjαiαjK(xi, xj) (2.49)

subject to

l∑
i=1

yiαi = 0 (2.50)

0 ≤ αi ≤ C, i = 1, ..., l (2.51)

And the discriminant functions take the form

f(x) =
∑
αi �=0

yiαiK(xi, x) + b (2.52)

In the next sections we will discuss several interested problems, such as what criteria

make a function a kernel, and how can an inseparable training data becomes separable in

feature space.

18

2.3.2 Kernels

How can we know that a two-variable function is a kernel or not? The Mercer’s condition

tells us whether a given function is actually a dot product in some space, thus working

via this kernel enables maximal margin algorithms (as well as other algorithms) to work

in feature space. This is essence of kernel-based algorithms.

Theorem 4 (Mercer) To guarantee that a continuous symmetric function K(u, v) in

L2(C) has an expansion

K(u, v) =
∞∑
i=1

akzk(u)zk(v) (2.53)

with positive coefficients ak > 0 (i.e., K(u, v) describes an inner product in some feature

space), it is necessary and sufficient that the condition∫
C

∫
C

K(u, v)g(u)g(v)dudv ≥ 0 (2.54)

is valid for all g ∈ L2(C) (C being a compact subset of R
d)

In the following we examine two mostly used common type of kernels: polynomial and

Gaussian Radial Basis function.

Polynomial kernels

Let’s consider the quadratic homogeneous kernels acting on data in R
d

K(u, v) = (u · v)2 (2.55)

For d = 2, we can explicitly construct the map Φ from R
2 to R

3 as follows

Φ : R
2 → R

3 (2.56)

(u1, u2) 	→ (u2
1,
√

2u1u2, u
2
2) (2.57)

and K(u, v) is actually the dot product between two vectors Φ(u) and Φ(v) in R
3 (note

that with the same kernel function, we might have different ways to construct the map).

For d > 2, we have the following relation

19

(u · v)2 =

(
d∑

i=1

uivi

)2

(2.58)

=

d∑
i=1

d∑
j=1

uiujvivj (2.59)

=

(d,d)∑
(i,j)=(1,1)

(uiuj)(vivj) (2.60)

(2.61)

which is equivalent to a dot product between two feature vectors

Φ(u) = (uiuj)
(d,d)
(i,j)=(1,1) (2.62)

Φ(v) = (vivj)
(d,d)
(i,j)=(1,1) (2.63)

The number of features/dimensions of feature space in this case is

(
d + 1

2

)
; all

feature are monomials of degree 2. Generally, for both general homogeneous and inhomo-

geneous kernels

K(u, v) = (u · v)p (2.64)

K(u, v) = (u · v + c)p (2.65)

The number of distinct features are

(
d + p − 1

p

)
and

(
d + p

p

)
. The proof is given in

detailed in [50].

Gaussian RBF kernels

The Gaussian kernels have the following form

K(u, v) = e−‖u−v‖2/2δ2

(2.66)

where δ is the width of the function. In this case, dimensionality of feature space is infinite

(we will discuss in more detailed in the next section), so it would not be easy to work with

Φ explicitly. However, the maximal margin algorithm works in feature space by simply

replacing xi · xj by K(xi, xj) everywhere in the training algorithm, and the algorithm

will produce a support vector machine which lives in an infinite dimensional feature space

with roughly the same amount of time it would take to train on the original input space.

20

Figure 2.6: Three points in R
2 shattered by oriented lines

2.3.3 VC Dimension and Generalization Ability of Support Vec-

tor Machine

Until now we have discussed the optimal hyperplane that maximizes its distance to the

training data, the use of kernel to work in high or even infinite dimensional feature space.

The question for this section is why the hyperplane does work better in a higher di-

mensional feature space; for example, why a data that is not linearly separable in the

un-mapped input space becomes linearly separable in feature space (of course we cannot

always say that working feature space ensures a higher generalization performance, and

currently there exists no theory which guarantees that a given family of SVMs will have

high accuracy on a given problem).

The VC (Vapnik-Chervonenkis) dimension is a measure of the capacity of a class of

function f(x, α), e.g. a class of linear discriminant functions in our context. Given a set of

l points, there are 2l possible ways to assign them with label −1 or +1. For each labelling,

if a member of the set f(x, α) can be found which correctly separates the points then we

say that that set of points can be shattered by that set of function. The VC dimension

for the set of function f(x, α) is defined as follows

Definition 4 [3] The VC dimension of a set of indicator function f(x, α) is the maximum

number h of vectors x1, ..., xh that can be separated into two classes in all 2l ways using

functions of the set (e.g. the maximum number of vector that can be shattered by the set

of functions). If for any n there exists a set of n vectors which can be shattered by the set

f(x, α), then the VC dimension is equal to infinite.

VC dimension plays a crucial role in a method to select the best suitable machine for

a given task, the structural minimization principle (SRM) . Suppose that our task is to

21

learn the mapping xi 	→ yi by searching for a function f(x, α) where α is an adjustable

parameter. For each particular choice of α, the expected error of the corresponding

machine is

R(α) =

∫
|y − f(x, α)|dP (x, y) (2.67)

The quantity R(α) is called the expected risk, or the actual risk, what we want to

minimize. Besides, there is another risk called empirical risk Remp(α) that measures the

mean of error rate on the training data

Remp(α) =
1

l

l∑
i=1

1

2
|yi − f(xi, α)| (2.68)

The structure risk minimization principle suggests us to select the machine with min-

imum upper bound on generalization error, or the machine that keeps balance between

data fitness and complexity (with 1 − δ confidence).

R(α) ≤ Remp(α) +

√
h(ln(2l/h) + 1) − ln(δ/4)

l
(2.69)

Now, let’s coming back to our question: why our linear machine has higher capacity

to work in feature space. The following theorem says that m points can be shattered if

the remaining m − 1 points are linearly independent.

Theorem 5 [50] Consider some set of m points in R
d. Choose any one of the points

as origin. Then the m points can be shattered by oriented hyperplanes if and only if the

position vectors of the remaining points are linearly independent.

The apparent corollary that could be draw from this theorem is that the VC dimension

of the set of oriented hyperplane in R
d is d + 1 because we can always choose d linearly

independent points, but not d+1. In the previous section we know that the dimensionality

of feature space is very large, say

(
d + p − 1

p

)
for homogeneous polynomial kernels of

degree p, or even infinite for radial basis function kernels. Thus by working in feature

space via kernel, the (optimal) hyperplane has very high capacity.

Theorem 6 [50] Consider the class of Mercer kernels for which K(x1, x2) → 0 as ‖x1 − x2‖ →
∞, and for which K(x, x) is O(1), and assume that the data can be chosen arbitrarily from

R
d. Then the family of classifiers consisting of support vector machines using these ker-

nels, and for which the error penalty C is allowed to take all values, has infinite VC

dimension.

22

Figure 2.7: Gaussian RBF SVMs of sufficiently small width can classify an arbitrary large

number of training points correctly, and thus have infinite VC dimension [50]

The detailed proof of this theorem (not very complicated) could be found in [50]. The

main point is that we can choose training data such that all off-diagonal elements of the

kernel matrix Kij = K(xi, xj) can be made arbitrary small, and because all diagonal

elements Kii are of O(1), then the kernel matrix K is of full rank, or the set of vectors,

whose dot products in the feature space form K, are linearly independent. By theorem

5, the points can be shattered by hyperplanes in F , and also by support vector machines

with sufficiently large error penalty. Since this is true for any finite number of points, the

VC dimension of these classifiers is infinite. An intuitive explanation is that for Gaussian

RBF kernels, by choosing small enough RBF widths we can separate any l number of

distinct training data. Illustration is provided in Figure 2.7.

2.4 Support Vector Regression

Suppose we are given a set of training data S = {(xi, yi), i = 1, ..., l, xi ∈ X, yi ∈ R},
where X denotes space of the input pattern, e.g. X = R

d (the difference here is the

target feature is in R, not {−1, +1} as in previous binary classification). The task of

regression is to find a function f : X → R that predicts the target value as accurate

as possible. Because the target value is a real number, prediction of f can be tolerated

an amount of θ from the true value, say, if the difference between predicted value and

the true value is smaller than θ, then that prediction will not be considered as mistake.

However, if we assess the training performance using the same θ, we are effectively using

the real-valued regressors as classifiers and the worst case lower bounds on generalization

performance apply (in two-class classification case, a training example with functional

margin less than 1 is consider as an error though it might still be correctly classified when

its functional margin is greater than 0). To avoid this we must allow a margin, called

23

x

x

x
x

x

x
xx

x

x
x

x

x

x

+

x

+
0

y

x

y� f (x)

loss

Figure 2.8: In ε-SV regression, training examples inside the tube of radius ε are not

considered as mistakes. The trade-off between model complexity (or the flatness of the

hyperplane) and points lying outside the tube is controlled by weighted ε-insensitive losses.

γ, in the regression accuracy that corresponds to the margin of a classifier, and we will

use different loss functions during training and testing phases. In other words, a training

example counts as a mistake if its accuracy is less than ε = θ− γ (thus training tolerance

is actually smaller than testing tolerance, or training condition is tighter than that in

testing phase). In ε-SV regression, we define an ε-insensitive loss as follows

Definition 5 The linear ε-insensitive loss of an example (xi, yi) ∈ (X, R) with respect to

function is defined by

Lε((xi, yi), f) = |yi − f(xi)|ε = max(0, |yi − f(xi)| − ε) (2.70)

where f is a real-valued function on domain X.

Similarly, the quadratic ε-insensitive loss is given by

Lε
2((xi, yi), f) = |yi − f(xi)|2ε (2.71)

The margin slack variable of an example (xi, yi) ∈ (X, R) with respect to f , target

accuracy θ, and loss margin δ is

ξ((xi, yi), f, θ, δ) = ξi = max(0, |yi − f(xi)| − (θ − δ)) (2.72)

Let’s consider the following 1-norm bound on generalization performance.

Theorem 7 Consider performing regression with linear functions L on an inner product

space X, and fix γ ≤ θ ∈ R
+. There is a constant c, such that for any probability

distribution D on X × R with support in a ball of radius R around the origin, with

24

probability 1−δ over l random examples S, the probability that a hypothesis f(x) = w·x+b

has output more than θ away from its true value is bounded by

errD(f) ≤ c

l

(
‖w‖2

2 R2 + ‖ξ‖2
1 log(1/γ)

γ2
log2 l + log

1

δ

)
(2.73)

where ξ = (ξ1, ..., ξl) is the margin slack vector with respect to f , θ, and γ

The above theorem suggests that we can optimize the generalization of our regressor

by minimizing the sum of the ε-insensitive losses

1

2
‖w‖2

2 + C
l∑

i=1

Lε((xi, yi), f) (2.74)

for some value of parameter C that measures the trade-off between complexity and

losses. The equivalent primal optimization problem is as follows

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξ+
i + ξ−i), (2.75)

subject to (w · xi + b) − yi ≤ ε + ξ+
i , (2.76)

yi − (w · xi + b) ≤ ε + ξ−i , (2.77)

ξ+
i , ξ−i ≥ 0, i = 1, ..., l (2.78)

where two slack variables ξ+ and ξ− are introduced, one for exceeding the target value by

more than ε, and the other for being more than ε below the target. The corresponding

dual problem can be derived using standard techniques

maximize
l∑

i=1

(α−
i − α+

i)yi − ε
l∑

i=1

(α−
i + α+

i) (2.79)

−1

2

∑
i,j=1

l(α−
i − α+

i)(α−
j − α+

j)xi · xj,

subject to 0 ≤ α+
i , α−

i ≤ C, i = 1, ..., l (2.80)
l∑

i=1

(α−
i − α+

i) = 0, i = 1, ..., l

The corresponding Karush-Kuhn-Tucker complimentary conditions are

25

α+
i ((w · xi + b) − yi − ε − ξ+

i) = 0, (2.81)

α−
i (yi − (w · xi + b) − ε − ξ−i) = 0, (2.82)

ξ+
i ξ−i = 0, (2.83)

α+
i α−

i = 0, (2.84)

(α+
i − C)ξ+

i = 0, (2.85)

(α−
i − C)ξ−i = 0, i = 1, ..., l (2.86)

Substituting αi for α−
i − α+

i and K(xi, xj) for xi ·xj, we obtain the following propo-

sition

Proposition 1 Suppose that we wish to perform regression on a training samples S =

{xi, yi)}i=1,...,l using the feature space implicitly defined by the kernel K(u, v), and suppose

the parameter α∗ solve the following quadratic optimization problem

maximize

l∑
i=1

yiαi − ε

l∑
i=1

|αi| − 1

2

l∑
i,j=1

αiαjK(xi, xj), (2.87)

subject to

l∑
i=1

αi = 0, (2.88)

−C ≤ αi ≤ C, i = 1, ..., l (2.89)

Let f(x) =
∑l

i=1 α∗
i K(xi, x) + b∗, where b∗ is chosen so that f(xi) − yi = −ε for any

i with 0 < α∗
i < C. Then the function f(x) is equivalent to the hyperplane in the feature

space implicitly defined by the kernel K(u, v) that solves the optimization problem (2.79)

2.5 Implementation Techniques

In previous sections we have shown that training a support vector machine is equivalent

to solving a convex quadratic programming problem subject to a linear constraint. The

problem of minimizing/maximizing a differentiable function of many variables has been

widely studied, and most of the standard techniques can be directly applied to support

vector training. However, these techniques are only suitable for small problems, or only

suitable in some particular cases, e.g. most elements of the Gram matrix are zero. Unfor-

tunately, the large training size is the main obstacle in the case of support vector training

because just storing the kernel matrix requires a memory space that grows quadratically

with the training size, hence easily exceeds the capacity of conventional computer when

26

the training size is large (e.g. with 30,000 training examples, the required memory for

storing the whole kernel matrix is 30, 0002 × 8/2 ≈ 3GB).

Among many particular algorithms designed for support vector training, we will briefly

describe two methods that have been implemented in most of the commonly used SVM

software, as well as in our implementation: the decomposition method and the sequential

minimal optimization (SMO) algorithm.

Chunking and Decomposition

An important observation in training large scale SVM problem is the sparsity of the

optimal solution. Depending on the problem, many of the αi will be zero, or corresponding

to inactive constraints in the primal problem. If we knew beforehand which αi were

zero, then we can remove the corresponding rows and columns from the kernel matrix

without changing the value of the objective function. In other words, we can simplify

the problem by discarding all of the inactive constraints. The chunking method starts

with an arbitrary subset, or ”chunk” of data, and train an SVM using a generic optimizer

on that portion of data. The algorithm then retains the support vectors (those with

corresponding αi > 0) from the chunk while temporally discarding the other points and

then it uses the hypothesis found to test the points in the remaining part of the data.

The points that most violate optimization condition, e.g. the KKT conditions, are added

to the support vectors of the previous problem to form a new chunk. This procedure is

iterated, initializing α for each new sub-problem with the values output from previous

stage, and optimizing sub-problem with a selected optimizer. The process will stop when

the stopping condition is satisfied. The chunk of data being optimized at a particular

stage is often referred to as the working set. The size of the working set varies, but is

finally equals to the number of non-zero coefficients, or number of support vectors. This

method assumes that the kernel matrix for the set of all support vectors fits in memory

and can be fed to the optimization (we can alternatively recompute the kernel matrix

every time when needed, but this becomes prohibitively expensive due to its frequently

used). In practice, it can happen that the number of support vectors exceeds the capacity

of computer. The decomposition methods overcome this difficulty by fixing the size of the

subproblem. So every time a new point is added to the working set, another point has

to removed. This allows to train arbitrary large datasets. However, the convergence of of

this approach is very slow in practice. Practical implementations select several examples

to add and remove from the subproblem plus efficient caching techniques to improve the

efficiency. The general frame work for working set method is given in Table 2.1.

27

Table 2.1: Decomposition algorithm for SVM training.

Input:

a set S of l training examples {(xi, yi)}i=1...l

size q of working set

Output:

a set of l coefficient {αi}i=1...l

// Initialization

1. Set all αi to zero

2. Select a working set B of size q

// Optimization

3. Repeat

4. Solve the local optimization on B

5. Update the working set B

6. Until the global optimization conditions are satisfied

Sequential Minimal Optimization Algorithm

The sequential minimal optimization (SMO) algorithm is the most extreme case of de-

composition methods: it solves a quadratic optimization problem of size two in each

iteration. The power of this algorithm is it gives analytical solution, thus quadratic

optimizer is required. Based on the fact that the optimal solution has to satisfy the con-

dition
∑l

i=1 yiαi = 0, the SMO chooses two elements to jointly optimize in each iteration.

Whenever one multiplier is changed, the other needs to be changed in order to keep the

condition true. Because only two selected multipliers are involved in the optimization,

the optimal update could be found analytically as follows.

Without loss of generality, assuming that the old values of two chosen elements are

(αold
1 , αold

2), and the new possible values of these two elements are (αnew
1 , αnew

2). In order

not to violate the condition
∑l

i=1 yiαi = 0, the new values must lie on the line

y1α
new
1 + y2α

new
2 = y1α

old
1 + y1α

old
1 = constant (2.90)

Fixing all other multipliers αi,i�=1,i�=2, the objective function can be rewritten as (de-

tailed conversion can be found in [6])

L(α) = L(αnew
2) =

1

2
η(αnew

2)2 + (y2(E
old
1 − Eold

2) − ηαold
2)αnew

2 + constant (2.91)

28

where η = 2K12−K11−K22, Kij = K(xi, xj), Eold
i =

∑l
k=1 ykα

old
k K(xk, xi)+b−yi. Note

that Eold
i are prediction error on vector xi with respect to the current solution, and the

above objective function includes term Eold
1 − Eold

2 , so there is no need to calculate b for

each iteration.

The objective function now becomes a one variable function of αnew
2 . Its first and

second derivatives are

dL

dαnew
2

= ηαnew
2 + (y2(E

old
1 − Eold

2) − ηαold
2) (2.92)

d2L

d(αnew
2)2

= η (2.93)

Let dL
dαnew

2
= 0, we have

αnew
2 = αold

2 +
y2(E

old
2 − Eold

1)

η
(2.94)

Because αnew
2 must also satisfy the box constraint 0 ≤ αnew

2 ≤ C, the new value of α2

must be clipped to ensure a feasible solution

Low ≤ αnew
2 ≤ High (2.95)

where

Low = max(0, αold
2 − αold

1) (2.96)

High = min(C, C − αold
1 + αold

2) (2.97)

if y1 �= y2, and

Low = max(0, αold
1 + αold

2 − C) (2.98)

High = min(C, αold
1 + αold

2) (2.99)

if y1 = y2. The new value of α1 is obtained from αnew
2 as follows

αnew
1 = αold

1 + y1y2(α
old
2 − αnew

2) (2.100)

The heuristics for picking two αi for optimization are as follows:

• The outer loop selects the first αi, the inner loop selects the second αj that maximize

|Ej − Ei|.

• The outer loop first alternates between one sweep through all examples and as many

as sweeps as possible through the non-boundary examples (those with 0 < αi < C),

selecting the example that violates the KKT condition.

29

• Given the first αi, the inner loop looks for an example that maximizes |Ej − Ei|.

The advantage of SMO lies in the fact that solving for two Lagrangian multipliers

can be done analytically. In practice, e.g. [10], [12], [11], SMO has been used to do

optimization on the working set in the general decomposition framework in Table 2.1.

2.6 Summary

Support vector learning provides a new approach to classical problems like classification

and regression. The solution of a support vector machine is unique for each parameter

setting; this is a radical difference when comparing with other comparable learning ap-

proach such as neural networks. However, an SVM is largely characterized by the choice

of its kernel, thus one of the biggest practical difficulty and the most time consuming

task of this learning approach is the selection of the kernel. Currently, the best choice of

kernel for a given problem is still a research issue. We will discuss more on this model

selection problem in Chapter 5. Another limitation is speed and size in both training and

testing phases. SVM training solves as optimization problem with quadratic requirement

in memory. Training for million-size applications is still an unsolved problem. In testing

phase, it seem to be that SVM is a kind of ”lazy” machine where each testing pattern

has to be compared with all support vectors. Despite of all these limitations, SVM has

been emerging as a powerful learning approach and gaining success in many practical

applications.

30

Chapter 3

Simplifying Support Vector Solutions

3.1 Introduction

Support Vector Machines (SVMs) [3, 54] have been demonstrated to be very robust in

many applications, such as optical character recognition [56, 60], text categorization [55],

face detection in images [42], and image denoising [61, 62]. The high generalization

ability of SVMs is ensured by special properties of the optimal hyperplane that maximizes

distance from it to the training patterns in a high dimensional feature space [2, 1, 3].

However SVMs are considerably slower in the test phase than other learning methods like

decision trees or neural networks [36, 50, 48, 56, 60].

The solution of a SVM is parameterized by a set of input vectors, called support

vectors (SVs), and their corresponding weights. When a new test sample is introduced,

SVMs compare it with these SVs via kernel calculations; this computation becomes very

expensive if the number of SVs is large. To reduce this computational complexity, reduced

set methods, e.g., [36, 53, 38], try to approximate the original solution by another com-

prised by a much smaller number of newly constructed vectors, called the reduced vectors

set. The former methods described in [36, 37, 53] start from approximating the solution

comprised by all original SVs by only one new vector, and then incrementally construct

the reduced set by finding vectors that minimize the differences between the original vec-

tor expansion and the reduced set expansion in feature space. This approach leads to the

construction of each new vector required to solve an unconstrained optimization problem

in a space of d+1 variables, where d is dimension of input space. Hence the computation

is very expensive because the search must be repeated many times with different initial

points to escape from local minimums [36, 61, 37]. Reduced vectors can also be selected

from original SVs via kernel principal component analysis or L1 shrinkage penalization as

in [37], or by removing linearly dependent SVs in the feature space as method described in

31

[38]. In comparing with the previous reduced set construction methods, selection methods

are less computationally expensive but also less effective in reducing the number of SVs

and preserving generalization performance. The method described in [38] is based on the

linearly dependency of SVs, so its applicability is very limited due to the fact that feature

space’s dimensionality is often very large or even infinite.

In this chapter we describe a new method to simplify support vector solutions in which

the construction of new vectors only requires to find the unique maximum point of a one-

variable function on (0,1). Instead of constructing reduced vectors set incrementally, two

nearest SVs belonging to the same class will be iteratively considered and replaced by a

newly constructed vector. This approach leads to a conceptually simpler and computa-

tionally less expensive method, the local extremum problem does not exist, and it also

makes the vectors in the simplified solution look more meaningful (e.g. character-like in

OCR applications). Experimental results on real life datasets show the effectiveness of

our proposed method in reducing the number of support vectors and preserving gener-

alization performance. On the US Postal Service (USPS) handwritten digit recognition

database, a 91.3% (for polynomial kernel) and 90.0% (for Gaussian kernel) reduction rate

were achieved, with a corresponding 0.2% and 0.3% loss in predictive accuracy. On the

MNIST database, the numbers were 88.6% and 0.1%. The reduction rates on other four

datasets in the StatLog collection were from 70.9% to 94.5% with almost no change in

performance.

This chapter is organized as follows. We will briefly describe the SVM simplification

problem and review the earlier reduced set methods in Section 3.2. In Section 3.3 we

describe our proposed method, which constructs a new vector to replace two other support

vectors, and the iterative process to simplify support vector solutions. Experiments on

real world databases are described in Section 3.4. Section 3.5 discusses the results.

3.2 Simplifying Support Vector Machines

In this section we first briefly introduce the simplification of SVMs and then review former

methods for reducing number of necessary SVs included in support vector solutions.

3.2.1 Reducing Complexity of SVMs in Testing Phase

SVMs work in feature space indirectly via a kernel function K(x, y) = Φ(x) · Φ(y) where

Φ : R
d → F is a map from a d-dimensional input space to a possibly high-dimensional

feature space [3]. For a two-class classification problem, the decision rule takes the form

32

y = sign

(
NS∑
i=1

αiK(x, xi) + b

)
(3.1)

where αi are weights of support vectors xi (for simplicity, we combine yi into αi, thus

αi < 0 for negative SV i), x is the input vector needed to classify, K(x, xi) = Φ(x) ·Φ(xi)

is a kernel function calculating the dot product of two vectors Φ(x) and Φ(xi) in the

feature space, b is the bias, and NS is the number of support vectors. The task of the

SVMs training process is to determine all the parameters (xi, αi, b, NS); the resulting xi,

i = 1...NS are a subset of the training set and are called support vectors.

The complexity of the computation (3.1) scales with the number of support vectors

NS. The expectation of NS is bounded below by (l−1)E(p), where E(p) is the expectation

of the probability of error on a test vector and l is the number of training samples [3].

Thus NS can be expected to approximately scale with l. For practical applications like

pattern recognition, this results in a machine that is considerably slower in the test phase

than other systems [56, 60].

Reduced set methods try to approximate the normal vector Ψ of the separating hy-

perplane

Ψ =

NS∑
i=1

αiΦ(xi) (3.2)

expanded in images (Φ(xi) is image of xi under Φ) of input vectors xi ∈ R
d, αi ∈ R, by a

reduced set expansion

Ψ′ =

NZ∑
i=1

βiΦ(zi) (3.3)

with NZ < NS, zi ∈ R
d, βi ∈ R. To classify a new test point x, calculation (3.1) is

replaced by

y = sign

(
NZ∑
i=1

βiK(x, zi) + b

)
(3.4)

The goal of reduced set method is to choose the smallest NZ < NS, and construct

the corresponding reduced set {(zi, βi)}i=1...NZ
such that any resulting loss in generation

performance remains acceptable [36].

3.2.2 Reduced Set Construction

The method described in [36] starts by replacing the original expansion Ψ with the im-

age of one input vector and its corresponding weight (z1, β1), and then iteratively finds

33

(zm+1, βm+1) so that their images approximate the complement vectors Ψm (Ψ0 = Ψ)

Ψm =

NS∑
i=1

αiΦ(xi) −
m∑

j=1

βjΦ(zj) (3.5)

Because in many situations it is impossible to find exactly zm and βm that make

Ψm = 0, (e.g. the chosen kernel is a Gaussian RBF), zm are vectors that minimize

ρ = ‖Ψm−1 − βmΦ(zm)‖ (3.6)

=

∥∥∥∥∥
(

NS∑
i=1

αiΦ(xi) −
m−1∑
j=1

βjΦ(zj)

)
− βmΦ(zm)

∥∥∥∥∥ (3.7)

When the first derivative of kernel K has been defined, the gradient of objective

function F = ρ2/2 can be computed. For example, assuming that K(x, y) is a function of

scalar x · y:

∂F

∂βm

= −
NS∑
i=1

αiK(xi · zm) +
m−1∑
j=1

βjK(zj · zm), (3.8)

∂F

∂zmk
= −

NS∑
i=1

αiβmK ′(xi · zm)xik +

m−1∑
j=1

βjβmK ′(zj · zm)zjk, k = 1, ..., d (3.9)

In general, an unconstrained optimization technique is used to find the minimum of F .

For a particular kind of kernel K(x, y) = K(‖x − y‖2) the fixed-point iteration method

can be used to improve the speed of the finding. For example when the chosen kernel is

a Gaussian K(x, y) = exp(−γ ‖x − y‖2), zm can be found by iterating [49, 37, 53]

z(n+1)
m =

∑Nx

i=1 αi exp(−γ
∥∥∥xi − z

(n)
m

∥∥∥2

)xi∑Nx

i=1 αi exp(−γ
∥∥∥xi − z

(n)
m

∥∥∥2

)
(3.10)

where Nx = Ns + m − 1, and

(α1, ..., αNx) = (α1, ..., αNS
,−β1, ...,−βm−1) (3.11)

(x1, ..., xNx) = (x1, ..., xNS
,−z1, ...,−zm−1) (3.12)

One drawback of the above methods is that they may suffer from numerical instability

and get trapped in a local minimum of function F ; to prevent this circumstance, the

finding for each new vector must be repeated many times with different initial values

[36, 61].

34

3.2.3 Reduced Set Selection

The idea of reduced set methods is that the null space of the Gram matrix Kij = (Φ(xi) ·
Φ(xj))i,j=1...NS

precisely tells us how many vector can be removed from an expansion while

committing zero approximation error [37]. For example, when vectors Φ(xi) are linearly

dependent then any of the Φ(xi) can be expressed in terms of the others. Hence, we may

use the eigenvectors with eigenvalue 0 to eliminate certain SVs from any expansion in the

Φ(xi) [37], or this can be done using techniques from linear algebra like the row reduced

echelon form [38].

However the dimensionality of feature space is usually very large or even infinite as in

the case of Gaussian kernel, so there is no nonzero eigenvalue [63]. In 1999, Schoelkopf

and coauthors proposed a methods in [37] to find coefficients βj minimizing the error

committed by replacing αnΦ(xn), 0 ≤ n ≤ NS, with
∑

j �=n βjΦ(xj)

ρ(β, n) =

∥∥∥∥∥αnΦ(xn) −
∑
j �=n

βjΦ(xj)

∥∥∥∥∥
2

(3.13)

By defining ηj = 1 for j = n, ηj = −βj/αn for j �= n, (3.13) equals |αn|2
∥∥∥∑NS

j=1 ηjΦ(xj)
∥∥∥2

.

Normalizing η to obtain γ := η/ ‖η‖, hence γn = 1/ ‖η‖, (3.13) is equivalent to the prob-

lem of minimizing

ρ(γ, n) =

∣∣∣∣αn

γn

∣∣∣∣2 (γKγ), (3.14)

over ‖γ‖ = 1, and we can recover the approximation coefficients βj for αnΦ(xn), i.e. the

values to add to the αj,j �=n for leaving out αnΦ(xn), as βj = −αnγj

γn
.

The fact is that γKγ) is minimized for the eigenvector with minimal eigenvalue. In

that case, γKγ = λmin. More generally, if γi is any normalized eigenvector of K, with

eigenvalue λi, then

ρ(i, n) =

∣∣∣∣αn

γi
n

∣∣∣∣λi (3.15)

Function 3.15 can be minimized by performing kernel PCA and scanning through the

matrix (ρ(i, n))in.

After choosing n, the original solution Ψ is approximated by

Ψ =
∑
j �=n

αjΦ(xj) + αnΦ(xn) (3.16)

≈
∑
j �=n

(
αj − αnγj

γn

)
Φ(xj) (3.17)

35

The selection process can be iterated until the expansion of Ψ is sparse enough. At

each iteration all eigenvectors are computed using the Gram matrix computed from the

SVs and then select n according to (3.15).

Another method for selecting a good subset of original SVs is to enforce the sparseness

of the approximation which is inspired by L1 shrinkage penalizers [64]. The given original

expansion
∑

i αiΦ(xi) will be approximated with
∑

i βiΦ(xi) by minimizing the following

cost function

E(β) =

∥∥∥∥∥
NS∑
i=1

αiΦ(xi) −
NS∑
i=1

βiΦ(xi)

∥∥∥∥∥
2

+ λ
l∑

i=1

ci |βi| (3.18)

where λ is a constant determining the trade-off between sparseness and quality of

approximation. The constants ci are set to α/|αi| (α is the mean of all αi) with an

intention to shrink small terms [37].

To solve (3.18) it is necessary to remove the modulus by rewriting βi := β+
i +β−

i with

β±
i ≥ 0 and arriving at the following problem

min
β+,β−

∑
ij

(β+
i − β−

i)(β+
j − β−

j)Kij +
∑

j

(
β+

j (λcj − 2
∑

i

Kijαi) + β−
j (λcj + 2

∑
i

Kijαi)

)
(3.19)

subject to

β+
j , β−

j > 0 (3.20)

Problem (3.19) could be solved with standard quadratic optimization techniques, and

their solution could be used directly as expansion coefficients.

Though still very complicated, the reduce set selection is less computationally expen-

sive than the reduced set construction, but it performs practically worse [37]. In the next

section we will introduce our proposed method that is conceptually simpler and compu-

tationally less expensive; experimental results indicated that new algorithm can reduce a

big number of SVs while keeping well generalization performance.

3.3 A Bottom-up Method for Simplifying Support

Vector Solutions

In this section we introduce a new method that iteratively replaces two support vectors

belonging to the same class with a newly created vector. The simplification process could

be considered as a bottom-up hierarchical clustering method and it will stop when an

36

estimated difference between the original solution and the simplified one exceeds a given

threshold.

3.3.1 Simplification of Two Support Vectors

The solution of SVMs can be analyzed from a mechanical point of view: if each image

of support vectors exerts a force Fi = αiΨ̂ on the decision hyperplane, then the SVMs

solution satisfies the conditions of equilibrium: the sum of the forces and the torque all

vanish (Ψ̂ is the unit vector in the direction Ψ)[50]. In an equilibrium system, if we replace

two member forces by an equivalent one, then the equilibrium state of the system will not

change. In an SVM solution, if we replace two images Φ(xi) and Φ(xj) of two support

vectors belonging to the same class xi and xj by a vector M = mΦ(xi) + (1 − m)Φ(xj),

where m = αi/(αi + αj) and weight vector M by αm = (αi + αj), then for any point x in

the input space, calculation (3.1) can be computed through (NS − 1) vectors:

y = sign

(
NS∑

k=1,k �=i,k �=j

αkK(x, xk) + αmM · Φ(x) + b

)
(3.21)

The difficulty is that M can not be used directly; we must use its pre-image (e.g.

working via some input vector z that Φ(z) = M), and in many situations, we cannot find

the exact pre-image of M . For example, when a Gaussian RBF kernel is used, every point

in the input space is mapped onto the surface of the unit hypersphere in feature space

(Φ(x) ·Φ(x) = 1 for every input vector x). In this case, M lies on the segment connecting

Φ(xi) and Φ(xj), or inside the hypersphere, and there is no pre-image of M . This problem

was addressed in [53, 62] as the pre-image problem in kernel methods.

Rather than trying to find the exact pre-image, we will approximate M by an image

Φ(z) of some input vector z. The optimal approximation can be made if we choose a

vector z that gives a minimum value of ‖M − Φ(z)‖2, or in other words, we have to solve

the optimization problem:

min
z

‖M − Φ(z)‖2 (3.22)

The following propositions will give us the way to find vector z efficiently. All that is

required is to find the unique maximum point of a one-variable function on (0,1). The

coefficient of z then can be calculated analytically.

Proposition 2 For Gaussian RBF kernels K(x, y) = exp(−γ ‖x − y‖2), the 2-norm op-

timal approximation of M = mΦ(xi) + (1 − m)Φ(xj), m = αi/(αi + αj), αiαj > 0, is the

image of input vector z determined by

37

z = kxi + (1 − k)xj (3.23)

where k is the maximum point of

f(k) = mC
(1−k)2

ij + (1 − m)Ck2

ij (3.24)

with Cij = K(xi, xj)

Proof: For Gaussian RBF kernels, Φ maps each input vector onto the surface of the

unit hypersphere in feature space, so we have ‖Φ(z)‖ = 1 for every z, ‖M‖ is a constant

and can be calculated via Φ(xi) and Φ(xj). (3.22) is equivalent to

max
z

M · Φ(z) (3.25)

For the extremum, we have 0 = ∇z(M · Φ(z)). To get the gradient in terms of K,

we substitute M = mΦ(xi) + (1 − m)Φ(xj) and K(x, y) = exp(−γ ‖x − y‖2) to get the

sufficient condition

0 = ∇z(M · Φ(z))

= 2m exp(−γ ‖xi − z‖2)(xi − z) + 2(1 − m) exp(−γ ‖xj − z‖2)(xj − z) (3.26)

leading to

z =

∑
s=i,j αs exp(−γ ‖xs − z‖2)xs∑

s=i,j αs exp(−γ ‖xs − z‖2)
(3.27)

or

z = kxi + (1 − k)xj (3.28)

where

k =
αi exp(−γ ‖xi − z‖2)∑

s=i,j αs exp(−γ ‖xs − z‖2)
(3.29)

Because αiαj > 0 (or xi and xj belong to the same positive or negative class) then

0 < k < 1. (3.28) means that z always lies on the segment connecting xi and xj . To ease

the finding of z we define f(k) = M · Φ(z) and search for the maximum point of f(k)

f(k) = M · Φ(kxi + (1 − k)xj)

= (mΦ(xi) + (1 − m)Φ(xj)) · Φ(kxi + (1 − k)xj)

= mΦ(xi) · Φ(kxi + (1 − k)xj) + (1 − m)Φ(xj) · Φ(kxi + (1 − k)xj)

= m exp(−γ ‖xi − xj‖2 (1 − k)2) + (1 − m) exp(−γ ‖xi − xj‖2 k2)

= mC
(1−k)2

ij + (1 − m)Ck2

ij (3.30)

38

Figure 3.1: f(k) = mC
(1−k)2

ij + (1 − m)Ck2

ij with m = 0.4, Cij = 0.7.

where Cij = exp(−γ ‖xi − xj‖2) = K(xi, xj)

f(k) is a one-variable function and has unique maximum point on (0, 1) (as illustrated

in Figure 3.1). The maximum point can be easily reached using common univariate pa-

rameter optimization methods. In our experiments, the inverse parabolic interpolation

method [65] is used with three starting points k = 0, k = m and k = 1, and the optimiza-

tion process converges quickly after several iterations (if m = 1/2 then k = m = 1/2 is

exactly the maximum point of f(k)).

Proposition 3 For polynomial kernels K(x, y) = (x · y)p, the the 2-norm optimal ap-

proximation of M = mΦ(xi) + (1 − m)Φ(xj), m = αi/(αi + αj), αiαj > 0, is the image

of input vector z determined by

z =
‖M‖1/p

‖z∗‖ z∗ (3.31)

where z∗ = kxi + (1 − k)xj and k is the maximum point of h(k)

h(k) = ‖M‖ u(k)v(k), (3.32)

where

u(k) =
1[

x2
i k

2 + 2(xi · xj)k(1 − k) + x2
j (1 − k)2

]p/2
(3.33)

v(k) = m
[
x2

i k + (xi · xj)(1 − k)
]p

+ (1 − m)
[
(xi · xj)k + x2

j (1 − k)
]p

(3.34)

Proof: For polynomial kernels, Φ maps each input vector x lying on the surface of

a hypersphere of radius r (‖x‖ = r) onto the surface of a hypersphere of radius r2p in the

feature space ((r2 +1)p for inhomogeneous kernel K(x, y) = (x · y +1)p). To approximate

39

Figure 3.2: Projection of vector z on the plane (xi, xj) in the input space.

M by Φ(z) we can constrain Φ(z) to lay on the surface of the same hypersphere with M

in feature space without any lost in generality. This is equivalent to constraining z to lie

on the surface of the hypersphere of radius ‖M‖1/p in the input space, and (3.22) becomes

max
z

M · Φ(z) (3.35)

subject to

‖z‖ = ‖M‖1/p (3.36)

The following lemma shows that the (vector) solution of (3.35), xi, and xj are linearly

dependent.

Lemma 1 The input vector z that maximizes M · Φ(z) in (3.35) is linearly dependent

with xi and xj.

Proof: Replacing M = mΦ(xi) + (1 − m)Φ(xj) into (3.35) we have

M · Φ(z) = (mΦ(xi) + (1 − m)Φ(xj)) · Φ(z)

= mΦ(xi) · Φ(z) + (1 − m)Φ(xj) · Φ(z)

= m(xi · z)p + (1 − m)(xj · z)p (3.37)

Suppose that z is an input vector satisfying constraint (3.36) and z1 is the orthogonal

projection of z on the plane determined by xi and xj (as described in Figure 3.2). Let’s

consider input vector z′

z′ =
‖z‖
‖z1‖z1 (3.38)

40

We have z′ satisfying constraint (3.36) and xi · z′ ≥ xi · z, xj · z′ ≥ xj · z, or M ·Φ(z′) ≥
M · Φ(z). This means that the optimal vector zopt for maximizing M · Φ(z) lies on the

plane (xi, xj), or zopt is linear dependent with xi and xj .

Because the solution of (3.35), called zopt, lies on the plane (xi, xj) and ‖zopt‖ =

‖M‖1/p, there exits a vector z∗ and a scalar k such that

z∗ = kxi + (1 − k)xj (3.39)

and

zopt =
‖M‖1/p

‖z∗‖ z∗ (3.40)

Call g(z) = M · Φ(z), we have

g(zopt) = M · Φ(zopt)

= (mΦ(xi) + (1 − m)Φ(xj)) · Φ(zopt)

= mΦ(xi) · Φ(zopt) + (1 − m)Φ(xj) · Φ(zopt)

= m(xi · zopt)
p + (1 − m)(xj · zopt)

p

= m(‖xi‖ ‖zopt‖ cos(xi, zopt))
p + (1 − m)(‖xj‖ ‖zopt‖ cos(xj , zopt))

p

= ‖zopt‖p (m ‖xi‖p cosp(xi, z
∗) + (1 − m) ‖xj‖p cosp(xj , z

∗))

= ‖zopt‖p

[
m ‖xi‖p

(
xi · z∗

‖xi‖ ‖z∗‖
)p

+ (1 − m) ‖xj‖p

(
xj · z∗

‖xj‖ ‖z∗‖
)p]

=
‖zopt‖p

‖z∗‖p [m(xi · z∗)p + (1 − m)(xj · z∗)p] (3.41)

Because zopt satisfies (3.36) then ‖zopt‖p = ‖M‖. Replacing z∗ = kxi + (1 − k)xj into

(3.41) leads to

h(k) = ‖M‖ u(k)v(k) (3.42)

where

u(k) =
1[

x2
i k

2 + 2(xi · xj)k(1 − k) + x2
j (1 − k)2

]p/2
(3.43)

v(k) = m
[
x2

i k + (xi · xj)(1 − k)
]p

+ (1 − m)
[
(xi · xj)k + x2

j (1 − k)
]p

(3.44)

h(k) is also an one-variable function and has unique maximum points in (0, 1) (cor-

responding to the unique vector z′ in (3.38)). This means that the finding of each new

vector in the reduced set is much easier and cheaper than that in former methods (in the

space of d + 1 variables with local minimums).

41

Proposition 4 The optimal coefficient β for approximating αmM = αiΦ(xi) + αjΦ(xj)

by βΦ(z) is

β =
αmM · Φ(z)

‖Φ(z)‖2 (3.45)

Proof: Once we replace xi and xj by z, or approximate M by Φ(z) in the feature

space, the difference between two solutions will be, for every input vector x

d(β) = |αmM · Φ(x) − βΦ(z) · Φ(x)|
= |(αmM − βΦ(z)) · Φ(x)| (3.46)

The difference will be minimized when d(β) gets the minimum value. In (3.46) d(β)

can be minimized by minimizing d1(β) = ‖αmM − βΦ(z)‖. Because d1(β) is a quadratic

function of β, its minimum point is at

β =
αmM · Φ(z)

‖Φ(z)‖2 (3.47)

Equation (3.45) is used to find the coefficient for one newly constructed vector. For

the whole reduced vectors set, the following proposition is used to recompute all the

coefficients to get a better approximation.

Proposition 5 ([37]) The optimal coefficients β = (β1, ..., βNZ
) for approximating Ψ =∑NS

i=1 αiΦ(xi) by Ψ′ =
∑NZ

j=1 βjΦ(zj) (for linear independent Φ(z1), ...,

Φ(zNZ
)) are given by

β = (Kz)−1 Kzxα (3.48)

where Kz
ij = Φ(zi) · Φ(zj) and Kzx

ij = Φ(zi) · Φ(xj)

Proof: We evaluate the derivatives of the distance in F

∂F

∂βm

= −Φ(zm)

(
NS∑
i=1

αiΦxi
−

NZ∑
j=1

βjΦ(zj)

)
(3.49)

and set it to 0, we obtain

Kzxα = Kzβ (3.50)

hence

β = (Kz)−1 Kzxα (3.51)

As mentioned in [37], (3.48) always gives the optimal coefficients to get a solution that

is at least as good as the original one. In our experiments, (3.48) was used to recompute

the final coefficients of all vectors in the reduced set after the iterative simplification

process finished.

42

3.3.2 Simplification of Support Vector Solution

The simplification procedure iteratively replaces two support vectors (including newly

created vectors) xi and xj by a new vector z using the method described in Section 3.3.1.

This process can be viewed as a bottom-up hierarchical clustering procedure, and there

are two problems we have to take into consideration. First, how to select a good pair of

support vectors to simplify, and second, when the simplification process will stop.

Selection heuristic

In general, a pair of two support vectors that gives a minimum value of d(β) in (3.46)

will produce the minimum difference between two solutions (solutions at two consecutive

steps). However, the cost of using this criterion is rather expensive because we have

to try all possible pairs of support vectors and then evaluate (3.46) for each of them.

Moreover, we are more concerned about the original solution and the final one, so the

strictly good approximation of the solutions at every intermediate steps is not necessary.

The alternative heuristic is based on the difference between two vectors M = mxi + (1−
m)xj and Φ(z) in (3.22). For Gaussian RBF kernels, we can select xi and xj that give

a maximum value of Cij = K(xi, xj) in (3.24) because the bigger the Cij, the bigger the

maximum value of f(k), or smaller difference between M and Φ(z) (f(k) = 1 gives zero

difference). This is equivalent to selecting two closest support vectors belonging to the

same positive or negative class. Another interpretation for this selection heuristic is that

we will try to approximate two Gaussian RBFs by one Gaussian RBF, and intuitively, the

closer pair centers, the better approximation. This selection heuristic also be reasonably

applied to polynomial kernels because the input vector z that maximizes M ·Φ(z) in (3.37)

is linear dependent with xi and xj and the closer two vectors xi and xj (or smaller angle

between two vectors xi and xj) will give a bigger maximum value of M ·Φ(z) (given fixed

values of m, ‖xi‖, and ‖xi‖).

Stopping condition

The simplified solution is mostly different from the original one (except for linear ker-

nels, or homogeneous quadratic polynomial kernels with a number of SVs greater than

the dimension of input space [36]), so the simplification of support vector solutions will

possibly cause a degradation in generalization performance. In the formed methods there

is no specific way to manage this possibility [40]; instead, the size of the reduced set is

first specified, and the resulting accuracy loss is determined experimentally [36].

To control this circumstance, we can monitor the difference between the two solutions

43

d’
d

Φ(x)

original hyperplane

simplified hyperplane

Figure 3.3: Illustration of the marginal difference of a (original) support vector x with

respect to the original and simplified solutions

caused by the simplification process, and the simplification process will stop when any

replacement of two SVs by a new one makes the difference exceed a given threshold. In the

following we define a quantity called Maximum Marginal Difference (MMD) to estimate

the difference between two support vector solutions.

Definition 6 Suppose that the distance from a point Φ(x) to the original optimal hyper-

plane is d (d is 1 when x is a non-bounded support vector), and to the new hyperplane

determined by the simplified solution is d′. The Marginal Difference (MD) on Φ(x) re-

garding to the two solutions is

MD(Φ(x))
def
= |d − d′| (3.52)

and the difference between two solutions is defined as

MMD
def
= max

i=1...NS

MD(Φ(xi)) (3.53)

where x1, ..., xNS
are original support vectors.

The MMD uses the differences between two distances from the image of original sup-

port vectors to the two discriminant hyperplanes to estimate the difference between two

support vector solutions. The reason for not using the difference between two normal

vectors of the two hyperplanes ||Ψ−Ψ′|| is that this quantity depends too much on ||Ψ||
and ||Ψ′||. For complicated problems (||Ψ|| is large), a small difference between two hy-

perplanes may cause a big difference ||Ψ − Ψ′||, while for easy cases, a small ||Ψ − Ψ′||
corresponds to a big difference between hyperplanes, so there is a big difference between

the two solutions.

44

Table 3.1: The simplification algorithm

Input:

a set of NS support vectors x1, ..., xNS

a threshold θ of MMD

Output:

a set of NZ reduced support vectors, NZ < NS

1. PairList =
{
(xi, xj)|i = 1...NS, xj = arg mink(‖xi − xk‖2), 1 ≤ k ≤ NS, αiαk > 0

}
2. Sort PairList incrementally according to the distance between two vectors in pair

3. PairID = 1

4. Repeat

5. Call (xi, xj) the pair number PairID in PairList

6. Try to replace xi and xj by z found by (3.23) or (3.31), weight z by (3.45)

7. If the replacement does not make MMD greater than θ

8. Then replace xi and xj by z, set NZ = NZ − 1, update PairList,

set PairID = 1, and restart the loop

9. Otherwise set PairID = PairID + 1

10. Until all pairs in PairList have been tried

11. Recompute coefficients of all support vectors using (3.48)

12. Optimize the whole reduced set using phase 2 described in Section 3.3.3

13. Return the reduced set

One note on the implementation of calculating MD(Φ(xi)) is that whenever two sup-

port vectors (v1, α1) and (v2, α2) are replaced by a vector (v, α), the marginal difference on

Φ(xi) will change an amount of α1K(v1, xi) + α2K(v2, xi)− αK(v, xi)(ref. (3.21)); there-

fore, during the simplification process the marginal differences on the original support

vectors can be calculated accumulatively using only three vectors.

The Algorithm

The algorithm for simplifying support vector solution is described in Table 3.1. It itera-

tively selects two support vectors belonging to the same class and tries to replace them by

a newly created vector. The process will stop when no replacement success, and finally

all coefficients and reduced vectors are recomputed to get a better approximation.

45

Figure 3.4: Illustration of simplified support vector solution using proposed method. The

decision boundaries constructed by the simplified machines with 4 SVs (right-top) and 20

SVs (right-bottom) are almost identical with those constructed by the original machines

with 61 SVs (left-top) and 75 SVs (left-bottom). The cracked lines represent vectors with

approximately 1 marginal distance to the optimal hyperplane.

3.3.3 Pursuing a Better Approximation

A better approximate solution can be achieved by applying the unconstrained optimiza-

tion process to minimize F = ‖Ψ − Ψ′‖ with respect to all zj and βj together (phase 2 in

[36]). Though the cost is high (working in a space of (d + 1)NZ variables), this process

can bring an effective reduction in the objective function F , or effective improvement of

the simplified solution.

To illustrate how the proposed method works, in Figure 3.4 we show the results on

two 2-dimensional datasets. The decision boundaries made by simplified machines, with

much smaller number of vectors, are almost identical with those made by the original

machines. Each reduced vector is constructed from and represents closed vectors in the

same class.

3.4 Experiment

To assess its effectiveness on real world applications, we first applied proposed method to

simplify ten binary classifiers trained to distinguish one digit from others in the US Postal

46

Figure 3.5: The first 100 digits in the USPS dataset

Service (USPS) handwritten digit recognition database. The dataset contains normalized

grayscale images of handwritten digits taken from US zip codes; the size of each image is

16x16 pixels, and the data set is divided into a training set of 7,291 images and a test set

of 2,007 images. For each binary classifier (using the one-versus-rest strategy) trained by

a Gaussian RBF kernel or by a polynomial kernel, different values of MMD were used to

give a different reduction rate in the number of SVs as well as different levels of the loss

in generalization performance. The results are reported in Table 3.2. The first column

displays different values of threshold MMD (MMD = 0.0 for original machines). The

second column displays the total number of SVs in all ten binary classifiers. There are

two kinds of errors. The first, named ”Phase 1 Errors”, were produced by the simplified

classifiers using the simplification process described in Section 3.3.2 (phase 1), and the

second, named ”Phase 2 Errors”, were produced by those using the optimization process

described in 3.3.3 (phase 2) after phase 1 finished. For both kernels we could reduce the

number of SVs by more than 90% with only a minor loss in generalization performance.

Note that the achieved reduction rate depends on the ”complexity” of the solution, or

47

Table 3.2: Reduction in number of support vectors and the corresponding loss in general-

ization performance with different values of MMD. Original machines (the 3rd and 14th

lines) were trained on the USPS training data using Gaussian and polynomial kernels.

Errors were evaluated on the testing data.

RBF machines: gamma = 0.0078, C = 10

MMD # of SVs Phase 1 Errors Phase 2 Errors

0.0 5041 88(4.4%) 88(4.4%)

0.1 3476 85(4.2%) 88(4.4%)

0.2 2588 88(4.4%) 87(4.3%)

0.5 1285 91(4.5%) 90(4.5%)

0.7 864 97(4.8%) 94(4.7%)

1.0 502 108(5.4%) 95(4.7%)

1.2 343 124(6.2%) 97(4.8%)

1.5 246 144(7.2%) 101(5.0%)

Polynomial machines: degree = 3, C = 10

MMD # of SVs Phase 1 Errors Phase 2 Errors

0.0 4538 88(4.4%) 88(4.4%)

0.1 3024 88(4.4%) 88(4.4%)

0.2 2269 91(4.5%) 88(4.4%)

0.5 1114 93(4.6%) 89(4.4%)

0.7 795 104(5.2%) 89(4.4%)

1.0 522 110(5.5%) 91(4.5%)

1.2 397 116(5.8%) 93(4.6%)

1.5 270 147(7.3%) 95(4.7%)

48

Table 3.3: Experimental results on 45 binary classifiers learned from the USPS dataset

using the first phase of the proposed method. Left-bottom: number of support vectors in

original classifiers/number of vectors in simplified classifiers. Right-top: number of errors

on the test data of original classifiers - simplified classifiers.

digit 1 2 3 4 5 6 7 8 9 0

1 4-4 3-3 6-6 4-4 6-6 4-4 4-4 4-4 4-4

2 39/7 10-10 10-10 6-5 7-7 3-3 13-14 5-5 9-9

3 45/2 140/55 2-2 17-17 4-4 7-7 9-9 4-3 8-8

4 63/3 161/65 72/9 5-5 9-8 9-9 4-4 12-13 3-3

5 54/2 148/42 178/75 120/37 2-2 4-4 9-9 3-3 8-8

6 38/7 127/30 85/2 100/27 123/42 2-2 2-2 0-0 2-2

7 36/3 88/18 69/15 88/16 82/12 62/2 3-3 12-12 5-5

8 50/8 127/45 133/34 102/33 131/51 89/9 82/24 3-3 10-11

9 60/2 83/9 79/15 131/21 90/26 72/2 166/50 97/17 3-3

0 35/2 119/17 96/12 81/13 143/49 111/30 55/10 99/11 73/2

the difficulty of the problem. To judge this argument we conducted a second experiment on

45 binary classifiers trained to distinguish one digit from another in the USPS dataset (one-

versus-one strategy). Chosen kernels were Gaussian RBFs K(x, y) = exp(−γ ‖x − y‖2)

with the value of γ varied from 0.001 to 0.01 on a step of 0.002. The cost parameter C

was fixed at 10. For each classifier, model selection consisted of varying γ and selecting

the smallest value (or the simplest model) that gives the minimum train error (the train

errors of these classifiers are almost zero, except for some mislabeling training examples).

The results reported in Table 3.3 show that the highest reduction rate achieved is

97.6% (83/85) on the classifier distinguishing character ’3’ from character ’6’, and the

lowest rate is 57.9% (103/178) on the classifier distinguishing character ’3’ from character

’5’. The difference in generalization performance on all these machines is almost zero

(there were 6 differences on total 2007*9 tests).

To evaluate the performance on different applications, we conducted experiments on

five other datasets: the MNIST database of handwritten digits 1, four datasets DNA,

1Available at http://yann.lecun.com/exdb/mnist/

49

Table 3.4: Experimental results on various applications.

of Size Original Machines Simplified Machines

Dataset Dim. Classes Train Test # of SVs Error (%) # of SVs Error (%)

MNIST 784 10 60,000 10,000 22,294 1.5 2,538 1.6

Dna 180 3 2,000 1,186 1,686 6.0 93 6.4

Letter 16 26 15,000 5,000 10,284 5.0 2,993 5.2

Satimage 34 6 4,435 2,000 2,494 10.9 354 10.9

Shuttle 9 9 43,500 14,500 1,131 0.2 124 0.2

Letter Recognition, Satimage, and Shuttle in the StatLog collection 2. These datasets are

summarized in Table 3.4. Parameter settings for these datasets were polynomial kernel

of degree five for the MNIST, Gaussian kernels with the width of 1
0.6V ariance

[60] for the

StatLog datasets; the parameter MMD was fixed at 1.0. Experimental results in Table

3.4 show that with almost no change in generalization performance the achieved reduction

rates could vary from 70.9% to 94.5% (corresponding to a speed-up rate from 3.4 to 18.2

times) depending on application.

3.5 Discussion

We have described a method to reduce the computational complexity of support vector

machines by reducing the number of support vectors comprised in their solution. Our

method has several advantages compared to the earlier reduced set methods. Firstly, the

reduced vectors are constructed in a more ”natural” way, leading to a more ”meaningful”

reduced set. Each vector in the reduced set could be considered as representative of several

closed original SVs belonging to the same class. In Figure 3.7 we display the whole reduced

vector set of 10 simplified classifiers. Each reduced vector is constructed from the same

positive or negative close original SVs, so the original shape of these SVs is preserved.

This is quite different from the former reduced set methods that construct each new

vector from all original and newly constructed SVs. From Figure 3.7 we can also see that

different machine requires a different number of reduced SVs. For example, the machine

distinguishing character ’1’ from the other consists of only 6 SVs, while this number is 43

2Available at http://www.liacc.up.pt/ML/

50

SVs for machine ’8’. This indicates that it is unreasonable to decide the same number of

reduced SVs for all machines. The second advantage lies in the uniqueness of the result

in finding the reduced set. With our proposed method, each reduced vector corresponds

to the unique maximum point of a one-variable function on (0, 1), and the result of the

finding (for both two phases) is unique because we start from the same initial point and

use the same search strategy. All the results described in this paper can be reproduced

easily with a one-run test. Reproduction is difficult and very expensive, if not impossible,

for the former methods because for each reduced vector they have to solve a multivariate

parameter optimization problem, and the search has to restart many times with different

initial points. For the second phase optimization, as noted in [37], the optimization also

must be restarted to make sure that the global minimum of the cost function is actually

found. The third advantage is its competitive SVs reduction rate while preserving well

machine’s performance. Experiments on the USPS dataset show that a reduction rate

of 90.0% can be achieved with only a 0.3% loss in predictive accuracy (Gaussian kernel,

MMD = 1.0), and 91.3% with a 0.2% lost (polynomial kernel, MMD = 1.2). The

corresponding numbers reported in [37] are (for Gaussian kernel) 90% reduction rate with

0.3% loss (we report the reduction rate, not the number of SVs reduced because we did

experiments on non-processed datasets and the total number of SVs were different).

The proposed method is applicable for common kernels like Gaussian RBFs and poly-

nomial, and for both support vector classification and regression machines. For a further

speed-up, other approximation methods, e.g., [39, 40], can be applied together with the

reduced set methods to accelerate the test phase of the support vector machines.

51

Figure 3.6: Performance comparison between the former top-down the the proposed

bottom-up approach on the USPS dataset. With the same reduction rate the bottom-up

preserved better predictive accuracy, while computational efficiency is guaranteed by the-

oretical result. Note: Top-down: the result of fix-point iteration method in [37] (Phase

I); bottom-up: the result of proposed method (Phase I); Phase II: the result of proposed

method running with both two phases optimization.

52

Figure 3.7: Display of all vectors in simplified solutions. The original 10 classifiers trained

with polynomial kernel of degree three and the cost C = 10 consist of 4538 SVs and

produce 88 errors (on 2007 testing data). The simplified 10 classifiers consist of 270

vectors and produce 95 errors. The number below each image indicates the new weight

of a reduced vector.

53

Chapter 4

Speeding-up Support Vector

Training in Model Selection

4.1 Introduction

In a tutorial paper on support vector machines (SVMs) for pattern recognition, Burges [50]

pointed out three main limitations of the support vector learning approach. The biggest

limitation lies in the choice of the kernel and its parameter setting. The second limitation

is speed and size, in both the training and testing phases, and the third limitation is

dealing with discrete data. Doing model selection for SVMs means we have to deal with

the first two major limitations mentioned above.

In machine learning the model selection (MS) problem asks the following question [66],

[67], [68]: given an observed data set, which model or learning algorithm running with

which parameter setting will produce a model that performs best on unseen data? For

SVMs, it is to select the most suitable kernel, its parameter value(s), and the appropriate

error penalty on training error. To find the answer for this question, candidate models

should be tried, and the model with the highest estimated performance will be selected.

This is a very time consuming task because it requires multiple trials of training and

testing models.

In this chapter we first introduce model selection problem, particularly for the sup-

port vector learning approach. We then describe our investigation on relation between

two SVMs learned from the same training data using different kernels and parameter set-

tings. By conducting intensive experiments on different datasets, we found/reconfirmed

that every two SVMs share a big number of common support vectors. Based on this

investigation, we propose a simple yet effective way to speed-up the training phase in

MS process. The main idea is, in the sequence of trying models, the results of previous

54

trained machines are reused to train new machines. More concretely, the support vec-

tors in previous trained machines are used to initialize the working set in training each

new machine. This initialization of the working set helps to reduce the required number

of optimization loops, so the optimization process can converge more quickly. Experi-

mental results on three real-life datasets sat-image, letter recognition, and shuttle in the

StatLog collection [69] show that the training time for each subsequent machine can be

reduced as much as 85.5% depending on situations in the MS process. The method is

applicable to common model search strategies like grid search [30], pattern search [31], or

gradient-based methods [32], [70], and does not change the result of model selection.

The remainder of this chapter is organized as follows. In section 4.2, we describe the

model selection problem for SVMs, and review several approaches to reduce its running

time in section 4.3. Our proposed method for speeding up the training phase in model

selection for SVMs is described in section 4.4. In section 4.5 we describe our experiments,

and section 4.6 is a discussion.

4.2 Model Selection for Support Vector Machine

4.2.1 What is Model Selection

From a statistical point of view, models are sets of statistical hypothesis, e.g. [68], or

predictive densities, e.g. [71], and model selection aims at the selection of approximately

true models. For a more concrete definition of MS, let’s consider the prediction problem

in which a random observation X ∈ X is given and the task is to estimate Y ∈ Y . A

predictive model/rule is a measurable function f : X → Y , with loss L(f) = El(f(X), Y)

where l : Y × Y → [0, 1] is a bounded loss function. The data Dn = (X1, Y1), ..., (Xn, Yn)

consist of a sequence of independent, identically distributed samples with the same distri-

bution as (X, Y) and Dn is independent of (X, Y). The goal of MS is to choose a model

fn from some restricted class F such that the loss L(fn) = E [l(fn(X), Y)|Dn] is as close

as to the best possible loss, L∗ = inff L(f), where the infimum is taken over all prediction

rules f : X → Y [72].

Most models have their own parameters (except for non-parametric learning methods

like nearest neighbor classification), and these parameters are not subject to change in

training. For example: the number of neighbors k in k-nearest neighbor classification,

number of hidden layers and units in each layer in a neural network, type of kernel,

its parameter(s), and the error penalty in training a support vector machine. All these

parameters must be set before we run a back propagation algorithm to minimize number

of errors on training data by adjusting network’s weights and thresholds in case of neural

55

Figure 4.1: Relations among model complexity (horizontal axis), empirical risk (the dotted

line), and expected risk (the solid line). The dash-dotted line is the upper-bound on the

complexity term (confidence). [73]

network, or to minimize the objective function also on training data by adjusting the

weight of support vectors in support vector learning. However, our ultimate goal is not

to optimize the prediction on the given examples, but to optimize predictions on unseen

data. By increasing the complexity of a model (e.g. in terms of VC dimension), we

can achieve a perfect prediction on the given data, but this does not guarantee a good

prediction on testing data. Figure 4.1 illustrates the relation between empirical risk,

the loss achieved on training data, and the expected risk, or the actual loss what we

desire to minimize. With higher complexity of function class F the empirical errors

L(fn) = E [l(fn(X), Y)|Dn] decrease but from a certain complexity of the function class

the expected risk also increase. So the problem of model selection includes finding a good

model evaluation/ ranking criterion and searching in model space.

Model Evaluation

There are two main approaches to the goodness estimation of a model [74]: the complexity-

penalization methods that estimate a model based on its empirical loss and its complexity,

and the hold-out testing methods that do the same thing by testing models on a pseudo

data. The idea of complexity-penalization methods like minimum description length prin-

ciple e.g. [75], structure risk minimization [3, 4], is that they prefer model that keeps

56

balance between training loss and model’s complexity. For example. let’s take again the

bound (2.68). Our goal is to minimize R[f], which can be achieve by obtaining small

training error Remp[f] while keeping the function class as simple as possible (the second

term in the right-hand side of inequality (2.68) that will be discussed in more detailed

later).

The other most common approach is holdout-testing. The observed examples are

partitioned into a pseudo training set 1, ..., k and a holdout test set k+1, ..., t. Models are

learned on the pseudo training set and holdout test set is used to estimate the true errors.

There are many variants method of this basic strategy, e.g. 10-fold cross validation, leave-

one-out testing, bootstrapping, ect. Repeated testing in this manner does introduce some

bias in the error estimates, but the results are still generally better than considering a

single holdout partition [74].

There are many other methods for evaluating a model like the method of maximum

likelihood and classical hypothesis testing suggests model that has the greatest likelihood

among competing models; Akaike’s information criterion (AIC) and Bayesian informa-

tion criterion (BIC) uses different estimations to evaluate a model based on its trade off

between complexity and (training) data fitness [68]. Recently, new methods have been

proposed that exploit the availability of unlabeled data in addition to the training data

[74]. Also there has been a surge of interest in stability-based methods, e.g. [76]. These

many different ways of evaluating models have their own advantages as well as weaknesses,

and model evaluation is still a hard problem that does not have yet solutions that work

across application domains and model families. There is no consensus right now about

which approach works best.

Searching in Model Space

As stated above, most learning algorithm has its own parameter(s) and the changing of

parameter setting affects prediction performance. Thus we do need a search strategy to

explore parameter space. Exhaustive search is possible for discrete parameters, but often

computationally impossible. Other search strategies include grid search, e.g. [30], pattern

search [31], and all the common search techniques, when applicable (gradient descent,

genetic algorithms, simulated annealing, greedy methods, relaxation techniques, etc.).

4.2.2 Model Selection for Support Vector Machines

Though possessing a very nice property that there is always an unique global optimum

solution in training a SVM, selecting a suitable kernel function and its parameter(s), or

57

Figure 4.2: Different kernels produce different type of discriminant function.

adjusting the soft-margin parameter is outside of this nice optimization framework and

requires an auxiliary technique. Figure 4.2 shows the difference in results of training a

SVM with different type of kernels on the same dataset. One may have a linear classifier, or

a polynomial function of some degree, or a Gaussian radial basis function, or a particular

kind of two-layer sigmoidal neural network. The problem is that we do not know which

machine is suitable for a given problem. Also, for each type of kernel function there is its

own parameter. In case of Gaussian RBF kernel, parameter is the width of the function.

By reducing the width, we can increase the complexity of corresponding machine [77].

In Figure 4.3, two different machines were trained on the same dataset using the same

Gaussian kernel but with different values of width parameter and different values of the

soft-margin parameter. The result was that SVM training algorithm produced a machine

with 15 training errors and a machine with only one training errors. Also, we are not sure

about which one will produce a better prediction on unseen data.

Beside general model evaluation methods described above, there have been a number

of evaluation criteria specially designed for SVMs. The first one is the bound introduced

in (2.68). In the second term on the right hand side

√
h(log 2l

h
+ 1) − log(δ/4)

l
(4.1)

h is a non-negative integer called the Vapnik-Chervonenkis (VC) dimension that mea-

sures the capacity of a function class; l is the number of training examples. The main

idea behind the bound (2.68) is that we want the model/function f with a minimum

(true) risk on the left R[f], but this is impossible. Instead, if we know h then we can

easily compute the right hand side. Thus given several SVMs (or models), and choosing

a fixed, sufficiently small δ, by then talking that machine which minimizes the right hand

side, we are choosing that machine which give the lowest upper bound on the actual risk.

58

Figure 4.3: Trade off between model complexity and empirical risk.

This give a principled method for choosing a learning machine for a given task, and is the

essence ideal of structural risk minimization. For computing h, readers are recommended

to see [78]. In [4], another type of bound was obtained which demonstrated that for the

separable case the expectation of probability of error for hyperplane passing though the

origin depends on the expectation of ratio between radius R of the smallest hypersphere

containing all SV in feature space and the margin ‖w‖. More concretely the radius margin

bound is

loo ≤ 4R2 ‖w‖2 (4.2)

where loo is the number of leave-one-out cross validation errors. There are several

more complicated method for approximating loo errors based on the concept of span of

support vectors [79, 32].

Though there have been many criteria proposed as summarized above, k-fold cross

validation is still one of the most widely used methods for performance evaluation and

model selection, not only for SVMs but also for other learning approaches. In k-fold cross

validation, the available dataset S is divided into k disjoint parts S = S1 ∪ S2 ∪ ... ∪ Sk.

Models are trained on the k − 1 parts S1 ∪ ... ∪ Si−1 ∪ Si+1 ∪ ... ∪ Sk and tested on

the remaining part Si. The performances are then averaged. Though the k-fold cross

validation method is simple, consistent [80], almost unbiased [81], and works well in many

applications [82]; the main drawback of k-fold cross validation is its high computational

cost. For evaluating one model, 10-fold cross validation needs 10 times of training and

59

testing. In the next section we will discuss the problem of how to reduce this highly

computational cost.

4.3 Speeding-up Model Selection SVM

4.3.1 Speeding-up by Improving Search Strategy

In order to speed-up the finding for the best model, a natural way is to apply a good

search strategy working on model space. In support vector learning, model space consists

of machines trained with different types of kernel, values of kernel’s parameter, and a

penalty constant C for each training error (e.g. for two-class classification machine).

Thus the number of possible models is infinite. For example, if we consider Gaussian RBF

kernel K(x, y) = exp(−γ ‖x − y‖2), the width γ of this kernel function takes value in R,

so does the cost C. We cannot consider all possible pairs in the space R2 in order to select

the best model for our application. Grid search, e.g. [30] solves this problem by defining a

grid of points in search space, and then all models trained with parameter values at these

points are evaluated in order to find the best one. Usually the gird is not determined

linearly but in a log scale to cover a large region. For example, if we transform the (γ, C)

space into (X = log γ, Y = log C) space, then the corresponding range −2 ≤ X ≤ 10 and

−2 ≤ Y ≤ 10 will be 0.1353 ≤ γ ≤ 22026 and 0.1353 ≤ C ≤ 22026. In this type of search,

the coarseness of the grid determines the quality of the solution found and the efficiency

of the search. To avoid the explosion of number of models having to consider, the pattern

search [31] could be a good solution. Beginning from a starting points in parameter space,

pattern search investigates its neighbors and moves the focus point to one of them. The

transition from one point to another is determined by a fix neighbor sampling pattern

and the length of the search step. The length could be shrunk at each iteration until

convergence is reached. To avoid local optimal as well as to increase robustness of the

method, bagging or model averaging is suggested. Another way to reduce number of

considered models is using gradient search when derivation of bounds could be calculated

or approximated. In [32, 33], Chapelle and co-author proposed to use a gradient descent

search to optimize the radius margin bound and span bound criteria. The limitation of

this method is the need for a gradient computation which might be impossible or very

difficult for general kernel.

60

4.3.2 Speeding-up by Improving Model Evaluation

Aside from improving search strategy, several methods have been proposed to quickly

evaluate each considering model. In [70], authors proposed an efficient implementation

for tuning SVM parameters using radius margin bound. Joachims [35] proposed the ξα-

estimator to estimate generalization performance of a SVM without any computational

intensive re-sampling. The ξα-estimator is much more efficient than cross validation

because it can be computed immediately from the form of the hypothesis returned by the

SVM. However, this estimator may not be differentiable, so it can not be used together

with gradient search strategy.

Another approach to reduce computational cost of model selection is to apply a data

filtering technique to reduce the size of the problem, e.g. [83]. However, the drawback of

this approach is that the data filtering algorithm also has its own parameter(s), thus it is

virtually required to solve another model selection problem.

4.4 Speeding-up SVM Training in Model Selection

All the above model selection methods require trying a series of models, or running the

SVM training program many times with different values of parameters. In this section,

we propose a simple yet effective way to speed-up the training phase for each considering

model. The main idea is, in the process of trying a series of models, the support vectors

in previously trained machines are used to initialize the working set in training a new

machine. This initialization helps to reduce the number of required optimization loops,

thus reducing the required running time.

4.4.1 The General Decomposition Algorithm for SVM Training

We would like to start introducing the decomposition framework for training a SVM. For

convenience we rewrite the optimization problem as follows

minimize : W (α) = −
l∑

i=1

αi +
1

2

l∑
i,j=1

yiyjαiαjK(xi, xj) (4.3)

subject to:

l∑
i=1

yiαi = 0 (4.4)

0 ≤ αi ≤ C, i = 1, ..., l (4.5)

61

where l is the number of training examples, α is a vector of l variables where each

component αi corresponds to a training example (xi, yi). The solution of 4.3 is the vector

α∗ for which 4.3 is minimized and constraints 4.4 are satisfied.

Defining matrix Q as Qij = yiyjK(xi, xj), the above optimization can be writtern as

minimize : W (α) = −αT1 +
1

2
αT Qα (4.6)

subject to:

αTy = 0 (4.7)

0 ≤ α ≤ C1 (4.8)

This optimization works in a space of l variables αi, i = 1...l with l2 coefficients

Qij , i, j = 1...l. Usually these coefficients need to be precomputed due to their very

frequent use. For learning tasks with more than 10,000 training examples and more, it

becomes impossible to keep Q in memory. An alternative would be to recomputed Qij

whenever it is used, but this becomes very expensive.

The decomposition algorithm introduced in [5] suggests to split l training examples

into two parts: active part B of free variable and inactive part N of fixed variables.

Active variables are those which can be updated and inactive variables are those which

temporally are fixed. Assuming that α, y, and Q are properly arranged with respect to

B and N , so that

α =

(
αB

αN

)
(4.9)

y =

(
yB

yN

)
(4.10)

Q =

(
QBB QBN

QNB QNN

)
(4.11)

Since Q is symmetric, we can write problem (4.6) as

minimize : W (α) = −αT
B(1 − QBNαN) +

1

2
αT

BQBBαB +
1

2
αT

NQNNαN − αT
N1 (4.12)

subject to:

αT
ByB + αT

NyN = 0 (4.13)

0 ≤ α ≤ C1 (4.14)

62

Because variables in N are fixed, term 1
2
αT

NQNNαN and αT
N1 are constants. They can

be omitted without changing the solution of (4.12). Problem (4.12) is also a quadratic

programming problem with size smaller than (4.6). In the decomposition algorithm sum-

marized in Table 2.1, a set of q variables are firstly selected for the working set B, remain-

ing l − q variables are fixed at their current values. In the main loop, an optimization

technique works only on the working set B to find the local optimization solution. Usu-

ally, the sequential minimal optimization algorithm (SMO) [6, 7] is used to do this task.

After that, working set B is updated by replacing vectors with zero coefficient with other

vectors in N that does not satisfy the optimization conditions (the Karush-Kuhn-Tucker

conditions). The process is repeated until there is no vector violating the KKT conditions,

or the global optimization conditions are met. This common framework has been used in

almost implementation of SVM learning like LibSVM [10], SV M light [9], SVMTorch [11],

HeroSVM [12]. To improve the efficiency some techniques like ”shrinking” and ”caching”

are used.

It is clear that both initializing and updating working set B play an important role

to the convergence of the decomposition algorithm. For example, if all SVs (those with

the corresponding αi > 0) are selected in the first working set, then the main loop has to

run just one time because the local optimized solution on B is also the global solution on

the whole l training examples. In other words, a better initial working set with as many

support vectors as possible will produce a local solution closer to the global solution, and

will lead to a faster global convergence. However, in practice we don’t know in advance

which training vector will be the support vector, and in practice there is no way but to

randomly initialize the working set, e.g. [12]. We can also increase the number of support

vectors included in the initial working set by increasing the size of the working set, but

the side effect is that this will also increase the local optimization time, and therefor will

increase the training time [12]. Moreover, size of the working set is limited by available

memory of computer, due to the requirement of kernel matrix.

4.4.2 Initializing Working Set

Our method starts with the fact that support vectors are training examples that lie close

to the border between two classes (for two-class SVMs), and any two different machines

may have many of them in common. This property had been reported in literature; for

example, on the USPS hand-written digit dataset, two different machines trained by two

different kernels, RBF and polynomial, share more than 80% of support vectors [4]. To

reconfirm this argument we conducted intensive experiments on three datasets, sat-image,

letter recognition, and shuttle, from the StatLog collection [69]. Details are reported in

63

Figure 4.4: Common support vectors in two different machines learned from three datasets

sat-image, letter recognition, and shuttle: (a) linear machines learned with different error

penalties C = 1 and C = 2, (b) polynomial machines of degree two and three learned

with the same C = 1, (c) RBF machines learned with different error penalties C = 1 and

C = 2.

Figure 4.4. The results of these experiments show that two different machines trained

by different parameter settings share more than 86.0% number of support vectors. In

model selection context, many machines must be tried, and we can benefit from using the

information of previous trained models in training new ones.

One rather simple way is to select the SVs in trained machines as the initial working set

for training a new machine. Especially, when two consecutive SVMs have the same kernel

function, one solution can be reused directly to seed the search for another machine’s

solution, e.g. [84]. For example, supposed that training the first machine SV M1 with

kernel function K and error penalty C = C1 resulted optimal solution αSV M1. To train

a new machine SV M2 with the same kernel function K and error penalty C = C2, we

can select all support vectors in SV M1 into the first working set and initialize their

corresponding Lagrangian coefficients

αSV M2
i = C2

αSV M1
i

C1
, i = 1, ..., l (4.15)

This initialization ensures that the new solution αSV M2 is a feasible solution of the

optimization for SV M2 training. For different kernels, we can just select support vectors

into the working set and reset all corresponding Lagrangian coefficients αi to zero. This

method faces two difficulties in implementation. First, when the number of classes in

the dataset is more than two, then the number of SVM required to build-up a classifier

is m or m ∗ (m − 1)/2 binary classifiers depending on whether the selected strategy is

one-versus-one or one-versus-rest, where m is the number of classes. In order to retain

the information of previously trained machines, we need m or m ∗ (m − 1)/2 different

sets of SVs. The second problem is that because the size of the working set is given in

64

Figure 4.5: Illustration of initializing working set using result of previously trained SVM.

The optimized solution for machine (γ = 10, C = 10) (d) can be reached normally from

an random initial solution (a), or more efficiently from solution of a trained machine

(γ = 5, C = 10) or (γ = 10, C = 1).

65

Table 4.1: Datasets used in experiments

Dataset # Attribute # Class Size

Sat-image 36 6 4,435

Letter recognition 16 26 15,000

Shuttle 9 7 43,500

advance then the total number of SVs may exceed this limitation. In our experiments,

a FIFO (First In First Out) queue structure with the same size as the working set was

used to store the SVs of previous trained (binary) machines. With this structure, all the

SVs of the latest trained machine (supposed to be closest to the next machine) are kept

in the initial working set. Figure 4.5 illustrates the idea of using the result of a trained

machine to train a new machine in model selection process. With a better initial step we

can shorten the way to the optimized solution.

4.5 Experiments

We conducted experiments on three datasets in the StatLog collection: sat-image, letter

recognition, and shuttle. These datasets are summarized in Table 4.1. They were chosen

for their generality in dimension, size, number of classes, and the class distribution.

To see the effect of the method in real situations, we conducted experiments in different

scenarios, including fixing the kernel and varying the cost parameter, fixing the cost and

changing the kernel, and changing both kernel and cost parameter. In the first scenario

we fixed the kernel to be linear and varied the cost parameter from 1 to 10. The second

scenario was to fix the cost parameter at 1 and train the machines with polynomial

kernels of degree from 2 to 9. The third scenario used Gaussian RBF kernels of the width

γ changing from 0.01 to 0.1 with a step of 0.01 and varied the cost parameter from 1 to

10. The kernel cache sizes were 2000 (sat-image), 2000 (letter recognition), and 10,000

(shuttle). The optimization program was an implementation of the SMO algorithm and

its improvement [6], [7]. Experiments were conducted on a PC Windows XP with 2.99

GH, 2GB RAM.

From the experimental results reported in Figure 4.6, we can see that in every situation

the training time for each subsequent machine was reduced significantly, from 22.8%

(shuttle dataset, RBF kernel, error cost 2) to 85.5% (sat-image dataset, linear kernel,

cost 7).

66

Figure 4.6: Reduction in number of required optimization loops and training time on

three datasets sat-image (a-d-g), letter recognition (b-e-h), and shuttle (c-f-i), and in

different situations: the same linear kernel with different cost (a-b-c), polynomial kernels

of different degree with the same cost, and different RBF kernels with different costs.

”org.” denotes the original method with randomly working set selection; ”WS” denotes

the proposed method. All measures (average number of loops and training time) are

normalized in to [0, 1].

67

4.6 Discussion

We have described a method to speed up the training phase in model selection for support

vector machines. The method utilizes the support vectors of previous trained machines

to initialize the working set in training a new machine. This initialization scheme makes

the training process converge more quickly. Experiment results on real life datasets show

that the training time of subsequent machines can be reduced significantly.

In comparing with other speeding-up methods, the proposed one has two main ad-

vantages. First, it does not change the result of model selection. This is because the

proposed method aims at initializing a better working set, leading to a faster convergence

in training. In [83], a data filtering method is used to reduce the number of data in the

dataset, or to reduce the size of the optimization problem. The data reduction makes the

model selection process run faster, but the result is not the same as working on the entire

available dataset due to the distortion of the training data. Moreover, the data-filtering

algorithm has its own parameter k (in k-NN classification), so for each application it is

necessary to do another model selection job in order to find the best value of k. The

second advantage is the applicability of the proposed method in different situations and

for different model search strategies like grid search [30], pattern search [31], and gradient-

based methods [32], [70]. The alpha-seeding method in [84] is limited to the same kind of

kernel and with a limited scheme of varying cost parameter. Experiment results on the

adult dataset in the UCI corpus with linear kernel show the effectiveness of the alpha-

seeding method (a reported of 5 times faster), but for machines with different kernels and

different cost values, this method is not applicable.

The future work of this research is to enhance the way we utilize previous trained

machines in initializing the working set, for example, using not only the support vectors

(those with a distance to the separating hyperplane smaller than or equal one), but also

the vectors that lie close to the separating plane (those with a distance to the separating

hyperplane greater than one).

68

Chapter 5

Conclusions and Future Work

It is widely accepted that the support vector learning approach can produce machines

with high generalization ability. Its solid theoretical background and success in many

practical applications make support vector machine has received great attention in recent

years. This dissertation introduces our two main contributions to the development of this

learning approach: making a trained SVMs run faster and speeding-up SVM training in

a model selection process.

For the first problem, we proposed a new method to reduce the complexity of a trained

SVM by reducing the number of support vectors included in support vector solution. The

reduction is done by iteratively replacing two support vectors by a newly created one,

while trying to keep the whole solution unchanged. In comparing with former top-down

approach, the proposed bottom-up approach leads to a conceptually simpler and compu-

tationally less expensive method. The construction of each new support vector is based

on the finding of the unique maximum point of a one-variable function on (0, 1), not to

minimizing a multi-variable function with local minima. Experimental results on real life

datasets show that the proposed method can reduce 57.9-97.6% of the number of support

vectors, or making SVMs run 2.4 to 41.6 times faster with an almost unchanged general-

ization performance. Comparisons with previous methods also showed that the proposed

one produced very competitive (even slightly better) results in terms of reduction rate

and preserving predictive accuracy. The method is applicable for two-class support vec-

tor classifiers, support vector regressor, and one-class support vector machine for outlier

detection task.

Several open problems are still remaining for a further research. Firstly, the con-

struction of each new support vector is kernel-dependent. In this dissertation we have

introduced the calculation of reduced support vectors for the two most commonly used

kernels, the Gaussian RBF and polynomial kernels. The question is how does the pro-

69

posed method work for other types of kernel, like sigmoidal, inverse multi-quadric, spline

kernels, or string kernels? Is the calculation simply to find the unique extremum of a

one-variable function, or more complex? To answer these questions, it certainly requires

an appropriate understanding above the kernel, and relation between support vectors in

feature space which we cannot know explicitly. Another problem is that the proposed

method suggests to represent and replace two close support vectors by another one, or

more generally to represent a group of close support vectors by a representative. This

representation is apparently reasonable and meaningful for the cases where input patterns

are dense numerical vectors, e.g. in optical character recognition application. The ques-

tion is how to combine patterns in other domains such as textual data, DNA and protein

sequences in biology, graphs, or other structured data. And a more important question is

that is this combination reasonable?

For the second problem, though the solution for each SVM is unique and global op-

timized, it does not mean that having a good machine for a given application is an easy

task. Finding a suitable kernel and its parameter setting is still an open question in

the field. Users must carry out an intensive model selection process with many trials of

training and testing with different kernels and different values of parameters. We con-

ducted intensive experiments and showed that two different machines trained by different

parameter settings have many support vectors in common. Thus we can benefit from the

result of trained machines to speed-up the optimization in training new machines. Our

research demonstrated that, in a model selection process, by using solution of previously

trained machine to initialize the search in training a new machine can reduce 22.8-85.5%

training time. This method is applicable to any search strategy and does not change the

result of model selection. One open question is that can the inheritance from previously

trained machines be made more effectively? For example, SVMs are not only slow in

training phase but also in testing phase, can we use trained machines to eliminate input

patterns that are not support vectors in most machines under consideration? Thus we

don’t have to deal with these vectors in evaluating a model. And what can be effected

by this elimination?. This idea is similar to using a data filtering technique to preprocess

the data, but the advantage is that we don’t have to solve another model selection task in

chosing parameter for the data filtering algorithm. Another open problem for an efficient

model selection method is how to conduct the process automatically. Because we cannot

try all kernels and all possible values of paramters, so we firstly conduct model selection

in some initial region in the whole space of hypothesis, e.g. when we use the common

grid-search strategy. What happens if the best value does not belong to that region?

Certainly we have to try again with another range of values. This problem demands more

70

effort of support vector learning researchers.

71

Bibliography

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, 1992, pp. 144–152.

[2] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp.

273–297, 1995.

[3] V. N. Vapnik, The Nature of Statistical Learning Theory. N.Y.: Springer, 1995.

[4] V. N. Vapnik, Statistical Learning Theory. N.Y.: John Wiley & Sons, 1998.

[5] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support

vector machines,” in Neural Networks for Signal Processing VII - Proceedings of the

1997 IEEE Workshop, N. M. J. Principe, L. Gile and E. Wilson, Eds., New York,

1997, pp. 276–285.

[6] J. Platt, “Fast training of support vector machines using sequential minimal opti-

mization,” in Advances in Kernel Methods - Support Vector Learning, B. Scholkopf,

C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp.

185–208.

[7] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, “Improvements to platt’s

smo algorithm for svm classifier design,” Neural Computation, vol. 13, pp. 637–649,

Mar. 2001.

[8] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using the second order

information for training svm,” in http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2005.

[9] T. Joachims, “Making large-scale support vector machine learning practical,” in Ad-

vances in Kernel Methods: Support Vector Machines, A. S. B. Scholkopf, C. Burges,

Ed. MIT Press, Cambridge, MA, 1998.

72

[10] C. Chih-Chung and L. Chi-Jen, “Libsvm : a library for support vector machines,”

in http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[11] R. Collobert and S. Bengio, “Svmtorch: support vector machines for large-scale

regression problems,” The Journal of Machine Learning Research, vol. 1, pp. 143–

160, 2001.

[12] J. X. Dong, A. Krzyzak, and C. Y. Suen, “A fast svm training algorithm,” Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, vol. 17, no. 3, pp.

367–384, 2003.

[13] G. H. Peter, C. Eric, B. Léon, D. Igor, and V. Vladimir, “Parallel support vector ma-

chines: The Cascade SVM,” in Advances in Neural Information Processing Systems,

L. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17. MIT Press, 2005.

[14] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake, “Efficient face detection by a

cascaded support-vector machine expansion,” Proceedings: Mathematical, Physical

and Engineering Sciences, pp. 3283 – 3297, 2004.

[15] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of svms for very large

scale problems,” Neural Computation, vol. 14, no. 5, pp. 1105–1114, 2002.

[16] X. Liu, L. O. Hall, and K. W. Bowyer, “Comments on a parallel mixture of svms for

very large scale problems,” Neural Computation, vol. 16, no. 7, pp. 1345–1351, 2004.

[17] K.-M. Lin and C.-J. Lin, “A study on reduced support vector machines,” IEEE

Transactions on Neural Networks, vol. 14, no. 6, pp. 1449–1459, 2003.

[18] Y.-J. Lee and O. L. Mangasarian, “Rsvm: Reduced support vector machines,” in

Proceedings of the First SIAM International Conference on Data Mining. Morgan

Kaufmann, San Francisco, CA, 2001.

[19] B. Gokhan, B. Leon, and W. Jason, “Breaking svm complexity with cross-training,”

in Advances in Neural Information Processing Systems, L. Saul, Y. Weiss, and L. Bot-

tou, Eds., vol. 17. MIT Press, 2005, pp. 81–88.

[20] J. Wang, X. Wu, and C. Zhang, “Support vector machines based on k-means clus-

tering for real-time business intelligence systems,” International Journal of Business

Intelligence and Data Mining, vol. 1, no. 1, pp. 54–64, 2005.

[21] D. Boley and D. Cao, “Training support vector machine using adaptive clustering,”

in 2004 SIAM International Conference on Data Mining, FL, USA, 2004.

73

[22] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers with online

and active learning,” Journal of Machine Learning Research, vol. 6, pp. 1579–1619,

2005.

[23] G. Schohn and D. Cohn, “Less is more: Active learning with support vector ma-

chines,” in Proc. 17th International Conf. on Machine Learning. Morgan Kaufmann,

San Francisco, CA, 2000, pp. 839–846.

[24] S. Tong and D. Koller, “Support vector machine active learning with applications

to text classification,” in The 17th International Conference on Machine Learning,

P. Langley, Ed. Stanford, US: Morgan Kaufmann, 2000, pp. 999–1006.

[25] C. K. I. Williams and M. Seeger, “Using the nystrom method to speed up kernel

machines,” Advances in Neural Information Processing Systems, vol. 13, pp. 682–

688, 2001.

[26] A. J. Smola and B. Schölkopf, “Sparse greedy matrix approximation for machine

learning,” in Proc. 17th International Conf. on Machine Learning. Morgan Kauf-

mann, San Francisco, CA, 2000, pp. 911–918.

[27] S. Fine and K. Scheinberg, “Efficient svm training using low-rank kernel representa-

tions,” J. Mach. Learn. Res., vol. 2, pp. 243–264, 2002.

[28] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast svm

training on very large data sets,” J. Mach. Learn. Res., vol. 6, pp. 363–392, 2005.

[29] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino, “Quantum optimization for

training support vector machines,” Neural Netw., vol. 16, no. 5-6, pp. 763–770, 2003.

[30] C. W. Hsu and C. J. Lin, “A comparison on methods for multi-class support vector

machines,” IEEE Transactions on Neural Networks, vol. 13, pp. 415–425, 2002.

[31] M. Momma and K. Bennett, “A pattern search method for model selection of support

vector regression,” in Proc. of SIAM Conference on Data Mining, 2002.

[32] O. Chapelle and V. Vapnik, “Model selection for support vector machines,” Advances

in Neural Information Processing Systems, vol. 12, 2000.

[33] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple param-

eters for support vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 131–159,

2002.

74

[34] H. Frohlich, O. Chapelle, and B. Scholkopf, “Feature selection for support vector

machines using genetic algorithms,” International Journal on Artificial Intelligence

Tools, vol. 13, no. 4, pp. 791–800, 2004.

[35] T. Joachims, “Estimating the generalization performance of a SVM efficiently,”

in Proceedings of ICML-00, 17th International Conference on Machine Learning,

P. Langley, Ed. Stanford, US: Morgan Kaufmann Publishers, San Francisco, US,

2000, pp. 431–438.

[36] C. J. C. Burges, “Simplified support vector decision rules,” in Proc. 13th International

Conference on Machine Learning, San Mateo, CA, 1996, pp. 71–77.

[37] B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. Muller, G. Ratsch, and A. J.

Smola, “Input space versus feature space in kernel-based methods,” IEEE Trans.

Neural Networks, vol. 10, no. 5, pp. 1000–1017, 1999.

[38] T. Downs, K. E. Gates, and A. Masters, “Exact simplification of support vector

solutions,” Journal of Machine Learning Research, vol. 2, pp. 293–297, 2001.

[39] D. DeCoste, “Anytime interval-valued outputs for kernel machines: Fast support

vector machine classification via distance geometry,” in Proceedings International

Conference on Machine Learning (ICML-02), 2002, pp. 99–106.

[40] D. DeCoste and D. Mazzoni, “Fast query-optimized kernel machine classification

via incremental approximate nearest support vectors,” in Proceedings International

Conference on Machine Learning (ICML-03), 2003, pp. 115–122.

[41] R. Genov and G. Cauwenberghs, “Kerneltron: Support vector ‘machine’ in silicon,”

in SVM ’02: Proceedings of the First International Workshop on Pattern Recognition

with Support Vector Machines. London, UK: Springer-Verlag, 2002, pp. 120–134.

[42] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: an applica-

tion to face detection,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 1997.

[43] N. Ancona, G. Cicirelli, E. Stella, and A. Distante, “Object detection in images:

Run-time complexity and parameter selection of support vector machines,” in 16th

International Conference on Pattern Recognition (ICPR’02), 2002.

[44] P. Michel and R. E. Kaliouby, “Real time facial expression recognition in video

using support vector machines,” in ICMI ’03: Proceedings of the 5th international

75

conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2003, pp.

258–264.

[45] S. Kang, H. Byun, and S.-W. Lee, “Real-time pedestrian detection using support

vector machines,” in SVM ’02: Proceedings of the First International Workshop on

Pattern Recognition with Support Vector Machines. London, UK: Springer-Verlag,

2002, pp. 268–277.

[46] M. Davy, F. Desobry, A. Gretton, and C. Doncarli, “An online support vector ma-

chine for abnormal events detections,” Signal Processing, vol. 1, no. 1, pp. 1–42,

2005.

[47] A. Gretton and F. Desobry, “Online one-class nu-svm, an application to signal seg-

mentation,” in IEEE ICASSP 2003, 2003.

[48] C. J. C. Burges and B. Scholkopf, “Improving the accuracy and speed of support

vector learning machines,” in Advances in Neural Information Processing Systems 9,

M. Mozer, M. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp.

375–381.

[49] B. Scholkopf, P. Knirsch, A. Smola, and C. Burges, “Fast approximation of support

vector kernel expansions, and an interpretation of clustering as approximation in

feature spaces,” in DAGM-Symposium, Informatik aktuell, P. Levi, M. Schanz, R.-J.

Ahlers, and F. May, Eds. Berlin: Springer, 1998, pp. 124–132.

[50] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,”

Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[51] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain,” Psychological Review, vol. 65, pp. 386–408, 1958.

[52] K. Fukunaga, Statistical Pattern Recognition. New York: Academic Press, 1989.

[53] B. Scholkopf and A. Smola, Learning with Kernels. Cambridge, MA: MIT Press,

2002.

[54] C. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines.

Cambridge University Press, 2000.

[55] T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” in Proceedings of the European Conference on Machine

Learning, C. Nedellec and C. Rouveirol, Eds. Berlin: Springer, 1998, pp. 137–142.

76

[56] Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes, J. Denker, I. Guyon, U. Muller,

E. Sackinger, P. Simard, and V. Vapnik, “Learning algorithms for classification: A

comparison on handwritten digit recognition,” Neural Networks, pp. 261–276, 1995.

[57] S. Dohkan, A. Koike, and T. Takagi, “Support vector machines for predicting protein-

protein interactions,” Genome Informatics, vol. 14, pp. 502–503, 2003.

[58] A. Kowalczyk and B. Raskutti, “One class svm for yeast regulation prediction,”

SIGKDD Explor. Newsl., vol. 4, no. 2, pp. 99–100, 2002.

[59] R. Fletcher, Practical Methods of Optimization. New York: John Wiley, 1987.

[60] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit recognition:

bench-marking of state-of-the-art techniques,” Pattern Recognition, vol. 36, pp. 2271–

2285, 2003.

[61] S. Mika, B. Scholkopf, A. Smola, K.-R. Muller, M. Scholz, and G. Ratsch, “Kernel

pca and de-noising in feature spaces,” in Advances in Neural Information Processing

Systems 11, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT

Press, 1999, pp. 536–542.

[62] J. Kwok and I. Tsang, “The pre-image problem in kernel methods,” in In Proceed-

ings of the Twentieth International Conference on Machine Learning (ICML-2003),

Washington, D.C., USA, 2003, pp. 408–415.

[63] C. A. Micchelli, “Interpolation of scattered data: distance matrices and conditionally

positive definite functions,” Constructive Approximation, vol. 2, pp. 11–22, 1986.

[64] F. Girosi, “An equivalence between sparse approximation and support vector ma-

chines,” Neural Computation, vol. 10, no. 6, pp. 1455–1480, 1998.

[65] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes

in C++ : the art of scientific computing. Cambridge University Press, 2002.

[66] T. Scheffer and T. Joachims, “Expected error analysis for model selection,” in Pro-

ceedings of ICML-99, 16th International Conference on Machine Learning, I. Bratko

and S. Dzeroski, Eds. Bled, SL: Morgan Kaufmann Publishers, San Francisco, US,

1999, pp. 361–370.

[67] M. J. Kearns, Y. Mansour, A. Y. Ng, and D. Ron, “An experimental and theoretical

comparison of model selection methods,” in Computational Learing Theory, 1995,

pp. 21–30.

77

[68] M. Forster, “Key concepts in model selection: Performance and generalizability,”

Journal of Mathematical Psychology, vol. 44, no. 1, pp. 205–231, 2000.

[69] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning, Neural and

Statistical Classification. N.Y.: Ellis Horwood, 1994.

[70] S. Keerthi, “Efficient tuning of svm hyperparameters using radius/margin bound and

iterative algorithms,” IEEE Transactions on Neural Networks, vol. 13, pp. 1225–1229,

Sept. 2002.

[71] W. Zucchini, “An introduction to model selection,” Journal of Mathematical Psy-

chology, vol. 44, pp. 41–46, 2000.

[72] P. L. Bartlett, S. Boucheron, and G. Lugosi, “Model selection and error estimationy,”

Machine Learning, vol. 48, no. 1-2, pp. 85–113, 2000.

[73] K. Muller, S.Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An introduction to

kernel-based learning algorithms,” IEEE Transactions on Neural Networks, vol. 12,

no. 2, pp. 181–201, 2001.

[74] D. Schuurmans, “A new metric-based approach to model selection,” in The Four-

teenth National Conference on Artificial Intelligence (AAAI-97), 1997, pp. 552–558.

[75] M. H. Hansen and B. Yu, “Model selection and the principle of minimum description

length,” Journal of the American Statistical Association, vol. 96, no. 454, pp. 746–

774, 2001.

[76] T. Lange, M. L. Braun, V. Roth, and J. M. Buhmann, “Stability-based model se-

lection,” Advances in Neural Information Processing Systems, vol. 15, pp. 746–774,

2003.

[77] S. Keerthi and C.-J. Lin, “Asymptotic behaviours of support vector machines with

gaussian kernel,” Neural Computation, vol. 15, pp. 1667–1689, 2003.

[78] V. Vapnik, E. Levin, and Y. L. Cun, “Measuring the vc-dimension of a learning

machine,” Neural Comput., vol. 6, no. 5, pp. 851–876, 1994.

[79] V. Vapnik and O. Chapelle, “Bounds on error expectation for support vector ma-

chines,” Neural Computation, vol. 12, no. 9, pp. 2013–2036, 2000.

[80] J. Shao and D. Tu, The Jackknife and Bootstrap. New York: Springer-Verlag, 1995.

78

[81] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. London: Chapman

& Hall, 1993.

[82] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection,” in Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence. Morgan Kaufmann, 1995, pp. 1137–1143.

[83] Y. Y. Ou, C. Y. Chen, S. C. Hwang, and Y. J. Oyang, “Expediting model selection for

support vector machines based on data reduction,” in Proceedings of the 2003 IEEE

International Conference on Systems, Man, and Cybernetics, Washington D.C., Oct.

2003.

[84] D. DeCoste and K. Wagstaff, “Alpha seeding for support vector machines,” in Inter-

national Conference on Knowledge Discovery & Data Mining (KDD-2000), 2000.

79

Publications

[1] D.D. Nguyen, T.B. Ho: “A Bottom-up Method for Simplifying Support Vector

Solutions,” IEEE Transactions on Neural Networks, (in press).

[2] D.D. Nguyen, T.B. Ho: “An Efficient Method for Simplifying Support Vector

Machines,” The 22th International Conference on Machine Learning, ICML 2005,

Bonn, Germany, (August 2005).

[3] D.D. Nguyen, T.B. Ho: “Speeding-up Model Selection for Support Vector Ma-

chines,” The 18th International Conference of Florida Artificial Intelligence Re-

search Society FLAIRS, Florida, USA, (May 2005).

[4] D.D. Nguyen, T.B. Ho: “Efficient Model Selection for Support Vector Machines,”

The 5th International Symposium on Knowledge and Systems Sciences, Ishikawa,

Japan (November 2004).

[5] T.B. Ho, D.D. Nguyen: “Chance Discovery and Learning Minority Classes,” Jour-

nal of New Generation Computing, Ohmsha, Ltd. and Springer-Verlag, Vol. 21, No.

2, pp.147-160 (2003).

[6] T.B. Ho, T.D. Nguyen, S. Kawasaki, S.Q. Le, D.D. Nguyen, H. Yokoi, K. Tak-

abayashi: “Mining Hepatitis Data with Temporal Abstraction,” ACM International

Conference on Knowledge Discovery and Data Mining, ACM SIGKDD-03, Wash-

ington DC, pp.369-377 (August 2003).

[7] T.B. Ho, T.D. Nguyen, D.D. Nguyen: “A User-Centered Visual Approach to

Data Mining. The system D2MS,” Intelligent Information Processing, M. Musen,

B. Neumann, R. Studer (Eds.), Kluwer Academic Publishers, pp.213-224 (2002).

[8] T.B. Ho, T.D. Nguyen, D.D. Nguyen, S. Kawasaki: “Visualization of Data and

Knowledge in the Knowledge Discovery Process,” Active Mining: New Directions

of Data Mining, H. Motoda (Ed.), IOS Press, pp.229-238 (2002).

80

[9] T.B. Ho, D.D. Nguyen, T.D. Nguyen, S. Kawasaki: “Extracting Knowledge from

Hepatitis Data with Temporal Abstraction,” IEEE Conference on Data Mining,

Workshop on Active Mining, Maebashi, Japan, pp.91-96 (December 2002).

[10] S. Kawasaki, A. Saitou, D.D. Nguyen, T.B. Ho: “Mining from Medical Data:

Case-Studies in Meningitis and Stomach Cancer Domains,” The 6th International

Conference on Knowledge-based Intelligent Information & Engineering Systems,

Crema, Italy, pp.547-551 (September 2002).

[11] T.B. Ho, D.D. Nguyen, S. Kawasaki: “Learning Minority Classes in Unbalanced

Datasets,” Third International Conference on Parallel and Distributed Computing,

Kanazawa, Japan, pp.196-203 (September 2002).

[12] T.B. Ho, D.D. Nguyen, S. Kawasaki, T.D. Nguyen: “Extracting Knowledge from

Hepatitis Data with Temporal Abstraction,” ICML/PKDD 2002 Discovery Chal-

lenge, 6th European Conference on Principles of Data Mining and Knowledge Dis-

covery PKDD 2002, Helsinki, Finland (August 2002).

[13] T.B. Ho, T.D. Nguyen, D.D. Nguyen: “Visualization Support for a User-Centered

KDD Process,” ACM International Conference on Knowledge Discovery and Data

Mining, ACM SIGKDD-02, Edmonton, Canada, pp. 519-524 (July 2002).

[14] T.B. Ho, A. Saito, S. Kawasaki, D.D. Nguyen, T.D. Nguyen: “Failure and Success

Experience in Mining Stomach Cancer Data,” International Workshop Data Mining

Lessons Learned, Inter. Conf. Machine Learning 2002, Sydney, Australia, pp.40-47

(July 2002).

[15] S. Kawasaki, D.D. Nguyen, T.D. Nguyen, T.B. Ho: “Study of Hepatitis Data by

Visual Data Mining System D2MS,” JSAI SIG-KBS-A201 Workshop Active Data

Mining, Pusan, Korea, pp.43-48 (May 2002).

[16] T.D. Nguyen, T.B. Ho, D.D. Nguyen: “Data and Knowledge Visualization in

the Knowledge Discovery Process,” 5th International Conference Recent Advances

in Visual Information Systems, Taiwan, (March 2002), Lecture Note in Computer

Science 2314, Springer, pp. 311-321 (2002).

[17] T.B. Ho, T.D. Nguyen, D.D. Nguyen, S. Kawasaki: “Visualization Support for

User-Centered Model Selection in Knowledge Discovery and Data Mining,” Inter-

national Journal of Artificial Intelligence Tools, World Scientific, Vol. 10, No. 4,

pp.691-713 (2001).

81

[18] T.B. Ho, D.D. Nguyen, S. Kawasaki: “Mining Prediction Rules from Minority

Classes,” 14th International Conference on Applications of Prolog (INAP2001), In-

ternational Workshop Rule-Based Data Mining RBDM 2001, Tokyo, Japan, pp.254-

264 (October 2001).

[19] T.B. Ho, S. Kawasaki, D.D. Nguyen: “Extracting Predictive Knowledge from

Meningitis Data by Integration of Rule Induction and Association Mining,” Inter-

national Workshop Challenge in KDD, Shimaie, Japan, (May 2001), Lecture Notes

in Artificial Intelligence 2253, Springer, pp.508-515 (2001).

82

