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Abstract: Manipulating spectral structure often leads to degradation of speech quality, which is
mainly due to insufficient smoothness of the modified spectra between frames, and ineffective spectral
modification. This paper presents a new spectral modification method to improve the quality of
modified speech. If frames are processed independently, discontinuous features may be generated.
Therefore, a speech analysis technique called temporal decomposition (TD), which decomposes
speech into event targets and event functions, is used to model the spectral evolution effectively.
Instead of modifying the speech spectra frame by frame, we only need to modify event targets and
event functions. This feature leads to easy modification of the speech spectra, and the smoothness of
modified speech is ensured by the shape of event functions. To improve spectral modification, we
explore Gaussian mixture model parameters (spectral-GMM parameters) to model the spectral
envelope of each event target, and develop a new algorithm for modifying spectral-GMM parameters
in accordance with formant scaling factors. We first evaluate the effectiveness of our proposed method
in spectra modeling, and then apply it to two areas which require different amounts of spectral
modification, emotional speech synthesis and voice gender conversion. Experimental results show that
the effectiveness of our proposed method is verified for spectra modeling and spectral modification.

Keywords: Spectral modification, Temporal decomposition, Gaussian mixture model, STRAIGHT

PACS number: 43.72.Ar, 43.72.Ja, 43.60.Ek [doi:10.1250/ast.30.170]

1. INTRODUCTION

Spectral modification techniques are used to perform

a variety of modifications to speech spectra, such as

manipulations of the formant structures, amplitude manip-

ulations, and so on. Since spectral processing is closely

linked to human perception, it is an effective way to

perform sound processing. It can be applied in many areas.

Spectral modification methods are a powerful technology

for customizing Text-to-Speech (TTS) systems, such as by

converting source features to target features [1,2], changing

a male voice into a female voice and vice versa [3], and

applying to emotional speech synthesis [4]. Spectral

modification techniques are often applicable to automatic

speech recognition tasks [5], and speech enhancement [6].

The basic idea of spectral processing is to convert

a time-domain digital signal into its frequency-domain

representation. Most of the approaches start by developing

an analysis/synthesis technique from which the speech

signal is reconstructed with minimum loss of sound quality.

Then, the main issues have to be resolved: what kind of

representation and which parameters are chosen for the

application of the desired speech processing. The challenge

of spectral modification is to modify the spectral/acoustical

features without degrading the speech quality.

A variety of spectral modification methods have been

discussed in the literature. They can be classified into two

popular approaches: linear prediction (LP)-based methods

[7,8] and frequency warping methods [9]. LP-based

methods are often affected by the pole interaction problem

suffered by pole modification techniques. An iterative

algorithm for overcoming pole interaction during formant

modification was developed by Mizuno et al. [7] This

method produces spectral envelopes with desired formant

amplitudes at the formant frequencies. However, the

amplitude and bandwidth of each formant cannot be

independently modified, since each formant’s bandwidth

is dependent on the magnitude of the corresponding pole.

Recently, a method for directly modifying formant loca-

tions and bandwidths in the line spectral frequency (LSF)

domain has been developed [8]. We refer to the method in
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[8] as the LSF-based method. By taking advantage of the

nearly linear relationship between the LSF coefficients and

formants, modifications are performed based on desired

shifts in formant frequencies and bandwidths. However, the

main drawback, i.e. the lack of control of the spectral

shape, has not been solved. Frequency warping methods,

such as by Turajlic et al. [9], give high quality of modified

speech. However, frequency warping methods meet diffi-

culties in modifying spectral peaks, such as preserving

shapes of peaks, and emphasizing spectral peaks around

3 kHz in transformation of speaking voice into singing

voice, since they do not estimate spectral peaks. Moreover,

frequency warping methods do not allow formants to

merge or split, which is often desired in formant mod-

ification processes [10].

In addition, some methods mentioned above [7,8] only

mention how to modify the speech spectrum in a frame,

and they [7–9] rarely deal with constraints between frames

after modification. This limitation may cause a disconti-

nuity problem between adjacent frames. As a result,

there are some clicks in the modified speech when

unexpected modifications happen in some frames. More-

over, Knagenhjelm and Kleijn [11] point out that spectral

discontinuities between adjacent frames are one of the

major sources of quality degradation in speech coding

systems. Therefore, this problem should be solved to

enhance the quality of modified speech.

This paper proposes a new spectral modification

method to address two issues, insufficient smoothness of

modified spectra between frames and ineffective spectral

modification. First, we propose a new modeling of speech

spectra for spectral modification based on temporal

decomposition (TD) [12,13] and Gaussian mixture model

(GMM) [14–16]. To model the spectral evolution, we

employ the modified restricted temporal decomposition

(MRTD) algorithm [13]. To model the speech spectrum,

we use GMM parameters [14–16]. In this paper, GMM

parameters [14–16] are called spectral-GMM parameters.

Second, we develop a new algorithm for modifying

spectral-GMM parameters in accordance with formant

scaling factors. Note that the spectral-GMM parameters

used here are to approximate a spectral envelope, which

are different from those often used to model the distribu-

tion of acoustic features in state-of-the-art methods for

voice conversion. We first evaluate the effectiveness of our

proposed method in spectra modeling. We then evaluate

the effectiveness of our proposed method in two areas,

emotional speech synthesis, which requires modification

of both formant frequency and power, and voice gender

conversion, which requires a large amount of spectral

modification. A part of this paper was presented at

Interspeech’07 [17], and was published in the Journal of

Signal Processing [18] as a short paper. This paper

introduces more details of the concept and the algorithms

in [17,18], and conducts more evaluations of spectra

modeling and the two applications, emotional speech

synthesis and voice gender conversion.

2. MODELING OF SPEECH SPECTRA

2.1. Temporal Decomposition

A shortcoming of conventional spectral modification

methods is that they do not take into account the correlation

between frames after modification. There are some clicks

in the modified speech because of discontinuous spectral

contours. Therefore, we employ TD to deal with the

problem.

In articulatory phonetics, speech can be described as

a sequence of distinct articulatory gestures. Each gesture

produces an acoustic event that should approximate a

phonetic target. Adjacent gestures overlap in time, which

results in overlap of these phonetic targets.

Atal proposed a method based on the temporal

decomposition of speech into a sequence of overlapping

target functions and corresponding event targets [12], as

given in Eq. (1).

ŷyðnÞ ¼
XK
k¼1

ak�kðnÞ; 1 � n � N ð1Þ

where ak is the spectral parameter vector corresponding

to the kth event target. The temporal evolution of this target

is described by the kth event function, �kðnÞ. ŷyðnÞ is the

approximation of the nth spectral parameter vector yðnÞ,
and is produced by the TD model. N and K are the number

of frames in the speech segment, and the number of event

functions, respectively (N � K).

To modify the speech spectra, we only need to modify

the event targets ak and the corresponding event functions

�kðnÞ, instead of modifying the speech spectra frame by

frame. The smoothness of modified speech will be ensured

by the shape of the event functions �kðnÞ. This feature leads
to easy modification of the speech spectra, as well as

ensuring the smoothness of the speech spectra between

frames, and thereby enhances the quality of modified

speech.

The original method of TD is known to have two major

drawbacks, high computational cost and high parameter

sensitivity to the number and locations of events. A number

of modifications have been explored to overcome these

drawbacks. In this study, we employ the MRTD algorithm

[13]. The reasons for using the MRTD algorithm in this

work are twofold: (i) the MRTD algorithm enforces a new

property on event functions, named the ‘‘well-shapedness’’

property, to model the temporal structure of speech more

effectively [13]; (ii) event targets can convey the speaker’s

identity [19]. In the MRTD algorithm, LSF parameters are

chosen for the input of TD, because of their spectral
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sensitivity (an adverse alteration of one coefficient results

in a spectral change only around that frequency [20]) and

their stability and interpolation advantages (LSFs result

in low spectral distortion when being interpolated and/or

quantized [21]). In this paper, LSF parameters are extracted

from spectral envelope information of STRAIGHT (Speech

Transformation and Representation using Adaptive Inter-

polation of weiGHTed spectrum) [22]. The STRAIGHT

spectra are suitable for TD, because they are smooth in the

time-frequency domain. More details of the extraction of

LSF parameters from STRAIGHT can be found in [13]. To

determine the initial event locations, the MRTD algorithm

uses a spectral stability criterion based on LSF parameters.

It is assumed that each acoustic event that exists in speech

gives rise to a spectrally stable point in its neighborhood.

Therefore, the locations of the spectrally stable points and

the corresponding spectral parameter sets can be used as

good approximations of event locations and event targets,

respectively.

2.2. Speech Spectrum Modeling Using Gaussian Mix-

ture Model (GMM)

One of the most important requirements of spectral

modification is that it be flexible enough to perform a

variety of modifications within the spectral envelope.

Formant frequency is one of the most important parameters

in characterizing speech, and it also plays an important role

in specifying speaker characteristics. Therefore, using

formant frequency as a parameter can control other features

that are directly connected to the speech production

process. Conventional spectral modification methods, such

as [7–9], often control formants to modify the speech

spectrum. However, these methods are limited by their

inability to independently control important formant

characteristics such as amplitude and bandwidth, or to

control the spectral shape.

Zolfaghari et al. proposed a technique to fit a Gaussian

mixture model to a smoothed magnitude spectrum of a

speech signal [14–16]. This technique is briefly described

as follows.

In a single frame, the normalized spectrum Xðej!nÞ is
viewed as a probability distribution PðXÞ, where X ¼
fx1; . . . ; xLg, xl ð1 � l � LÞ is the frequency bin number,

and 2L is the FFT size. PðxlÞ is simply a spectral density.

The overall density of a Gaussian mixture model is written

as follows.

uðxÞ ¼
XM
m¼1

�mN ðx;�m; �
2
mÞ ð2Þ

where M is the number of mixture components,

N ðx;�m; �
2
mÞ ¼

1ffiffiffiffiffiffiffiffi
2��2

m

p e
�ðx��mÞ2

2�2m is the mth local Gaussian

component, �m; �m are called mean and standard deviation

of Gaussian component m respectively, and f�mgMm¼1 are
mixture weights satisfying 0 � �m � 1 and

PM
m¼1 �m ¼ 1.

Zolfaghari et al. assumed that formants could be

represented by Gaussian distributions, and a speech

spectrum could be represented by a Gaussian mixture

model. The EM algorithm [23] is often used to optimize the

log likelihood of the histogram of the speech spectrum at

time t with respect to the model parameters uðxÞ in Eq. (2).

The estimated means, standard deviations, and mixture

weights of the Gaussian components can be related to the

locations, bandwidths, and amplitudes of the formants,

respectively [14]. The ability to independently control the

parameters of each Gaussian component enables precise

estimation of the spectral envelope, enables a wide variety

of modifications, and enables independent control of the

formants. Figure 1 shows that a Gaussian mixture model of

eight Gaussian components can fit to a STRAIGHT speech

spectrum (at 12 kHz sampling frequency) well.

2.3. Proposed Modeling of Speech Spectra for Spec-

tral Modification

One of the advantages of TD is that it ensures the

smoothness of modified speech signals. However, if event

targets are represented by linear predictive coding (LPC)

parameters, such as LSF parameters, we meet difficulties in

spectral modification. To overcome these drawbacks, we

use spectral-GMM parameters [14–16] to model each event

target. Using TD and GMM, we propose a new modeling of

speech spectra for spectral modification which can deal

with these two drawbacks of conventional spectral mod-

ification methods, the insufficient smoothness of the

modified spectra between frames, and the ineffective

spectral modification. In addition, since glottal and vocal

tract information are not independent, modifying them

separately will often degrade the quality of modified

speech signals. Therefore, a high-quality analysis-synthesis
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Fig. 1 A Gaussian mixture model (M ¼ 8) fits to a
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framework, STRAIGHT [22] is utilized in this study. The

processing flow of our proposed modeling of speech

spectra is as follows, and is shown in Fig. 2.

First, STRAIGHT decomposes input speech signals

into spectral envelope information, F0 (fundamental

frequency) information, and aperiodic components. Since

the spectral envelope information can be further analyzed

into LSF parameters, MRTD is employed in the next step

to decompose the LSF parameters into event targets and

event functions. Since the event targets are valid LSF

parameters [13], the spectral envelopes of event targets

can be restored, and then the spectral envelopes are

converted to spectral-GMM parameters. By using spectral-

GMM parameters to model the event targets, we can

flexibly perform some modifications of the event targets.

The modified event targets are then re-synthesized as

modified LSF by TD synthesis. In the following step, the

modified LSF parameters are synthesized as spectral

envelopes by LSF synthesis. Finally, STRAIGHT synthesis

is employed to output the synthesized speech. Note that this

paper proposes a spectral modification method, and apply-

ing the MRTD algorithm to conversion of other compo-

nents (i.e. aperiodic, gain, and F0 components) will be our

future work.

3. NEW SPECTRAL MODIFICATION
ALGORITHM

Control of formants is an effective way to perform

modification of a speech spectrum. Spectral-GMM param-

eters extracted from the spectral envelope are spectral

peaks, which may be related to formant information. To

modify the spectral-GMM parameters in accordance with

formant scaling factors, it is necessary to find relations

between formants and the spectral-GMM parameters.

When estimating spectral-GMM parameters from a spectral

envelope, we just try to minimize the distance between

the histogram of the spectral envelope and the Gaussian

mixture model. As a result, there may be some components

which contribute to one peak of the spectral envelope

restored from the spectral-GMM parameters, which make it

difficult to modify the spectral-GMM parameters.

In this subsection, we propose a new algorithm for

modifying spectral-GMM parameters in accordance with

formant frequencies. The spectral modification algorithm is

described as follows, corresponding to Fig. 3.

We first extract spectral-GMM parameters from the

smooth spectral envelope. In the next step, we find the

peaks of the spectral envelope reconstructed from the

spectral-GMM parameters. Since not all these peaks are

formants, we have to decide how much these peaks will be

shifted. For spectral modification, the first formants are

most important, and often considered for modification. In

this study, we also focus on modifying factors related to

the first four formants. We isolate spectral regions of the

input signal by dividing it into four non-overlapping bands

(0–800Hz, 800–2,500Hz, 2,500–3,500Hz, 3,500–sam-

pling frequency/2Hz) which cover the first four formant

frequency ranges [24]. The scaling factor of each peak will

be the scaling factor of the formant to which the peak

belongs. Based on the geometric characteristics of the

normal distribution, i.e. the empirical rule, we find which

Gaussian components contribute to this peak. If this peak is

located between [�m � 3�m;�m þ 3�m], where �m is the

mean and �m is the standard deviation of Gaussian

component m, we regard Gaussian component m as

contributing to this peak. We shift the mean parameter of

this Gaussian component by the scaling factor of this peak.

In this paper, we only modify the mean parameters of

Gaussian components, and we do not modify the other

parameters of Gaussian components (i.e. standard devia-

tions and mixture weights). Note that mean parameters are

sorted in ascending order, and every mean parameter is

STRAIGHT
analysis

STRAIGHT
synthesis

Aperiodic componentsOriginal
speech

LSF
analysis

Smooth spectral
envelope

LSFs

TD
analysis

spectral-GMM
estimation and control TD

synthesis

LSF
synthesis

Gain components

Reconstructed
spectral envelope

LSFs

Synthesized
speech

F0 components

Event functions

Event targets Event targets

Fig. 2 Diagram of proposed modeling of speech spectra based on temporal decomposition and Gaussian mixture model.
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shifted only once. After shifting the mean parameters of the

Gaussian components, we reconstruct the modified spectral

envelope. Consequently, we can independently modify

each spectral peak. An example of our proposed algorithm

applied to a spectrum is shown in Fig. 4. For comparison

with our method, an example of formant modification of

the LSF-based method [8] is shown in Fig. 5. In the LSF-

based method, since attributes of a formant depend on

properties of a conjugate pole pair, when we change

formant frequencies, amplitudes of a speech spectrum are

also changed. On the contrary, we can control the spectral

shape using our method.

4. EXPERIMENTS AND RESULTS

The two main themes of this paper evaluated in the

experiments are (i) the effectiveness of our proposed

modeling of speech spectra, and (ii) the effectiveness of our

proposed spectral modification method. To evaluate the

effectiveness of our proposed modeling of speech spectra,

we use three objective measures in Subsection 4.1. To

evaluate the effectiveness of our proposed spectral mod-

ification method, we investigate it in two areas, emotional

speech synthesis in Subsection 4.2, and voice gender

conversion in Subsection 4.3.

4.1. Evaluation of Our Proposed Modeling of Speech

Spectra

In our proposed modeling of speech spectra, since we

use spectral-GMM parameters to model each event target,

the order of LSFs has to be high enough to precisely restore

the spectral envelope. Via a small experiment, by calculat-

ing the average log spectral distortion (LSD) between

STRAIGHT spectra and the spectral envelopes restored

from LSFs with different orders in a set of 250 sentence

utterances of the ATR Japanese speech database [25] at

sampling frequency of 16 kHz, we chose the LSF order of

40 in this paper. With this order, the average LSD is

smaller than 1 dB, and the average event rate is 24 events/

second.

To evaluate the performance of our proposed modeling

of speech spectra, we compared our proposed modeling of

speech spectra (TD-GMM) with the framewise-GMM

method. In the framewise-GMM method, the spectral-

GMM parameters are used to model each spectral

envelope, frame by frame. In this part, both methods used

10 Gaussian components to model the speech spectrum and

each event target. The quality of the synthesized speech
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Fig. 4 Example of our spectral modification algorithm
applied to a spectrum: �F1 ¼ 30%, �F2 ¼ �10%,
�F3 ¼ 20%, and �F4 ¼ 15%.
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Fig. 5 Example of formant modification algorithm of
the LSF-based method [8] applied to a spectrum:
�F1 ¼ 30%, �F2 ¼ �10%, �F3 ¼ 20%, and
�F4 ¼ 15%.
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Fig. 3 Block diagram of our spectral modification algorithm.
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was evaluated by three objective measures. The first

objective measure is used to evaluate the smoothness of

synthesized speech utterances. The second objective

measure is used to evaluate the modeling of spectral

evolution. The last objective measure has high correlation

with subjective listening tests.

A set of 150 sentence utterances of the ATR Japanese

speech database [25] was selected as the speech data. This

speech dataset is spoken by 6 speakers (3 male & 3 female)

re-sampled at 8 kHz sampling frequency. The analysis

conditions for these experiments are shown in Table 1.

For the first objective test, we used the Euclidean

distance between mel-frequency cepstral coefficients

(MFCC) (DMFCC) as the objective measure, since this

measure was found to be successful at predicting audible

discontinuities in synthesized speech utterances in many

studies [26]. For the second objective test, we used the

Euclidean distance of delta mel-frequency cepstral coef-

ficients (delta-MFCC) between natural and a synthesized

spectral sequences (Ddelta-MFCC). These criteria are defined

as follows.

DMFCCðc1; c2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XVMFCC

i¼1

ðc1i � c2iÞ2

vuut ð3Þ

Ddelta-MFCCð�c1; �c2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XVMFCC

i¼1

ð�c1i ��c2iÞ2

vuut ð4Þ

where c1 and c2 are MFCC coefficients of two consecutive

frames. �c1 and �c2 are delta-MFCCs of a natural and

corresponding synthesized utterances. VMFCC is the MFCC

order. The zeroth MFCC coefficient and the corresponding

delta-MFCC coefficient are not included in the analysis,

since they relate to the overall energy. Throughout this

paper, the MFCC order of 24 has been used. In general, a

smaller value for DMFCC suggests a better system in terms

of the smoothness of speech. A smaller value for

Ddelta-MFCC suggests a better system in terms of modeling

of spectral evolution. The average Euclidean MFCC

distances and the average Euclidean delta-MFCC distances

are shown in Table 2 and Table 3, respectively. According

to a two-tailed t-test, experimental results are statically

significant at a 95% confidence level (p-value = 3:1 � 10�4

for the first objective test, and p-value = 1:8 � 10�9 for the

second objective test). Experimental results indicate that

the performance of our proposed method is better than that

of the framewise-GMM method in terms of both the

smoothness of synthesized speech and the modeling of

spectral evolution. The greater value of the average DMFCC

distance in the framewise-GMM method indicates that

some non-smoothed areas occur using the framewise-

GMM method.

For the third objective test, we used the perceptual

evaluation of speech quality (PESQ) (ITU-T P.862). The

PESQ uses a sensory model to compare the original,

unprocessed signal (reference signal) with the degraded

signal from a network or an analysis/synthesis system. The

PESQ scores are calibrated using a large database of

subjective tests. Having high correlation (� > 0:92) with

subjective listening tests, the PESQ can be used reliably to

predict the subjective speech quality of codec in a very

wide range of conditions, including those with background

noise, analogue filtering, and/or variable delay [27]. The

score of PESQ ranges from �0:5 to 4.5. The higher the

score, the better the perceptual quality. In this paper, since

both the framewise-GMM method and our proposed

method (TD-GMM method) estimate spectral-GMM pa-

rameters to model STRAIGHT spectral envelopes, we used

the synthesized utterances restored from STRAIGHT

(STRAIGHT sounds) as the reference signals, and the

synthesized utterances restored using the framewise-GMM

method and the TD-GMM method as the degraded signals.

We calculated the PESQ between STRAIGHT sounds and

sounds restored using the two methods (the framewise-

GMM method and the TD-GMM method). The average

PESQ results are shown in Table 4. According to a two-

tailed t-test, experimental results are statically significant

at a 95% confidence level (p-value = 5:7 � 10�27). These

results indicate that our proposed method is better than the

framewise-GMM method in terms of subjective speech

quality.

Table 1 Analysis conditions for experiments of model-
ing of speech spectra.

Sampling frequency 8 kHz
Window length 40ms
Window shift 1ms
FFT points 1,024

Table 2 Average Euclidean MFCC distances for testing
methods.

Original sounds 0.4103
Framewise-GMM method 0.4268
Proposed method 0.4067

Table 3 Average Euclidean distance between the orig-
inal delta-MFCCs and the delta-MFCCs extracted from
the two testing methods.

Original sounds and the corresponding
0.3395

sounds of the framewise-GMM method

Original sounds and the corresponding
0.2561

sounds of the proposed method

B. P. NGUYEN and M. AKAGI: SPECTRAL MODIFICATION METHOD BASED ON TD AND SPECTRAL-GMM

175



4.2. Application to Emotional Speech Synthesis

In this subsection, we investigate our spectral mod-

ification method for emotional speech synthesis, where

formant frequencies are shifted by small scaling factors

(below 8 percent), and power envelopes need to be

modified.

Huang and Akagi [28] proposed a novel model for the

perception of emotional speech. Unlike most other studies

that deal with the direct relationship between emotional

speech and acoustic features, this model consists of three

layers, emotional speech, semantic primitives, and acoustic

features. This model is a rule-based conversion system, and

it therefore requires controlling each parameter independ-

ently.

In [28], it was necessary to modify both power

envelopes and formants. In the standard spectral modifica-

tion techniques, such as [8], when formant frequencies are

shifted, the magnitude of the speech spectrum is also

changed accordingly. It is difficult to independently modify

both power and formant frequencies with the defined

scaling factors. To overcome this drawback, we employ our

spectral modification method. Since our method uses

spectral-GMM parameters to directly model and modify

the spectral envelope, the magnitude of the speech

spectrum is almost the same when formant frequencies

are shifted, and each parameter’s value can be modified

independently. In addition, the smoothness of synthesized

speech is ensured by using TD.

To verify the effectiveness of our spectral modification

method, we conducted a listening experiment to compare it

with the LSF-based method [8], which enabled a high level

of control of formant characteristics. Both the LSF-based

method and our spectral modification method had been

applied in the work of Huang and Akagi [28], while other

processes and morphing rules were kept the same. A

neutral utterance was used to morph emotional utterances,

e.g. cold anger, joy, sadness, and hot anger. The analysis

conditions are listed in Table 5.

The subjective test was carried out using Scheffe’s

method of paired comparison [29]. In this subsection, five

grades from �2 to 2 were used, as shown in Fig. 6. Eight

Japanese graduate students known to have normal hearing

ability were recruited for the listening experiment. Paired

stimuli A and B were presented to each listener, and

listeners were asked to grade stimuli according to his/her

perception of speech quality. Experimental results are

shown in Fig. 7. According to a two-tailed t-test, these

results are statically significant at a 95% confidence level

(p-value = 9:2 � 10�3). These experimental results also

indicate that the speech quality of our proposed method

is better than that of the LSF-based method [8]. In this

application, since scaling factor is small (less than 8

percent), the difference of the results between the LSF-

based and TD-GMM methods is small.

4.3. Application to Voice Gender Conversion

In Subsection 4.2, our proposed spectral modification

method was effectively applied to shift the small formant

frequencies, below 8 percent. In this subsection, we explore

the effectiveness of our spectral modification method in

a voice gender conversion (VGC) system which requires

much spectral modification, about 20 percent.

The aim of VGC is to modify a female (male) speech

so that it will sound as if it were spoken by a male (female).

The VGC challenge is to convert the gender-related

parameters of the speech signal without affecting smooth-

ness and naturalness. For a long time it was believed that

pitch was the dominant cue in voice gender perception.

However, Childers and Wu [30] showed that grouped

formant information was a slightly better determinant of

gender than fundamental frequency information. Therefore,

the two most important features that show major dif-

Table 4 Average PESQ for testing methods.

Framewise-GMM method 3.5042
Proposed method 3.7416

Table 5 Analysis conditions for experiments of emo-
tional speech synthesis.

Sampling frequency 22.05 kHz

STRAIGHT
Window length 40ms
Window shift 1ms
FFT points 1,024

LSF-based method LSF order 24

Proposed method Gaussian components 24

0 1 2-1-2

Stimulus B Stimulus A

A is betterB is better

Fig. 6 Evaluation measure of Scheffe’s paired compar-
ison (five grades: �2, �1, 0, 1 and 2).

0 1 2- 1- 2

quality is worse quality is better

Proposed method
LSF-based method

Fig. 7 Subjective listening results for emotional speech synthesis.
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ferences between genders, formant frequencies and funda-

mental frequencies, are modified in our system. The

formant frequencies are modified by our proposed method,

and the fundamental frequency contour is modified by

simply shifting the F0 mean by a scaling factor.

Our perception of spoken-voice gender relies heavily

on the phonation or voicing process, which is associated

mainly with vowel sounds. We first extracted the funda-

mental frequencies, and the first four formant frequencies

from the five Japanese vowels spoken by two speakers (one

male & one female) in the ATR Japanese speech database

[25]. We then used these values to formulate the scaling

factors for our VGC system. In this subsection, we used

labeled data of each utterance to identify the distance

between an event location and vowels. The scaling factors

for an event target is the scaling factors of the vowel which

was nearest to this event target.

To evaluate the performance of our proposed system,

we conducted a listening experiment. We compared the

performance of our system with the performance of two

other systems. All three systems used STRAIGHT to

modify fundamental frequencies. In the first system, the

LSF-based method [8] was employed to modify formant

frequencies (STRAIGHT+LSF). In the second system,

speech spectra were modified frame by frame using

only the framewise-GMM method, without using TD

(STRAIGHT + framewise-GMM method).

A set of 50 sentence utterances of the ATR Japanese

speech database was selected as the speech data. This

dataset spoken by 2 speakers (one male & one female) was

re-sampled at 12 kHz sampling frequency. The analysis

conditions are listed in Table 6.

We randomly presented the synthesized sounds of each

of six utterances which had been spoken by two speakers

(one male & one female), to eight Japanese graduate

students with normal hearing ability, and asked them to

identify the gender of the person who was speaking, and to

rate the perceptual quality of the speech on a five-point

scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent). The

average scores are shown in Table 7. When comparing our

proposed method (STRAIGHT + TD-GMM) with the first

method (STRAIGHT + LSF), a two-tailed t-test at a 95%

confidence level shows that the speech quality of our

proposed method is superior to that of the first method for

both kinds of conversions (p-value = 1:0 � 10�4 for male

to female conversion, and p-value = 1:7 � 10�5 for female

to male conversion). In this application, since scaling factor

is large (more than 20 percent), the difference of the results

between the LSF-based and TD-GMM methods is large.

The LSF-based method cannot give acceptable voice

quality, since the quality of most converted speech signals

is diminished by a discernible buzzy sound. Our proposed

method produces better voice quality than the other

methods. The speech quality of the second method

(STRAIGHT + framewise-GMM) and our proposed meth-

od are almost equivalent (p-value of a two-tailed t-test at

a 95% confidence level for male to female and female to

male conversions are 0.7529 and 0.6802, respectively).

According to the experimental results in Subsection 4.1,

our proposed method is better than the framewise-GMM

method in terms of spectral modeling. In this application,

there are no reference speakers, and the modified speech of

the framewise-GMM and our proposed methods are hardly

perceptually distinguishable. The reason is that we used

the same scaling factor for every frame in a vowel in

this application. Therefore, the smoothness of spectra is

preserved in voiced frames when modifying, and the

effectiveness of TD is not shown clearly. It should be noted

that both the second method and our proposed method used

the algorithm in Section 3 to perform spectral modification.

5. CONCLUSIONS

In this paper, we have presented a new modeling of

speech spectra based on TD and spectral-GMM, and then

developed a new algorithm for modifying spectral-GMM

parameters in accordance with formant scaling factors. We

utilize TD to model the spectral evolution, and spectral-

GMM parameters to model the event targets. Our proposed

method not only effectively describes the temporal trajec-

tories between frames, but also flexibly models the event

targets. Moreover, processing rules are more effectively

applied, since we only need to process the event targets,

Table 6 Analysis conditions for experiments of VGC
system.

Sampling frequency 12 kHz

STRAIGHT
Window length 40ms
Window shift 1ms
FFT points 1,024

LSF-based method LSF order 14

Framewise-GMM method Gaussian components 14

Proposed method Gaussian components 14

Table 7 Subjective listening results for VGC system (1)
STRAIGHT + LSF (2) STRAIGHT + framewise-
GMM (3) our proposed system (STRAIGHT + TD-
GMM).

Type of
Correct gender Quality evaluation

conversion
identification (%) score

(1) (2) (3) (1) (2) (3)

M to F 83.3 93.8 93.8 2.73 3.15 3.19

F to M 100 100 100 3.10 3.58 3.63
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instead of processing frame by frame, and the event targets

may be associated with ideal articulatory positions. Our

proposed method is especially useful when we change

the speech spectra by large factors, while conventional

methods can not make great changes. The experimental

results, in terms of objective and subjective measures,

prove the effectiveness of our proposed method.

There are however issues which still remain to be

solved. In this paper, we only model and modify the event

targets. Since the event functions describe the spectral

evolutions of the event targets, we are convinced that these

event functions may also contain useful information.

Modeling the event functions therefore should be imple-

mented for easy and effective processing, and this consid-

eration will be explored in our future work. In addition, in

this paper, we only change mean parameters of Gaussian

components to perform spectral modification. It is well-

known that amplitudes and bandwidths of spectral peaks

are also important. The next stage of this research is how to

change other Gaussian components (i.e. standard devia-

tions and mixture weights) to modify amplitudes and

bandwidths of spectral peaks.
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