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Abstract

In order to uncover the nature of life, it is important to reveal the relationships among

sequences, structures, interactions, and functions of biomolecules such as DNAs, RNAs

and proteins. Among these molecules, proteins constitute most of a cell’s dry mass. They

are not only the building blocks from which cells are built. Each protein consists of a

precise sequence of amino acids that allows it to fold up into a particular three-dimensional

shape, or conformation. This three-dimensional structure allows the protein to interact

with other biomolecules (such as DNAs, RNAs, and other proteins) to perform specific

functions. The ability to bind to other molecules enables proteins to act as catalysts, signal

receptors, regulators, motors, tiny pumps, etc. Our research focuses on two fundamental

issues of structures and interactions of proteins: (1) prediction and analysis of structure

of proteins from their sequence, and (2) analysis of DNA-protein interactions.

Determining the three-dimensional fold of a protein is an extremely complex prob-

lem. Experimental approaches such as nuclear magnetic resonance (NMR) and X-ray

crystallography are expensive and can take up to several months. As a result, there is a

large gap between the number of known protein sequences and known three-dimensional

protein structures. This gap has grown over the past decade (and is expected to keep

growing) as a result of the various worldwide genome projects. Thus, computational

methods which may give some indication of structure, interaction and/or function are

becoming increasingly important.

We have developed a support vector machine (SVM)-based method to predict turn

structures in a protein from its sequence of amino acids. Turns make the protein fold into

a specific three-dimensional shape. They play an important role in globular proteins from

structural, interactional and functional points of view. When compared with previous

methods, our approach exhibits a superior performance. Moreover, our method can esti-

mate the relevance of amino acids for the formation of turn structures depending on their

position in a protein. This information is specially useful for defining template structures
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when designing new molecules with certain desired characteristics (structure, interaction

site or function, for instance).

With a specific three-dimensional structure, proteins can interact with other biomolecules

to carry specific functions. In the second part of this thesis, we address issues concerning

interactions between proteins and DNAs, which are important information to uncover

gene regulatory mechanisms. In an organism, about 10% of all proteins (called transcrip-

tion factors or regulators) have particular structure that allows them to bind to DNAs

and their DNA-binding interactions make the set of downstream genes express. Both

experimental and computational approaches have been proposed to establish mappings

of DNA-binding locations of transcription factors, but while the former produces noisy

results due to imperfect measuring methods, the latter often suffers from over-prediction

problems. Also, interactions between transcription factors and DNA-binding sites are

usually environment-dependent, with many regulators binding only under certain condi-

tions. Even more, the presence of regulators at a promoter region indicates binding but

not necessarily function: the regulator may act positively, negatively, or not act at all.

Identifying true and functional interactions between transcription factors and genes under

specific environment conditions is therefore an open and important problem in biology.

Thank to recent experimental advances such as microarray technique, we can collect

expression data of a whole genome. This technique provides us an opportunity to combine

DNA-protein interactions with expression profiles data in order to uncover complicated

transcriptional regulatory mechanisms. We have developed a rule induction method that

combines these two kinds of databases to discover both relevant transcription factors of a

target gene from the set of potential ones, as well as the relationship between the expres-

sion behavior of a gene and its transcription factors. Our method can deal efficiently with

noise present in both DNA-protein interactions and expression profiles. The results of our

rule induction method are transcriptional regulatory rules, which describe the qualitative

relationship between the expression of a target gene and its relevant regulators. Tran-

scriptional regulatory rules reveal some regulatory circuits, which describe how a group of

transcription factors regulates target genes. They also provide strong and comprehensive

evidences of actual gene-regulator interactions, and of protein-protein interactions that

could serve to identify transcriptional complexes.
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Moreover, we introduced a new method to discover transcriptional regulatory patterns

other than regulatory rules, also by combining DNA-protein interactions with expression

profiles. The method finds expression patterns of a group of genes commonly bound

by the same set of transcription factors (TFset). Our approach first clusters genes into

modules based on a closed TFset lattice, which includes non-redundant combinations

of transcription factors respective to a database of DNA-protein interactions; and then

validates the expression profiles to confirm regulatory modules. Our method has been

applied to yeast data for finding transcriptional regulatory modules (TRMs). The results

agree with gene modules found by previous studies. Moreover, the obtained TRMs are

more compact, concise and comprehensive to identify and interpret the transcriptional

control of combinations of regulators.
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Chapter 1

Introduction

1.1 Molecular Biology

Overview: from DNA to protein via RNA

The basic biological processes in all organisms are pretty much identical. In most living

organisms, the genetic material (DNA: deoxyribonucleic acid) is replicated each time a cell

divides, so that each daughter cell receives a copy of the DNA from its parent. The DNA

is also passed on to progeny: for diploid organisms like humans, each progeny receives

half a copy of each parent’s DNA. The DNA contains the genes of an organism, which

are used as templates for manufacturing RNA (ribonucleic acid). The RNA can then be

used as instructions for manufacturing proteins.

Proteins

Proteins make up much of our bodies, playing a broad roles: some form the structural

parts of our cells, while others can catalyze biochemical reactions. Proteins are polymer

chains whose building blocks are any of the 20 different amino acids. Proteins have

an orientation: one end of the chain contains an amino group, while the opposite end

contains a carboxyl group. The structure of a protein is mainly determined by its amino

acid sequence, although environmental conditions, association with other proteins, and

chemical modifications also play an important role.
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DNA

DNA is a polymer of nucleotides where each nucleotide can be one of four bases: adenine

(A), guanine (G), thymine (T), and cytosine (C). Similar to proteins, DNA also has

orientation, and its sequence is written from the 5’ end to the 3’ end (5’ and 3’ refer

to the number of the carbon on the deoxyribose). The DNA in a cell usually consists

of two strands of nucleotide chain, help together a double helix structure by hydrogen

bonds between the bases. For the structure to be stable, the strands must be in opposite

orientation and two strands must be complementary: T on a strand hydrogen bonds to A

on the other strand, and G on a strand hydrogen bonds to C on the other strand. Hence,

knowing the sequence of one strand allows one to infer the sequence of the other using the

reverse complement (for example, the reverse complement of TGGAC is GTCCA). When

the structure of DNA was first discovered by Watson and Crick in 1953, it suggested

an obvious mechanism for DNA replication (which turned out to be true): one strand

is used as a template to manufacture the other strand. In the cell, DNA is packaged

into chromosomes with several special proteins. In humans, the genome (whole set of

genes) is divided into 46 chromosomes: 22 pairs of homologous chromosomes plus two

sex chromosomes (XX or XY). Pairs of homologous chromosomes are nearly identical to

each other - they contain the same genes, but the sequence of the genes may be slightly

different since one homolog comes from the mother and one comes from the father.

RNA, transcription, and translation

RNA is similar in structure to DNA: it is also found by the bases A, G, and C, but instead

of T it uses the base U (uracil), which also hydrogen bonds with A. RNA is usually single-

stranded. It is manufactured by using the DNA as a template. The DNA segment used to

manufacture a strand of RNA is called a gene. This process is called transcription, since

RNA is transcribed from DNA. In an organism, there are some special proteins (which

are in turn products of certain genes) which have a transcriptional role, i.e., they bind to

certain locations in DNA and make the process of transcription of the downstream DNA

segments (genes) activated.

In eucaryote, the produced RNA is then transported out of the nucleus to the ribosome,

where it is translated into specific proteins. The cell machinery uses the RNA sequence
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to manufacture the sequence of amino acids of a protein. Starting with the first triplet

AUG of the RNA (which encodes the amino acid methionine), the cell machinery reads

triplets of bases that specify which amino acid to add to the growing chain of amino acids.

Each triplet is called a codon, and the amino acid specified by each codon is called the

genetic code. The genetic code is the same for almost all organisms. There are three

special codons which do not encode amino acids, but function as stop codons - they tell

the cell machinery to stop making the protein. The remaining 61 codons encode the 20

possible amino acids. Therefore the codons are redundant: more than one codon can

encode the same amino acid. As a result, greatly different DNA sequences can encode

the same protein. Note that since there are three possible reading frames to a sequence,

if we add one or two bases right after the start codon AUG, the produced protein would

be completely changed.

Proteins: sequence, structure, interaction, and function

Proteins constitute most of a cell’s dry mass. Each protein consists of a precise sequence

of amino acids that allows it to fold up into a particular three-dimensional shape, or

conformation. This three-dimensional structure in turn allows protein to interact with

other biomolecules (such as DNA, RNA, and protein) to do correctly their function. The

ability to bind to other molecules enables proteins to act as catalysts, signal receptors,

regulators, motors, tiny pumps, etc.

1.2 Protein structure

The structure or fold of a protein provides the key to understanding its interactional abil-

ity with other molecules and ultimately revealing its function in the body (i.e., enzymes,

antibodies, transcription factors, etc.). Proteins may also be associated with particu-

lar human diseases, and thus, understanding protein structure may be used to better

understand these diseases and to do rational drug design.

Unfortunately, determining the three-dimensional fold of a protein is difficult. Experi-

mental approaches such as nuclear magnetic resonance (NMR) and X-ray crystallography

are expensive and can take a long time (usually several months, even longer than a year
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for some proteins). As a result, there is a large gap between the number of known protein

sequences and that of known three-dimensional protein structures. This gap has grown

over the past decade (and is expected to keep growing) because of the various worldwide

genome projects (Fig. 1.1). Thus, computational methods which may give some indication

of structure, interaction, and/or function are becoming increasingly important.

Figure 1.1: Growth of the number of protein sequences (PIR) and structures (PDB)

The structure of a protein is characterized not only by its amino acid sequence and

full 3D structure, but also by other levels such as the secondary structure (local regu-

lar substructures: α-helix, β-sheet, and random coil); or the quaternary structure (the

arrangement of several protein subunits in space) [1].

How can we try to predict the three-dimensional fold of a protein (either the exact or

overall fold)? There are many approaches to this problem:

1. Model all the energy forces involved in protein folding, and try to find the structure

with the lowest free energy. This is an extremely complex approach, both in terms

of the modeling as well as in the searching of the vast conformational space.

2. Exploit high sequence similarity and use alignments. Two sequences that have just

25% sequence identity usually have the same overall fold. Alignments are probably

the most widely used tool for understanding a protein’s 3D structure; however,

they are useful only when there are similar protein sequences for which structural

4



information is known.

3. Use the threading approach. This approach is based on the observation that many

protein structures have similar folds, and assumes that there are just a limited

number of distinct folds. For a protein sequence, the goal is to find the known

protein structure which “best fits” it, according to some statistics-based potential

function. This approach can not give structures of predicted proteins other than

previously known folds.

Since predicting the 3D structure of a protein is difficult, many researchers have fo-

cused on trying to predict the secondary structure. That is, for each amino acid in a

protein, can we predict whether the amino acid is in an α-helix, β-sheet, or random coil?

Unfortunately, predicting the secondary structure of a protein is also a very difficult prob-

lem, especially random coil and β-sheet areas. Perhaps the secondary structure depends

on the overall 3D structure of the fold. Most methods for predicting secondary structure

are statistical or machine learning-based, and the overall three-state prediction accuracy

is around 75%.

Another approach to structure prediction problem is recognizing structural motifs.

Given a particular structural motif, how can we determine if it occurs in a given amino

acid sequence, and if so, in what positions? The first part of this thesis will be devoted

to this approach and will specially address turn motifs, which make up random coil areas

in proteins. Turns make the protein fold into a specific three-dimensional shape. They

play an important role in globular proteins from structural, interactional and functional

points of view.

1.3 Molecular interactions

Proteins with appropriate structure can interact with other molecules to perform specific

functions. Life is based on molecular interactions: underlying every biological process

there is a multitude of proteins, nucleic acids, carbohydrates, hormones, lipids, and cofac-

tors, binding to and modifying each other, forming complex frameworks and assemblies,

and catalyzing reactions. Molecular interactions can be:

5



1. protein-nucleic acid interactions: proteins bind to DNA and RNA that mediate a

number of processes, including regulation of gene expression, gene transcription,

DNA replication, and mRNA intron splicing.

2. protein-ligand interactions: proteins bind to some target molecule or a set of target

molecules, and perform some action: enzymes bind to substrate molecules and then

catalyze chemical reaction that would otherwise occur too slowly to be biologically

useful; some proteins involved in cellular signaling bind to a signal molecule and

undergo a conformational change leading to further signaling or changes in cellular

processes.

3. protein-protein interactions: many proteins function by forming active complexes

with each other. The RNA polymerase II complex is an example of such an assembly.

Protein-protein interactions are also involved in antibody-antigen binding, large

scale organismal motion, and cell adhesion.

In the second part of this thesis, we focus on protein-nucleic acid interactions that

regulate gene transcription. In an organism, there are about 10% of genes that can produce

proteins having a transcriptional role. These special proteins are called transcription

factors or regulators, and their DNA-binding interactions make the set of downstream

genes express.

Fig. 1.2 shows an example of DNA-binding protein: TATA box-binding protein (TBP).

TBP is responsible for initiating gene transcription on the chromosome. It specifically

recognizes the promoter DNA sequence TATAAA. The promoter sequence lies about 25

base pairs upstream of a gene, and marks the location where an RNA polymerase complex

must bind to transcribe that gene. Upon binding, TBP induces a kink in the DNA strands

and forces open the minor groove of the DNA double helix, where most of its contacts

with the DNA occur. Other transcription factors, as well as the RNA polymerase II

complex, assemble around it. The TBP-DNA complex is slightly assymetrical, ensuring

that transcription occurs on the correct strand of DNA.

Both experimental [5, 13, 39, 57] and computational [25, 10, 11, 4, 41] approaches have

been proposed to establish mappings of DNA-binding locations of transcription factors.

However, while location data obtained from experimental methods is noisy due to inherent
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Figure 1.2: Schematic picture of TBP (blue, PDB structure ID 1tgh) bound to a promoter
DNA sequence (red)

imperfections in the measuring methods [39], computational approaches often suffer from

over-prediction problems due to the short length (less than 20 bases) of the sequence motifs

bound by the transcription factors [7]. The second important problem is that interactions

between transcription factors and DNA-binding sites are usually environment-dependent.

Many regulators only bind to the promoter region of genes under specific environmental

conditions. Even more, the presence of regulators at a promoter region indicates binding

but not necessarily function: the regulator may act positively, negatively or not act at

all. We aim to identify true and functional interactions between transcription factors and

genes in specific environment conditions and to describe the relationship between them.

1.4 Objective

In the first part of this thesis, we will investigate the support vector learning to predict and

analyze turn positions in proteins. There have been some previous approaches to specially

address the problem of recognizing turns, such as statistical methods [31, 17, 29, 34] and
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neural networks [9, 21, 20]. Support vector machine (SVM) is based on statistical learning

theory and was developed by Vapnik [74]. In practice, SVM has a good performance and

is easier to implement and train than neural networks. Two aspects of applying SVM

to prediction and analysis of turn positions will be investigated. First, we will develop a

SVM-based method that predicts turns in a protein from its sequence. Second, we will

use support vectors-based classification functions to analyze the relevance of amino acids

for the formation of turn positions depending on their position in a protein.

We will then proceed to analyze the data of interactions between proteins and DNAs

(which are usually noisy and/or over-predicted) to uncover the gene regulatory mecha-

nisms. We will use an inductive approach combining this data with expression profiles

of genes to discover (1) transcription factors relevant for transcriptional regulation, and

(2) transcriptional regulatory patterns. We assume that transcription factors regulating

the expression of a gene must bind to its promoter, and the expression of the target gene

must be consistent, in a specific way, to the expression behavior of these transcription

factors. Three kinds of regulatory patterns will be studied with special interest in this

work: regulatory rules that describe qualitatively relationships between the expression of

target genes and their relevant regulators; regulatory circuits that describe clearly how a

group of regulators controls taget genes; and regulatory modules that describe expression

patterns of a group of genes commonly bound by a specific set of transcription factors.

1.5 Contributions

In this thesis, we develop inductive methods that can find global and/or local patterns

and estimate the relevance of features for the formation of the patterns from biological

data. We focus on two fundamental issues of structures and interactions of proteins: (1)

prediction and analysis of turn structures of proteins from their sequence, and (2) analysis

of DNA-protein interactions.

Prediction and analysis of turn structures in proteins

We investigated two aspects of applying support vector machine (SVM), a promising

machine learning method for bioinformatics, for prediction and analysis of β-turns and
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γ-turns.

1. First, we developed a SVM-based method to predict β-turns and γ-turns in a

protein from its sequence. Our method has a superior performance when compared

with previous approaches.

2. Second, we used SVMs with a linear kernel to estimate the support of amino acids

for the formation of β-turns and γ-turns depending on their position in a protein.

Our analysis results are more comprehensive and easier to use than the previous

results in designing turns in proteins.

Analysis of DNA-protein interactions

We developed inductive methods that combine expression data with genomic location

information to discover:

1. transcription factors relevant for expression of a gene from the set of noisy or over-

predicted regulators binding to its promoter

2. transcriptional regulatory rules that qualitatively describe relationships between the

expression of a target gene and its relevant transcription factors.

3. regulatory circuits that clearly describe how a group of regulators controls target

genes.

4. expression patterns of a group of genes commonly bound by a specific set of regu-

lators.

1.6 Thesis structure

This thesis includes 5 chapters and 2 appendices, and is structured as follows:

• Chapter 2 describes support vector machines for predicting β and γ-turns in a

protein from its sequence. The idea of support vector machines is to use the optimal

hyperplane in a feature space to separate turn positions from non-turn positions. In

this chapter, we also use the optimal separating hyperplane to estimate the relevance

of amino acids for the formation of turns depending on their position in protein.
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• Chapter 3 presents a rule induction method which combines expression profiles

data with a genomic locations data to identify DNA-protein interactions relevant

for transcriptional regulation. The method also finds transcriptional regulatory rules

and regulatory circuits.

• Chapter 4 introduces a new approach to cluster genes into modules based on database

of DNA-protein interactions. Each module is a subset of genes commonly bound by

a group of transcription factors (TFset). The method uses a closed TFset lattice,

which is a concise representation of a DNA-TF interactions database. The method

then uses expression profiles data to find an expression pattern in each module if it

exists.

• Chapter 5 summarizes our work and provides future directions of study.

• Appendix A provides a detailed description of support vector learning, which is used

in Chapter 2 of this thesis.

• Appendix B introduces some rule evaluation heuristics for knowledge discovery. We

emphasize the appropriateness of the heuristics for description tasks in rule induction

(similar to the problem in Chapter 3).
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Chapter 2

Prediction and analysis of turn

structures in proteins

This chapter describes a support vector learning method to discriminate β- and γ-turn

positions from non-turn positions in proteins. The method aims to find the globally optimal

hyperplane (with the largest margin) to separate positive from negative points in a feature

space, where each point corresponds to a turn position or non-turn position in proteins.

The optimal separating hyperplane has been proved to have a good generalization ability,

i.e., predictive ability for unseen data. It can also provide the relevance of amino acids

for the formation of turn structures depending on their position in proteins.
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2.1 Introduction

Tight turns [59] play an important role in protein folding and stability. Tight turns are

classified as σ-turns, γ-turns, β-turns, α-turns, and π-turns. About 90% of tight

turns in proteins constitute β-turns, and most of the remaining turns are γ-turns [49].

A β-turn is a four-residue reversal in a protein chain that is not in an α-helix, and the

distance between C α(i) and C α(i+3) is less than 7rA [71, 35] (Fig. 2.1). While β-turns

may or may not be accompanied by the NH(i + 3) − CO(i) hydrogen bond connecting

the main-chain atoms, a γ-turn consists of three consecutive residues at positions i, i+1,

i+2 defined by the existence of a hydrogen bond between the CO(i) group and NH(i+2)

group. β-turns and γ-turns provide useful information for defining template structures

for the design of new molecules such as drugs, pesticides, and antigens [63].

Figure 2.1: Two examples of β-turns

There have been some attempts to predict and analyze β-turns and γ-turns. They

can be divided into two categories: statistical and machine learning methods. The major-

ity of statistical methods empirically employed the knowledge of amino acid preferences

at individual positions in β-turns and γ-turns [31, 17, 29, 34]. Machine learning-based
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methods have been recently developed for prediction of β-turns and γ-turns. They

are BTPRED [9], BetaTPred2 [21] and GammaPred [20]. These methods all used neu-

ral networks with multiple sequence alignment, and significantly outperformed statistical

approaches. However, the prediction and analysis results are still restricted due to the

complexity of the problem and the unbalanced nature of the data (especially γ-turn

data).

In this chapter, we introduce another machine learning approach using support vector

machine (SVM) for both prediction and analysis of β-turns and γ-turns. SVM is based

on statistical learning theory and was developed by Vapnik [74]. In practice, SVM has

a good performance and is easier to implement and train than neural networks. SVM

has also been successfully applied to some problems in bioinformatics, such as secondary

structure prediction [22], microarray data analysis [27], protein-protein interactions [32],

etc.

Two aspects of applying SVM to prediction and analysis of β-turns and γ-turns

have been investigated. First, we developed a SVM-based method that predicts β-turns

and γ-turns in a protein from its sequence. The prediction can be done with single

sequence or multiple sequence alignment. The prediction results on a dataset of 426

non-homologous protein chains by sevenfold cross-validation, and on a dataset of 320 non-

homologous protein chains by fivefold cross-validation, showed that our method performed

well when compared to the other methods. Furthermore, the prediction results of our

method were improved when combined with additional secondary structure information,

which is in turn predicted by another high accuracy secondary structure prediction method

PSIPRED [67]. Moreover, our method performed the prediction at the turn level, which

makes our prediction results more comprehensive and easier to interpret.

Second, we analyzed β-turns and γ-turns by proposing the concept of “the sup-

port of an amino acid position for the formation of β-turns/γ-turns under a linear

SVM classification model” (we will refer to it as the support of an amino acid position),

which implies both the contribution and prevention of that amino acid position for the

formation of β-turns/γ-turns. This information can be easily extracted from the “mul-

tivariable” classification model of a trained linear SVM. This model is more general than

previously proposed models for prediction and analysis of β-turns and γ-turns such as
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Site-Independent model [18], 1-4 and 2-3 Residue-Correlation model [34], and Sequence-

Couple model [31].

The rest of this chapter is organized as follows. Section 2.2 describes our method

in detail, where we present how to convert protein sequences into numerical vectors and

how to assign positive and negative examples. A summary of learning support vectors

for prediction and feature selection is also presented in this section. A more detailed

description of support vector learning is presented in Appendix 1 of this thesis. Section 2.3

presents the main results of our method, together with experimental design. The final

sections are devoted to discussion and conclusion.

2.2 Methods

2.2.1 Vector representations of a protein sequence

There are two basic ways to represent a protein sequence as a vector:

1. Single sequence: Each residue in the protein is represented by a 20-dimension vector

of 0 and 1 coding for the corresponding amino acid at this residue. This binary

representation can be extended by taking into account the general substitute abilities

(scores) of amino acids, i.e., BLOSUM62. Therefore, each residue is represented by

a 20-dimensional vector of the substitute scores of 20 amino acids for this residue.

2. Multiple sequence alignment: A protein sequence is firstly aligned with a non-

redundant (NR) database (e.g., the version used in our work contains 1, 109, 366

sequences) to find the family of sequences to which that protein belongs. The align-

ment can be expressed in a scoring matrix of probability estimates or scores [52].

Two kinds of such matrices are considered in our work: position-specific frequency

matrices (PSFMs) and position-specific scoring matrices (PSSMs). A PSFM is a ta-

ble that lists the frequencies of each amino acid in the alignment, while a PSSM gives

the log-odds score for finding a particular matching amino acid in a target sequence

(see the work of Gribskov et al. [2] and Altschul et al. [52, 12] for more details). The

stand-alone version 2.2.6 of PSI-BLAST (ftp://ncbi.nlm.nih.gov/blast/executables/)

has been used to generate PSFMs and PSSMs in this work with E-value threshold
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of 0.001, three iterations and other parameters set to the respective default values.

Either of these representations, each protein sequence is represented as a bi-dimensional

vector L × 20, where L is the length of the sequence. In this work, all elements of bi-

dimensional vectors are scaled into the interval [−1, 1] by a simple linear transformation

function. After having vector representations of proteins, we use a sliding window with a

fixed length w along each protein to extract the dataset of vectors and input them into

the machine learning system (i.e., support vector machine).

2.2.2 Assigning positive and negative examples

To predict and analyze β-turns and γ-turns, we use a sliding window along the protein

representation to get examples in a vector format. How to define positive and negative

examples is an important issue. There are two options (Fig. 2.2):

Figure 2.2: Assigning positive and negative windows at the residue level and turn level.

Sequence with 3 β-turns
nnnnnnTtttnnnTtTtttnnnnn

nnnnnnTtt → 0 nnnnnnTttt → 0
nnnnnTttt → 0 nnnnnTtttn → 0
nnnnTtttn → 1 nnnnTtttnn → 0
nnnTtttnn → 1 nnnTtttnnn → 1
nnTtttnnn → 1 nnTtttnnnT → 0
nTtttnnnT → 1 nTtttnnnTt → 0
TtttnnnTt → 0 TtttnnnTtT → 0
tttnnnTtT → 0 tttnnnTtTt → 0
ttnnnTtTt → 0 ttnnnTtTtt → 0
tnnnTtTtt → 1 tnnnTtTttt → 0
nnnTtTttt → 1 nnnTtTtttn → 1
nnTtTtttn → 1 nnTtTtttnn → 0
nTtTtttnn → 1 nTtTtttnnn → 1
TtTtttnnn → 1 TtTtttnnnn → 0
tTtttnnnn → 1 tTtttnnnnn → 0
Ttttnnnnn → 0

a) At residue level b) At turn level
(Sliding window size=9) (Sliding window size=10)

1. Assigning positive and negative examples at a residue level: A window will be con-

sidered as a positive or negative example if its central residue falls in a turn area or
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not (Fig. 2.2a). That is, in the training phase, a window with the central residue

falling in a turn area will be considered as a positive example, otherwise negative.

In the testing phase, the prediction result of a window will conversely be assigned

only for one central residue. In this way, the results of prediction may be invalid

and unclear when the number of turn-predicted consecutive residues do not fit into

a β-turn/γ-turn. For example, it is unrealistic to have three consecutive residues

predicted as “ntn” or “tnt” (t for turn and n for non-turn). And it will be ambigu-

ous to interpret the prediction result when more than five consecutive residues are

predicted as β-turns/γ-turns, like “tttttttttt”. How many β-turns or γ-turns

are in this example? And where is the beginning of these turns?

2. Assigning positive and negative examples at a turn level: A window will be consid-

ered as a positive example if its four (or three with γ-turn) central residues form

a β-turn/γ-turn, otherwise negative (Fig. 2.2b). In the training phase, a sliding

window with four (or three with γ-turn) central residues forming a β-turn/γ-turn

will be considered as a positive example, otherwise negative. In the testing phase,

if a window is classified as a positive example, it means that its four (or three with

γ-turn) central residues are predicted as a 4-residue-β-turn (3-residue-γ-turn).

We used the signs “Tttt” for a 4-residue-β-turn and “Ttt” for a 3-residue-γ-turn,

where T means the beginning of a turn and t means not-beginning of the turn. By

using this approach in our work, we overcome the problems explained above.

2.2.3 Binary support vector machine

Support vector machine (SVM) is a learning technique based on statistical learning theory.

The basic idea of applying SVM to binary pattern classification can be briefly stated as

follows. First, map the input vectors into a feature space (often with a higher dimension),

either linearly or non-linearly, which is relevant to the selection of the kernel function.

Second, seek the optimal linear hyperplane (with the largest margin) to separate two

classes within the feature space from the first step.

The implementation of SVM is as follows. Suppose that (xi, yi), i = 1, .., l be a training

dataset, where xi is a vector and yi = 1 or −1 is a class attribute. SVM training solves
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the following problem:

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

yi(w
T φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, ..., l.

Its dual is a quadratic optimization problem:

min
α

1

2
αT Qα− eT α

0 ≤ αi ≤ C

yT α = 0

where e is the vector of all ones; C > 0 is a error penalty parameter, y = {yi}i=1,..,l,

Qij = yiyjK(xi, xj), K(xi, xj) = φ(xi)
T φ(xj) is a kernel function; and φ(xi) maps xi into

a higher (maybe infinite) dimensional space. So K(xi, xj) is a symmetric positive definite

function that reflects the similarity between the sample xi and the sample xj. In our

research, we employed a linear function K(xi, xj) = xi.xj and radial basis function (RBF)

K(xi, xj) = exp(−γ(xi − xj)
2) as the kernel functions. The SVM classification function,

after trained, has the following form:

f(x) =
∑

i

αiyiK(x, xi) + b (2.1)

where α = {αi}i=1,..,l is the solution of the above dual problem and b is in the solution of

the prime problem. Based on the Karush-Kuhn-Tucker theory, the solution of the prime

problem and that of its dual satisfy the following equation:

αi{yi(w
T φ(xi) + b)− 1 + ξi} = 0.

Therefore, if there is an i such that αi 6= 0, then yi(w
Tφ(xi) + b) − 1 + ξi = 0. In this

case, xi is called a “support vector”.

SVM has a solid theoretical background, a good performance in practice, and a guar-

anteed global optimum. It can also handle a large dataset and is easier to implement and
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train than a neural network. A more detailed description of SVM will be presented in

Appendix A of this thesis, or can be found in the work of Vapnik [74] and Cristianini [26].

2.2.4 Support vector learning for discovering the support of fea-

tures

Ranking informative (discriminant) attributes is of fundamental and practical interest

in data mining and knowledge discovery. SVM has been successfully applied to this

task [36, 27]. When SVM uses a linear kernel, it finds an optimal hyperplane that separates

the positive from the negative class in the original space (not mapping into a higher

dimensional space). This optimal hyperplane has then the following form (replacing

K(x,y)=x.y in Eq. A.31):

f(X = (f1, f2, .., fm)) =
m

∑

i=1

wifi + b (2.2)

We can change the signs of the weights wi, i = 1, .., m, and b in the above function such

that if f(X) > 0 then X would be classified as a positive example, otherwise negative.

It can be clearly seen that if wi is positive, the attribute i would support the positive

class; otherwise this attribute would support the negative class (or prevent the positive

class); and the larger the absolute value of wi, the stronger the support (or prevention)

of attribute i. We therefore define the weight wi as the support of the feature i.

2.2.5 BTSVM and GTSVM

We developed two support vector machine-based systems, BTSVM and GTSVM. BTSVM

is used for predicting β-turns and analyzing the support of amino acids for the formation

of β-turns, while GTSVM performs the same tasks for γ-turns. The settings of BTSVM

and GTSVM for each task are presented in Table 2.1.
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Table 2.1: Settings of BTSVM and GTSVM

Task Parameters
BTSVM prediction RBF kernel, PSSM, sliding window length=12
BTSVM LIN analysis Linear kernel, PSFM, sliding window length=8
GTSVM prediction RBF kernel, PSSM, sliding window length=5
GTSVM LIN analysis Linear kernel, PSFM, sliding window length=5

2.3 Experiments

2.3.1 Datasets

We used two datasets described in the work of Guruprasad and Rajkumar [49]. The

first one (dataset B) consists of 426 non-homologous protein chains, while the second

one (dataset G) consists of 320 non-homologous protein chains. These datasets have

been used by Kaur and Raghava for assessing the performance of β-turn and γ-turn

prediction methods [19, 20, 21]. In each dataset, there are no two protein chains hav-

ing more than 25% sequence identity. The structure of these proteins is determined

by X-ray crystallography at resolutions higher than 2.0rA. Each chain in the datasets

contains at least one β-turn or γ-turn. The program PROMOTIF [30] has been

used to assign β-turns and γ-turns in these proteins. The datasets are available at

http://genic.jaist.ac.jp/proteins. The number of positive and negative examples

at the residue level and turn level in the datasets of β-turns (B) and γ-turns (G) are

reported in Table 2.2.

Table 2.2: The number of positive and negative examples of dataset B and G

Dataset Level #positive examples #negative examples
Dataset B residue 23555 72358
(426 proteins) turn 7185 88728
Dataset G residue 2669 79566
(320 proteins) turn 904 81331

2.3.2 Performance measures

We use four criteria described in the work of Shepherd et al. [9]: (1) Qtotal (predic-

tion accuracy), the percentage of correctly predicted residues, (2) Matthew’s Correlation
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Coefficient (MCC), which accounts for both over- and under-prediction, (3) Qpred, the

percentage of correct prediction of turn residues (or probability of correct prediction),

and (4) Qobs, the percentage of observed turn residues that are correctly predicted (or

percent coverage). These measures can be calculated using the following equations:

Qtotal = (
p + n

t
)× 100 Qpred = (

p

p + o
)× 100

MCC =
pn− ou

√

(p + o)(p + u)(n + o)(n + u)
Qobs = (

p

p + u
)× 100

where p and n are the number of correctly predicted turn and non-turn residues, respec-

tively; o and u are the number of incorrectly predicted turn and non-turn residues, and

t = p + n + o + u is the total of residues.

Following the work by Kaur and Raghava [19], in addition to the four criteria men-

tioned above, we used a threshold independent measure, AUC (area under the curve), for

the comparison. A ROC curve is obtained by plotting all sensitivity values (true-positive

fraction) on the y-axis against their equivalent (1−specificity) values (false-positive frac-

tion) for all available thresholds on the x-axis, where Sensitivity(Sn) and specificity(Sp)

are defined as:

Sn =
p

p + u
Sp =

n

n + o

The AUC is taken as an important index because it provides a single measure of overall

accuracy that is not dependent on a particular threshold [64]. Here we used trapezoidal

intergration [61] to calculate the AUC of ROC curves produced by our prediction method.

2.3.3 K-fold cross-validation

To compare our method with other approaches, we employed the K-fold cross-validation

described in the work of Kaur and Raghava [19, 20] (K = 7 and 5 for β-turns and γ-turns,

respectively). The dataset is randomly divided into K subsets, each containing equal

number of proteins. Each set is an unbalanced set that retains the naturally occurring

proportion of turns and non-turns. K − 1 subsets are grouped into the training set. The

last subset is for the testing set. This process is done K times to test the prediction result

for each testing set. The final prediction results have been averaged over K testing sets.
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2.3.4 Prediction of β and γ-turns

Table 2.3 shows the performance of BTSVM and 5 other methods on 426 non-homologous

protein chains by sevenfold cross-validation; Table 2.4 shows the performance of some

methods on 320 non-homologous protein chains by fivefold cross-validation. As it can be

seen, BTSVM achieves a MCC score up to 0.43 when using PSSM and 0.45 when using

additional secondary structure information, which is in turn predicted by PSIPRED;

GTSVM has MCC of 0.11 when using PSSM and 0.13 when using additional predicted

secondary structure information.

Table 2.3: Results of β-turn/non-β-turn prediction of some methods.

Qtotal Qpred Qobs MCC AUC
Chou-Fasman Sin. seq. 74.9 46.1 16.9 0.16

(69.3) (36.9) (35.3) (0.16)
Sin. seq. & sec. struct. 74.3 47.7 54.3 0.34

(75.3) (49.6) (47.5) (0.32)
Thornton Sin. seq. 74.5 44.0 16.7 0.15

(70.1) (36.7) (30.5) (0.14)
Sin. seq. & sec. struct. 75.2 49.3 44.9 0.31

(75.2) (49.3) (44.9) (0.31)
1-4 & 2-3 Sin. seq. 63.2 35.3 60.4 0.21
correlation model (71.1) (40.8) (40.3) (0.21)

Sin. sec. & seq. struct. 73.4 46.2 51.5 0.31
(74.8) (48.0) (39.8) (0.28)

Sequence couple Sin. seq. 50.6 31.7 88.4 0.23
model (72.7) (43.9) (41.0) (0.25)

Sin. seq. & sec. struct. 72.2 45.0 60.0 0.33
(75.4) (49.6) (40.0) (0.28)

BTPRED Sin. seq. 71.6 44.1 57.3 0.31
Mul. seq. 73.5 47.2 64.3 0.37 0.72

Mul. seq. & sec. struct. 75.5 49.8 72.3 0.43 0.77
BTSVM Sin. seq. 74.2 47.6 49.2 0.31

Mul. seq. 78.4 55.9 58.6 0.43 0.81

(73.4) (47.5) (75.4) (0.43)
Mul. seq. & sec. struct. 79.8 59.2 58.0 0.45 0.82

(76.0) (50.9) (72.0) (0.45)
BTSVM LIN Mul. seq. (PSFM) 73.1 46.0 55.0 0.32

Note: the results of Chou-Fasman, Thornton, 1-4 & 2-3 correlation model and sequence couple

model at original and new (in brackets) threshold values are from (Kaur, 2002) [19]. The results

of BTPRED are from (Kaur, 2003) [21]. The results of BTSVM are sevenfold cross-validation

accuracies obtained in the same way. BTSVM LIN is used for analysis of β-turns.
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Table 2.4: Results of γ-turn/non-γ-turn prediction of some methods.

Qtotal Qpred Qobs MCC AUC
Sequence couple Sin. seq. 66.3 2.8 50.1 0.05
model Sin. seq. & sec. struct. 57.8 5.9 43.2 0.08
GOR Sin. seq. 62.1 4.7 54.4 0.06

Sin. seq. & sec. struct. 75.5 6.1 45.5 0.09
WEKA Sin. seq. 61.7 4.7 56.2 0.06
(logistic regression) Mul. seq. 62.7 5.5 63.9 0.10

Mul. seq. & sec. struct. 62.6 5.6 65.1 0.12
WEKA Sin. seq. 66.5 4.8 49.5 0.06
(naive Bayes) Mul. seq. 59.0 5.1 65.3 0.09

Mul. seq. & sec. struct. 57.4 5.0 65.4 0.11
WEKA Sin. seq. 89.6 4.3 10.4 0.02
(J48 classifier) Mul. seq. 92.5 5.0 7.2 0.02

Mul. seq. & sec. struct. 92.6 5.0 7.2 0.03
SNNS Sin. seq. 56.1 4.3 59.4 0.06

Mul. seq. 76.6 5.1 58.6 0.12 0.69

Mul. seq. & sec. struct. 74.0 6.3 83.2 0.17 0.73
GTSVM Sin. seq. 61.6 4.8 57.9 0.07

Mul. seq. 78.7 6.9 44.5 0.11 0.70

(53.0) (5.1) (75.9) (0.10)
Mul. seq. & sec. struct. 79.9 7.7 47.5 0.13 0.72

(67.4) (6.3) (64.7) (0.12)
GTSVM LIN Mul. seq. (PSFM) 64.7 5.4 59.3 0.09

Note: the results of sequence couple model, GOR, SNNS, WEKA are from (Kaur, 2003) [20].

The results of GTSVM are fivefold cross-validation accuracies obtained in the same way.

GTSVM LIN is used for analysis of γ-turns.

For the comparison, we set a new decision threshold for turn and non-turn classes such

that Qpred of our method is (nearly) equal to that of the best methods so far (BTPRED

for β-turns and SNNS for γ-turns). The accuracy of our method at the new threshold are

given in brackets in Table 2.3 and Table 2.4. As can be seen, for predicting β-turns, our

method BTSVM has the best performance when compared to other single methods on the

criteria Qpred, Qobs and MCC, while Qtotal is still high enough. For predicting γ-turns,

although our method GTSVM gives MCC = 0.10, Qtotal = 53.0 that are lower than those

of SNNS, our Qobs = 75.9 is significantly higher.

We also calculated the threshold independent measure AUC for our prediction method

by the trapezoidal method, which systematically underestimates the AUC [61]. The AUC

of BTSVM and GTSVM (using PSSMs) are 0.81 and 0.70 respectively (see Table 2.3 and
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Table 2.4), which are all greater than AUC of previous methods reported in [20, 21] (the

AUC of BTPRED and SNNS using PSSMs are 0.72 and 0.69 respectively).

As in the work of Kaur and Raghava [20, 21], we tried to use additional secondary

structure information, which is directly predicted by the PSIPRED method [67] without

re-training it in the training dataset (which might be unfair for the comparison because

PSIPRED might use a larger training dataset). Each protein sequence is then represented

as a bi-dimensional vector L×23, where L is the length of its sequence, and each position

in the protein is encoded by a group of 23 inputs, 20 units encoding for the amino acid at

that position and the remaining three units being the probabilities of three states (helix,

strand, and coil) provided in the output of the PSIPRED prediction. The performance

of BTSVM is improved to Qtotal = 76.0, Qpred = 50.9, Qobs = 72.0, MCC = 0.45 and

AUC = 0.82 (Table 2.3) and that of GTSVM is improved to Qtotal = 67.4, Qpred =

6.3, Qobs = 64.7, MCC = 0.12 and AUC = 0.72 (Table 2.4). As can be seen, BTSVM is

still better than other methods, but GTSVM is worse than SNNS.

2.3.5 Support of amino acids for the formation of β and γ-turns

We used BTSVM LIN and GTSVM LIN with linear kernels and PSFMs (see Section 2.2.4

and Table 2.1 to estimate the support of amino acids at individual positions in the pro-

tein sequence (or, more briefly, the support of amino acid positions) for the formation of

β-turns and γ-turns. In other words, we tried to find the wi’s in a linear SVM classi-

fication function (i.e., Eq. 2.2). In this task, first we used PSFMs for BTSVM LIN and

GTSVM LIN since PSFMs emphasize clearly the occurrence of amino acids at an indi-

vidual position in a protein sequence. While PSSMs (log-odds values), in addition to the

information of occurence of amino acids, take account a general substitution matrix (i.e.,

BLOSUM62) and other information, they might be not as good as PSFMs in this task.

We also tried to use single sequence for this task and found that the ranking of weights

(wi) is almost similar to the ranking of them generated by using PSFMs, although their

values are different. Here we suppose that using PSFMs is more accurate because it gave

a better performance (see Table 2.3 and Table 2.4). We chose the sliding window length of

8 for β-turns and 5 for γ-turns, because after having tried various experiments we found

that these lengths make BTSVM LIN and GTSM LIN have the best performance.
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After setting the parameters described above, we trained the BTSVM LIN on the

whole β-turn dataset B and GTSVM LIN on the whole γ-turn dataset G to build

the linear classification functions (Eq. 2.2) for turn/non-turn. From these classification

functions, we extracted the supports (wi’s) of amino acid positions (see Section 2.2.4).

Table 2.5 shows the supports of amino acids for the formation of β-turns depending on

their position in the sliding window of length 8, and Table 2.6 shows the supports for the

formation of γ-turns under the window of length 5.

In general, the support of an amino acid for the formation of β-turns/γ-turns varies

from position to position in the window. We have marked in boldface positions where

certain amino acids have a strong support, and underlined positions where they have a

strong prevention.

Table 2.5: The supports of amino acid positions for the formation of β-turns

Amino acid Position 1 2 3 (i) 4 (i+1) 5 (i+2) 6 (i+3) 7 8
Ala (A) -0.346 -0.539 -1.047 0.223 -0.622 0.011 -0.435 -0.462
Arg (R) -0.088 0.201 -0.788 0.349 0.275 0.271 0.377 -0.209
Asn (N) -0.416 -0.164 0.122 0.400 2.712 0.267 0.516 -0.104
Asp (D) -0.325 0.358 0.589 0.690 1.542 0.339 0.188 -0.367
Cys (C) -0.131 0.138 -0.138 -0.472 0.067 0.286 0.069 0.098
Gln (Q) -0.090 -0.227 -1.140 -0.083 0.106 0.594 0.122 -0.496
Glu (E) -0.082 -0.286 -1.242 0.798 0.028 -0.400 0.285 -0.257
Gly (G) -0.162 -0.044 -0.432 0.219 2.207 1.061 0.358 -0.278
His (H) 0.001 0.152 -0.412 0.250 0.641 0.499 0.382 0.186
Ile (I) -0.094 -0.328 -1.250 -0.279 -0.489 -0.702 -0.202 -0.161
Leu (L) -0.391 -0.311 -0.877 -0.299 -0.259 -0.242 0.002 -0.151
Lys (K) -0.045 -0.221 -1.021 0.944 0.098 0.446 0.741 -0.211
Met (M) -0.239 -0.312 -0.738 -0.279 -0.003 0.204 -0.009 -0.323
Phe (F) -0.236 -0.150 -0.648 -0.409 0.368 -0.052 -0.048 -0.078
Pro (P) 0.077 -0.215 0.204 1.982 -0.254 0.263 1.234 0.227
Ser (S) -0.206 -0.124 0.156 0.372 0.333 0.240 0.332 -0.282
Thr (T) -0.214 -0.070 -0.427 -0.137 0.258 0.502 0.724 -0.052
Trp (W) -0.263 -0.036 -0.801 -0.086 -0.044 -0.138 0.120 0.045
Tyr (Y) 0.177 0.089 -0.511 -0.164 0.230 -0.059 0.159 -0.125
Val (V) 0.034 0.044 -0.911 -0.326 -0.542 0.019 0.011 0.217

Note: amino acid positions with positive supports will contribute to the formation of β-turns,

others will prevent the formation of β-turns. The larger the absolute value of the support, the

stronger the contribution (or prevention if negative). Amino acid positions with the strongest

supports (more than 0.50) are printed in boldface. Those with the lowest supports (less than

-0.50) are underlined.

24



Table 2.6: The supports of amino acid positions for the formation of γ-turns

Amino acid Position 1 2(i) 3(i+1) 4(i+2) 5
Ala 0.120 -0.960 -0.451 -1.221 -0.197
Arg 0.566 0.049 -1.067 0.581 0.287
Asn 0.693 0.280 2.508 0.162 0.879
Asp 0.733 -0.317 2.040 0.125 0.878
Cys 0.814 0.127 -0.206 0.324 -0.005
Gln 0.356 -0.473 -0.383 -1.040 -0.237
Glu 0.935 0.012 -1.276 -1.517 0.225
Gly 1.479 1.080 -0.691 -0.468 0.707
His 0.597 0.503 0.108 0.154 -0.130
Ile 0.609 0.250 -1.024 -0.559 -1.102
Leu 0.478 -0.066 -0.222 -0.800 -0.605
Lys 0.927 -0.518 -0.569 -0.403 -0.223
Met 0.874 0.326 1.380 0.133 -0.813
Phe 0.601 -0.182 -0.664 -0.388 -0.130
Pro 1.413 1.197 1.929 -1.024 1.295

Ser 1.196 -0.079 -1.278 0.751 0.605
Thr 0.631 -0.011 -2.074 0.598 0.024
Trp 0.694 -0.316 0.250 0.117 0.595
Tyr 0.402 0.411 -0.509 -0.216 -0.148
Val 0.154 -0.572 -1.751 0.332 0.478

Note: amino acid positions with positive supports will contribute to the formation of γ-turns,

others will prevent the formation of γ-turns. The larger the absolute value of the support, the

stronger the contribution (or prevention if negative). Amino acid positions with the strongest

supports (more than 1.00) are printed in boldface. Those with the lowest supports (less than

-1.00) are underlined.

There are some amino acids, of course at different positions, strongly supporting both

the formation of β-turns and γ-turns. For example, Glycine (Gly) supports the β-turn

formation at positions i + 2 and i + 3. It also supports the γ-turn formation at positions

i and i − 1. Especially, amino acid Asparagine (Asn) at position i + 2 has the strongest

support for the formation of β-turns; and it also has the strongest support for the

formation of γ-turns when it occurs at position i + 1. There are some amino acids, on

the other hand, preventing both the formation of β-turns and γ-turns: Alanine (Ala),

Isoleucine (Ile), etc. There are also some amino acids that, while their occurrence almost

does not impact the β-turn formation (or γ-turn formation), their occurrence at specific

positions strongly supports or prevents the formation of the other type of turns. For

example, Serine (Ser) almost does not influence the β-turn formation, but it strongly
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supports γ-turn formation at position i− 1 and strongly prevents at position i + 1.

2.4 Discussions

Prediction of β-turns and γ-turns

Our method gave clear prediction results and showed high performance. The reasons for

these may be the following:

1. As explained in the work of Kaur [21, 20], our method, like BTPRED, BetaTPred2

and GammaPred, incorporates the evolutionary information of proteins by using

multiple sequence alignment. The evolutionary information has been proved to

significantly improve most structure prediction methods.

2. Like BTPRED, BetaTPred2 and GammaPred, our method can improve the predic-

tion accuracy by using additional secondary structure, which is in turn predicted

by a secondary structure prediction method with high accuracy, i.e., PSIPRED.

3. In our method, the prediction is performed at the turn level (see Section 2.2.2). This

is different from previous work (PTPRED, BetaTPred2, and GammaPred), which

performed the prediction at the residue level. Therefore, all β-turns/γ-turns

predicted by our method, containing at least four residues with a β-turn and three

residues with a γ-turn, are valid and clearer. In consequence, there is no need to

go through a filtering process to exclude unrealistic β-turns/γ-turns.

4. Our method used SVM, which has many advantages over neural networks. For

example, it always gives the global optimal solution with a particular kernel, it is

easy to control the capacity, etc. [26, 74].

Supports of amino acid positions for the formation of β-turns

and γ-turns

We introduced the term “support of an amino acid position to the formation of β-turns

and γ-turns under the SVM classification model” that emphasizes the discriminative

features. Our analysis results agree closely with those from previous statistical methods.
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That is, amino acid positions with stronger positive supports for the formation of turns

are often those with the higher amino acid positional potentials (preferences) for turns

as previously reported in the work of Guruprasad and Rajkumar [49], and Chou [63].

Conversely, amino acid positions with stronger negative supports are often those with

lower amino acid positional potentials (preferences).

However, there are at least four differences between our approach and others. First,

our analysis and prediction are based on the “multivariable” classification model of SVM,

which is more general than previous models, such as Site-Independent model [18], 1-4

and 2-3 Residue-Correlation model [34], and Sequence-Couple model [31]. Therefore, the

supports of amino acid positions are not considered independently, but are mutually taken

by a combinational linear. This explains why the order of amino acid positions sorted

by their supports is different from the order when they are sorted by their potentials (or

preferences).

Second, our method performed at the turn level by a window wider than the length of

the β-turn/γ-turn itself. Some amino acids, although may not be in a turn region, have

significant supports (or preventions) to the β-turn or γ-turn formation of the residues

preceding or following them. This may explain why some previous statistical methods had

low prediction performance, since they performed their prediction only under a window

of size 4 with β-turns and 3 with γ-turns.

Third, as explained above, our approach emphasizes the discriminative features due

to the discriminative character of SVM model.

Fourth, the analysis results of our approach are more comprehensive and therefore

easier to use than previous studies. Amino acid positions with positive supports will

contribute to the formation of turns; otherwise they will prevent it. The stronger the

support, the stronger the effect of the amino acid position on the formation of turns.

2.5 Summary

In this chapter, we introduced a support vector learning method to the problem of predict-

ing β- and γ-turn positions in a protein sequence. We first described how to convert turn

and non-turn positions into numerical vectors, to which we can apply a machine learning

method. Support vector learning can find a globally optimal hyperplane separating turn
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vectors from non-turn vectors in a training data. The optimal separating hyperplane was

then used to (1) predict unseen data and (2) estimate the support of amino acid for the

formation of turn structures. If the training data has a distribution that is similar to the

distribution of unseen data, the optimal separating hyperplane will have a good general-

ization ability (the ability of correct prediction for unseen data). In the next chapter, we

will deal with the problem where the known data set follows a distribution that does not

hold for unseen data.
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Chapter 3

Discovery of transcriptional

regulatory rules

This chapter describes a rule induction method to find protein-DNA interactions relevant

for transcriptional regulation. The method uses a weighted covering strategy (an exten-

sion of separate-and-conquer), together with a rule evaluation heuristic that favors rules

with high generality, to find local rules, which cover different (overlapped) subgroups of

instances. Our method combines expression data with genomic location information to

discover both (1) relevant transcription factors from the set of potential transcription fac-

tors of a target gene; and (2) transcriptional regulatory rules that describe the relationship

between the expression behavior of a target gene and the expression behavior of its relevant

transcription factors. These regulatory rules reveal some regulatory circuits that describe

how some transcription factors regulate target genes.
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3.1 Introduction

Even in a simple model organism like Saccharomyces cerevisiae, the mechanism of gene

transcriptional regulation is extremely complex and uncovering it is one of the central

problems in computational biology. In any organism, there are about 10% of genes that

can produce proteins having a transcriptional role. These special proteins are called

transcription factors (TFs) or regulators, and their DNA-binding interactions make the

set of downstream genes express.

Mapping of DNA-binding locations of transcription factors has been proposed by using

both experimental [5, 13, 39, 57] and computational approaches [25, 10, 11, 4, 41]. How-

ever, while genomic location data from experimental approaches is noisy due to imperfect

measuring methods [39], computational approaches often suffer from over-prediction prob-

lems due to the short length (less than 20 bases) of the sequence motifs bound by the

transcription factors. Harbison et al. [7] have constructed an initial map of yeast tran-

scriptional regulatory code at different confidence levels by incorporating results from both

experimental and computational methods. The frequency of false positives in genome-

wide location data ranges from 6 to 10%, and about one-third of actual DNA-regulator

interactions are not reported at the 0.001 p-value confidence level [39]. Nevertheless,

increasing the p-value threshold (lowering the confidence) to include more true DNA-

regulator interactions makes the rate of false positives increase. An additional problem

we have to deal with when studying transcriptional regulation is the fact that interactions

between regulators and DNA-binding sites are environment-dependent [7]. Many regula-

tors only bind to the promoter of certain genes under specific environmental conditions.

Even more, the presence of the regulators at a promoter region indicates binding but not

necessarily function: the regulator may act positively, negatively or not act at all. There-

fore, recognizing DNA-regulator interactions relevant for the transcription of a gene and

how relevant regulators regulate the expression of that gene under specific environmental

conditions are still important and open problems.

In this chapter, we propose a method that combines expression data with genomic

location data to discover at the same time (1) relevant transcription factors from the

set of potential transcription factors of a target gene; and (2) the relationship between

the expression behavior of a target gene and the expression behavior of these relevant
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transcription factors. We assume that transcription factors regulating the expression of a

gene must bind to its promoter, and the expression of the target gene must be consistent,

in a specific way, to the expression behavior of these transcription factors. Our method

is based on rule induction, a machine learning technique which can efficiently deal with

noisy domains like microarray data in our problem.

When applied to genomic location data with a relaxed confidence criterion (p-value=0.005)

and three different expression datasets of yeast Saccharomyces cerevisiae, our method pro-

duced a set of regulatory rules comprehensively describing the relationship between the

expression behavior of a specific target gene and the expression behavior of its relevant

transcription factors. We were able to find the most frequent transcription factors oc-

curring in regulatory rules under different conditions: response to environmental stress,

response to DNA-damaging agents, and during the cell cycle. The resulting regulatory

rules reveal some important regulatory circuits that clearly describe how a group of tran-

scription factors regulates target genes.

We illustrate how the resulting regulatory rules provide strong evidences of true pos-

itive interactions between genes and regulators, as well as evidences of protein-protein

interactions that could serve to identify transcriptional complexes.

3.2 Methods

3.2.1 Overview of method

In this work we find regulatory rules that relate the expression profile of a gene with

that of its regulators. Given n potential transcription factors tf1, tf2, . . . , tfn binding

to the promoter of a target gene Gt and assuming genes G1, G2, . . . , Gn are responsible

for expressing those factors, (see Fig. 3.1A for an example with n = 2), we build a

regulatory table as follows: we first determine the expression profiles of G1, G2, . . . , Gn and

Gt (Fig. 3.1B) from the expression data. By comparing the results of pairs of experiments,

we can determine if the expression of genes increased (I), decreased (D) or did not change

(N) at the same time (Fig. 3.1C). With this information we can construct the regulatory

table with instances of the form (G1 = v1, G2 = v2, . . . , Gn = vn, Gt = vt, count = k),

with vi = I, D, orN (Fig. 3.1D). Section 3.2.2 provides more information on the regulatory
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tables. From the regulatory tables, we then apply the CN2-SD rule induction system (see

section 3.2.3) to produce a set of regulatory rules (Fig. 3.1E).

Figure 3.1: Approach overview
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3.2.2 Regulatory tables

Given a gene and a set of its potential transcription factors, the regulatory table of this

gene (the target gene) is a contingency table that describes the relation between the

expression behavior of the gene and its regulators. If a gene has n potential regulators,

its regulatory table consists of at most 3n rows, since the expression behavior of each

regulator has 3 states: I (upregulation), D (downregulation) and N (no change). For

each set (G1, G2, . . . , Gn, Gt) of regulators and target gene, we then study their expression

profiles. Every experiment is compared against all others to determine if the expression of

a gene increased (ex−ey > T ), decreased (ex−ey < −T ) or did not change (|ex−ey| ≤ T ).

Section 3.2.8 describes how the threshold T is determined. Fig. 3.1D is an example of

regulatory table of a gene with two potential regulators.

These regulatory tables have two important characteristics to consider. First, they
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contain noise from three different sources: (1) imperfect measurement methods to collect

gene expression data, (2) uncertainty of interactions between transcription factors and

the target gene (as explained in Section 3.1), and (3) method to obtain the threshold T

to decide whether the expression increased, decreased or did not change. Due to these

factors, the expression behavior of potential regulators turns out to be often inconsistent

with the expression behavior of the target genes. To alleviate this inconsistency problem,

we use the counts for each state of the expression behavior of the gene (Fig. 3.1D).

A second important fact to notice about the regulatory tables is that they might

be sometimes incomplete. Since we construct these tables from expression data, some

combinations of expression behavior of the set of regulators may have never happened

under any conditions, or occurred with very low frequency as a result of noise.

Even though the regulatory tables can be incomplete and are constructed from noisy

sources, consistent relationships between expression behavior of genes can nevertheless

be uncovered from them. These relationships are represented in the form of a rule

Gi1 = vi1 , . . . , Gik = vik → Gt = vt, which takes account only of transcription factors

Gi1 , . . . , Gik relevant for the expression behavior of the target gene Gt, and that ignores

other non-relevant factors. In the following subsections, we will present a machine learn-

ing technique, rule induction, to efficiently discover such kinds of rules from regulatory

tables.

3.2.3 Rule induction by CN2

Rule induction from examples is a machine learning technique that has been successfully

used as a support tool for knowledge acquisition and prediction. The induced rules are

usually expressed as condition → class, where condition and class are logic expressions

of the form (variable1 = value1 ∧ variable2 = value2 ∧ . . . ∧ variablek = valuek).

There are three kinds of rule inducting algorithms: covering, decision tree-based and

association rule-based. The first ones, covering algorithms, make use of a separate-and-

conquer strategy over the search space to learn a rule set (see [65] for an overview). This

separate-and-conquer strategy searches for a rule that explains (covers) part of its training

instances, separates (or reassigns with lower weight) these examples, and recursively con-

quers the remaining examples by learning more rules until no examples remain. Decision
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tree-based algorithms use a divide-and-conquer strategy [69, 70]. Much of the popularity

of these algorithms stems from their efficiency in learning and classification. Decision

trees can be easily turned into a rule set by generating one rule for each path from the

root to a leaf. Finally, association rule-based algorithms use a exhaustive search strategy

by exploring almost the whole search space [56, 40]. The basic idea is to use an association

rule algorithm to gather all rules that predict the class attribute and also pass a minimum

quality criterion.

By implementation, the divide-and-conquer strategy (in decision tree-based algorithms)

is restricted to learn non-overlapping rules only. The exhaustive strategy (in association

rule-based algorithms) has the problem of producing many redundant rules. The separate-

and-conquer algorithms can partially avoid these disadvantages [65, 3], which is one of

the main reasons for its popularity.

CN2 is a rule induction system implementing the separate-and-conquer strategy [54,

48]. It learns a rule set by iteratively adding rules one at a time. The system starts by

using a general-to-specific search (described below) to learn the best rule according to

some measures. Examples covered by this rule are removed from the search space before

learning the next rule to add to the rule set. This is repeated until all examples are

covered by at least one rule in the rule set or some stopping criteria is satisfied.

The general-to-specific search (Fig. 3.2) finds a single rule to be added into the set

of learned rules. Beginning with a default rule (classify all examples as belonging to

a positive class), it searches the space of possible rules by successively specializing the

current best rule. Rules are specialized by greedily adding the condition which promises

the highest gain according to a predefined heuristics.

3.2.4 Rule searching heuristics

During the general-to-specific search, CN2 must evaluate the rules it finds to decide which

one is the best. Different measures (heuristics) have been proposed for this purpose, as

well as for filtering out uninteresting rules and/or for stopping the refinement process

at an appropriate point: accuracy, entropy hen [54], Laplace hlaplace [48], m-estimate

hm estimate [62], weighted relative accuracy hWRA [3], etc. The measures hen, hlaplace,
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Figure 3.2: Heuristic-dependent beam searching spaces
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hm estimate, and hWRA are defined as follows:

hen = −
∑

i

pilog2(pi) (3.1)

hlaplace =
nc + 1

ntot + k
(3.2)

hm estimate =
nc + p0(c)m

ntot + m
(3.3)

hWRA(condition→ class) =
p(condition)

p(class|condition)− p(class)
(3.4)

where pi denotes the probability distribution of examples among the k classes, nc is

the number of examples covered by the rule if the predicted class is c, ntot represents the

total number of examples covered by the rule, and p0(c) is the prior probability of class c.

In general, given a rule r, a heuristic h restricts the beam searching space for rules
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more specific than r in the general-to-specific search [50]. Therefore, the larger the h-beam

searching space is, the larger the probability that a more specific rule can be found respect

to heuristic h. As it can be seen in Fig. 3.2, bsshen
(r) ≥ bsshm estimate

(r) ≥ bsshWRA
(r),

where bss stands for beam searching space. This actually explains why hen prefers specific

rules [48], while hWRA produces rules with a high generality. This also agrees with the

opinions expressed in [3], where a measure like hWRA was considered more suitable for

description tasks (like the problem described in this chapter) rather than for prediction

tasks. Therefore, in the rest of this chapter we will discuss results obtained by using the

heuristic hWRA.

3.2.5 CN2-SD for knowledge discovery

The original CN2 [54] works by learning a set of ordered rules. According to a certain

heuristic measure, CN2 looks for the best rule in the set of training examples. Once a

rule is found (“induced”), all examples covered by the induced rule are removed from the

training set, and the system starts again to look for a new rule. The result of a typical CN2

session is a list of nested rules of the form “if .. then .. else .. ”. The nested structure can

become extremely complex when the number of rules is high, making this representation

difficult to interpret. Subsequent versions of CN2 [48] allow the induction of unordered

rule lists. Rules are learned for each class independently, and for each induced rule only

covered examples belonging to the class are removed, instead of removing all covered

examples. The produced final rules can therefore overlap, but at the same time can be

interpreted independently. When using an unordered rule list to predict the class of new

instances, several rules can contribute to the classification of this example, often resulting

in an improved accuracy.

Unfortunately, and due to the way CN2 iteratively removes examples, in an unordered

rule list only the first few induced rules are usually of interest. Subsequently induced rules

are obtained from biased example subsets, i.e., subsets including only positive examples

not covered by previously induced rules. This is not suitable for our description task

(discovering the regulatory rules hidden in expression data), where desired rules may

cover overlapped instances. CN2-SD [3], a modification of CN2 for subgroup discovery,

solves this problem and will be the rule induction system used in the experiments reported
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in this work. The basic idea is to generalize the covering algorithm by introducing example

weights. Initially, all examples have a weight of 1.0. However, the weights of examples

that are covered by a rule will not be set to 0.0 (as in CN2), but instead will be reduced

by a certain factor. The resulting number of rules is typically higher than with CN2,

since most examples will be covered by more than one rule. CN2-SD has therefore two

complementary advantages: it can learn better local patterns because the influence of

previously covered patterns is reduced, but not completely ignored; and, it can produce

a better classifier by combining the evidence of more induced rules.

3.2.6 Filtering regulatory rules

As explained above, by using a weighted covering strategy, CN2-SD can restrict the re-

dundancy of learned rules and guarantee the scanning of the whole search space. However,

uninteresting regulatory rules are still produced, mainly due to noise in the microarray

data we use as a source. In our system, in addition to the significance test, which ensures

that the distribution of examples among classes covered by a rule is significantly different

from the distribution that would be obtained by random assignment [54], we use two other

heuristics to filter out trivial and inconsistent regulatory rules. Given a regulatory rule

r: TF1 = v1, . . . , TFn = vm → Target gene=v [nD, nI , nN ], where vi(i = 1, . . . , m) and

v are values in {D, I, N}, the expression behaviors (downregulation, upregulation, and

no change) of genes or transcription factors; and [nD, nI , nN ] are the class distribution of

examples covered by this rule r.

1. Removing trivial regulatory rules and irrelevant conditions in a rule: r is called

a trivial regulatory rule if its predictive value of Target gene is N (no change).

This regulatory rule can be interpreted as: “there is no relationship between the

target gene and its transcription factors”. This kind of rules is therefore trivial,

and should be removed from the learned rule set. The remaining rules are those

predicting Target gene to be D or I.

Moreover, if there is any transcription factor in the condition part of a rule ap-

pearing with value N (no change), the transcription factor has no role in regulating

the expression of the target gene. We also remove these irrelevant factors in the

condition part of regulatory rules, and update the class distribution for new rules.
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2. Removing inconsistent regulatory rules: the consistence (cons) of a non-trivial reg-

ulatory rule r is defined as:

cons(r) =
np

nD + nI

∗
np

nD + nI + nN

(3.5)

where np is equal to nD if r is a classification prediction rule for Target gene belong-

ing to class D, and equal to nI if r is a classification prediction rule for Target gene

belonging to class I. The consistence cons(r) takes into account two factors: a

confidence-without-noise ( np

nD+nI
) and confidence-with-noise ( np

nD+nI+nN
), where nN

is the parameter to represent the noise in microarray data. Clearly, 0 ≤ cons(r) ≤ 1,

and the higher the value of cons(r), the higher the confidence that regulatory rule

r is true.

3.2.7 Datasets

In all our experiments we used genomic location data (as described in [7]) as a source

for potential gene-transcription factor interactions. This dataset contains interactions be-

tween 106 transcription factors and about 6200 genes of yeast Saccharomyces cerevisiae,

with a relaxed binding criterion of confidence p-value ≤ 0.005 (this relaxed confidence

value is expected to increase the number of true and functional interactions that can be

found), and conserved in at least one other yeast specie. Three expression datasets (see

Gasch et al, 2000 [46], 2001 [37]; Spellman et al., 1998 [16]) are also used to analyze the

expression behavior of target genes as well as transcription factors response to environ-

mental stresses, response to DNA-damaging agents, and during the cell cycle, respectively.

The number of experiments of these three datasets is 172, 52, and 77, respectively.

3.2.8 Assigning expression behavior labels: upregulation, down-

regulation and no change

We compare the expression values ei and ej of a gene between any two microarray experi-

ments i and j to determine its expression behavior. If ej− ei > T the expression behavior

of the gene is upregulated (I) from experiment i to experiment j; if ej − ei < T the

expression behavior of the gene is downregulated (D); otherwise it is non-changed (N).
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When the threshold value T is large, our system will produce regulatory rules with high

confidence-without-noise but low confidence-with-noise (see 3.2.6). These regulatory rules

are often true positives although by using a high threshold we are also discarding some rel-

evant regulatory rules. Inversely, if the value of T is small, our system will produce many

irrelevant regulatory rules due to the noise in microarray data. To determine a reasonable

threshold T for a microarray dataset, we first set an initial value T0 large enough, then

apply our method to find a set of true positive regulatory rules. This set is considered as

previously known regulatory rules (since the set often includes true positives). We then

tune the parameter T to get the highest value of the average measure cons (Eq. 3.5) over

all the rules in this set. By using this method, we obtained threshold values T for Gasch

et al (2000)’s data (1.3), Gasch et al (2001)’s data (0.75), and Spellman et al (1998)’s

data (1.0).

3.3 Results

Results were obtained by using the datasets for gene expression profiles response to en-

vironment conditions Gasch et al (2000) [46], Gasch et al (2001) [37] and Spellman et al.

(1998) [16], with the corresponding T threshold values calculated in section 3.2.8 (1.3,

0.75 and 1.0 respectively). These datasets represent the gene expression profiles response

to stress conditions, response to DNA-damaging agents, and during the cell cycle, respec-

tively. Genomic location data of yeast Saccharomyces cerevisiae with binding criterion

relaxed to p-value≤ 0.005 and conserved in at least one other yeast [7] is used to determine

potential transcription factors of a gene. We removed genes that are bound by no regu-

lator and where 95% of the total number of expression behaviors were N(non-changed).

There are 1800, 2133, and 1172 remaining genes for the three expression datasets that

are bound by at least one transcription factor and significantly expressed, i.e. they have

a number of expression behaviors of classes D or I greater than 5% of their total number

of behaviors. For each gene in these sets and each expression dataset, we constructed a

regulatory table (see Fig. 3.1). As a result, we obtained 1800, 2133, and 1172 regulatory

tables for the three datasets. The algorithm CN2-SD [3] with WRA heuristic (Eq.3.4)

is then applied to find all regulatory rules from these regulatory tables. Finally, we fil-

tered trivial rules, trivial conditions in rules (section 3.2.6), regulatory rules covering few
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examples, and rules with consistence lower than 0.3.

Table 3.1: Summary of produced regulatory rules

Resp. to Resp. to
env. changesa DNA-dama.b Cell cyclec all

# rules 2438 1974 506 3707
# genes 1002 889 288 1336
# found interactions 2206 1938 580 3033
# found interactions 1518 1350 401 2103
with p-value≤0.001 (68.8%) (69.7%) (69.1%) (69.3%)
# p-value≤0.001, 475/1993 557/1927 389/790 455/2558
no interaction found (23.8%) (28.9%) (48.2%) (17.8%)
ten most frequent rap1,abf1, rap1,fhl1, swi6,ste12, rap1,abf1,
regulators ste12,fhl1, hsf1,gcn4, swi4,mbp1, ste12,reb1,

reb1,nrg1, abf1,ste12, dig1,msn4, gcn4,hsf1,
hsf1,swi6, cin5,msn4, phd1,fkh1, nrg1,cbf1,
ume6,cbf1 cbf1,mbp1 fkh2,abf1 swi6,fhl1

Note: a Gasch et al (2000) [46]; b Gasch et al (2001) [37] and c Spellman et al. (1998) [16].

We found 3707 regulatory rules for predicting 1336 target genes to be D and the

same number of rules for predicting target genes to be I. Since we analyze any pair

of experiments without considering their order, with each regulatory rule for predicting

the target gene to be D, there is an equivalent regulatory rule for predicting that target

gene to be I where variables in the condition part of the rule received the opposite values

(I ↔ D). For example, rules Gx = D, Gy = D → Gt = I and Gx = I, Gy = I → Gt = D

are equivalent. For simplicity, we will refer only to regulatory rules for predicting target

gene Gt belonging to class D as the representative ones.

Table 3.1 shows the number of regulatory rules, number of genes controlled by these

rules and the ten most frequent transcription factors found from these three expression

datasets. We found 1002 genes appearing in 2438 rules regulated in response to environ-

mental changes; 889 genes appearing in 1974 rules response to DNA-damaging agents;

288 genes appearing in 506 rules regulated for the cell cycle; and a total of 1336 genes

in 3707 rules in all three kinds of environments. We also found that the most frequent

transcription factors occurring in regulatory rules in response to environmental stresses

(RAP1, ABF1, STE12, FHL1, REB1, etc.) and in response to DNA-damaging agents

(RAP1, FHL1, HSF1, GCN4, ABF1, etc.) are quite similar and agree with the function

they have been annotated with in Gene Ontology [24], while the most frequent tran-
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scription factors occurring in regulatory rules from the cell cycle dataset (SWI6, STE12,

SWI4, MBP1, DIG1, etc.) have functions previously reported to control the cell cy-

cle during growth [24]. The full, detailed set of regulatory rules can be obtained from

http://www.jaist.ac.jp/~h-pham/regulatory-rules, files *regulatory-rules.txt.

It should be noticed how one gene is often regulated by one or more transcription

factors depending on environmental conditions. For example, gene YPR145W (ASN1) is

regulated by different subsets of regulators (Table 3.2) under environmental changes. The

transcription factors that most influenced the expression of YPR145W response to envi-

ronmental changes are STE12, with regulatory rule YPR145W=D← STE12=D covering

2703 instances and consistence 0.82; and DAL82, which negatively regulates YPR145W.

The transcription factors GCN4 and GLN3, when acting together with STE12 or DAL82,

can increase activation ability of these factors. Conversely, a transcription factor (inde-

pendently or co-operatively with others) can regulate many different genes at the same

time. For example, MBP1 interacts with SWI6 in different ways to regulate the activity

of 15 different genes (Table 3.3).

3.4 Discussions

3.4.1 Relevant interactions from genomic locations data

We analyzed relevant interactions between 94 transcription factors and 1336 genes occur-

ring in 3707 regulatory rules found by our method from three microarray datasets. We

found 3033 relevant interactions among them (Table 3.1), 2103 (69.3%) of which have

been reported in the genomic locations data with p-value ≤ 0.001 [39]. Therefore 31.7%

of the relevant interactions found in regulatory rules are from potential ones in the ge-

nomic locations with 0.001<p-value ≤ 0.005. This result agrees with the work of Lee et

al [39], where it was reported that about one-third of actual DNA-regulator interactions

present in genomic locations data are missed at p-value=0.001. Details of interactions in

regulatory rules and in genomic locations data for the 1336 genes can also be obtained

from the complementary on-line material in our web site. 455 of the 2558 interactions

involving the 1336 genes (Table 3.1) and all interactions involving other genes from this

genomic locations data were not found in regulatory rules. The reasons are: (1) the
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genomic locations data contains substantial noise; (2) in our experiments we only consid-

ered three kinds of environmental conditions, while the genomic locations data contains

potential interactions between regulators and DNA that do not actually take place under

the conditions we chose; and (3) many physically binding interactions are too weak or do

not translate into a real function.

3.4.2 Regulatory circuits and transcription complexes

We used a clustering method based on a closed itemset lattice, which will be described

in the next chapter, to group genes regulated by a common subset of transcription fac-

tors (here we consider each regulatory rule as a ”transaction”). We define a regulatory

circuit as a system including three components: a subset of genes, a subset of regula-

tors and a subset of regulatory rules between them. Since a gene can be regulated by

different subsets of regulators with different regulatory rules, it can belong to multiple

regulatory circuits. In general, genes in each circuit often have similar or related func-

tions that agree with the role of their transcription factors. We used GO Term Finder

(http://www.yeastgenome.org/help/goTermFinder.html) to search for significant shared

GO terms that are directly or indirectly associated with the genes in each regulatory cir-

cuit. To determine which terms are significant, the algorithm examines a group of genes

to find GO terms to which a high proportion of the genes are associated, as compared to

the number of times the term is associated with other genes in the genome. Table 3.4 de-

scribes regulatory circuits including some of the most frequent regulators. The complete

set of regulatory circuits is available as supplementary material on-line. The regulatory

circuits we obtained in this work are more detailed than those obtained in previous stud-

ies [47, 14, 15, 38, 33]: in addition to what genes and regulators are included in each

module, our regulatory circuits also describe the regulatory relationship between them in

the form of a rule under certain environmental conditions.

Table 3.3 shows a detailed description of one of the regulatory circuits appearing in

Table 3.4. This circuit consists of 15 distinct genes commonly regulated by MBP1 and

SWI6. These two regulators have been reported to form a complex involved in regulation

of cell cycle progression [53, 55]. Out of 15 genes in this module, six of them (GIN4, MPT5,

CLB6, SWE1, OPY2, and CLB5) are related to the cell cycle regulation (P = 1.24E-07),
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as annotated in Gene Ontology.

This example suggests a possible use of our method to predict transcription complexes.

We consider all regulatory circuits with more than two regulators and containing at least

five genes. Regulators that co-activate or co-repress a specific set of genes are candidates

to form transcription complexes. Table 3.5 shows candidate complexes that regulate 7

or more genes. For example, SWI4 and SWI6 co-regulate 16 distinct genes; TEC1 and

STE12 co-regulate 15 distinct genes; INO2 and INO4 co-regulate 11 distinct genes; HAP2

and HAP4 co-regulate 10 distinct genes; FKH1 and FKH2 co-regulate 7 distinct genes;

SWI4, SWI6 and STE12 co-regulate 4 distinct genes. These co-regulators have been also

previously confirmed to interact in order to regulate genes (see Table 3.5 for references).

There are some other pairs of co-regulators regulating 7 or more genes in the resulting

regulatory rules for which we could not find any evidence in the BIND database [8]. For

example, FHL1 and RAP1 co-regulate (almost always positively) up to 65 distinct genes,

with most of these genes related to the process “protein biosynthesis”. Until further

experiments confirm or reject our results, we suggest that these pairs of co-regulators

could be new transcription complexes. The complete list of co-regulators can be found

on-line in our web site.

3.5 Summary

Data of DNA-protein interactions from experimental and computational methods is often

noisy and contains information about physically binding interactions, although not nec-

essarily functional ones. By combining this data with expression profiles data, our rule

induction method can discover relevant transcription factors for a given target gene, as

well as the relationship between the expression behavior of the target gene and that of

its relevant regulators. When using a relaxed confidence value we were able to uncover

interactions usually missed in other studies due to an excessively strict p-value. The use

of three expression profiles obtained under different environments (stress response, DNA

damage and cell cycle growth) allows us to establish not only if an interaction takes place,

but also if it is functionally active and under what conditions it would happen.

Our method also provides evidence of transcription factors that commonly regulate

different groups of genes. This result could be used to identify potential transcription
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complexes, and we present examples of previously not reported complexes for which strong

evidence was found.
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Table 3.2: Examples of regulatory rules

Regulatory rules Resp. environ. changes Resp. DNA-damage Cell cycle

classes distrib. cons. classes distrib. cons. classes distrib. cons.

YPR145W=D ← STE12=D [2198, 8, 479] 0.82 [36, 11, 130] 0.16 [0, 0, 102] 0.00
YPR145W=D ← GCN4=I,STE12=D [300, 0, 33] 0.90 [0, 0, 0] 0.00 [0, 0, 5] 0.00
YPR145W=D ← DAL82=I [820, 56, 435] 0.59 [19, 42, 155] 0.03 [0, 1, 6] 0.00
YPR145W=D ← DAL82=I,GCN4=I [256, 15, 95] 0.66 [0, 1, 3] 0.00 [0, 0, 0] 0.00
YPR145W=D ← DAL82=I,GLN3=I [356, 11, 92] 0.75 [6, 2, 14] 0.2 [0, 0, 0] 0.00

YBR067C=D ← ASH1=D [1077, 111, 1102] 0.43 [111, 180, 303] 0.07 [408, 171, 696] 0.23
YBR067C=D ← ASH1=D,HSF1=I [124, 0, 8] 0.94 [0, 7, 6] 0.00 [0, 3, 2] 0.00
YBR067C=D ← HSF1=D,NRG1=D [74, 301, 228] 0.02 [24, 0, 6] 0.80 [0, 11, 16] 0.00
YBR067C=D ← HSF1=D [139, 350, 360] 0.05 [51, 6, 41] 0.47 [26, 1, 51] 0.32
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Table 3.3: Genes regulated by MBP1 and SWI6

Rule Env.+ GO terms for target gene

MBP1=D,SWI6=D → YBR070C=D b,c nuclear envelope-endoplasmic reticulum network
MBP1=D SWI6=I → YDR263C (DIN7) =D a DNA repair, mitochondrion
MBP1=I SWI6=I → YDR507C (GIN4) =D c protein amino acid phosphorylation*, protein kinase activity, bud neck
MBP1=D SWI6=I → YGL178W (MPT5) =D a cell wall organization and biogenesis*, mRNA binding,cytoplasm
MBP1=I SWI6=D → YGR109C (CLB6) =D c G1/S transition of mitotic cell cycle*, cyclin-dependent protein kinase

regulator activity
MBP1=I SWI6=D → YGR152C (RSR1) =D a,c bipolar bud site selection*, GTPase activity*, plasma membrane*
MBP1=D SWI6=I → YGR180C (RNR4) =D b DNA replication, ribonucleoside-diphosphate reductase activity, cytoplasm*
MBP1=D SWI6=D → YJL187C (SWE1) =D c G2/M transition of mitotic cell cycle*, protein kinase activity, nucleus*
MBP1=D SWI6=D → YKL008C (LAC1)=D a,c ceramide biosynthesis*, sphingosine N-acyltransferase activity, endoplasmic

reticulum
MBP1=I SWI6=D → YMR179W (SPT21)=D c regulation of transcription from Pol II promoter,nucleus
MBP1=I SWI6=D → YMR307W (GAS1) =D a cell wall organization and biogenesis,“1,3-beta-glucanosyltransferase activity”,

mitochondrion*
MBP1=D SWI6=D → YNR009W=D a,c unknown, cytoplasm*
MBP1=I SWI6=D → YNR009W=D a unknown, cytoplasm*
MBP1=I SWI6=D → YPL127C (HHO1) =D c “regulation of transcription, DNA-dependent*”, DNA binding, nucleus*
MBP1=D SWI6=D → YPR075C (OPY2) =D c cell cycle arrest in response to pheromone, cytoplasm*
MBP1=I SWI6=D → YPR120C (CLB5) =D c G1/S transition of mitotic cell cycle*, cyclin-dependent, protein kinase

regulator activity, nucleus

Note: +Env = a, b, c ≡ regulatory rule is activated in response to environmental stresses, response to DNA-damaging agents, or during cell

cycle, respectively.
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Table 3.4: Description of some regulatory circuits

Regulators Roles of regulators #genes significant shared GO terms

RAP1 transcriptional silencing of HML and HMR loci, 111 (71/111) protein biosynthesis (P=4.99e-41)
activation of ribisomal glycolytic enzymes, ect. (21/111) ribosome biogenesis (P=1.37e-10)

ABF1 chromatin-reorganizing activity involved in transcriptional 132 (27/132) ribisome biogenesis (P=4.74e-14)
activation, gene silencing, and DNA replication and repair (24/132) RNA processing (P=1.29e-08)

STE12 activates genes involved in mating or 78 (14/78) conjugation with cellular fusion (P=3.87e-12)
pseudohyphal/invasive growth pathways (13/78) response to abiotic stimulus (P=3.69e-7)

FHL1 similarity to DNA-binding domain of Drosophila forkhead, 82 (66/82) protein biosynthesis (P=8.41e-49)
required for rRNA processing (14/82) ribosomal subunit assembly (P=1.27e-15)

HSF1 heat shock transcription factor, 99 (17/99) protein folding (P=3.57e-18)
activates multiple genes in response to hyperthermia. (17/99) response to stress (P=6.95e-06)

SWI6 G1/S transition, meiotic gene expression 67 (16/67) development (P=6.62e-6),
ocalization regulated by phosphorylation (8/67) regulation of cell cycle (P=2.25e-5)

MBP1 involved in regulation of cell cycle progression 37 (6/37) DNA replication (1.35e-5),
from G1 to S phase (10/37) DNA metabolism (0.00023)

(5/37) DNA repair (0.0006)

MBP1 a complex regulates transcription at the G1/S transition 15 (6/15) regulation of cell cycle (P=1.24e-7),
&SWI6 (3/15) regulation of cyclin dependent protein

(3/15) kinase activity (P=3.91e-6)

SWI4 Involved in cell cycle dependent gene expression 36 (6/36) regulation of cell cycle (P=3.52e-5),
(4/36) G1/S transition of mitotic cell cycle (P=8.71e-5),
(3/36) G2/M transition of mitotic cell cycle (P=0.00059)

GCN4 amino acid biosynthetic genes in response to amino acid 77 (21/77) amino acid and derivative
starvation metabolism (P=6.86e-16)
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Table 3.5: Candidate complexes

Candidate complex #genes External evidences
FHL1 & RAP1 65
DIG1 & STE12 21 Olson et al. (2000), BIND Id: 130453
SWI4 & SWI6 16 Siegmund & Nasmyth (1996), BIND Id: 24482
MBP1 & SWI6 15 Siegmund & Nasmyth (1996), BIND Id:24484
TEC1 & STE12 15 Kim et al. (2004)
CAD1 & YAP7 14
TYE7 & CBF1 13
MSN2 & MSN4 12
YAP1 & YAP7 11
DAL82 & GLN3 11
INO2 & INO4 11 Wagner et al. (2001), BIND Id: 126362
HAP2 & HAP4 10 McNabb et al. (1997), BIND Id: 170195
UME6 & ABF1 9
CBF1 & GCN4 9
CBF1 & ABF1 9
PHD1 & NRG1 8
SOK2 & CIN5 8
CIN5 & NRG1 8
MBP1 & STE12 8
TEC1 & DIG1 7
STB1 & MBP1 7
FKH2 & FKH1 7 Hollenhorst et al. (2000), BIND id: 172668
CAD1 & YAP1 7
YAP7 & GCN4 7
TEC1,DIC1,STE12 4
SWI4,SWI6,STE12 4 Breeden & Nasmyth (1987)
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Chapter 4

Discovery of regulatory modules

This chapter describes a different approach to uncover regulatory patterns other than reg-

ulatory rules. The method will find an expression profile pattern of a group of genes

commonly regulated by a specific set of transcription factors. Our approach starts by clus-

tering genes into modules based on a closed TFset lattice, which includes non-redundant

combinations of transcription factors respective to a database of DNA-protein interactions;

and then validate the expression profiles to confirm regulatory modules.

49



4.1 Introduction

In eukaryotes, gene expression is controlled by various transcription factors (TFs) that

bind to promoter regions and can act in combination. With combinatorial control, a

given transcription factor does not necessarily have a single, simply definable function as

commander of a particular battery of genes or specifier of a particular cell type. Rather,

transcription factors can be described in a similar way to the words of a language: they are

used with different meanings in a variety of contexts and rarely alone. It is the well-chosen

combination that conveys the information that specifies a gene regulatory event [1].

In Chapter 3 of this thesis, we developed a rule induction method to identify pro-

teins binding to DNA that are relevant for the expression of some genes. Moreover, the

method could find consistent relationships between the expression of a gene and relevant

transcription factors binding to its promoter in a rule form. However, these regulatory

rules only describe some local parts of expression data under some conditions. The re-

lationships hidden in certain data collections may be more complicated and could not

be represented in a rule form. Furthermore, expression patterns of genes are not always

directly effected by the expression profiles of the factors regulating these genes. Indeed, in

many cases transcription factors are post transcriptionally modified, and consequently we

cannot examine their protein levels. Transcriptional regulatory rules described in Chapter

3 may not capture some regulatory patterns.

Another approach to uncover regulatory patterns that overcomes the restriction of

regulatory rules is to discover a common expression pattern of genes bound by the same

set of transcription factors. There exists two different approaches: genes can be clustered

into modules based on the similarity of their expression profiles, and then common binding

sites of transcription factors in the promoter region of genes in each module can be

found [47, 14]. These methods have achieved various levels of success, but an intrinsic

limitation is their over-reliance on expression data, which represent the result rather

than the cause of genetic regulation. Alternatively, Bar-Joseph et al. proposed a method

(GRAM) that first groups genes into modules where each module includes genes commonly

bound by a set of transcription factors and then validates the expression profiles to confirm

these modules [15].

The GRAM algorithm discovers gene modules that are a set of coexpress genes to
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which the same set of transcription factors binds. Roughly, the GRAM algorithm scans

all subsets of transcription factors (TFsets) and analyzes the expression profiles of genes to

which each TFset binds. If the expression profiles of these genes are significantly similar,

they would be controlled by the TFset. However, scanning all TFsets in the subset space

is an extremely demanding task. GRAM uses Apriori properties to tackle this problem,

i.e., if a gene i is included in a module controlled by a set F of TFs, it is likely to be

included in any module controlled by a subset F ′ ⊂ F . Since we are interested in the

complete set of factors controlling a gene, we do not gain anything by including i in module

regulated by F ′. Thus, prior to computing the set of genes contained in module regulated

by F ′, they filter out any genes that have already been found to be included in a module

controlled by a superset of F ′. This reduces the number of overlapping modules, without

reducing the explanatory power of this approach. But when the number of TFs, genes,

and interactions between them are large, dealing with all the possible subsets becomes an

infeasible task.

In this chapter, we introduce a new method to cluster genes into modules based on a

closed TFset lattice, which includes non-redundant combinations of transcription factors

respective to a database of DNA-protein interactions, and hence reduces redundant mod-

ules as many as possible. We also combine the closed TFset lattice with gene expression

profiles to find out an expression pattern of genes in each module.

Our method has been applied to yeast data for finding transcriptional regulatory mod-

ules (TRMs). The results agree with gene modules found by previous studies. Moreover,

TRMs are more compact, concise and comprehensive to identify and interpret the tran-

scriptional control of combinations of regulators.

4.2 Mining frequent itemsets and closed itemsets

Frequent itemsets mining is the most important and demanding task in many data mining

applications [51]. Let I = {a1, . . . , aM} be a finite set of items and D be a finite set

of transactions (the dataset) where each transaction t ∈ D is a list of distinct items

t = {x0, . . . , xT}, xi ∈ I. An ordered sequence of n distinct items I = {i0, i1, . . . , in}|ij ∈ I

is called an itemset of length n, or n-itemset. The number of transactions in the dataset

including an itemset I is defined as the support of I, denoted by supp(I). Given a
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threshold MinSup, an itemset is said to be frequent if its support is greater than or equal

to MinSup, infrequent otherwise.

There are basically two kinds of algorithms for finding frequent itemsets. The first is

Apriori algorithm [51] and its variants (see the work of Zaki and Hsiao [6] for an overview).

They use the basic properties (Apriori properties) that all subsets of a frequent itemset

are frequent and that all supersets of an infrequent itemset are infrequent in order to

prune elements of the space of itemsets. These properties make it possible to effectively

mine sparse datasets. However, with dense datasets, which contain strongly related trans-

actions, it becomes much harder to mine since only a few itemsets can be pruned and the

number of frequent itemsets grows very quickly while decreasing of MinSup threshold.

As a consequence, the mining task becomes rapidly intractable by these algorithms, which

try to extract all the frequent itemsets.

The second type of algorithms, which finds frequent closed itemsets, can avoid the

above mentioned problem. A closed itemset is described as a maximal set of items common

to a set of transactions. In other words, an itemset I is a closed itemset if there exists

no itemset I ′ such that I ′ ⊃ I and supp(I ′) = supp(I). For example, in the transaction

database D in Fig. 4.1, the itemset BCE is a closed itemset since it is the maximal set

of items common to the transactions {2,3,5}. It is called a frequent closed itemset for

MinSup = 2 as supp(BCE) = 3 ≥ MinSup. The itemset BC is not a closed itemset

since it is not a maximal group of items common to some transactions: all transactions

including the items B and C also include the item E. All closed itemsets of a dataset

form a lattice that is dually isomorphic to the Galois lattice [58]. In the figure, the lattice

contains 8 closed itemsets. It is much smaller than the complete space of itemsets, which

in this case includes up to 32 (5 items: 25) itemsets. The exact definition of closed itemsets

and their useful properties have been described in the work of Pasquier et al. [58] and

Zaki [75].

The set of closed itemsets is often much smaller than the set of all itemsets, but it

presents exactly the same knowledge in a more succinct way. From the set of closed

itemsets it is straightforward to derive both the identities and supports of all itemsets.

Mining the frequent closed itemsets is thus semantically equivalent to mining all frequent

itemsets, but with the great advantage that frequent closed itemsets are often orders of
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Figure 4.1: closed itemsets from a database of transactions

TID Items

1

2

3

4

5

A   C   D

B   C   E

A   B   C   E

B   E

A   B   C   E

C(4)

AC(3)

ACD(1)

ABCDE(0)

ABCE(2)

BCE(3)

BE(4)

Transaction database Closed itemset lattice

(5)

magnitude fewer than frequent ones. Using closed itemsets we implicitly benefit from

data correlations which strongly reduce problem complexity [75].

Many algorithms for finding frequent closed itemsets have been developed such as

CHARM [6], A-close [58], FPClose [28], etc. In our work, we used FPClose by Grahne

and Zhu, implemented in C language.

4.3 Definition of closed sup-TRM and closed inf-TRM

Our purpose is to discover groups of transcription factors where each group (or TFset)

binds to a set of genes (geneset) and regulates their expression. In other words, we want

to find all transcriptional regulatory modules (TRMs) having a form TFset → geneset,

where geneset is a set of genes that are bound by TFset and similar in their expression

profiles.

However, many TRMs are not informative since we cannot infer the biological mean-

ing from them. For example, from the database of transcription factor binding sites in

Fig. 4.2 we cannot infer that TF2 TF4 → G1 G3 G8 means “TF2 TF4 transcription-

ally regulates G1 G3 G8”, because in addition to TF2 and TF4, there is another factor
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DNA-protein interactions

G1      TF1  TF2        TF4   TF5       
G2      TF1  TF2
G3           TF2        TF4   TF5
G4           TF2              TF5
G5      TF1        TF3   
G6                      TF4   TF5
G7      TF1  TF2
G8           TF2        TF4   TF5
G9      TF1        TF3

empty

TF1(5)       TF2(6)       TF5(5)

TF1,2(3)      TF1,3(2)    TF2,5(4)    TF4,5(4)

TF2,4,5(3)

TF1,2,4,5(1)

G1,2,3,4,5,6,7,8,9

G1,2,5,7,9     G1,2,3,4,7,8      G1,3,4,6,8

G1,2,7      G5,9       G1,3,4,8    G1,3,6,8

G1,3,8

G1

Closed TFset lattice

sup-clusters

G1,2,3,4,5,6,7,8,9

empty            empty              empty

G2,7         G5,9         G4            G6

 G3,8

G1
inf-clusters

Closed inf-TRM
------------------
TF1,2     --> G2,7
TF1,3     --> G5,9
TF2,5     --> G4
TF4,5     --> G6
TF2,4,5   --> G3,8
TF1,2,4,5 --> G1

Closed sup-TRM
--------------------------
TF1       --> G1,2,5,7,9
TF2       --> G1,2,3,4,7,8
TF5       --> G1,3,4,6,8
TF1,2     --> G1,2,7
TF1,3     --> G5,9
TF2,5     --> G1,3,4,8
TF4,5     --> G1,3,6,8
TF2,4,5   --> G1,3,8
TF1,2,4,5 --> G1

Figure 4.2: closed sup-TRMs and closed inf-TRMs

(TF5) binding to all G1, G3 and G8. In other words, TF2 TF4 is not a maximal set of

factors commonly binding to {G1, G3, G8}. A TRM is informative only if its TFset is a

maximal set of factors (i.e.,a closed TFset) commonly binding to a set of genes. In this

work, we focus only on informative TRMs, which have a form closed TFset → geneset

(we will refer to this as closed TRM). As explained above, the set of closed TFsets is much

smaller than the set of all TFsets, so the search space for closed TRMs is greatly reduced.

Moreover, we would like to find closed TRMs that emphasize the transcriptional role of

their closed TFset. To do this, we can analyze the expression profiles of genes (geneset)

that closed TFset binds to. If they are similar we believe that geneset is controlled by

closed TFset. Here, there are two strategies to group genes into geneset of a closed TRM.
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First we can set geneset to be the maximal set of genes to which factors in closed TFset

commonly bind (we refer to it as sup geneset and the corresponding TRM as closed sup-

TRM). Second we can set geneset to be only genes bound exactly by closed TFset (we

refer to it as inf geneset and the corresponding TRM as closed inf-TRM). For example,

in Fig. 4.2 the maximal set of genes that the closed TFset TF2 TF4 TF5 commonly

binds to is {G1, G3, G8}, therefore TF2 TF4 TF5 → G1 G3 G8 is a closed sup-TRM.

There are only 2 genes G3 and G8 that the exact closed TFset TF2 TF4 TF5 binds to,

therefore TF2 TF4 TF5→ G3 G8 is a closed inf-TRM.

The reason for clarifying these two kinds of TRMs, closed sup-TRMs and closed inf-

TRMs, is that the expression of some genes may be significantly changed (or may not)

when one or more additional factors bind to their promoter. Closed inf-TRMs are useful

to identify the transcriptional role of their TFset without the impact from other factors,

while closed sup-TRMs can include genes that are bound by additional factors other than

their TFset and these additional factors may have no transcriptional role. Furthermore,

taking account both closed inf-TRMs and closed sup-TRMs is also useful to identify the

regulators of not only a group of genes, but also an individual gene.

We also defined two measures for a TRM r: support(r) and similar ratio(r), where

support(r) is the number of genes in its geneset (inf geneset with inf-TRM or sup geneset

with sup-TRM), and similar ratio(r) is the rate of genes in its geneset whose expression

profiles are significantly similar (see Section 4.4). Both support(r) and similar ratio(r)

are important evidences to infer if r is a real transcriptional regulatory module or not,

which emphasizes that TFset transcriptionally cis-regulates geneset.

4.4 Mining closed sup-TRMs and closed inf-TRMs

Our method for mining closed sup-TRMs and closed inf-TRMs is based on the search on

the space of closed TFsets and consists of two phases. The first phase is to find the list (or

lattice) of all closed TFsets with supp greater than a threshold MinSup from the database

of transcription factor binding sites (Fig. 4.2). We generate a database of “transactions”

where each transaction corresponds to a gene and contains a list of transcription factors

that bind to it. We then used a software library (FPClose) provided by Grahne and

Zhu [28] to find all closed TFsets with supp ≥MinSup in this transaction database.
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The second phase concerns how to choose genes included in the geneset of a TRM

regulated by each closed TFset. As explained above, there are two ways to generate

respectively a closed sup-TRM and a closed inf-TRM. If we get geneset to be the maximal

set of genes to which the common factors in the closed TFset bind, we will produce a

candidate closed sup-TRM with the support equal to the number of these genes. If we

get geneset to be only genes to which factors in the closed TFset and only these factors

bind, we will produce a candidate closed inf-TRM with the support equal to the number

of these genes. Our method takes account of both kinds of TRMs (Fig. 4.2). If genes in

the geneset of a candidate TRM have significantly similar expression profiles, the TRM

r = closed TFset→ geneset will be produced.

How can we determine if a group of genes has significantly similar expression profiles?

Let E1 = (e11, e12, .., e1m), E2 = (e21, e22, .., e2m), .., En = (en1, en2, .., enm) be expression

vectors of n genes E = (E1, E2, .., En) under m experiments (after being standardized

as described in Section 4.5); some eij may be null. We define Eavr = (a1, a2, .., am)

as the average expression profile (or the expression center) of the group of these genes

(aj = averagei=1,...,n(eij|eij 6= null). The distance between a gene Ei and the average

expression profile (expression center) is defined as follows:

distance(Ei, Eavr) = averagej=1,...,m(|eij − aj| : eij 6= null)

As in the work of Bar-Joseph et al. [15], we determine a suitable distance threshold Tk

to infer if the expression profiles of genes in a k-geneset are significantly similar (P <

0.05) based on randomization tests. Randomization tests have been extensively used in

computational biology and provide good results. We select at random k genes, compute

Eavr for this set, and determine the distance d of the 5% closest genes that were not

included in the random sampled set. This process is repeated many times (it is actually

performed as a pre-processing step, for different possible sizes of k), and we set the

threshold Tk to be the median d obtained in these randomization tests.

Genes in the k-geneset of a TRM r are said to have significantly similar expression

patterns (P < 0.05) if their expression vectors are all in the “sphere” centered at Eavr with

radius Tk. Unfortunately, most TRMs do not satisfy this condition due to experimental

errors in the expression profiles as well as in factor DNA-binding locations. Hence we
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introduce the algorithm REVISION (Table 4.1) to find the subset of genes in k-geneset

whose expression profiles are significantly similar. The idea of this algorithm is to remove

outliers (one outlier for each loop), recalculate the expression center, and set new signifi-

cantly similar threshold Tk. After removing outliers, we have k′-geneset whose expression

profiles are significantly similar. We defined the similar ratio of the TRM r as the ratio

k′

k
.

Table 4.1: REVISION algorithm

Input k-geneset;
T [2, . . . , n]: T [k] - threshold to infer k-geneset to be significantly similar (see the text);
E1, . . . , Ek: Ei = (eij)j=1,...,m - expression profile;

Output k′-geneset: subset of genes whose expression profiles are significantly similar.

1) do

2) Eaver = expression center(E1, . . . , Ek); //see the text
3) for i = 1 to k di = distance(Ei,Eaver); //see the text
4) j = maxi=1,...,k(di);
5) if (dj > Tk)
6) Report Ej as an outlier;
7) remove Ej from the list E1, . . . , Ek;
8) while (dj > Tk)
9) Report E1, . . . , Ek are significantly similar;

In summary, our method can discover the two most informative kinds of TRMs: closed

sup-TRMs and closed inf-TRMs. Support and similar ratio measures of each TRM are

important evidences to infer if the TRM is a real transcriptional regulatory module or

not.

4.5 Datasets

The data of factor DNA-binding sites is from the work of Lee et al. [39]. This data

(updated December 5, 2003) presents profiles for location analysis experiments of 113

factors. A confidence value (p-value) for each factor DNA-binding interaction is calculated

by using an error model [39]. From this data, we extracted a database of “transactions”,

where each transaction has an unique gene identifier (geneid) and contains a set of

factors that binds to its promoter with the confidence less than a prespecified threshold
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(0.001). We excluded all transactions that contain no factors. The number of remaining

transactions in the database is 2363 (equal to the number of yeast genes that were bound

by at least one of 113 transcriptional factors).

We used the ExpressDB from the work of Aach et al. [66] for gene expression data

in our work. This data included 17.5 million pieces of data reported by 11 studies with

three different kinds of high-throughput RNA assays and under 213 conditions. The data

has been standardized as Estimated Relative Abundances (ERAs). We then normalized

ERAs in the interval [0,1] by a simple linear transformation.

4.6 Results and discussions

Our method was applied on the yeast data of factor DNA-binding sites and ExpressDB

(see Section 4.5). It produced 405 candidate closed sup-TRMs and 157 candidate closed

inf-TRMs with support greater than 5. Among these candidates, there are 141 closed sup-

TRMs and 40 closed inf-TRMs with similar ratio greater than 0.5 (see Files “sup TRMs.htm”

and “inf TRMs.htm” respectively. All files mentioned in this section are available at

“http://www.jaist.ac.jp/~h-pham/regulation”). There are 13 overlapped TRMs among

them. Therefore we have 168 most informative TRMs in total. We named each found

TRM by its regulators (TFset). Table 4.2 shows an example of closed sup-TRM regulated

by TFset HAP2 HAP3 HAP5. It contains 5 genes, in which 4 genes have significantly

similar expression profile. The last one YHR051W (marked by a symbol ?) was considered

as an outlier.

Table 4.2: An example of closed sup-TRM

#module: 10
Regs: HAP2 HAP3 HAP5 Support: 5 Similar ratio: 0.80

0.048 YPL207W similarity to hypthetical proteins from A. fulgidus, M.thermoau totrophicum
and M. jannaschii

0.050 YLR220W involved in calcium regulation
0.053 YLL027W mitochondrial protein required for normal iron metabolism
0.059 YER174C member of the subfamily of yeast glutaredoxins (Grx3, GRX4, and Grx5)
?0.105 YHR051W cytochrome-c oxidase subunit VI

There are 13 TRMs (see File “overlapped TRMs.htm”) overlapped between closed
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inf-TRMs and closed sup-TRMs. Taking into account both closed sup-TRMs and closed

inf-TRMs will help us to understand more exactly the transcriptional role of regulators.

For example, Closed inf-TRM No. 9 and Closed sup-TRM No. 10 have the same TFset

HAP2 HAP3 HAP5. The former contains 4 genes Y PL207W, Y LR220W, Y LL027W

and Y ER174C to which the exact 3-TFset HAP2 HAP3 HAP5 bind. All these 4 genes

have significantly similar expression profiles. The latter, in addition to the 4 above men-

tioned genes, it includes one more gene Y HR051W . However, this gene has been con-

sidered as an outlier because its expression profile is different from that of the remaining

genes in the module. When looking at factors that bind to this gene, we found that, in ad-

dition to 3 factors HAP2, HAP3 and HAP5, there are 2 other factors HAP4 and ABF1

binding to it. Therefore, we strongly believe that these two factors make Y HR051W

to be expressed so differently from the others. This example proves that the distinction

between two kinds of TRMs (sup-TRMs and inf-TRMs) is necessary and useful to identify

the transcriptional regulators of not only a group of genes but also of an individual gene.

The 27 remaining closed inf-TRMs are those not found in the list of closed sup-TRMs.

This proves that when one or more additional factors bind to a gene, its expression may

be changed. For example, in Closed inf-TRM No. 36 regulated by NRG1 CIN5 Y AP6

(see File “inf TRMs.htm”), there are only 6 genes that this 3-TFset binds exactly to, and

all these 6 genes are significantly similar in their expression profiles. But there are up to

24 genes that share these 3 factors (see Module 319 in File “sup TRMs revision.htm”),

and their expression profiles are not similar, since in addition to these 3 factors mentioned

above, there are some other factors that also bind to some genes in the module and make

them expressed so differently. Therefore closed inf-TRMs are useful to identify a group of

genes transcriptionally regulated by a group of factors by avoiding the impact from other

factors.

Many TRMs (both closed sup-TRMs and closed inf-TRMs) found by our method

include genes whose function are related and consistent with the regulators’ known roles.

For example, Closed sup-TRM No. 30 regulated by HIR1 HIR2 contains 7 genes, with

6 of them playing a function related to “histone”. Closed sup-TRM No. 98 and Closed

inf-TRM No. 34 both regulated by the same TFset PDR1 FHL1 RAP1, include genes

with function mainly related to “ribosomal protein”, etc. We used GO Term Finder tool
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(http://www.yeastgenome.org/help/goTermFinder.html) to search for significant shared

GO terms that are directly or indirectly associated with the genes in each TRM. To

determine significance, the algorithm examines the group of genes to find GO terms to

which a high proportion of the genes are associated compared to the number of times

that term is associated with other genes in the genome. As a result, 29 of 40 closed

inf-TRMs and 81 of 141 closed sup-TRMs have significant ontology terms other than

“biological process unknown”, “molecular function unknown” and “cellular component

unknown”. Therefore, TRMs found by our method are biologically meaningful and can

be useful to infer the function of uncharacterized genes.

Our method identifies not only biologically related sets of genes, but also some factors

that are interacting to regulate the genes; for example, HAP2 HAP3 HAP5 (Module

10 in the list of closed sup-TRMs), HAP2 HAP4 (Module 27), HAP2 HAP3 (Module

28), HIR1 HIR2 (Module 30), MBP1 SWI4, SWI6 SWI4, and other interactions can

be found in some modules. Some of these interactions have been confirmed by previous

studies (collected in the work of Bar-Joseph et al. [15]).

Of 168 TRMs, 26 are very similar to some gene modules previously found by GRAM

in the work of Bar-Joseph et al. [15], although their genes are not exactly same (see File

“comparison.htm”). Some TRMs are overlapped with gene modules from their work.

There are some differences between our method and GRAM. First, our method finds

candidate TRMs based on the search on the closed TFset space that is much smaller than

the space of all closed TFsets but does not loss any information. Second, our method

for discovering closed sup-TRMs and inf-TRMs emphasizes the transcriptional control of

combinations of regulators. This is the reason why TRMs generated by our method are

different from gene modules generated by GRAM [15]. For example, Gene module No.

52 from the results of GRAM regulated by FKH1 FKH2 is not found by our method,

because the TFset FKH1 FKH2 binds up to 13 genes and the expression profiles of these

genes are very different (see Closed sup-TRM No. 233 in File “sup TRMs revision.htm”

for the revision process of our method).
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4.7 Summary

In this chapter, we proposed a new approach to cluster genes into regulatory modules

based on a closed TFset lattice, which consists of only non-redundant TFsets from a

DNA-TF interactions. Each regulatory module is a form: TFset → GeneSet, where

GeneSet is a group of genes regulated by the same closed subset of transcription factors

TFset. Because the DNA-TF bindings are noisy or overpredicted, we used expression

profiles to validate these regulatory modules by finding common expression patterns of

genes in each module.

Our method has been applied to yeast data to find transcriptional regulatory modules

(TRMs). The results are consistent with those previouly found by other methods. More-

over, TRMs found by our method are more concise and comprehensive to identify and

interpret transcriptional role of regulators. In this work, we used the data of factor DNA-

binding sites proved by Lee et al. [39], which were harvested from a microarray method.

Each gene-factor interaction was assigned with a confidence value. In future work, we

will apply our method to factor DNA-binding sites data that will be computationally

predicted (i.e., from the TRANSFAC database).
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Chapter 5

Conclusion

5.1 Thesis summary

The ultimate aim of life sciences is to understand the functions of all biomolecules, where

proteins constitute the largest portion. Understanding structures of proteins and interac-

tions between them and biomolecules is the first step to understand their functions. This

research aimed to (1) predict and analyze turn structures in proteins, and (2) identify

DNA-protein interactions relevant for transcriptional regulation and discover transcrip-

tional regulatory patterns.

Firstly, we developed support vector machine-based method to predict turn structures

in proteins from their sequence. Support vector machines (SVMs) aim at learning the

global optimal hyperplane (the hyperplane with the maximum margin) to discriminate

positive from negative instances in a feature space. However, using support vector ma-

chines to predict turn positions in a protein sequence is a non-trivial task because protein

sequences are not in a numerical vector form. We introduced two ways for representing

a protein sequence in vector form: binary representation of the single sequence and real

representation of the multiple sequence alignment. By using a sliding window along the

vector representation of a protein sequence, we can convert turn and non-turn positions

of proteins into positive and negative vectors. Moreover, we used the optimal hyperplane

learned from known data set to estimate the support of amino acids for the formation of

turn structures depending on their position in a protein. The predicting and analyzing

results from our SVM method appeared good performance when compared with those
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from previous methods.

Statistical theory has proved that when the distribution of training data set represents

the distribution of the whole data space, the optimal separating hyperplane in support

vector machines has a good generalization ability, i.e., correct classification ability for

unseen data. However, in biology we often deal with biased data set where distribution of

known data does not hold for unseen data. For example, under different conditions and

at different time, the expression of a cell is greatly different. Measuring expression levels

of genome for all possible conditions is impossible, so all available expression profiles

are collected at specific conditions. Therefore, we need a different strategy to uncover

local patterns in parts of the known data. The separate-and-conquer strategy (the other

name is covering strategy) and its extension (weighted covering strategy) are appropriate

to uncover local rules for incomplete data.

Secondly, we developed rule induction method that combines DNA-protein interac-

tions data with expression profiles data to uncover (1) transcription factors relevant for

transcriptional expression of a gene, and (2) qualitative relationship between the expres-

sion of these relevant transcription factors and the target gene. Our rule induction method

uses a weighted covering strategy with a rule evaluation heuristic that favors rules with

high generality and therefore can efficiently deal with noise in the datasets. When applied

to different microarray datasets obtained under different environmental conditions, our

method can produce a set of environment-dependent regulatory rules comprehensively

describing the relationship between the expression behavior of genes and their relevant

transcription factors. The resulting regulatory rules are useful to predict transcription

complexes and to reveal regulatory circuits in the regulatory networks of an organism.

However, the regulatory rules only describe some local parts of expression data in

some conditions. Relationships expressed by certain datasets may be more complicated

and could not be represented in a rule form. Furthermore, patterns of genes are not always

directly effected by the expression profiles of the factors regulating these genes. Indeed,

in many cases transcription factors are post transcriptionally modified, and consequently

we cannot examine their protein levels. Therefore, transcriptional regulatory rules may

not capture some regulatory patterns.

Finally, we described a different approach to uncover regulatory patterns other than
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regulatory rules. The approach finds an expression profile pattern of a group of genes

commonly regulated by the same set of transcription factors. We developed a new method

that first clusters genes into modules based on a closed TFset lattice, which includes non-

redundant combinations of transcription factors respective to a database of DNA-protein

interactions; and then validate the expression profiles to confirm regulatory modules. Our

method produces transcriptional regulatory modules (TRMs), which are compact, concise

and comprehensive to identify and interpret the transcriptional control of combinations

of regulators.

5.2 Future work

The work in this thesis is a part of our long-term project, which aims at computationally

analyzing biomolecular interactions. There are two main problems we would like to solve.

First, from interaction databases (such as DNA-protein, RNA-protein, protein-protein

interactions) collected by experimental approaches, which are often very noisy and only

indicate physical binding but not function, we would like to identify actual and functional

interactions. In the Chapter 3 of this thesis, we have developed a rule induction method

to recognize actual DNA-protein interactions that regulate gene transcription. We also

presented a new clustering approach in Chapter 4 to uncover regulatory modules, where

reveal the functions of DNA-protein interactions. In the future, we will continue the

work of identifying actual interactions from other types of data such as RNA-protein,

protein-protein bindings; and discovering which kinds of functions these interactions play.

The second problem is whether we can predict interactions of a protein with other

biomolecules? This is an extremely complex problem. We expect to improve our turn

prediction method (presented in Chapter 2 of this thesis) to predict three-dimensional

fold of a protein. This 3D fold will be the key information to understand and predict

interaction sites of the protein with other biomolecules.
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Appendix A

Support vector learning

A.1 Methods of separating hyperplanes

A.1.1 A simple classification problem

Given a set of training examples, i.e. pairs of patterns xi and labels yi,

(x1, y1), . . . , (xl, yl) ∈ R
N × {±1}, (A.1)

the goal of a classification system is to find some decision function g : R
N → {−1, 1}

that accurately predicts the labels of unseen data points (x, y). A common approach to

representing decision functions is to use hyperplanes (linear functions f(x) = w.x + b,

Fig. A.1) with “good” statistical properties to separate examples belonging to class “+1”

from those belonging to other (class “-1”). The problem of learning from data can be

formulated as finding a set of parameters (w, b) such that sgn(w.xi + b) = yi for all

1 ≤ i ≤ l. In the rest of this section we assume that the training data is linearly separable

without noise.

A.1.2 Perceptron for finding a separating hyperplane

At the end of the 1950s, F. Rosenblatt proposed a machine (Perceptron) for learning a

hyperplane separating two classes from the training data. The Perceptron utilitizes a

recurrent procedure (Fig. A.2) for learning the function (the coefficents w and b). The

algorithm only updates (w, b) on a labelled example if the Perceptron misclassifies the
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{x: w.x + b = 0}

w.x +b < 0 w.x +b > 0

w

Figure A.1: Hyperplane separating positive and negative examples

example.

Figure A.2: Perceptron algorithm
Input Training data {(x1, y1), . . . , (xl, yl)} ⊆ (R× {0, 1})n;

Output Weight vector w and threshold b.

1) initialize w, b = 0
2) repeat

3) for i = 1 to l
4) if yi(w.xi + b) < 0
5) w = w + yixi

6) b = b + yi

7) until for all 1 ≤ i ≤ l”: yi(w.xi + b) > 0
8) return f(x) = w.x + b

Theorem 1. suppose that there exists ρ > 0, a weight vector w∗ satisfying ‖w∗‖ = 1, and

a threshold b∗ such that

yi(w
∗xi + b∗) ≥ ρ for all 1 ≤ i ≤ l
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. Then Perceptron converges after no more than (b∗2 + 1)(R2 + 1)/ρ updates, where

R = maxi‖xi‖.

A.1.3 Optimal hyperplane and support vectors

Definition 1. Denote by f(x) = w.x + b a linear function used for classification. Then

ρf (x, y) :=
y(w.x + b)

‖w‖

is the margin (distance) by which the pattern x is classified correctly (a negative value of

ρf (x, y) corresponds to an incorrect classification). Also denote by

ρf := min
1≤i≤l

2ρf (xi, yi)

the minimum margin over the whole sample, determined by the “worst” classification on

the whole training set X × Y . Fig. A.3 shows a way to calculate the margin of a training

set respective to a hyperplane w.x + b.

It would be desirable to have classifiers that achieve a large margin ρf (the optimal

hyperplane) since we might expect that an estimate that is “reliable” on the training set

will also perform well on unseen examples. This raises the question of whether there exists

an estimator with maximum margin, i.e., whether there exists some f ∗ such that

f ∗ := argmaxf ρf = argmaxf min
i

yif(xi)

‖w‖

This problem can be easily transformed into an equivalent constrained optimization task

by conjecturing a lower bound on the margin, ρ, and maximizing ρ subject to the con-

straint that it actually is a lower bound:

w∗, b∗, ρ∗ (A.2)

= argmaxw,b,ρρ subject to
yi(w.xi + b)

‖w‖
≥ ρ for 1 ≤ i ≤ l (A.3)

= argmaxw,b,ρρ subject to ‖w‖ = 1, yi(w.xi + b) ≥ ρ for 1 ≤ i ≤ l (A.4)

= argminw,b‖w‖
2 subject to yi(w.xi + b) ≥ 1 for 1 ≤ i ≤ l (A.5)
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Figure A.3: Canonical form of a hyperplane

{x: w.x + b = 0}

w.x +b < 0 w.x +b > 0

w

x1

x2

{x: w.x + b = +1}
{x: w.x + b = -1}

By requiring the scaling of w and b to be such that the point(s) xi nearest to the hyperplane

satisfy ‖w.xi + b‖ = 1, we obtain a canonical form of a hyperplane. In this case, the mar-

gin, measured perpendicularly to the hyperplane equals 2/‖w‖, which can also be obtained by

considering two opposite points which precisely satisfy ‖w.xi + b‖ = 1.

This last formulation is in the form of a quadratic programming, which can be easily

handled using standard optimizers [68, 60]. One way is to introduce Lagrange multipliers

αi ≥ 0 and a Lagrangian

L(w, b, α) =
1

2
‖w‖2 −

∑

i

αi{yi(xi.w + b)− 1} (A.6)

The Lagrangian L has to be minimized with respect to the primal variables w and b

and maximized with respect to the dual variables αi. The solutions w∗, b∗, and α∗ should

satisfy the following conditions
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∂L(w∗, b∗, α∗)

∂b
= 0 (A.7)

∂L(w∗, b∗, α∗)

∂w
= 0 (A.8)

Rewriting these equations in explicit form we obtain the following properties of the optimal

hyperplane:

1. The coefficients α∗
i for the Optimal hyperplane should satisfy the constraints

l
∑

i=1

α∗
i yi = 0, α∗

i ≥ 0, i = 1, . . . , l

2. The optimal hyperplane (vector w∗) is a linear combination of the vectors of the

training set.

w∗ =
l

∑

i=1

yiα
∗
i xi, α∗

i ≥ 0, , i = 1, . . . , l (A.9)

Introducing the expression for w into the Lagrangian, we obtain the dual problem

α∗ = argmaxα =
l

∑

i=1

αi −
1

2

l
∑

i,j

αiαjyiyj(xi.xj) (A.10)

αi ≥ 0, i = 1, . . . , l (A.11)
l

∑

i=1

αiyi = 0 (A.12)

Thus, to construct the optimal hyperplane, we should solve a simple quadratic pro-

gramming problem: maximize the quadratic function A.10 with linear constrains A.11

and A.12. Let α∗ = (α∗
1, . . . , α

∗
l ) be a solution to this dual problem, then the parameter

w∗ of the optimal hyperplane can be calculated by A.9. Moreover, from Kuhn-Tucker

theorem it follows that the solution α∗ of the dual problem and the solution w∗, b∗ of the

primal problem must satisfy the conditions:

α∗
i {yi(xi.w

∗ + b∗)− 1} = 0, i = 1, . . . , l. (A.13)
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Therefore, with each i such that α∗
i > 0 we have yi(xi.w

∗ + b∗)− 1 = 0. These vectors xi

are called support vectors. The formula for calculating the parameter w∗ of the optimal

hyperplane is therefore

w∗ =
∑

support vectors

yiα
∗
i xi, α∗

i > 0 (A.14)

The threshold b∗ of the optimal hyperplane is then calculated by the formula:

b∗ =
1

2
[w∗.x∗(1) + w∗.x∗(−1)] (A.15)

where x∗(1) denotes a (any) support vector belonging to the first class and x∗(2) denotes

for a support vector belonging belonging to the other class [74].

A.2 Statistical theory of the Optimal hyperplane

In this section, we will discuss why the optimal hyperplane is good to predict unseen

examples. We first provide some basic concepts and results of statistical learning theory.

A.2.1 Statistical learning theory

Given a set of training examples as in A.1, i.e. pairs of patterns xi and labels yi (i =

1, . . . , l), each one of them is generated from an unknown probability distribution P (x, y)

containing the underlying dependency. We want to learn a function fα∗ from a set of

functions

{fα : α ∈ Λ}, fα : R
N → {±1} (A.16)

which provides the smallest possible value for the average error committed on independent

examples randomly drawn from the same distribution P , called the risk

R(α) =

∫

1

2
‖fα(x)− y‖dP (x, y). (A.17)

Unfortunately we cannot evaluate the risk because we do not know the probability distri-

bution function P (x, y). However, we can estimate the risk over the training set (called
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the empirical risk)

Remp(α) =
1

l

l
∑

i=1

1

2
‖fα(xi)− yi‖, (A.18)

and the risk is bounded by the following inequality [74]:

R(α) ≤ Remp(α) +

√

h(log 2l
d

+ 1)− ln( δ
4
)

l
(A.19)

for any α ∈ Λ and l > h, with a probability of at least 1− δ, where h is the VC dimension

of the function set. The VC dimension h is the maximum number of data points which

can be separated into two classes in all possible 2h ways by using functions in the function

set, i.e. for each possible separation there exists a function which takes the value 1 on

one class and -1 on the other class.

From the formulation in A.19, Vapnik [72] developed an induction principle for risk

minimization: structural risk minimization. Given a fixed number l of training examples,

we can control the risk by two quantities: Remp(α) and h({fα : α ∈ Λ′}), where Λ′ denotes

some subset of the index set Λ. To control h, we introduces a structure of nested subsets

Sn := {fα : α ∈ Λn} of {fα : α ∈ Λ},

S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . , (A.20)

whose VC-dimensions, as a result, satisfy

h1 ≤ h2 ≤ . . . ≤ hn ≤ . . . (A.21)

The structural risk minimization principle chooses the function fαn
i

in the subset {fα : α ∈

Λn} for which the guaranteed risk bound (the right hand of A.19) is minimal (Fig. A.4).

The procedure of selecting the right subset for a given amount of observations is referred

to as capacity control.
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Figure A.4: Structural risk minimization principle

A.2.2 VC-dimension of some function sets

• Set of linear functions: the VC-dimension of the set of linear functions

Q(z, α) =

n
∑

p=1

αpzp + α0, α0, . . . , αn ∈ R

in n-dimensional coordinate space Z = (z1, . . . , zn) is equal to h = n + 1, since by

using functions from this set we can shatter at most n + 1 vectors.

• Set of ρ-margin separating hyperplanes: we call a hyperplane

w.x− b = 0, ‖w‖ = 1

72



the ρ-margin separating hyperplane if it classifies vectors x as follows

y =



















1 if w.x− b ≥ ρ

−1 if w.x− b ≤ −ρ

undefined if −ρ < w.x− b < ρ

Theorem 2. Let vectors x ∈ X belong to a sphere of radius R, then the set of

ρ-margin separating hyperplanes has VC dimension h bounded by the inequality

h ≤ min

([

R2

ρ2

]

, n

)

+ 1 (A.22)

We see that in general the VC-dimension of the set of hyperplanes equals n+1, where

n is the dimensionality of the input space. However, the VC-dimension of the set of ρ-

margin separating hyperplanes (with a large value of margin ρ) can be less than n + 1.

This fact, together with constraints A.4 and A.19, explains why the optimal hyperplane

has often a high generalization ability (i.e. a small error on an independent test set).

A.3 Optimal hyperplane with kernels: support vec-

tor machines

A.3.1 Optimal hyperplane in linearly non-separable data

When the training examples are linearly non-separable (due to the presence of noise in the

data), we introduce non-negative variables ξi ≥ 0 and a penalty C for each missclassified

example. The quadratic problem A.5 can be reformulated then as

w∗, b∗ = argminw,b,ξ‖w‖
2+C

l
∑

i=1

ξi subject to yi(w.xi+b) ≥ 1−ξi for 1 ≤ i ≤ l. (A.23)

Using the same formalism with Lagrange multipliers, we can obtain that the optimal

hyperplane also has an expansion A.9 on support vectors. The coefficients αi can be

found by maximizing the same quadratic form as in the separating case A.10 under slightly
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different constraints

0 ≤ αi ≤ C, i = 1, . . . , l, and

l
∑

i=1

αiyi = 0. (A.24)

A.3.2 Optimal hyperplane with kernels

To find a non-linear function that separates two classes, we can implement the following

idea [73]: map the input vectors xi into a higher dimensional feature space φ(xi) through

some non-linear mapping previouly chosen, φ; then construct an optimal separating hy-

perplane in this space.

The optimal hyperplane in the feature space is the solution of the quadratic optimiza-

tion problem

min
w,b,ξ

1

2
‖w‖2 + C

l
∑

i=1

ξi (A.25)

yi{w.φ(xi) + b} ≥ 1− ξi (A.26)

ξi ≥ 0, i = 1, ..., l. (A.27)

Its dual is a quadratic optimization problem:

min
α

1

2
αT Qα− eT α (A.28)

0 ≤ αi ≤ C (A.29)

yT α = 0 (A.30)

where e is the vector of all ones; C > 0 is an error penalty parameter, y = {yi}i=1,..,l,

Qij = yiyjK(xi, xj), K(xi, xj) = φ(xi)
T φ(xj) is a kernel function; and φ(xi) maps xi into

a higher (maybe infinite) dimensional space. So K(xi, xj) is a symmetric positive definite

function that reflects the similarity between the sample xi and the sample xj. In our

research, we employed a linear function K(xi, xj) = xi.xj and radial basis function (RBF)

K(xi, xj) = exp(−γ(xi − xj)
2) as the kernel functions. The SVM classification function,

after trained, has the following form:

f(x) =
∑

i

αiyiK(x, xi) + b (A.31)

74



where α = {αi}i=1,..,l is the solution of the above dual problem and b is in the solution of

the prime problem. Based on the Karush-Kuhn-Tucker theory, the solution of the prime

problem and that of its dual satisfy the following equation:

αi{yi(w
T φ(xi) + b)− 1 + ξi} = 0.

Therefore, if there is an i such that αi 6= 0, then yi(w
Tφ(xi) + b) − 1 + ξi = 0. In this

case, xi is called a “support vector”.
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Appendix B

Descriptive rule induction

B.1 Descriptive and predictive rule induction

Rule induction from examples is a machine learning technique that has been successfully

used as a support tool for knowledge acquisition and prediction. The induced rules are

usually expressed as condition → class, where condition and class are logic expressions

of the form (variable1 = value1 ∧ variable2 = value2 ∧ . . . ∧ variablek = valuek).

There are three kinds of rule inducting algorithms: covering, decision tree-based and

association rule-based. The first ones, covering algorithms, make use of a separate-and-

conquer strategy over the search space to learn a rule set (see [65] for an overview). This

separate-and-conquer strategy searches for a rule that explains (covers) part of its training

instances, separates (or reassigns with lower weight) these examples, and recursively con-

quers the remaining examples by learning more rules until no examples remain. Decision

tree-based algorithms use a divide-and-conquer strategy [69, 70]. Much of the popularity

of these algorithms stems from their efficiency in learning and classification. Decision

trees can be easily turned into a rule set by generating one rule for each path from the

root to a leaf. Finally, association rule-based algorithms use a exhaustive search strategy

by exploring almost the whole search space [56, 40]. The basic idea is to use an association

rule algorithm to gather all rules that predict the class attribute and also pass a minimum

quality criterion.

By implementation, the divide-and-conquer strategy (in decision tree-based algorithms)

is restricted to learn non-overlapping rules only. The exhaustive strategy (in association
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rule-based algorithms) has the problem of producing many redundant rules. The separate-

and-conquer algorithms can partially avoid these disadvantages [65, 3], which is one of

the main reasons for its popularity.

CN2 is a rule induction system implementing the separate-and-conquer strategy [54,

48]. It was originally designed to solve classification and prediction tasks.

Recently, it has also been adapted for description tasks (CN2-SD) by using a weighted

covering strategy (an extension to the separate-and-conquer strategy in CN2), combined

with a rule evaluation heuristic (weighted relative accuracy [3]) that favors rules with

higher generality. While the weighted covering strategy tends to find rules that explain

overlapped subgroups of instances in the search space, the weighted relative accuracy

heuristic produces highly general rules that express the knowledge contained in one specific

subgroup.

Rule evaluation measures are the heart of rule learning systems. These evaluation

measures are used as a rule searching heuristic, as well as for filtering out uninteresting

rules and/or as a stopping criterion of the refinement process. Many measures have been

proposed in the literature: accuracy, entropy [54], Laplace [48], m-estimate [62], weighted

relative accuracy [3], etc. However, deciding which one is the best suited measure, espe-

cially for description tasks, is still an open problem [45, 44].

Furnkranz and Flach [42] have introduced a ROC-like tool, called PN-space (also

PN-graph or coverage space) for analysis, evaluation and visualization of a set of rules.

They showed that there is a surprising number of equivalences and similarities among

commonly-used evaluation measures [42, 43, 44].

In this chapter, we use PN-space to analyze the generality of rules produced by CN2-

SD with different rule evaluation heuristics and the appropriateness of these heuristics for

description tasks or knowledge discovery, especially in noisy domains.

The rest of this chapter is organized as follows: section B.2 presents a formal defini-

tion of PN-space and isometrics of a rule evaluation measure. Section B.3 analyzes two

algorithms by visualizing them in PN-space: the separate-and-conquer algorithm to learn

a rule set and general-to-specific algorithm to learn a single rule. Section B.4 presents

our main contribution, where we analyze the generality of rules produced by a general-to-

specific search with different heuristics. Section B.5 will describe the differences between
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CN2 and CN2-SD that are specially relevant for description tasks. Some experiments

on 18 UCI datasets and microarray data are conducted to illustrate our analysis on sec-

tion B.6. We finish by presenting some concluding remarks.

B.2 PN-space and isometrics

B.2.1 PN-space

Let P and N be the total number of positive and negative examples in a training set, while

p(r) and n(r) denote the respective number of examples covered by a rule r. Measures

of the rule r are two-dimensional functions of the form h(p(r), n(r)). For clarity, we will

abridge h(p(r), n(r)) as h(r), and omit the argument (r) from functions p, n, and h when

it can be clearly deduced from the context.

Definition 2. PN-space (coverage space) is a two-dimensional space of points (n, p),

where 0 ≤ n ≤ N denotes the number of negative examples covered by a rule (false

positives) and 0 ≤ p ≤ P denotes the number of positive examples covered by a rule (true

positives).

PN-space is quite similar to ROC space, a two-dimensional plane in which the oper-

ating characteristics of classifiers are visualized [43]. Each rule is represented by a point

in the PN-space, with the point (0, P ) (corresponding to the rule that covers all positive

examples and none of the negative) being an ideal point that every learning system tries

to reach.

Definition 3. Compatible: two measure h1 and h2 are compatible iff for all rules r, s:

h1(r) > h1(s)⇔ h2(r) > h2(s)

Definition 4. Antagonistic: two measure h1 and h2 are antagonistic iff for all rules

r, s: h1(r) > h1(s)⇔ h2(r) < h2(s)

Definition 5. Equality-preserving: two measure h1 and h2 are equality-preserving iff

for all rules r, s: h1(r) = h1(s)⇔ h2(r) = h2(s)

Definition 6. Equivalence: two measure h1 and h2 are equivalent (h1 ≡ h2) if they are

either compatible or antagonistic, i.e. they order all rules in the same way.
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B.2.2 Isometrics

Definition 7. Isometrics: an isometrics of a measure h is a line (or curve) in PN-space

that connects, for some value c, all points for which h(p, n) = c.

Fig. B.1 presents some examples of isometrics for some basic measures: accuracy hacc,

weighted relative accuracy hwra, entropy hen, and m-estimate hm. The measures are

defined as follows:

P

N

P

N0
0

P

0 N

P

0 N

(-N-m,-P-m)

(1)

(4)

(2)

(3)

Figure B.1: Isometrics of hacc, hwra, hen, and hm.

hacc = p− n (B.1)

hwra =
p + n

P + N
(

p

p + n
−

P

P + N
) (B.2)

hen = −(
p

p + n
log2

p

p + n
+

n

p + n
log2

n

p + n
) (B.3)
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hm =
p + m P

P+N

p + n + m
(B.4)

The isometrics of some other existing measures can be found in [44]. We propose two

kinds of rule evaluation heuristics: hk linear (Eq. B.5) and hP1N1 quad (Eq. B.6), which have

linear and quadratic (non-linear) isometrics respectively.

hk linear(r) = p− kn = n(
p

n
− k) (B.5)

hP1N1 quad(r) =
1

(p−P )2

P 2

1

+ n2

N2

1

(B.6)

B.3 Rule learning in PN-space

B.3.1 Learning a rule set vs. learning a single rule

The separate-and-conquer algorithm learns a rule set by iteratively adding one rule at a

time. The algorithm starts by performing a general-to-specific search (described below)

to learn the best rule according to some measures. Examples covered by this rule are

separated (or their weight is lowered) before learning the next rule. This is repeated until

all examples are covered by at least one rule in the rule set or some stopping criteria are

satisfactory.

The general-to-specific algorithm starts with a default rule (the rule that classifies all

examples to be positive), and then searches the space of possible rules by successively

specializing the current best rule. Rules are specialized by greedily adding the condition

which promises the highest gain according to some evaluation measures (heuristics). We

will analyze these rule search heuristics in the following sections.

B.3.2 PN-space path of learning a rule set vs. path of learning

a single rule

Learning a rule set one rule at a time (separate-and-conquer algorithm) can be viewed

as a path through PN-space, where each point on the path corresponds to an extra rule
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added to the rule set. This path starts at (0,0), which corresponds to an empty rule

set not covering any examples. Adding a rule makes the path “move” to a new point

in the PN-space, which corresponds to a theory consisting of all rules that have been

accumulatively learned so far. After the final rule has been learned, we can add another

rule with the body that is always true to cover all remaining examples, which have not

covered by any previous rules. This process, that starts at point (0,0) will eventually take

us to the point (N,P). Fig. B.2.1 shows the coverage path for learning a specific rule set.

While learning a rule set (separate-and-conquer algorithm) corresponds to a coverage

path from the point (0,0) to (N,P), learning an individual rule (general-to-specific algo-

rithm) in each iteration of the learning process corresponds to a path from (N,P) toward

down to the point (0,0). Learning a single rule, as explained above, is a general-to-specific

search. From the default rule (rule with body that is always true), we move by adding the

condition that is expected to get the highest gain according to specific measures, which

will take us to a “better” point in the PN-space. Fig. B.2.2 shows the coverage path for

learning a single rule by general-to-specific procedure. The best rule that would be added

into the rule set corresponds to the “highest” point in the path.

P

N0

P

N0

r0

r0+r1

r0+r1+r2

r0+r1+r2+r3

p:-true

p:-a

p:-a.b

Pa

Pab

Nab Na

P1

N1

P2 P3

N3

N2

(1) (2)

Figure B.2: Coverage path of learning a rule set (1) and learning a single rule (2).

B.4 Control of the generality of learned rules

During the learning process of an individual rule, the general-to-specific algorithm must

decide which is the best available rule from candidate ones. Many measures (heuristics)
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have been proposed for this purpose as well as for filtering out uninteresting rules and/or

for stopping the refinement process at an appropriate point. Some of these measures

produce compact rules, while others produce more specific rules. In this section, we will

analyze the generality of learned rules using different heuristics and study what factors

control the generality of these rules when working in a PN-space.

The generality of a rule r (gen(r)) is measured by the number of covered examples; and

the generality of a rule set is evaluated by three measures: the number of rules (#rules),

the average number of conditions per a rule (#conds), and the average generality of rules

in this rule set (avg gen(r)).

Definition 8. Coverage space of a rule r(n,p), (pn-space) is a subspace of PN-space

that includes all points (n1, p1), where 0 ≤ n1 ≤ n and 0 ≤ p1 ≤ p.

Definition 9. (descendant and ancestor): A rule r1(n1, p1) is a descendant of a rule

r(n, p), if r1 is the result of adding one or more conditions to the rule r. In this case, rule

r is called an ancestor of r1

We can easily see that if rule r1(n1, p1) is a descendant of a rule r(n, p), the point

(n1, p1) corresponding to r1 in PN-space must be in the coverage space of r (or pn-space,

see Fig. B.3), i.e., 0 ≤ n1 ≤ n and 0 ≤ p1 ≤ p. The point (0, p) in the pn-space corresponds

to the best specific rule of r, where the general-to-specific procedure tries to reach. Points

in the main diagonal of the pn-space correspond to rules r1 with class distribution similar

to the class distribution of r.

Definition 10. h-beam search space of a rule r(n, p) (bssh(r)) (respective to an

heuristic h) is the area of the coverage space of r that includes all points (n1, p1), where

h(n1, p1) > h(n, p).

In other words, bssh(r) is the area of the coverage space of r that includes points above

the h-isometric cutting through the point (n, p). Fig. B.3 presents the beam search space

of a rule respective to some heuristics: entropy hen, m-estimate hm, and weighted relative

accuracy hwra.

Theorem 3. for every rule r(n, p): bsshwra
(r) ⊆ bsshm

(r) ⊆ bsshen
(r) = coverage space(r)

2

with m > 0 (Fig. B.3).
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p:-a.b

P

N0

p:-a

p:-a.b.c

Na

Pa

Under bound for entropy

Under bound for m-estimate

Under bound for WRA

Coverage space of rule p:-a

Figure B.3: Beam search space of rule p ← a with different heuristics: entropy (en),
m-estimate and weighted relative accuracy (WRA)

The rate between the area of the h-beam search space and that of the coverage space of

r is an important factor to control the generality of learned rules as well as the generality

of the learned rule set. The general-to-specific algorithm iteratively specializes the current

best rule r(n, p) by adding the condition that would produce the best rule according to

heuristic h, i.e. it searches if there is a descendant of the best current rule r(n, p) in

the h-beam search space of r. If there is, this descendant will replace the current best

rule r(n, p). Therefore, the smaller the rate between the area of the h-beam search space

and that of the coverage space of r, the lower the possibility that the specification is

successful, and the more general the learned rule, as well as the sooner the procedure stop

specialization process.

From Theorem 3, it can be seen that bsshwra
is smaller than bsshm

and much smaller

than bsshen
, which explains why hwra often produces too general rules [3]. With entropy

heuristic hen (or the equivalent accuracy heuristic hacc), the area of the beam search space

is relatively large (a half of the area of the coverage score of a rule), and the produced

rules are often too specific [48]. The m-estimate heuristic hm with m = 0 is equivalent to

hen; if m → ∞, it becomes equivalent to hwra. Therefore, the parameter m can control
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the generality of learned rules.

To see how the different heuristics impact the generality of learned rules, we illustrate

in Fig. B.4 the best learned rule with two heuristics entropy hen and m-estimate hm.

There are two general-to-specific pathways (beam− size = 2). With the rule measure hen

(Fig. B.4.1), the best rules for each pathway are p ← a.b.c and p← x.y. The first one is

better than the second, and in fact it is the best of all rules in any of the two pathways.

Rule p ← a.b.c will be added to the rule set. When we used m-estimate hm for the rule

evaluation measure instead of hen, the best rule was p← a.b (Fig. B.4.2).

B.5 CN2 and CN2-SD: from prediction to descrip-

tion tasks

CN2 is a rule induction system implementing the separate-and-conquer strategy [54, 48].

It learns a rule set by iteratively adding rules one at a time. The system starts by

using a general-to-specific search (described below) to learn the best rule according to

some measures. Examples covered by this rule are removed from the search space before

learning the next rule to add to the rule set. This is repeated until all examples are

covered by at least one rule in the set or some stopping criteria is satisfied.

The original CN2 [54] works by learning a set of ordered rules. According to a certain

heuristic measure, CN2 looks for the best rule in the set of training examples. Once a

rule is found (“induced”), all examples covered by the induced rule are removed from the

training set, and the system starts again to look for a new rule. The result of a typical CN2

session is a list of nested rules of the form “if .. then .. else ..”. The nested structure can

become extremely complex when the number of rules is high, making this representation

difficult to interpret. Subsequent versions of CN2 [48] allow the induction of unordered

rule lists. Rules are learned for each class independently, and for each induced rule only

covered examples belonging to the class are removed, instead of removing all covered

examples. The produced final rules can therefore overlap, but at the same time can be

interpreted independently. When using an unordered rule list to predict the class of new

instances, several rules can contribute to the classification of this example, often resulting

in an improved accuracy.
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Unfortunately, and due to the way CN2 iteratively removes examples, in an unordered

rule list only the first few induced rules are usually of interest. Subsequently induced rules

are obtained from biased example subsets, i.e., subsets including only positive examples

not covered by previously induced rules. This is not suitable for description tasks, where

desired rules may cover overlapped instances. CN2-SD [3], a modification of CN2 for

subgroup discovery, solves this problem. The basic idea is to generalize the covering

algorithm by introducing example weights. Initially, all examples have a weight of 1.0.

However, the weights of examples that are covered by a rule will not be set to 0.0 (as

in CN2), but instead will be reduced by a certain factor. The resulting number of rules

is typically higher than with CN2, since most examples will be covered by more than

one rule. CN2-SD has therefore two complementary advantages: it can learn better

local patterns because the influence of previously covered patterns is reduced, but not

completely ignored; and it can produce a better classifier by combining the evidence of

more induced rules.

B.6 Experiments

B.6.1 UCI datasets

We conducted some experiments to illustrate the generality of rules produced by some

search heuristics with the general-to-specific strategy. We use the rule learning systems

CN2 [54, 48] and CN2-SD [3] with different heuristics: k-linear (k = 0.2, 0.5, 1.0), m-

estimate (m = 20, 5), weighted relative accuracy, and quadratic (P1 = P, N1 = N). 18

UCI data sets were selected for the evaluation: Anneal, Audio, Balance, Car, Glass,

Iris, Wine, Heart-Cleveland, Heart-Hungarian, Hepatitis, Australian, Breast, Echocardio-

gram, German, Ionosphere, Pole-and-card, Tic-tac-toe, Voting record. In addition to the

generality of the learned rule set: the number of rules (#rules), the average number of

conditions per a rule (#conds), and the average number of covered examples per rule

(covering)), we also report the predictive performance on 18 data sets by 10 × 10-fold

cross-validation (Table B.1).

In general, the number of rules and the generality of single rules produced by CN2

are much smaller than by CN2-SD when using the same rule evaluation heuristic. This
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Table B.1: The average number of rules, the average number of conditions per a rule, and
average accuracy in the rule set on 18 datasets produced by different heuristics with CN2
and CN2-SD.

Lap. 20-est. 5-est. 0.2-lin. 0.5-lin. 1.0-lin. WRACC Quad.

#rules CN2 39.5 25.3 35.7 10.1 12.7 16.2 13.3 13.9
CN2-SD 78.1 53.7 67.1 39.9 37.8 36.0 39.7 42.3

#conds CN2 3.10 2.95 3.03 2.80 2.66 2.49 2.71 3.04
CN2-SD 3.21 3.06 3.14 3.27 2.86 2.69 2.85 3.58

#covering CN2 24.3 29.2 24.3 124.4 61.9 48.3 57.3 68.0
CN2-SD 27.1 32.5 26.8 100.9 58.2 46.3 46.6 79.0

acc. CN2 82.9 82.3 83.5 74.0 79.3 79.6 78.6 78.8
CN2-SD 83.3 84.3 85.0 78.5 80.9 80.1 81.3 80.0

explains why CN2-SD is more appropriate than CN2 for description tasks. The accuracy

of CN2-SD is also often higher than that of CN2, because CN2-SD combines the evidence

of more induced rules.

As can be seen in Table B.1, the number of rules produced by k-linear heuristic with

k = 0.2 is often the smallest and each rule covers the largest number of examples. When

increasing k, the returned number of rules is increased and the average number of covered

example is inversely reduced. This is explained by the fact that the relative area of k-

linear-beam search space is proportionally increased with the increase of k, hence more

specific rules are preferred, and therefore the number of rules is increased. The same effect

was also observed in m-estimates when m decreased.

While k-linear heuristic with k = 0.2 produces too general rules, Laplacian heuristic

tends to prefer too specific rules. Heuristics WRA and Quadratic lay somewhere in

between, producing rules not too specific but not too general either. The heuristic WRA

has been used for the task of knowledge discovery in the work of Lavrac [3].

B.6.2 Microarray dataset

In this section, we illustrate the generalization ability of some heuristics in uncovering the

transcriptional regulatory rules from microarray data. We used two heuristics, Laplacian

and WRA, which represent two categories of heuristics: (1) preferring highly specific rules

and (2) preferring highly general rules. We used regulatory tables as training data (a full

description of these regulatory tables can be found in Chapter 3 of this thesis. Regulatory
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tables are often incomplete and contain noise, which makes them an interesting subject

of study to test the capability of CN2-SD to deal with such kind of data. Table B.2 is an

example of some regulatory rules found by CN2 and CN2-SD with heuristics Laplacian

and WRA from the regulatory table of gene YBR048W.

Table B.2: Some regulatory rules produced by CN2 and CN2-SD with heuristics Laplacian
and WRA

Regulatory rules CN2 CN2-SD (g = 0.5)
Laplacian WRA Laplacian WRA

HAP4=I → YBR048W=D [2497,234,1842] No No No Yes
MOT3=I, HAP4=I → YBR048W=D [138,0,5] Yes Yes Yes Yes
HAP4=I, FHL1=D → YBR048W=D [139,3,18] No No No Yes
HAP4=I, FHL1=D, RAP1=D → YBR048W=D [58,0,2] Yes Yes Yes No
UME1=I, HAP4=I, RSC1=D → YBR048W=D [19,0,5] Yes Yes Yes No
HAP4=I, RCS1=D, RAP1=D → YBR048W=D [18,0,5] Yes Yes Yes Yes
SFP1=D, RCS1=I → YBR048W=D [7,0,8] No No No Yes
RCS1=I, FHL1=D → YBR048W=D [4,0,1] Yes Yes Yes Yes

As it can be seen in table B.2, CN2-SD with WRA heuristic obtained a better regu-

latory rule set, including rules with different generality: from rules with very high gener-

ality such as HAP4=I → YBR048W=D (covering 4573 instances), to very specific rules

as RCS1=I, FHL1=D → YBR048W=D (covering only 5 instances). Therefore, we use

WRA heuristic for this work.

B.7 Concluding remarks

We have used PN-space to analyze the generality (or specificity) of rules produced by

different heuristics with a general-to-specific learning strategy. We showed that the beam

search space of a heuristic controls the generality of learned rules. We compared the

generalization ability of some well-known heuristics like entropy, m-estimate, weighted

relative accuracy. We also analyzed, under PN-space view, why entropy produces rules

too specific, while weighted relative accuracy produces highly general rules. Our experi-

ments showed that the weighted covering algorithm (in CN2-SD) combining with a rule

evaluation heuristic with high generalization ability (like WRA) is the best suited for

learning descriptive rules.
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Compared to classification and prediction tasks, validating results of methods applied

to description tasks (or knowledge discovery) is still quite difficult. The authors of CN2-

SD have successfully applied CN2-SD with WRA heuristic in some real applications [3],

and so we did to discover regulatory rules from microarray data [23].
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Best rule with m-estimate
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p:-x
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(2)

Figure B.4: Impact of rule measures in learning a single rule. (1) with entropy measure.
(2) with m-estimate measure.
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