
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Distributed Reinforcement of Local Consistency

for General Constraint Network An Investigation

of Meeting Scheduling Problems

Author(s) Ahlem, BEN HASSINE

Citation

Issue Date 2005-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/819

Rights

Description Supervisor:Tu Bao HO, 知識科学研究科, 博士

Distributed Reinforcement of Local Consistency for

General Constraint Network

An Investigation of Meeting Scheduling Problems

by

Ahlem BEN HASSINE

submitted to

Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Supervisor:Professor Tu Bao HO

School of Knowledge Science

Japan Advanced Institute of Science and Technology

September 2005

1

Abstract

Constraint satisfaction problem (CSP) is a powerful formalism to represent and to solve

many real-life NP-complete problems such as, planning, resource allocation, meeting schedul-

ing, etc. The great success of this formalism is due essentially to its simplicity in expressing

any real-world problem subject to constraints. A CSP is a triplet (X, D, C) composed of a

finite set ofn variables X, each of which is taking values in an associated finite domain D

and a set ofeconstraints C between these variables.

Solving a CSP consists in finding one or all-complete assignments of values to variables

satisfying all the constraints. However, this task is hard and many efforts were devoted to-

wards enhancing it by reducing the complexity of the original problem. Essentially, the com-

plexity reduction in CSP formalism is achieved by integrating the local consistency property

(LC) and its corresponding filtering techniques. Those techniques allow the simplification

of the original problem by eliminating values or combination of values that cannot belong to

any solution. Many levels of LC have been proposed in the literature, among them enforcing

arc-consistency is the most preeminent one because of its low time and space complexities.

Most efforts dealing with enforcing AC on any constraint network (CN) are centralized al-

most always limited to binary CN, i.e., where each constraint involves at most two variables.

Non-binary CNs, where constraints involve more than two variables, are often strongly re-

quired to deal with hard applications. Nevertheless, thereis very few works involving non-

binary constraints and they pertain only to the centralizedframework.

Recently, with the advent of distributed computing and networking technologies, espe-

cially with the omnipresence of naturally distributed real-world problems, the interest in

enforcing LC property in naturally distributed manner and for both binary and non-binary

CN has largely increased, but such techniques have not been widely studied yet. Moreover,

solving real-life applications, mainly meeting scheduling problems, requires also more stud-

ies to cope with the new environment requirements.

Our main target isi) to find solutions and build a novel generic system to enforcesome

levels of LC with reasonable cost on any CN andii) to take this system to the real-life through

one among the important combinatorial applications, meetings scheduling problems.

Our study on CSP framework and its related research directions including, LC enforce-

ment techniques, and especially ways of solving real applications, mainly meeting schedul-

ing problems (MS) stir up our attention to do more investigations in this framework. Five

main contributions of this thesis are the following.

• The integration of LC enforcement techniques in a constraint solver reduces the expo-

nential space, in the number of variables, of the search tree. This clear benefit coupled

i

with the very few existing research efforts dealing with naturally distributed problems,

motivated us to design a new hybrid agent-based method to enforce arc consistency on

any CN. This hybrid method involves two main approaches DRACand G-DRAC, for

binary and non-binary constraints, respectively. The termination of the two underlying

techniques is guaranteed with equal polynomial time complexity as the best exist-

ing distributed technique for DRAC and the best centralizedtechnique for G-DRAC1

down to the number of variable. As for the spatial complexity, both techniques DRAC

and G-DRAC save as much space as possible compared to existing ones. The empiri-

cal study of DRAC and G-DRAC shows their efficiency for especially hard problems

(Chapter5.).

• Enforcing only arc consistency for some hard CN is fruitless. The main reason is that

the problem could be initially AC, thus the filtering processwill not prune any values,

or prune only few inconsistent values. Achieving higher level of LC could be worth-

while. The main deal here is to find a good compromise between the level to enforce

and its cost. Note that no distributed techniques for achieving higher level than AC

exist in the literature. We designed an agent-based technique, that we called DRAC++

to enforce restricted path consistency, a stronger level than AC with reasonable cost.

Moreover, a new heuristic is described in this work to decrease the practical complex-

ity of DRAC++. The experimental results exhibit the efficiency of this newapproach

towards over-constrained problems (Chapter6.).

• Taking our research results to a real life combinatorial application was our main moti-

vation for the next contribution. Therefore, we choose to evaluate the performance of

DRAC on a real decision-making problem: Meeting Schedulingproblem (MS). This

problem is one the traditional real world problems that continues to fascinate many re-

searchers. This problem embodies a decision-making process affecting several users,

in which it is necessary to decide when and where one or more meeting(s) should be

scheduled according to several restrictions related to users, meetings, environment,

etc. Evidently, solving MS problems, is always time consuming, iterative and also

tedious. Despite the continuous efforts of many researchers, this problem needs more

investigations to arise many daily encountered difficulties due to the incremental en-

vironment requirements. However, DRAC is a filtering technique; it cannot solve any

problem but only reduce it without loss of solutions. We cameup in this thesis with

another novel, agent-based, complete, and deterministic approach (that we called MSS

for meeting scheduling solver) to reduce and solve any MS with predictable structure.

The proposed underlying protocol is based on aselfishwelfare to reach the best solu-

tion with polynomial cost. The experimental comparisons performed using a typical

MS solver show the high performance and scalability of MSS, at least for the used data

1There is not any technique to enforce arc consistency on non-binary CN in a naturally distributed manner.

ii

set (Chapter7.).

• The previous work requires a total knowledge about all the meetings in advance. How-

ever, for some organizations knowing all meetings beforehand might be quiet difficult

rather impossible. This motivated us to tackle a new direction for MS problems, prob-

lems with unpredictable structure. Therefore, another more sophisticated solution to

solve any dynamic MS problem is described in this thesis. Thenew technique, that we

called MSRAC, is an incremental approach, able to cope with any system alterations,

and consequently process any meetings’ conflict using threedifferent heuristics. An

empirical study highlights the benefit of using themetropolis criterionin case of con-

flict against other heuristics. Moreover, the main goal in MSRAC is to maximize

the global system welfare, defined by the optimal solution, while scheduling dynamic

meetings (Chapter8.).

• Finally, our last contribution in this thesis is a novel, constraint-based asynchronous

search approach (that we called DisAS for distributed asynchronous search). This

work is able to tackle directly any constraint network (withnon-binary constraints).

The proposed approach is based in a part on alazyversion of the G-DRAC approach,

and without adding any new links and without recording any nogoods as for the ex-

isting techniques in the literature. The idea behind using alazyversion of G-DRAC

is to save as many as possible fruitless backtracking and consequently to enhance the

efficiency of the solving process. Furthermore, a new generic distributed method to

compute a static constraints ordering were also proposed with DisAS in order to estab-

lish an optimal ordering between agents, in which we save as many links as possible

leading hopefully to decrease the set of exchanged messagesand make it of a great

practical use. The designed technique is generic and can be used to solve any naturally

distributed real application (Chapter9.).

Keywords: Constraint satisfaction problem (CSP), Distributed CSP,Valued CSP, Local

consistency, filtering techniques, Arc consistency, Multi-agent systems, Meeting scheduling

problems, Asynchronous backtracking techniques.

iii

Acknowledgments

This work has been supported for one year (2004-2005) by the Japanese Foundation for

C&C Promotion Grant for non-Japanese Researcher.

First, I am grateful to Prof. Takuya Katayama of the Japan Advanced Institute of Science

and Technology (JAIST) for offering me the opportunity to continue my study in JAIST by

sponsoring my research under his COE project, for his encouragements, and for his contin-

uous support.

I would like also express my sincere and deepest thanks to my supervisor Prof. Tu Bao

Ho, first for accepting me in his laboratory, for his guidanceand for his helpful and valuable

comments and suggestions.

I would like to thank my supervisor during the first six monthsof my PhD degree, Prof.

Takayuki Ito for accepting me in his laboratory, guiding me in the first steps of my research,

for his kind support, and especially his continuous encouragements to improve my work.

I feel lucky to have close work with my two supervisors, I havebenefit from their knowl-

edge, experience, and continuous advises.

My deep thanks also goes to Associate Prof. Xavier Défago, at JAIST, with whom I col-

laborated during my sub-theme and who offered me, advices and kind guidance during our

collaborative work.

I am also very grateful to Associate Prof. Adel El cherif, Associate Professor at the Univer-

sity of Qatar, for encouraging and helping me to come to JAISTand also for his continuous

assistance and support.

I am also grateful to all who have affected or suggested this area of research. Prof. Makoto

Yokoo, at the Faculty of Information Science and ElectricalEngineering, Kyushu University,

and Associate Prof. Katsutoshi Hirayama, at the Faculty of Maritime Sciences, Kobe Uni-

versity, for their valuable suggestions and kind encouragements.

I would like to devote my sincere thanks and appreciation to my Japanese friends Dr. Saori

KAWASAKI and Dr. Tokuro Matsuo for their sympathy and their unlimited help. My sin-

iv

cere thanks goes also to all members of the Laboratory of Knowledge Creating Methodology.

A special word of gratitude to Dr. Shafeeque Ansari and his wife Dr. Zoubaida Ansari, to

Dr. Mohamed Mostafa and his wife Maha, to Dr. Yasser Kotb, andto Dr. Rami Yared, for

their kind help, encouragement and friendship.

I gratefully recognize all my Professors, in the High Institute of Management of Tunisia

(ISG), Prof. Khaled Ghédira, of the High Institute of Computer Science of Tunis, and all my

friends of the UR. SOIE Laboratory ISG Tunisia.

Last but by no means least; I am deeply grateful to all the members of the jury for accepting

to judge this thesis.

v

To Whom this work is dedicated?

To my father Mohamed, for all his lavished love, trust, encouragement, and support, I am

forever deeply grateful to him for all what he has done and still doing for me.

To my wonderful, adorable and devoted mother Essia who had never ceased taking care on

me, even while I am abroad,

To my Dearest brother Naoufel,

To my brother Mourad and his wife Wafa and their two handsome kids Rami and Fares,

To my adorable sister Ibtissem and her husband Mohamed Ali and to the most pretty and

wonderful girls, my two princess Ranime and Marame.

To my brother Wassim who never forgot to send me a nice card anda marvellous gift in my

birthday.

To my dearest Samia for her support, kind help and deep love, with whom I shared,

discovered and enjoyed the study and life in Japan,

to Dr. Nebil Achour and his wife my dear Caroline Deegan for being an excellent brother

and sister for me and for their continuous help and encouragements.

To all the members of my family and to all my friends in Tunisiaand Japan and all over the

world (Canada, NewWork, France, etc.),

Finally to all those who encouraged me to persevere in the most difficult moments, that they

find here the deep expression of my high gratitude.

vi

Contents

Abstract i

Acknowledgments iv

To Whom this work is dedicated? vi

1 Introduction 2

1.1 Context and motivation . 2

1.2 Objectives . 6

1.3 Thesis guideline . 8

1.4 Notations and conventions .. 10

2 Constraint Satisfaction Problem Formalism 13

2.1 Definitions and preliminaries 13

2.2 Constraint reasoning techniques 19

2.2.1 Centralized search . 19

2.2.2 Parallel and distributed search 22

2.3 Summary . 26

3 Local Consistencies for Constraint Networks 27

3.1 Properties of some levels of local consistency 28

3.1.1 Local consistencies for binary CN 28

3.1.2 Local consistencies for n-ary CN 34

3.2 Theoretical comparison of local consistencies 35

3.3 Local consistency enforcement techniques 36

3.3.1 Centralized techniques . 37

3.3.2 Parallel and distributed techniques 39

3.4 Summary . 40

4 Meeting Scheduling Problem 42

4.1 Definition . 42

4.2 Clarke Tax mechanism for ensuring truthful preferences. 44

vii

4.3 Basic of some meeting scheduling solvers 45

4.4 Privacy issues . 49

4.5 Summary . 50

5 DRAC and GDRAC: Distributed Reinforcement of Arc Consistency for any

General Constraint Network 51

5.1 Underlying multi-agent architecture 51

5.1.1 Interface agent . 52

5.1.2 Constraint agents . 52

5.2 Proposed heuristics .53

5.3 Global constraint-agents interactions 54

5.3.1 Communication protocol . 54

5.3.2 Common data structures and basic primitives 55

5.3.3 Agent-based protocol . 56

5.4 Theoretical analysis .. 58

5.4.1 Correctness . 58

5.4.2 Termination detection . 59

5.4.3 Spatial and temporal complexities 60

5.5 Experimental comparative evaluation 60

5.6 Summary . 65

6 DRAC++ to Enforce more than AC 71

6.1 Distributed enforcement of restricted path consistency 71

6.1.1 Knowledge inference heuristic 71

6.1.2 DRAC++ multi-agent model . 72

6.1.3 Basic of the enforcing process .72

6.2 Discussion . 75

6.2.1 Termination . 75

6.2.2 Complexity . 76

6.3 Experimental comparative evaluation 76

6.4 Summary . 83

7 Taking DRAC to the Real World: An Efficient Complete Solution for Static

Meeting Scheduling 87

7.1 Formalization for any static meeting scheduling problem 87

7.2 DRAC model adapted to the MS problem89

7.3 Global scenario for static MS solver 91

7.4 Theoretical discussion .. 94

7.4.1 Termination detection . 94

7.4.2 Spatial and temporal complexity 95

viii

7.5 Experimental comparative evaluations 96

7.6 Summary . 102

8 MSRAC: Dynamic Meeting Scheduling Solver 103

8.1 Dynamic meeting scheduling problem formalization 103

8.2 MSRAC multi-agent model . 105

8.3 MSRAC global dynamic . 109

8.3.1 Communication protocol . 110

8.3.2 Multi-agent interaction protocol for dynamic MS 111

8.3.3 Process of meetings alterations 113

8.4 Example of algorithm execution .. . 114

8.5 Evaluation . 116

8.5.1 Theoretical evaluation . 116

8.5.2 Experimental comparative evaluation 118

8.6 Summary . 127

9 Asynchronous Constraint-based Approach: A New-Born in the ABT Family 131

9.1 Constraint-based asynchronous search approach 132

9.1.1 Multi-agent architecture .132

9.1.2 Generic parallel new method for static constraint ordering 132

9.1.3 Solving asynchronous process global dynamic 135

9.2 Illustrative example .. 136

9.3 Theoretical analysis .. 136

9.3.1 DisAS soundness and completeness136

9.3.2 Termination . 139

9.4 Experimental comparative evaluation 140

9.5 Summary . 144

10 Conclusions and Future Work 145

10.1 Conclusions . 146

10.2 Future work . 147

ix

List of Figures

1.1 A simple example of the map-coloring problem. Three possible colors can

be used for each region{red, blue, green}. Each arrow depicts two adja-

cent regions that should be painted with different colors. The regionX1 is

supposed to be in the sea-side. 3

1.2 A summary of the main objectives of this thesis and the underlying publica-

tions. 12

2.1 Example of the hexagonal regions used in the frequency assignment problem. 15

2.2 Example of a row-convex binary relation. 16

2.3 Example of a primal graph for a binary constraint problem(a) and a non-

binary constraint problem (b). The nodes represent the variables while the

(hyper)-links illustrate the common constraints. 17

2.4 Example of a dual graph for any constraint problem. The nodes represent

the n-ary constraints while the links define the shared variables. 18

3.1 A graph based on possible consistent pairs of values of a constraint problem

formed by three variables. 29

3.2 The resulting problem after enforcing arc-consistency. 30

3.3 Path consistency. 31

3.4 Example of an arc consistent problem for which we would enforce path con-

sistency. The original problem (a) and the resulting path consistent problem

with a new constraint structure (b). .. . 32

3.5 Example of arc-consistent problem for which we would enforce restricted

path consistency. The arc-consistent original problem (a)and the resulting

RPC problem (b). 33

3.6 Relations between some levels of local consistencies for binary CN. 36

5.1 Example of binary constraint. Each arrow illustrates the directions of the

constraint checks performed in order to seek for the first support for each

variable/value. 54

x

5.2 DRAC results in mean number of Constraint Checks for constraints in in-

tension on Pentium III (35 instances are generated for each set of 〈p; q〉

parameters). 61

5.3 AC7 results in mean number of Constraint Checks for constraints in inten-

sion on Pentium III (35 instances are generated for each set of 〈p; q〉 param-

eters). 62

5.4 DRAC results in mean CPU time for constraints in intension on Pentium III

(35 instances are generated for each set of〈p; q〉 parameters). 63

5.5 AC7 results in mean CPU time for constraints in intensionon Pentium III

(35 instances are generated for each set of〈p; q〉 parameters). 64

5.6 DRAC-Int and DRAC-Ext vs. AC7 Results in mean number of Constraint

Checks on Pentium III (10 instances are generated for each set of 〈p; q〉

parameters). 65

5.7 DRAC-Int and DRAC-Ext vs. AC7 Results in mean number of CPU time on

Pentium III (10 instances are generated for each set of〈p, q〉 parameters). . 66

5.8 G-DRAC-Ext1 vs. G-DRAC-Ext2 results in mean number of Constraint

Checks for constraints expressed in extension. 67

5.9 G-DRAC vs. GAC7 results in mean number of Constraint Checks for con-

straints expressed in intention. .. . 67

5.10 GDRAC-Ext1 vs. GDRAC-Ext2 results in mean number of exchanged mes-

sages for constraints expressed in intention. 70

6.1 Example of arc-consistent problem. 73

6.2 The corresponding graph of first support values. 74

6.3 The corresponding model for the proposed approach 75

6.4 DRAC vs. DRAC++ mean results in term of the required CPU time for hard

arc-consistent problems. 77

6.5 DRAC vs. DRAC++ mean results in term of the percentage of pruned incon-

sistent values. All tested instances are initially arc-consistent. 78

6.6 DRAC vs. DRAC++ mean results in term of the number of constraint checks

for hard arc-consistent problems. .. . 79

6.7 DRAC vs. DRAC++ mean results in term of the number of exchanged mes-

sages for hard arc-consistent problems. 80

6.8 Results of DRAC++-1 without the proposed property vs. DRAC++-2 with

the proposed property, in mean of CPU time. 81

6.9 Results of DRAC++-1 without the proposed property vs. DRAC++-2 with

the proposed property, in mean of percentage of deleted inconsistent values. 82

6.10 Results in terms of the mean of the required number of ccks 82

xi

7.1 Example of a user calendar consisting of non-availability of the user (black

boxes), the possible time slots for the current meetings (gray boxes) and the

favorite time slots with their corresponding degree of preferences. 89

7.2 MSS approach vs. Tsuruta et al. approach in term of mean ofthe required

CPU time in milliseconds. (35 random samples generated for each pair〈Ch,

p〉). 98

7.3 MSS approach vs. Tsuruta et al. approach mean results in terms of the

percentage of scheduled meetings.(35 random samples generated for each

pair 〈Ch, p〉). 98

7.4 Mean results in term of the number of exchanged messages.. 100

7.5 Mean results in term of the necessary amount of exchangedinformation, i.e.,

necessary number of slot times exchanged to reach an agreement. 101

8.1 Example of a user calendar. .. 105

8.2 Example of the meeting scheduling problems with three users. 115

8.3 Results obtained by the three approaches in mean of number of scheduled

meetings (a1, b1, c1 and d1). 120

8.4 Results obtained by the three approaches in mean of number of generated

conflicts corresponding to the previous graphs(a2, b2, c2 and d2). 121

8.5 Results obtained in mean of number of scheduled meetings. 122

8.6 Results obtained in mean of the importance of the scheduled meetings. . . . 123

8.7 Results obtained in mean of the real global utility. 123

8.8 Results obtained in term of CPU time. 124

8.9 Results obtained in term of exchanged messages. 125

9.1 Distributed asynchronous constraint ordering. 134

9.2 DisAS approach vs. AWC Search approach results in mean ofthe number of

constraint checks for binary random CN. 142

9.3 DisAS approach vs. AWC Search approach results in mean ofthe number of

exchanged messages for binary random CN. 143

xii

List of Tables

3.1 The temporal and spacial complexities for the most efficient existing algo-

rithms for enforcing different levels of local consistencies withn, the number

of variables,d, the size of the initial largest domain,e the number of con-

straints,c the number of 3-cliques in the graph, andr the arity of the constraints. 40

4.1 Example of truth users’ preferences for each alternative. 44

4.2 The Clarke Tax computed for each users. 45

5.1 Results obtained in ratio of the percentage of deleted values and CPU time . 68

6.1 Percentage of arc consistent instances among the 70 generated ones 77

6.2 Percentage of problems detected as inconsistent among the arc-consistent

problems . 80

6.3 Results of the percentage of deleted values for the inconsistent instances. . . 83

6.4 Dependent two samples t-test for the number of constraint checks means of

both approaches DRAC++ − 1 and DRAC++ − 2, for each pair〈p, q〉. . . . 83

7.1 Mean results of MSS approach and Tsuruta et al. approach in term of the

CPU time for meeting problems without hard constraints.Ratio CPU= CPU

time Tsuruta et al. approach / CPU time MSS. 97

7.2 MSS approach mean results in term of the percentage of reduced time slots

for each pair〈p, cH 〉. 99

8.1 Example of the degree of preference of each userAi towards each possible

datedtp for the meeting XA1

1 . 107

8.2 Example of users’ implicit preferences generated by theProposer agent. . . 108

8.3 Example ofLU computation for each candidate. 108

8.4 Different time proposals for meetingmA1

i ranked according to users’ prefer-

ences. 116

8.5 Formalization of the null hypothesis and the alternative hypothesis for both

CPU time and number of scheduled meetings. 125

8.6 Dependent two samples t-test for the CPU time means of both approaches

MSRAC and ABT, for eachd. 126

xiii

8.7 Dependent two samples t-test for the number of scheduledmeetings means

of both approaches MSRAC and ABT, for eachd. 127

8.8 Results obtained in mean of CPU time. 127

8.9 Results obtained in mean of percentage of scheduling meetings. 127

9.1 Results in mean of constraints checks and CPU time. 141

1

Chapter 1

Introduction

1.1 Context and motivation

Many combinatorial applications in real-world, known as NP-Complete problems, need to

be solved. Several formalisms dealing with such problems were proposed in the literature,

among which: linear programming problem formalism (PLNE),propositional satisfiability

problem formalism (SAT), constraint satisfaction problemformalism (CSP).

The constraint satisfaction problem (CSP) formalism [67] is widely used to formulate and

solve several combinatorial problems, e.g., planning, resource allocation, time tabling and

scheduling. The great success of this paradigm is due essentially to its natural expressiveness

of real-world applications. A CSP is defined by a set of variables, a domain of values for

each variable and a set of constraints between these variables. Solving a CSP involves finding

assignments of values to variables that satisfy all the constraints.

In instance, let’s consider a simple real application, the map-coloring problem shown in

Figure1.1. Assume that we have a map formed by four regions and we have only three colors

to use for this map (red, blueandgreen). Our goal is to color each region in the map so that

no adjacent regions have the same color and also the sea-sideshould not be colored in blue

(assume that only one of the four regions is located near the sea). This problem can be

easily formulated as a CSP in which, we have four variables{X1, X2, X3, X4}, each variable

depicts one region. The domain of each variable is defined by the available colors{red, blue,

green}. Two constraints occurs in this problem; The first one does not allow the use of the

same color for each pair of variables corresponding to two adjacent regions. The second

constraint is that the color used for the variable X1, which is assumed to be the region near

the sea, should not be blue. Solving this problem is assigning colors to variables (regions)

with regards to the two constraints mentioned before.

Solving a CSP is a hard task and a blind search often leads to a combinatorial explosion

in the search tree. However, this framework is marked by the ubiquitous use of local consis-

tency (LC) properties and enforcing techniques; noting that LC is a relaxation of consistency.

For any consistent CSPP there is a unique equivalent locally consistent and more simple

2

X1

{red, blue, green}

X

{red, blue, green}

X

{red, blue, green}

X

{red, blue,

green}

Figure 1.1. A simple example of the map-coloring problem. Th ree possible colors can be

used for each region {red, blue, green}. Each arrow depicts two adjacent regions that

should be painted with different colors. The region X1 is supposed to be in the sea-side.

CSPP’. FindingP’ is achievable in polynomial time by so-called enforcing or filtering algo-

rithms. These algorithms allow the simplification of any constraint problems by eliminating

values or combination of values that cannot be involved in any solution. In instance, in the

above map-coloring problem, the variable X1 should be different fromblueaccording to the

second constraint. For that reason, the valueblue in the domain of X1 cannot belong to any

solution of the problem. Therefore, the valueblue can be removed from the domain of X1

without loss of solutions.

Integrating the enforcing of local consistency as a preprocessing step and/or within the

search process is worthwhile for pruning inconsistent values, consequently saving much

fruitless exploration of the search tree especially on hardand large problems. Several levels

of local consistency (node, arc, path andk-consistency) have been proposed in the literature.

Obviously, as indicated in [31], the overhead caused by removing inconsistency has to be

outweighed by its gain. This overhead fluctuates according to the problem to solve.

Which level should be enforced when seeking for solutions ina constraint network?

Two main criteria should be taken into consideration while choosing a suitable level of con-

sistency to achieve for a constraint network (CN). The first is the pruning efficiency of the

filtering involved and, the second is its time and space complexities.

Arc consistency (AC) is the widely preeminent existing level of local consistency because

it eliminates some values that cannot belong to any solutionwith a low cost. Enforcing AC

embodies checking the consistency among each pair of variables connected by a constraint.

This framework has been widely studied in many research efforts. The main reason is that

maintaining AC during a search has been definitively shown tobe a worthwhile approach

when solving hard and large problems [7, 48].

There are two kinds of approaches to achieve AC, centralizedand distributed approaches,

both of them can be applied tobinary CN and non-binary CN. In the binary CN, each con-

3

straint involves at most two variables while in thenon-binaryCN (called alson-ary CN or

generalCN) there is at least one constraint that implies more than two variables.

Some typical works in the centralized framework where discussed in the literature, such as

in [104, 65, 71, 30], and [6]. As mentioned by Baudot and Deville [3], very few works deling

with distributed approach can be found in the literature [87, 21, 78, 53], despite the natural

distribution of many real-world applications and the advent of both distributed computing

and networking technologies.

It is noteworthy that most efforts in constraint satisfaction problems assume that any real-

life application can be exclusively formulated using binary constraints. Many of the aca-

demic problems amongst: n-queen, zebra, fit this condition,whilst for other real-application,

their formulation requires imperatively the use of non-binary constraints in order to preserve

problem semantic. Nevertheless, most efforts were devotedonly to binary CN. The main

reason is that any non-binary problem can be transformed into a binary one. Thus, many

methods have been proposed in literature to translate non-binary constraints into an equiv-

alent set of binary ones. Theoretically, this equivalence solves the issues of algorithms for

non-binary problems. However, in practice, this translation presents several limitations con-

cerning spacial and temporal requirements, which make it inapplicable. Furthermore, in [84]

the author proved that this transformation could lead to theloss of a part of the constraints’

semantics.

Recently further efforts have been devoted to extend binarytechniques to non-binary

versions able to deal with general constraints in their original form. However, only few

works on enforcing arc-consistency for non-binary problems can be found in the literature

[66, 72, 84, 11]. All these works address a centralized framework; no distributed approaches

were suggested in the literature.

Is AC enough for hard CN?

Performing only AC for some hard CNs might be fruitless; Caseof problems initially AC.

Consequently, applying this property may not delete any values, or may delete only few in-

consistent ones. Therefore in achieving more local consistency pruning levels,k-consistency

(k > 2), can be more efficient.

Higher consistency levels such as, path consistency,k-consistency, can prune more non-

viable values. Some works dealing with enforcing path consistency (PC) were proposed in

[31, 23]. These techniques check the consistency among all possible paths of three variables

connected by three constraints in a complete CN. However, these techniques are never used

in practice because of their very high complexities (or theyare used only for very small

and easy problems). Furthermore, enforcingk-consistency (k≥ 3) may change the graph of

constraints1 and especially require high computational cost.

1As mentioned in [103], these levels require the recording offorbidden tuples, which implies either the cre-

ation of new extensionally defined constraints, or the addition of an extensional definition to existing possibly

4

What about a level higher than AC and less than PC?

Obviously, we should find a suitable level of consistency to achieve while considering the

best compromise between the cost of the filtering process andthe efficiency of the deletions

involved. In [5] the author proposed the restricted path consistency (RPC) property, which is

higher than the AC property and requires much less computational effort than PC. This level

does not suffer from the drawbacks of PC. We notice also that no work has been proposed

in the literature to enforce any level of local consistency,rather than AC, in an entirely

distributed manner.

What about tackling one of the hard real-world applications?

The great success of the filtering techniques in the enhancement of the solving process of

many combinatorial problems, motivated us to tackle one among the hard real-world appli-

cations, which is the meeting scheduling problem. This problem is of great importance in

our life and especially in the success of any organization. Agood scheduling may lead a

high gain for the organization and consequently to the society itself.

This problem embodies a decision-making process affectingseveral users, in which it is

necessary to decidewhenandwhereone or more meeting(s) should be scheduled. To satisfy

real-world efficiency requirements, in this work we focusedon two challenging character-

istics: the distributed and dynamic nature of the problem. The MS problem is inherently

distributed and hence cannot be solved by a centralized approach; it is dynamic because

users are frequently adding new meetings or removing scheduled ones from their calendar.

This process often leads to a series of changes that must be continuously monitored.

The general task of solving an MS problem is normally time-consuming, iterative, and

sometimes tedious, particularly when dealing with a dynamic environment. More precisely,

solving the MS problem involves finding a compromise betweenall the attendants’ meet-

ing requirements2 (i.e., date, time and duration) which are usually conflicting. Hence, this

problem is subject to several restrictions, essentially related to the availability, calendars and

preferences of each user. Automating meeting scheduling isimportant, not only because it

can save human time and effort, but also because it can lead tomore efficient and satisfying

schedules within organizations [40].

Many significant research efforts were proposed in the literature among which [1, 4, 49,

96, 92, 63, 42]. Nevertheless, most of these worksi) deal only with non-dynamic problems,

ii) allow the relaxation of any user’s preferences,iii) do not integrate the enforcement of

local consistency in their solving process,iv) judge all the meetings of the whole system

with the same level of importance,v) do not consider the high complexity of message passing

operations in real distributed systems.

intentionally defined constraints.
2To simplify the problem, we assume that all the attendants are in the same city.

5

1.2 Objectives

We have learned from all the previous works and focused our research on the bellow

points. Figure1.2 illustrates a summary the main objectives of this thesis.

• Propose new distributed hybrid method to enforce local consistency on any general

CN. This new method involves two agent-based approaches. Those two approaches,

called DRAC and GDRAC, are value-oriented propagation and concern distributed

enforcement of AC for any binary and any general CN, respectively.

• Suggest a new solution to tackle higher level of consistencywith reasonable complex-

ities. The main idea is to propose a refinement of the DRAC approach to enforce more

than AC with low cost, restricted path consistency (RPC), onany hard binary CN.

• Take the DRAC approach to the real world. We main of our third objective is to tackle

one among the important combinatorial real-world application, the MS problem, while

integrating filtering in the solving process. We focus essentially, in this work, on MS

problem with predictable structure, i.e., All meetings areknown in advance.

• Extend the protocol for solving any static MS problems to deal with unpredictable

structure, i.e., case where the complete knowledge about whole problem is not avail-

able beforehand. Therefore, the underlying protocol must cope with all difficulties that

may encounter with the dynamic environment requirements.

• Propose a new generic constraint-based asynchronous solver to deal directly with any

constraint network.

New hybrid distributed method to enforce AC on any CN

For this point, the new hybrid method we suggest has the following characteristics:

• None of the approaches involved relies on any existing centralized algorithm.

• The underlying model, which is common for all the involved approaches, is based on a

multi-agent system associating a reactive agent per constraint, each having a local goal.

The full global goal of each approach is obtained as a result of the interactions between

the reactive agents by exchanging asynchronous point-to-point messages containing

inconsistent values.

• A dual constraint-graph is used to represent any CSP. This proposed model is different

from the DisCSP [106] model, which is based on the primal representation of a CSP.

The main objective is to be able to directly address any general CN without having any

claim to any existing transformation non-binary↔ binary techniques. It is known that

this transformation procedure may increase both the temporal and spatial complexity.

6

• The method can handle any kind of constraints, especially for the most important form

defined by predicates for which no particular semantics is known.

• The global goal of each proposed approach in the system is accomplished with the

minimum number of constraint checks and with the lowest CPU time required.

New agent-based approach to enforce more than AC on binary CN

For this second point, the new approach, called DRAC++, does not rely also on any central-

ized techniques and it addresses especially hard CN where achieving only AC is ineffective.

New approach to solve any static MS problems

A new static multi-agent MS approach is proposed in this thesis. This approach closely

reflects real applications while improving the process of scheduling meetings. The proposed

protocol is based on distributed reinforcement for arc consistency (DRAC) approach. The

basic idea is to benefit from the main goal of DRAC in order to reduce the complexity of

a meeting-scheduling problem solving process. In this work, we propose to formalize the

MS problem as a valued constraint satisfaction problem (VCSP) [36] in which each user

maintains two kinds of constraints:hard and soft constraints related to them besides the

other strong constraints defining the problem. The hard constraints (which can never be

violated) represent the non-availability of the user, while the soft constraints (which can be

violated) represent the preference calendar of a user. Furthermore, each new scheduled event

is considered as a hard constraint.

More sophisticated and flexible solution to solve any dynamic MS problems

Another more sophisticated MS solver is proposed in this thesis. We have also adopted

the agent-based model to this approach, because it is the most congruent system for a rich

class of decision-making real-world problems. The MSRAC (Meeting Scheduling with Re-

inforcement of Arc Consistency), multi-agent coordination approach is a novel, scales better,

dynamic and entirely distributed solution to the meeting scheduling problem that accounts

for user preferences, handles several events with various levels of importance and especially

minimizes the number of exchanged messages. The basic characteristics of MSRAC are the

following.

• First, it is an incremental approach capable of processing problem alterations without

conducting any exhaustive search.

• Second, it is based on the DRAC approach to enhance the efficiency of the solving

process.

7

• Third, in the MSRAC approach the MS problem is contemplated as a set of distributed

reactive self-interested agents in communication, each with the ability to make local

decisions on behalf of the user. The agents’ decisions are not based on any global

view3 but only on currently available local knowledge. The final result is obtained as a

consequence of their interactions. This purpose is achieved with the minimum number

of exchanged messages by virtue of the real difficulty of message passing operations

in a distributed systems.

• Finally, the use of preferences naturally implies the adoption of an optimization cri-

terion, both for each agent and also for the system as a whole.Thus, we adopted the

dynamic valued constraint satisfaction problem formalism(DVCSP) to model any MS

problems. This formalism provides a useful framework for investigating how agents

can coordinate their decision-making in such dynamic environment leading to more

flexible and widely applicable approach to real-life.

New generic asynchronous approach to solve any distributedconstraint problem

As for our main contribution in the fith point, is to propose a novel complete and generic

multi-agent algorithm for any CN. The new approach is able tosolve any CSP while per-

forming distributed enforcement of AC, without adding any new links and without recording

any nogoods. The main reason for using a lazy version of DRAC is to save some fruitless

backtracking and consequently to enhance the efficiency of the proposed approach.

In addition, we propose a generic distributed method to compute a static constraint order-

ing in which we save as many links as possible in order to decrease the set of exchanged

messages. Furthermore, information about variables may belong to different agents while

information about constraints belongs only to the owner agent and is kept confidential.

1.3 Thesis guideline

This thesis is divided into ten chapters.

Chapter 2 introduces some useful definitions and proposed techniquesfor the constraint

satisfaction problem formalism and its extensions.

Chapter 3 presents some useful definitions of local consistency property and discusses

some of the existing centralized and distributed enforcement techniques.

3The agents exchange as little information as possible to keep most of their personal information private.

8

Chapter 4 defines one of the real world application, meeting scheduling, with a review of

some of the related works.

Chapter 5 introduces a novel hybrid agent-based method including thetwo following

approaches, to enforce AC on binary CN, DRAC approach, and for n-ary CN, G-DRAC ap-

proach.

Chapter 6 presents an agent-based approach to enforce more than arc consistency on

binary and hard constraint network, DRAC++ for distributed restricted path consistency en-

forcement.

Chapter 7 illustrates a novel approach to solve any static meeting scheduling problem,

MSS (forMS Solver).

Chapter 8 introduces a more sophisticated solver for any dynamic MS problem, to cope

with encountered difficulties in the dynamic environment, MSRAC (Meeting Scheduling

with Reinforcement of Arc-Consistency).

Chapter 9 discusses a generic, new distributed, complete and constraint-based approach

to solve any distributed problems, DisAS (forDistributed Asynchronous Search).

Finally, Chapter 10concludes the thesis.

9

1.4 Notations and conventions

The abbreviations used in this thesis are summarized in the following table:
CSP Constraint satisfaction problem

SAT Satisfiability problem

CN Constraint network

DisCSP Distributed constraint satisfaction problem

VCSP Valued constraint satisfaction problem

DCSP Dynamic Constraint Satisfaction problem

DynVCSP Dynamic valued constraint satisfaction problem formalism

BT Backtracking

AWC Search Asynchronous weak-commitment search

AAS Asynchronous aggregation search

LC Local consistency

NC Node consistency

AC Arc conssitency

PC Path consistency

RPC Restricted path consistency

CT Clarck Tax mechanism

MS Meeting scheduling

MAS Multi-agent system

DRAC Distributed reinforcement of arc consistency

G-DRAC General distributed reinforcement of arc consistency

MSRAC Meeting scheduling with reinforcement of arc consistency

MSS Meeting scheduling solver

DisAS Distributed asynchronous solver

GU Global utility

LU Local utility

10

The most used notations are as follows:
Ai Agent numberi

Xi Variable numberi

D(Xi) Domain of the variable numberi

Cij... Non-binary constraint

CAi

ij... Non-binary constraint maintained by the agenti

Cij Binary constraint involving only two variables Xi and Xj

Rij... Relation associated to the constraint Cij...

Const(Xi) Set of constraints involving of variable Xi
Var(Cij...) Set of variables involved in the constraint Cij...

t Vector of viable variables/values

vil thelth Value in the domain of the variable Xi
index(Cij..., Xk) Position of the variable Xk in the constraint Cij...
Γ Set of all Constraint agents in the system

ΓAi Set of acquaintance of the agent Ai

TupleSupportAi Set of tuples allowed by the constraint associated to Ai

mi
h hth meeting of the agent Ai

dtp pth date in the domain

Cs Soft constraint

Ch Hard constraint

wAi
p Degree of preference of the agent Ai to schedule meeting at thepth date

WXk
Importance of thekth meeting

11

DRAC (1)
New distributed approach to

enforce arc consistency on
any binary CN.

Published in [1, 4, 5, 6]
DRAC++ (3)

New distributed approach to
enforce RPC on binary CN.

Published in [1, 12, 13, 14, 15]

G-DRAC (2)
New distributed approach to

enforce arc consistency on any
n-ary CN.

Published in [1, 10]

Real-world combinatorial
application

Meeting Scheduling (MS)
problem

MSS, Static MS solver (4)
New distributed static

approach to solve any static
MS problem.

Published in [2, 7, 9]

Integrating DRAC in the
solving process of any

Meeting Scheduling problem

MSRAC (5)
New distributed dynamic

approach to solve any
dynamic MS problem

Published in [3, 8, 11]

DisAS, distributed
asynchronous solver (6)
New constraint-based
approach to solve any
distributed problem

Figure 1.2. A summary of the main objectives of this thesis an d the underlying publica-

tions.

12

Chapter 2

Constraint Satisfaction Problem

Formalism

Constraint satisfaction problem (CSP) formalism [67] is widely used to formulate and to

solve many combinatorial problems, such as planning, resource allocation, time tabling and

scheduling. The great success of this formalism is due essentially to its natural expressive-

ness of real-world applications. Several ways of modeling agiven problem as a CSP, are

possible. Nevertheless, the choice of the model can have large impact on the required time

to find solutions [76]. However, as mentioned by Bacchus et al. [16], besides the vari-

ous possible modeling techniques that have been developed such that adding redundant and

symmetry-breaking constraints [50, 94], adding hidden variables [28]. One important mod-

eling decision is the arity of each used constraints, i.e., the number of variables involved

in each constraint. A constraint can be expressed over a pairof variables, case of a binary

constraint, or over a set of variables (more than two), case of a non-binary constraints.

In the sequel of this chapter, we will give first some basic definitions and notations for

the CSP formalism and some of its extensions. Then we will describe some of the existing

solvers.

2.1 Definitions and preliminaries

Definition 1 Informally, a constraint satisfaction problem [67] (CSP) is a tuple (X, D, C)

where:

• X={X1, . . ., Xn}, is a finite set ofn variables,

• D={D(X1), . . ., D(Xn)}, is a set ofn finite domains. D(Xi)={vi1 , . . . , vid} with

|D(Xi)|=d. A total order<d can be defined on the values of each domain, without

loss of generality. For each pair of values{vik , vil} ⊆ D(Xi), vik ≺lo vil if and only if

vik < vil .

13

• C={Cij..., . . .} is a set ofe constraints between these variables. Each constraint Cij...

implies an ordered set of variables Var(Cij...)={Xi, Xj , . . . }. |Var(Cij...)|=r is the arity

of the constraint. Let’s denote by Const(Xi) the set of all constraints Cij... involving

Xi while index(Cij..., Xk) is the position of variable Xk in Cij.... |Const(Xi)|=m, m is

called the degree of Xi. The constraints restrict the values of the r variables thatcan

be simultaneously taken.

Each constraint Cij... can be represented implicitly by an arithmetic relation or by

a predicate, where a computation is needed to check if the underlying constraint is

satisfied or not. Or explicitly by the set of allowed (or forbidden) tuples (denoted by

Rij...), where the answer to a constraint check is already recordedin a database. The

majority of works on constraint reasoning has focused on ways to reduce the number

of constraint checks required in order to decrease the temporal complexity of the solver.

An instantiation of the variables in Var(Cij...) is called a tuple on Var(Cij...). Assume

that there are two tuples t1 and t2 on Var(Cij...). A lexicographical order≺lo can be

also set between the tuples on variables of a constraint Cij... in which t1 ≺lo t2 if and

only if it exists k such that t1[1..k-1]=t2[1..k-1] and t1[k] <dt2[k] (where t1[1.. k-1] is

the prefix of size k of t1 and t1[k] is the kth value of t1).

Definition 2 A full or partial assignment IY ={v1j
, v2l

, . . . , vmp
} is a vector of values such

that every vil∈ D(Xi).

Example 1 Let’s consider one of the most important problem of the general system for mo-

bile communication GSM, which is the frequency assignment problem (called also channel

assignment problem) [97]. Given a set of geographically divided, typically hexagonal re-

gions called cells (see Figure2.1). Frequencies (channels) must be assigned to each cell

according to the number of call requests. This problem has three types of electro-magnetic

separation constraints:

1. Co-channel constraint: the same frequency cannot be assigned to a pairs of cells that

are geographically close to each other.

2. Adjacent channel constraint: similar frequencies cannot be simultaneously assigned to

adjacent cells.

3. Co-site constraint: any pair of frequencies assigned to thesame cell must have a certain

separation.

To solve this problem is to find a frequency assignment that satisfies the above mentioned

constraints and while minimizing the sum over all co-channel and adjacent channel interfer-

ences.

14

A possible formulation of this problem is as given by Sivarajan et al. [97] where frequen-

cies are represented by positive integers 1,2,3,. . .

Given:

• N , the number of cells,

• di, i ∈ {1, ..,N}, the number of requested calls (demands) in celli,

• Cij , 1≤ i, j ≤ N , the frequency separation required between a cell in celli and a call

in cell j.

We need to find:fik the frequency assigned to thekth call in cell i with 1≤ i ≤ N and 1≤

k ≤ di, such that|fik − fjl| ≥ Cij for all i, j, k, l excepti=j andk=l and whilemin max fik

for all i, k.

1 3

2 4

5

…

Figure 2.1. Example of the hexagonal regions used in the freq uency assignment problem.

Definition 3 Let (X, D, C) be a CSP, A solution of the CSP is defined by the ordered set of

variables X and an assignmentIX of a value to each variable in X satisfying all the con-

straints in C.

IX={(Xi, vik)| ∀ Xi ∈ X and∀ Cij... ∈ C / Xi ∈ Var(Cij...); (Xi, vik) satisfies all Const(Xi).}

Solving a CSP consists in finding one or all full assignments.This type of problems is

known as NP-Complete for which the solving task is hard, where a blind search often leads

to a combinatorial explosion. The NP-complete problems arethe most difficult problems in

NP.

Definition 4 NP is the class of problems for which a claimed solution can betested within

a polynomial time on the length of the problem description.

Definition 5 A NP-complete problems [43] is a subclass of NP problems to which a SAT

problem can be mapped within a polynomial time bounded by thelength of the problem

description.

15

Definition 6 A binary CSP is a problem where all the constraints are binaryconstraints;

otherwise is it called n-ary CSP.

Definition 7 A constraint is a binary constraint if and only if it involvesat most two vari-

ables; otherwise the constraint is called non-binary (n-ary constraint).

Following Montanari [67], a binary relation correspondingto a constraint Cij between

two variables Xi and Xl can be represented by a (0, 1)-matrix with|D(Xi)| rows and|D(Xl)|

columns by imposing an order on the domains of the variables.A zeroentry at row a column

b means that the pair consisting of theath element of D(Xi) and thebth element of D(Xl) is

not permitted; aoneentry means that the pair is permitted. However for the case of constraint

in intension, to determine all the allowed couples of valuesrequires high time and space cost.

Definition 8 A binary relation Rij corresponding to a constraint Cij represented as a (0,

1)-matrix is row convex if and only if in each row all of the ones are consecutive; that is, no

two ones within a single row are separated by a zero in that same row.

Consider the example given in Figure 2.2, the binary relation C12 between X1 and X2 is

row convex relation.

Xi Xj

D(Xi)={1, 2, 3, 4} D(Xj)={1, 2, 3, 4}

C<

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

R< =

Figure 2.2. Example of a row-convex binary relation.

We give now the definition of a special constraint,all-differentconstraint, which will be

used throughout this thesis.

Definition 9 A constraint Cij... on variables{Xi1, Xi2 , . . . , Xir} with r is the arity of the

constraint, is called anall-different constraint [90] if and only if it allows the tuple (a1, a2,

. . . , ar) ∈ D(Xi1)× D(Xi2)× . . . × D(Xir) such thatak ∈ D(Xik) and for all l 6= m, al 6= am.

Three graphic representations can be used to represent a CSP: primal graph, dual graph

[27] and hypergraph [100].

16

X1

X2

…

Xi

Xj

C12

C2j

C1j

C2i

X1 X2 Xi

Xj

Xj

(a) (b)

Figure 2.3. Example of a primal graph for a binary constraint problem (a) and a non-

binary constraint problem (b). The nodes represent the vari ables while the (hyper)-links

illustrate the common constraints.

• The primal graph: a CSP is represented as a graph where the nodes are the variables

of the underlying problem and the links are the constraints.Each pair of variables Xi
and Xj are linked together if and only if they share at least one constraints (see Figure

2.3(a)).

• The dual graph: this representation comes from the relational database community and

was introduced to the CSP community by Dechter an Pearl [27].In this representa-

tion the constraints labeled the nodes of the graph, and the variables labeled the links

relating the nodes (see Figure 2.4).

• The hypergraph: This graph is used to represent non-binary constraints. The variables

labeled the nodes of the graph and the hyper-links representthe n-ary constraints (see

Figure 2.3(b)).

However with the advent of both distributed computing and networking technologies,

many naturally distributed problems arise leading to the birth of a new subfield of the AI,

the distributed AI (DAI). This new subfield requires a new formalism to develop a general

framework for DAI. The distributed constraint satisfaction problem (DisCSP) is an exten-

sion of the CSP formalism [106] to represent a variety of distributed problems where con-

straints and/or variables are controlled by a set of independent but communicating agents,

such as distributed resource allocation problem [22], distributed scheduling problem [95],

multi-agent truth maintenance tasks [55].

Definition 10 A distributed constraint satisfaction problem (DisCSP) [106] is a CSP whose

variables and constraints are distributed among multiple agents.

• There existn agents 1, 2,. . . , n.

17

C12

C1j

C2i

C2ij

X1

{X2, Xi}

X2

Xj

Figure 2.4. Example of a dual graph for any constraint proble m. The nodes represent the

n-ary constraints while the links define the shared variable s.

• Each agent has several variables.

• Each agenti knows all constraint predicates relevant to its variables (constraint pred-

icates which take i’s variables as arguments).

Another extension of the CSP formalism was also proposed in the literature, mainly to

represent some real-life scenarios where it is impossible to satisfy all the constraints. In, this

case known as over-constrained problems, we may allow the relaxation of some constraints

to solve it. The proposed valued constraint satisfaction problem (VCSP) formalism consists

of giving a weight or a valuation to each constraint to reflectthe importance of satisfying it.

Definition 11 A valued constraint satisfaction problem (VCSP) [88] is a quintuple (X, D, C,

S,ϕ) where (X, D, C) is the classical CSP formalism, S= (E,⊗,≻) is a valuation structure,

andϕ : C→ E. E is the set of possible valuations;≻ is a total order on E;⊥ ∈E corresponds

to the maximal satisfaction and⊤ ∈ E corresponds to the maximal dissatisfaction;⊗ is an

aggregation operator used to aggregate valuation. Assume that A is an assignment of all the

variables of the problem. The valuation of A is defined byϕ(A)= ⊗c∈Cϕ(A, c) where

ϕ(A, c) =

{

⊥, if c is satisfied by A;

ϕ, otherwise.
(2.1)

In the aforementioned formalisms, CSP and VCSP, the knowledge about the problem is

assumed to be totally known and fixed. However, this is not always possible especially when

dealing with real situation where the underlying problem may evolve in time due toi) the

environment, evolution of the set of tasks to be perform and/or of their execution conditions

in scheduling applications;ii) the user, evolution of the user requirements in the framework

of an interactive design; andiii) the other agents is the framework of a distributed system.

18

The notion of dynamic CSP (DCSP) [26] has been introduced to represent such situations.

Definition 12 A dynamicconstraint satisfaction problemP (DCSP) [26] is a sequence of

static CSPP0, ...,Pa, Pa+1, ... each resulting from a restriction (a constraint or a variable is

added) or relaxation (a constraint or a variable is retracted) in the preceding one.

Several techniques to solve constraint satisfaction problems were proposed in the litera-

ture. These techniques can be divided into several categories: centralized and distributed,

complete and incomplete, synchronous and asynchronous, etc. In the following we will

present some of them.

Definition 13 An algorithm is complete if and only if it guarantees to find a solution, if one

exists, or to prove that the problem is insoluble, otherwise.

Definition 14 Let (X, D, C) be a CSP, A partial solution to the CSP is defined bya ordered

subset of variables Y⊆ X and an assignmentIY of a value to each variable in Y.

2.2 Constraint reasoning techniques

Two types of real-world applications can raise according totheir physical location. The

first concerns the traditional centralized problems, whereall the data is gathered on the same

site. The second kind deals with the naturally distributed problems among several sites and

for which it is not convenient to gather the whole problem knowledge into a single site. The

main reason and not the only one is the cost of collecting all information into the same site

could be taxing. Furthermore, gathering all information into a single site could be undesir-

able essentially for security or privacy reasons. Our research were motivated by the second

type besides its importance and frequency in our real life. However for centralized problems,

the large variety of existing centralized techniques are worthwhile to solve them. Whilst, for

the second type of problems we need to apply a distributed techniques. Hence, during last

few years AI community has shown an increasing interest in solving such problems us-

ing multi-agent system (MAS) paradigm. Moreover, note thateven for some centralized

problems applying distributed techniques is better and this for security reason [51]. These

problems are known as artificially distributed problems.

In the sequel of this chapter, we will review the two existingtypes of constraint program-

ming techniques, centralized techniques and parallel/distributed techniques.

2.2.1 Centralized search

Two main groups of centralized CSP solvers exist in the literature: The search algorithms

and the consistency algorithms. The former can be divided into two groups Backtracking al-

gorithms and iterative improvement algorithms. However for the consistency algorithm, they

19

can be used as preprocessing techniques or during the searchprocess to reduce futile back-

tracking and consequently to enhance the efficiency of the search process. These techniques

will be given in detail in Chapter 3.

Backtracking algorithms

Chronological Backtracking(BT) algorithm [45] is the basic for most systematic algorithms

for solving CSPs. Such algorithm is known to be complete, it proceeds first by constructing a

partial solution including a value assignment of a subset ofvariablesY ⊆ X that satisfies all

the constraints withinY . This partial solution will be extended progressively to a complete

solution (if possible) by adding new variables (the next in the ordering) one by one until

exploring all the variables of the underlying problem. A dead-end is detected when for

one variableXi, no possible value, satisfying all the constraints betweenXi and the partial

solution, is found. In this case, the value of the most recently added variable Xj to the partial

solution is changed. This operation is calledbacktracking(BT). This algorithm terminates

when all the variables have been assigned a value, in this case it returns this solution, or

when all the variable-values combinations have been checked and failed, case of insoluble

problem.

This algorithm is depth-first tree search algorithm where its efficiency is subject to en-

hancement. Several heuristics have been proposed in the literature to ameliorate the search

process of the BT algorithm, such as the order of selecting variables, the order of selecting

values, etc. The value-order heuristic known as min-conflict heuristic [73] is the most suc-

cessful one among the existing ones. The basic of min-conflict BT consists in choosing the

value that satisfies as many constraints with the tentative variables in the partial solution.

Several complete centralized enhanced search algorithms based on backtracking have been

proposed in the literature for binary CSPs.

Backjumping(BJ) [46] is more intelligent than BT in the way to behave whena dead-end

occurs. This algorithm avoids the computational overhead of BT by using syntactic meth-

ods to estimate the point to which BT is necessary. Instead ofbacktracking to the previous

variable, it backjumps to the deepest past variable Xk (Xk ≺ Xi) in conflict with the current

variableXi. In this way BJ avoids redundant reassignment of values to any variables Xl
with Xk ≺ Xl ≺ Xi since these variables are not involved in the detected conflict. However,

BJ needs to record the deepest conflicting variable Xk for eachXi in order to avoid the re-

exploration of the dead-end branch of the search tree.

Conflict-direct backjumping(CBJ) [80] is a refinement of BJ while doing more sophisti-

cated backjumping. This algorithm proceeds by recording the set of conflicting past variables

Xk for each variableXi. Therefore, it requires more complicated data structure that will be

used in case of dead-end to perform a backjump not to the source of conflict but to the con-

20

flicting variable closest to the root of the search tree, i.e., the deepest variable in its conflict

set. Hence, in case of conflict CBJ would jump to further position in the search tree com-

pared to BJ.

Backmarking[47] (BM) is another refinement of backtracking algorithm based on mark-

ing scheme process. This process saves many redundant consistency checks in order to

avoid repeating them. When the instantiation of two variables have not changed since last

time they were checked, they will be marked and this information will be recorded in special

data structures to avoid checking them again. Other enhancements of BM algorithm were

proposed in the literature, amongst: backmarking with conflict-directed backjumping [80]

(BM-CBJ), BM-CBJ2 [59].

Forward checking[56] (FC) is a look-ahead algorithm. It checks the current assignment

against all future variables/values that are connected to the current variableXi. Each incon-

sistent value belonging to a future variableXj is temporarily removed from the domain of

Xj . If a domain of a future variableXj becomes empty, the instantiation of the current vari-

able is undone, and another value is tried. If no possible other value is found for the current

variable then a backtrack is performed. FC guarantees for each current partial solution the

consistency of the current value with the already assigned past variables (by construction

they are consistent and no need to check them again). Severalextensions of FC were pro-

posed in the literature, amongst: FC-CBJ [80], FC-BM [81], Minimal FC [25].

Maintaining arc consistency (MAC)[86] is also a look-ahead algorithm. This algorithm

performs more than lazy arc consistency. While checking theconsistency of the current

assignment with the connected future variables, this algorithm proceeds by enforcing arc

consistency on the whole subproblem formed by all the futurevariables. This extra-work

performed by MAC may delete more values from the domains of future variables and con-

sequently may lead to more pruning in the search space compared to FC.

It is noteworthy that most of the backtracking algorithms deal only with binary CN. Some

researchers claimed that their algorithms are also worthwhile for general CN, others provided

an extension of their work to deal with non-binary cases amongst, the work done by Gent and

Underwood [52]. In this work, the authors presented a general definition and implementation

of CBJ for constraints of arbitrary arity. FC has been also generalized in a straightforward

way to handle n-ary constraints [57]. Others and more stronger generalizations of FC to

n-ary problems were introduced by Bessière et al. [12].

21

Iterative improvement algorithms

As described by Yokoo and Hirayama [107], these algorithms are based on hill-climbing

search. An initial value is given randomly to each variable of the problem. The obtained

configuration is then progressively revised by using hill-climbing search until finding a con-

sistent solution, if it exists. The main limitation of thesealgorithms is to fall into local-

minima rather than global one, case where some constraints are violated and the number of

these violated constraints cannot be decreased by changingany single variable/value. Several

techniques were proposed to escape from local-minima, for example in the breakout algo-

rithm [74] a weight is defined for each constraint (initial weight is 1). The summation of the

weights of violated constraints is used as an evaluation value. In case of local-minima, this

algorithm increases the weights of violated constraints isthe current configuration by 1. The

evaluation value of this configuration will be larger than those of the neighboring configura-

tions. Hence, the iterative improvement algorithms can be efficient, but their completeness

cannot be guaranteed.

2.2.2 Parallel and distributed search

At this point we have to distinguish first between two main paradigms, parallel problem

solving and distributed problem solving. According to Wooldridge [105], parallel problem

solving merely involves the exploitation of parallelism insolving problems. The compu-

tational components are simply processors; a single node will be responsible for splitting

up the overall problem into sub-components, allocating each of them to a processor, and

subsequently assembling the solution. Nodes are assumed tobe homogenous. In contrast

a distributed system is defined by a set of entities sharing a common goal and thus there is

no potential for conflict between them. The problem cannot besolved without cooperation.

Cooperation is necessary between the entities because different nodes might have different

parts of the problem.

The two main objectives behind distributing the solving process are,i) to speed up the

running time of a central algorithm, orii) to solve the problem that is already distributed

among these entities and there is no way to gather all the information on the same node, i.e.,

for time/cost or for security reasons.

However, the main assumption made by most work on distributed problem solving con-

cerning implicitly sharing the same goal for all the entities in the system, is worthwhile

for entities belonging to the same organization or individual. In contrast, in multi-agent

systems [105] paradigm (MAS), it is assumed instead that entities (called agents) are self-

interested entities and they are concerned with their own welfare (of course on behalf of

some users/owner).

In addition, some real applications require negotiations between the entities of the prob-

lem, such problems: meeting scheduling problems, distributed resource allocation problems,

22

etc. Hence, MAS concerns issues such as how agents can reach agreement through ne-

gotiation on matters of common interest, and how agents can dynamically coordinate and

cooperate their local activities with other ones whose goals and motives are unknown. Sev-

eral applications in real-world are concerned with finding aconsistent combination of agent

actions (e.g., distributed resource allocation problems [22], distributed scheduling problems

[95], multi-agent truth maintenance tasks [55]). These problems can be naturally formalized

as a DisCSP [111] and consequently can be solved using distributed algorithms. However,

as mentioned by Yokoo [107] existing parallel/distributedalgorithms for CSP are not worth-

while for DisCSP due to the fact that they usually require global knowledge/control among

agents.

Another point should come up while talking about distributed system modeling. As in-

dicated in [85], it is useful to distinguish between synchronous and asynchronous system.

With asynchronous systems we have no assumptions about process execution speeds and/or

message delivery delays; with synchronous systems we do make assumptions about these

parameters. Hence, in asynchronous protocols, agents can proceed independently without

explicit synchronization. Nevertheless, asynchronous gives agents more freedom in the way

they can contribute to the search, and especially allowing them to enforce individual policies

such as privacy. In this thesis we are interested by the proposed algorithms for DisCSP.

Mainly two types of models are used in most of the algorithms presented in the literature

for solving constraint satisfaction problems in a distributed manner, the variable-based model

and the constraint-based model.

Definition 15 A variable-based model is a model where each variable belongs to one agent

and constraints are shared between agents. A constraint-based model is a model where each

constraint belongs to one agent and involved variables are shared between agents.

In the following we briefly review some of the most important existing distributed tech-

niques for solving distributed constraint problems.

Asynchronous backtracking (ABT)

This algorithm proposed by Yokoo et al. [106] is a distributed version of the backtracking

algorithm to solve DisCSP. This algorithm assumes a variable-based model. Let’s recall

that for this model, constraints and variables of the problem are distributed among a set

of automated agents. Each agent is responsible for maintaining one variable1. it has a link

toward any agent that owns a constraint involving that variable. Agents are arranged in a fixed

priority order≻, i.e.,Ai ≻ Aj if and only if i < j. A constraint is enforced by the lowest

priority agent among those that are responsible for the variables in the constraints. ABT is

executed autonomously and asynchronously by each agent in the network. It computes a

global consistent solution (or detects that no solution exists) in finite time.

1Although ABT can be applied to the situation where one agent has multiple local variables.

23

Each agent instantiates randomly its variable and communicates the value to the relevant

agents (connected by outgoing links) viaok? message. No agent has to wait other agents’

decisions. Each agent that received anok? message with varaiable/value assignment, evalu-

ates its constraints involving received variables. If the evaluation process succeeds, i.e., all

constraints involving this variable are satisfied with the new assignment, do nothing. Oth-

erwise, the concerned agent will try to assign a new value forits variable if possible. If no

other viable value is found, the agent generates anogoodmessage and send it to the lowest

priority agent generating a dead-end assignment, i.e., an assignment that cannot be extended

to a complete solution. The agent receiving this nogood message will incorporate this infor-

mation in its local knowledge, change its current assignment if possible, otherwise generate

anothernogoodmessage accordingly. The local knowledge of an agentAi is formed by its

own agent view and a set of nogoods. The agent view ofAi is a set of values that it believes

to be assigned to agents connected to it by incoming links while the set of nogoods is kept

as a justificative of inconsistent value. The process terminates when achieving quiescence,

meaning that a solution has been found, or when the empty nogood is generated, meaning

that the problem is unsolvable. The completeness of this algorithm is given by Yokoo et al.

[109].

Asynchronous weak-commitment search (AWC Search)

In the previous algorithm, ABT algorithm, lower priority agents need to make an exhaustive

search to revise bad decision(s) made by higher priority agent(s). Therefore, Yokoo [110]

proposed an extension of ABT algorithm based on both, the min-conflict heuristic to reduce

the risk of making bad decisions, and the dynamic agent ordering in order to be able to revise

bad decisions without conducting and exhaustive search. Hence, for the asynchronous weak-

commitment search algorithm (AWC), the priority value is determined for each variable and

communicated to other agents viaok? message. The priority order is determined by the

communicated priority values, i.e., the agent/variable with the larger priority value has the

higher priority. In case of conflict, the current value of theagent is inconsistent with the

received assignment, the agent choose another value using the min-conflict heuristic, i.e.,

choose the value that minimizes the number of violated constraints.

Each agent that cannot instantiate its variable, i.e., no consistent value is found, sends a

nogoodmessage to the nearest higher priority agent and increases its priority value. However

if the agent cannot generate a new nogood, it will not change its priority value but will wait

for the next message. This process is used in order to guarantee the completeness of the

algorithm. The author provides in [110] a proof of the completeness of the AWC algorithm.

However, as mentioned by Maestre and Bessière [70], this algorithm is incomplete unless

agents can store a potentially exponential number of nogoods.

24

Distributed backtracking (DIBT)

The basic of this algorithm is the backtracking algorithm (BT) [45]. The authors proposed

[54] a new ordering schema that fits the constraint graph topology to take advantage of the

features of the problem. This order is dissimilar to the lexicographic ordering of agents used

in ABT. They proposed a generic method for distributed computation of any static variable

ordering according to a chosen heuristic, e.g.,max-degreeheuristic that chooses higher order

of the variable involved in maximum number of constraint.

The authors perform an exhaustive domain exploration to ensure the completeness of

DIBT. In their algorithm, the author avoided learning schemes, such as nogood recording.

the constraint checks are parallelized and whole system operates in a conservative strategy

for saving benefits of previous search in independent parts of the network. The authors used

an ordering that fits the constraint graph topology, which allows a free graph-based back-

jumping behavior during failure phases. However, DIBT is not complete.

Asynchronous aggregation search (AAS)

Another extension of ABT algorithm was proposed by Silaghi et al. [98] where constraints

can be private knowledge of some agents and several agents are allowed to simultaneously

propose instantiations for the same shared variable. The authors propose to integrate the

aggregation process of tuples to enhance the efficiency of their algorithm, the asynchronous

aggregation search (AAS). The authors propose three different variant of this technique based

respectively on full, partial and no nogoods recording.

This work is considered as an ABT for dual graph. The basic idea of AAS technique con-

sists in propagating aggregated tuples of Cartesian product of values rather than individual

values themselves. The agents are assigned static prioritybasically based on the lexico-

graphic order. A link is set between each pair of agents if they share at least one variable.

AAS works in exactly the same manner as ABT, except that messages refer to Cartesian prod-

ucts. If an agent find no combination in the Cartesian product{Xi={a1, . . . , al}}×{Xj={b1,

. . . , bk}} is compatible with its constraints, it generates a nogood for this combination and

sends it to a higher order agent. The result of the search is nolonger a list of individual

assignments but a set of domains whose Cartesian product contains only solutions. The au-

thors claim that several techniques can be used for aggregation, and that these techniques are

sound and terminate in a finite time. However, aggregation process might be expensive in

terms of constraint checks.

Asynchronous backtracking without links ABTnot

This algorithm is a new member in the ABT family proposed in [13]. It is an ABT-based

algorithm that does not require the addition of communication links between initially uncon-

nected agents. This algorithm proceeds like ABT without requiring additing of new links.

25

The authors propose first the ABTkernel algorithm, which requires like ABT, that constraints

should be directed from the constraint-sending agent to constraint-evaluating agent forming

a directed acyclic graph. In this algorithm, every new nogood is obtained as a conjunction of

stored nogoods sharing the faulty variable. However, this algorithm is sound but may fail to

terminate due to obsolete nogoods.

Hence, in their work, the author proposed several alternatives to rely to this limitation.

Adding new links can be performed under several conditions,adding new permanent links

as preprocessing (ABTall algorithm), adding new permanent links during search (ABT al-

gorithm), adding temporary links (ABTtemp), i.e., these links will be removed after a fixed

number of messages, without adding any links (ABTnot), i.e., in case of failure the agent

backtracks and forgets all the nogoods that hypotheticallymay become obsolete. Neverthe-

less, as longer as the obsolete nogoods remain in the local knowledge of an agent, it will

absolutely affect the efficiency of the constraint solver.

2.3 Summary

In this chapter we presented an overview of research relatedto the constraint satisfaction

problem formalism and its extensions. We gave some useful definitions to allow a better

understanding of this paradigm followed by a review of most of the proposed algorithms for

solving CSPs and DisCSPs for binary and non-binary constraints. Some of these techniques

will be used in our experimental comparative evaluation.

26

Chapter 3

Local Consistencies for Constraint

Networks

Constraint propagation (or filtering) techniques are in thecore of constraint programming.

They involve removing local inconsistencies from a CN. These techniques can be applied as

a preprocessing step or throughout the search of solutions in order to encounter the major dif-

ficulties of search algorithms which is thrashing caused by local inconsistency [65]. Hence,

a LC is a relaxation of consistency, which mean that for any CNN there is an equivalent

non-empty locally consistent CNN’. N’ is unique and can be found in polynomial time by

so-called enforcing or filtering algorithms.

Local inconsistencies can be defined by single values or combinations of values that cannot

belong to any solution because they violate some constraints. For example, assume that we

have a valuev1k
for a variable X1 and there is no possible valuev2l

for another variable X2
that satisfies C12 (where X1 and X2 are related by a constraint C12). Therefore the value

a cannot belong to any solution because it does not satisfy theconsistency between the

two variable X1 and X2 and that we call, arc-consistency property1. Several levels of local

consistency have been proposed in the literature. These levels will be given in details in

Section3.1.

However, LC enforcement does not involve only values pruning. The transformation of

the CN may involve (but not only) also the reduction of some constraint relations or may

lead to the integration of new constraints to the CN [16]. Note however, in all cases the set

of variables X should remain unchanged in order to ensure theequivalence property.

Notation 1 Given two constraint networks N (X, D, C) and N’ (X’, D’, C’), we note N�

N’ if and only if X=X’, C=C’, and D(X) ⊆ D’(X’).

Definition 16 Given a constraint network N, and a local consistency LC, Theclosure LC(N)

is the constraint network N’ such that N’�N and, for all local consistent constraint network

N” such that N”� N, we have N”� N’.
1Arc-consistency is one of the existing levels of consistency that will be given in more details below.

27

Definition 17 Given two networks N and N’. N is equivalent to N’ if and only ifN and N’

have the same set of solutions, sol(N)=sol(LC(N)).

The author in [38] has defined a generic notion of consistencycalled (i, j)-consistency.

Definition 18 A problem is (i, j)-consistent if any solution of a subproblem includingi

variables can be extended to a solution including any additionalj variables.

In the following we will present some properties for some levels of local consistency

followed by some of the existing enforcement techniques.

3.1 Properties of some levels of local consistency

In the following we will review some of the proposed LC properties for binary and non-

binary CN. We give first some useful definitions of the notion of support for general CN.

Definition 19 Let P (X, D, C) be a CSP and a constraint Cij... ∈ C and Xk ∈ Var(Cij...). A

value vkm
∈ D(Xk) has asupportin Cij... if and only if there is a tuple t that satisfies Cij...

and such that t[index(Cij..., Xk)]=v km

2. t is then called the support of (Xk, vkm
) in Cij....

Definition 20 For each variable Xi the neighborhood of Xi is the set of all the variables Xj
adjacent to Xi in the constraint graph, i.e. every variable Xj involved with Xi in the same

constraint.

Definition 21 A value vil of a variable Xi, denoted as (Xi, vil), is viable if and only if it has

at least one support in the domain of every variable Xj in the neighborhood of Xi.

The simplest local consistency is referred to asnode-consistency.

Definition 22 A CSP P (X, D, C) isnode-consistentif and only if, for each Xi ∈ X, for all

vil ∈ D(Xi); vil satisfies all the unary constraints involving Xi.

Example 2 Consider a variable Xi with D(Xi)={-2, -1, 1, 2, 3} and a unary constraint Cj: Xi

≥ 0. Node-consistency enforcement technique will remove thevalues{-2, -1} from D(Xi).

3.1.1 Local consistencies for binary CN

Arc-consistency property

This level is the most used level of LC due to its low time and space complexities. Enforcing

arc-consistency on a CN removes every value that has no support on at least one involved

constraint. The deletion of a value may lead to the loss of support for another variable/value.

Thus, the value deletions have to be propagated through the network since it can lead to

value inconsistency of other values detected as viable previously. This process is known as

constraint propagation.

2index(Cij..., Xk) returns the index of Xk in Cij...

28

Definition 23 A binary CSP isarc consistent[65] if and only if it has non-empty domains

and each of its constraints is arc-consistent.

Definition 24 A binary constraint Cij is arc-consistent if and only if each value vjk
of each

variable Xj ∈ X(Cij), i.e. Var(Cij)={Xi, Xj}; vjk
has a support in Xi (vise versa).

Example 3 Let’s consider for example a CSP formed by three variables{X1, X2, X3} and

three constraints relating these variables. The graph in Figure3.1 shows the allowed pairs of

values. To make the domain of X1 arc consistent, the valuec need to be pruned because it

has no support in the domain of X3. However, the valuec of X2 will loose his support in

X1 and consequently the domain of X2 will become arc-inconsistent. Due to the deletion of

(X1, c), (X2, c) will be also deleted by constraint propagation. Figure3.2shows the resulting

problem after enforcing arc-consistency on all the variables’ domains.

X1

a

b

c

X

a

b

X2

a

b

c

Figure 3.1. A graph based on possible consistent pairs of val ues of a constraint problem

formed by three variables.

However, any consistent CSP is arc-consistent but the inverse is not always true. The

example in Figure3.2 is arc-consistent but it is inconsistent problem, e.i., there is no solution

that can satisfy the three constraints.

For binary constraint, [7, 8] proposed the property of bidirectionality of constraints. It is

defined by the fact that for any binary constraint Cij such that Var(Cij)={Xi, Xj}:

• never checks (vil , vjk
) if there existsvjf

still in D(X j) such that (vil , vjf
) has already

been successfully checked for Cij ,

• never checks (vil , vjk
) if there existsvjf

still in D(X j) such that (vjf
, vil) has already

been successfully checked for Cij ,

29

X1

a

b

X

a

b

X2

a

b

Figure 3.2. The resulting problem after enforcing arc-cons istency.

This property is based on the use of constraint metaknowledge to infer or avoid constraint

checks. Let’s consider our previous example, while enforcing arc consistency on the domain

of X1 we found that (X3, a) is the support of (X1, b) and (X3, b) is the support of (X1, a),

knowing that the constraint relating X1 and X3 is symmetric, thus no need to check the arc-

consistency of the domain od X3, by bidirectionality property this domain is arc-consistent.

Path-consistency property

Path consistency (PC) property is a higher level of LC that may delete more values than

arc-consistency. Enforcing PC requires checking the path viability of each consistent pair of

variables/values (Xi, vil) and (Xj , vjk
). This means, checking the existence of viable value

for each variable along any path between Xi and Xj.

Definition 25 A CN N ispath-consistent[65] if and only if, all paths in P are path consis-

tent.

Definition 26 A path Ch ={Xi, . . . , Xh, . . . , Xj} in a CN N is path-consistent [17], if for

all consistent pair of values for (Xi=vil, Xj=vjk
), i.e., (Xi=vil, Xj=vjk

) satisfies Cij , one can

find values for the intermediate variables Xh so that all the constraints Cil, . . . , Cmh, . . . ,

Cpj in N along the path are satisfied (see Figure3.3).

However, Montanari [67] showed that a CSP is path-consistent if and only if the comple-

tion of its constraint graph is PC. This latter means that in the complete graph, every path of

length two is PC. Therefore, existing techniques for enforcing PC, proceed first by complet-

ing the sparse graph by adding universal binary constraints, then enforce PC on each path of

length two. This process requires high computational complexity. Despite this cost, PC can

30

be used to find solution for binary convex CSP in a backtrack-free manner according to the

following theorem [102].

Theorem 1 Let N be a path consistent binary constraint network. If all the binary rela-

tions are row convex or can be made row convex, then the network is minimal and globally

consistent.

Knowing that a globally consistent network have the property that a solution can be found

without backtracking.

Xi

Xm

Xk Xl

Xh

Xj
Cij

Cim

Cmk Clh

Chj

…

Figure 3.3. Path consistency.

When a path-consistent problem is also arc-consistent and node-consistent it is strongly

stronglypath consistent.

Example 4 Consider the example proposed by Stergiou in [91] formed by three variables

X1, X2, and X3 related by two all-different constraints C12 and C13. The original example is

arc-consistent (Figure3.4(a)) since each variable value has a support. However enforcing PC

will induce a new equality binary constraint, C23 as in Figure3.4(b).

It is noteworthy that PC property has received particular interest in the area of temporal

reasoning [99] where lower forms of consistency prove to be of less interest.

k-consistency property

Definition 27 A CSP isk-consistent[38] if and only if, for all (k-1)-assignment (k-1) con-

sistent can be extended to any additional kth variable.

The time and space complexities to enforcek-consistency are polynomial with the expo-

nent depending onk. Nevertheless, for k≥ 3, enforcingk-consistency requires the addition

of new constraints which may change the structure of the CN. This leads to huge space

requirements and subsequently to an important CPU time cost. The cost of the enforcing

technique increases with the level to enforce, in practice,only arc-consistency can be used,

while for path consistency it can be used only on small problems.

31

1

2

1

2

1

2

C12

C13

X1 X2

X3

1

2

1

2

1

2

C12

C13

X1 X2

X3

C23

(a) (b)

Figure 3.4. Example of an arc consistent problem for which we would enforce path con-

sistency. The original problem (a) and the resulting path co nsistent problem with a new

constraint structure (b).

Restricted path consistency property

Arc-consistency and path consistency properties were the most known levels of consistency.

Ac is more used in practice than PC due to the drawbacks of the PC enforcement. Hence,

Berlandier [5] proposed a partial level of consistency, restricted path consistency (RPC), in

order to prune more values than AC while trying to avoid the drawbacks of PC. The basic

of RPC is to perform only the most pruningful PC checks. In addition to AC, RPC checks

whether pairs of values (vil , vjk
) of variables Xi and Xj respectively, such thatvjk

is theonly

supportof vil on Cij , are path consistent. If the pair (vil, vjk
) is path-inconsistent, its deletion

would lead to the arc-inconsistency ofvil . Thusvil can be removed. These deletions make

RPC able to prune more values than AC while it is cheaper than PC and without having to

delete any pair of values, and so without changing the structure of the network.

Definition 28 A binary CN isRestricted Path Consistent(RPC) [5] if and only if:

• ∀ Xi ∈ X, D(Xi) is non empty arc consistent domain and,

• ∀ vil ∈ D(Xi), for all Xj ∈ X such that a has a unique supportvjk
∈ D(Xj),

• for all Xk ∈ X linked to both Xi and Xj , ∃ vkm
∈ D(Xk) such that (vil, vkm

) satisfies Cik
AND (vjk

, vkm
) satisfies Cjk (Cik(vil, vkm

) ∧ Cjk(vjk
, vkm

)).

Example 5 Consider a problem formed by three variables X1, X2, and X3 all with domain

{1, 2} and three constraints, X1 ≤ X2, X1 = X2, and X2 6= X3 this problem is arc consistent

(Figure 3.5(a)). The variable/value (X1, 2) has only one support in X2, which is (X2, 2), but

the pair (2, 2) of respectively X1 and X2 is path-inconsistent, i.e., this pair of values cannot be

32

extended to a consistent instantiation including the variable X3. Therefore, enforcing RPC

will remove the value 2 from the domain of X1. Same process will be used to remove 1 from

X2. The resulting RPC problem is given in the Figure 3.5(b).

1

2

1

2

1

2

C13: X1 = X3

X1 X2

X3

1

2

1

C12

C13

X1 X2

X3

C23

(a) (b)

C12: X1 X2

C23: X2 X3

Figure 3.5. Example of arc-consistent problem for which we w ould enforce restricted path

consistency. The arc-consistent original problem (a) and t he resulting RPC problem (b).

Several extensions of RPC to more pruningful local consistency have been proposed in the

literature. The authors in [32] extended the idea of RPC to deal with k-supports instead of

only onesupport. The basic idea is that checking the path consistency of more supports may

remove more values without falling in the drawbacks of PC. Their LC property, k-restricted

path consistency looks for path consistent support on a constraint for each value having at

mostk supports on this constraint.

Another extension of RPC, max-restricted path consistency, was introduced by Debruyne

and Bessière in [32]. A constraint network is max-restricted path consistency if all the val-

ues have at least one path consistent support on each constraint, whatever is the number of

supports. Enforcing Max-RPC involves deleting all thek-restricted path inconsistent values

for all k.

Other local consistency properties

Several other levels of LC have been proposed in the literature to prune more values than

AC without falling into the traps of PC. Debruyne and Bessiere introduced in their work [31]

the singleton consistency (SC) property. This property is based on the following remark:

if a valuevil of a variable Xi is consistent, the CN obtained by restricting the domain of

Xi to the singleton{vil} is consistent. Enforcing SC on a problemP consists of checking

the inconsistency of the sub-problemP |Di={vil
}. P |Di={vil

} denotes the obtained problem

by restricting the domain of Xi to {vil}. Many singleton consistencies can be considered,

33

amongst singleton arc-consistency [31]. To enforce SAC, wecan apply any AC algorithm

to check whether the sub-problemP |Di={vil
} is arc-inconsistent. As mentioned in [31] if

the local consistency can be enforced in a polynomial time, the corresponding singleton

consistency can be also has a polynomial worst case time complexity.

Freuder and Elfe have introduced another level of local consistency [39] to achieve high

order local consistencies with good space complexity. The idea of the new level, inverse con-

sistency (IC), is to remove values from variables that are not consistent with any consistent

instantiation of some set of additional variables. Many inverse consistencies have been pro-

posed. Generally,k-inverse consistency (or (1,k-1)-consistency according to Freuder [38])

removes the values that cannot be extended to a consistent instantiation involving anyk-1 ad-

ditional variables. The advantage of inverse consistencies techniques is that they only delete

values from variables without adding new constraints and then save space. Nevertheless,

k-inverse consistency can be applied only for small values ofk due to the time complexity

tat is polynomial with the exponent dependent onk.

The first level ofk-inverse consistency is the path inverse consistency3 (PIC) given in

[39]. In [32] the authors show that a CP is PIC if and only if it is arc-consistent and for each

variable/value (Xi, a), for any clique of three variables Xi, Xj and Xk, the assignment (Xi,

a) can be extended to a consistent instantiation of Xi, Xj and Xk.

Another level where also introduced in [39] the neighborhood inverse consistency (NIC).

This level checks the consistency of a variable/value (Xi, a) and its neighborhood.

amongst: singleton consistency and inverse consistency. Atheoretical comparison of the

existing levels of LC have been done in the literature, we will give an overview of the result

of this result in Section 3.2.

3.1.2 Local consistencies for n-ary CN

Generalized arc-consistency property

Definition 29 A non-binary CSP is a generalized arc-consistent (GAC) [72]if and only if

for any variable in a constraint and value that it is assigned; there exist compatible value for

all the other variables in the constraints.

Example 6 Consider a non-binary constraint involving four variables{X1, X2, X3, X4}with

domains{1, 2}, {1, 4}, {1}, and{1, 2} respectively. This constraint requires that the sum

of the four variables is less or equal to 6. Hence, the value 4 of the variable X2 has no tuple

support in this constraint, i.e., there is no viable tuple including X2=4. Enforcing GAC will

remove the value 4 from the domain of X2.

Definition 30 For non-binary constraint, [14] proposed the property ofmultidirectionality

of constraints. It is defined by the fact that for any constraint Cij..., a tuple t on Var(Cij...)

3Arc inverse consistency is equivalent to arc-consistency,(1, 1)-consistency.

34

is a support for the value t[index(Cij..., Xk)] where Xk ∈ Var(Cij...) if and only if for all Xh

∈ Var(Cij...), t is a support for t[index(Cij..., Xh)]. We say that an algorithm ”deals with”

multidirectionality if and only if

• it never checks whether a tuple is a support for a value when ithas already been

checked for another value, and

• never looks for a support for a value on a constraint Cij... when a tuple supporting this

value has already been checked.

Other local consistency property

In [102], the authors have proposed another definition of arc-consistency for non-binary

constraint network, namelyrelational arc-consistency. This definition requires global con-

sistency on the subnetwork formed by the variables of the constraint and all the other smaller

constraints implying some of these variables.

For some CN applying arc-consistency or stronger local consistency can be too expensive

especially for large domain problems and for continuous domains where values are real

numbers or floating point numbers. Bound consistency [61] (known also in the literature as

interval consistency) is an approximation of arc-consistency which requires checking only

lower and upper bounds of a variable domain. This property can be applied to any CN with

any arity.

Definition 31 A CSP (X, D, C) isbound consistentif and only if for all Xi ∈ X is bound

consistent. A Variable Xi is bound consistent if and only if D(Xi) 6= ∅ and min(D(Xi)) and

max(D(Xi)) are consistent with each Cij... such that Xi ∈ Var(Cij...).

Example 7 [82] Consider the CSP with six variables X1, . . . , X6; with the following do-

mains, X1 ∈ [3, 4], X2 ∈ [2, 4], X3 ∈ [3, 4], X4 ∈ [2, 5], X5 ∈ [3, 6], and X6 ∈ [1, 6]; and

a single constraint alldifferent(X1, . . . , X6). Enforcing bounds consistency on the constraint

reduces the domains of the variables as follows: X1 ∈ [3, 4], X2 ∈ [2], X3 ∈ [3, 4], X4 ∈

[5], X5 ∈ [6], and X6 ∈ [1].

3.2 Theoretical comparison of local consistencies

In the previous section, we discussed several levels of local consistency that have been

proposed in the literature. These levels can be compared in term of pruning efficiency of the

corresponding enforcement techniques. However, among these levels, arc consistency and

partial forms of arc consistency are the most used for their low space an time complexity.

Higher levels are more costly but recently they became more useful for large problems.

Debruyne and Besiere in [33] proposed a qualitative study ofthe relations between var-

ious local consistencies. These relations are based on the transitivity relation ”stronger”

introduced in [31].

35

Definition 32 A local consistency LC isstronger than another local consistency LC’ if in

any CN in which LC holds, LC’ holds too.

Hence, if a local consistency LC is stronger than another level LC’ then any algorithm

achieving LC deletes at least all the values removed by an algorithm achieving LC’.

Definition 33 A local consistency LC isstrictly strongerthan another local consistency LC’

if LC is stronger than LC’ and there is at least one CN in which LC’ holds and LC does not.

Figure 3.6 taken from [33], summarizes the study performed by Debruyne and Bessière

in [33] of the relations between some of the levels of LC mentioned above for binary CN

according to their pruning efficiency.

SRPC

NIC

Strong PC

SAC Max-RP k-RPC

PIC

RPC

AC
=

=

=
//

//

A B: A is strictly stronger than B.

A B: A and B are incomparable w.r.t the stronger relation. //

Figure 3.6. Relations between some levels of local consiste ncies for binary CN.

3.3 Local consistency enforcement techniques

Filtering techniques (known also as constraint propagation techniques) can be used to

detect the inconsistency in a CN, and under some assumption they can ensure a backtrack-

free search [37]. The main purpose of these techniques is notto find a solution in a CN, but

to remove some local inconsistency and hence detect some regions in the search space that

do not contain any solution. However, applying these techniques does not guarantee that all

the remaining values are parts of solutions. The main gain behind these techniques is that in

case of a substantial reductions are made the search becomeseasier. These techniques can

be divided into two main groups, centralized techniques anddistributed techniques.

In this section we review some of the proposed efforts on constraint propagations. We fo-

cus essentially on arc consistency techniques for both centralized and distributed framework

and for binary and non-binary CNs, since they play importantrole in our research. For other

techniques we will just give a general overview because theyare outside the main scope of

this thesis.

36

3.3.1 Centralized techniques

For binary constraint networks

The first level of local consistency existing in the literature is node consistency (NC). This

level is established by NC-1 algorithm [65]. This algorithmperforms a consistency check

for each node Xi in the CN. However, for a CSPP with n variables,d size of largest domain,

the NC enforcement can be be performed in O(nd).

As for AC enforcement, it can be obtained for any binary CSP P while using the following

domain restriction operation. Assume thatG is the constraint graph associated toP, Links(G)

denotes the set of possible links in the constraint graphG.

∀ (Xi, Xj) ∈ Links(G): D(Xi)={vil / vil ∈ D(Xi), vjk
∈ D(Xj) and (vil , vjk

) satisfies Cij}.

Hence, we have to check all the links (Xi, Xj) in G and remove each valuevil ∈ D(Xi)

(resp. vjk
∈ D(Xj)) that has no support in D(Xj) (resp. D(Xi)).

Most research efforts were devoted to arc-consistency enforcement due to its low cost for

both binary and non-binary problems. Thus, there has been a number of proposed algorithms

in the literature. These algorithms can be divided into three main groups according to the

type of schema used, i.e., type of information propagated, in case of constraint propagation.

• Constraint oriented propagation schema (AC-1, AC-2 and AC-3 [65], AC2000, AC-

2001 [9]),

• Variable oriented propagation schema (AC-3 [64], AC2000, AC-2001 [9]),

• Value oriented propagation schema (AC-4 [71], AC-6, AC-Inference and AC-7 [7, 8])

The first algorithm proposed in the literature for enforcingarc-consistency on any binary

CN is AC-1 [65]. The basic of AC-1 relies on a systematic revisions of all the links in the

constraint graph in case of a value deletion. However, the deletion of a value may have direct

impact only on the neighborhood variables. The temporal complexity of AC-1 is O(n3d3)

while its spacial complexity negligible, i.e., no extra data structure is used by AC-1.

As a remedy to the limitation of AC-1, Waltz proposed anotheralgorithm AC-2 [104]

based on AC-1. The basic of AC-2 is that in case a revision of a link (Xi, Xj) yield to the

deletion of a valuevil from D(i) revise all the links (Xi, Xk) wherek < i andk 6= j. AC-2

uses two queue structures to store the links needed to be revised at eat iteration.

AC-3 is another extension of AC-1, that uses the same property as AC-2. This algorithm

was discussed in [65] uses only one queue structure. The temporal complexity of this algo-

rithm is O(n2d3) while its spacial complexity is O(n2).

Mohr and Henderson proposed another arc-consistency algorithm AC-4 [71] where the

revision of a variable’s domain is based only on the values supported by the deleted one.

In other words, if a valuea is deleted from a domain of a variable Xi, then this deletion

affects directly only the values of neighborhood variablessupportinga. AC-4 seeks first all

37

supports for each variable value in the constraint graph which may increase the complexity

of the this algorithm especially when the number of allowed pair of values is high. AC-4

computes a total support count initially and then updates itas values are deleted. The spacial

and temporal complexities of AC-4 are O(n2d2).

For some period the state of the art resided in two algorithms, AC-4 for its optimal worst-

case behavior and AC-3 which often exhibits better average-case behavior. Two other algo-

rithms, AC-5, proposed in [30] and in [58], and another in [79], permit exploitation of certain

specific constraint structures, but reduce to AC-3 and AC-4 in the general case.

Bessiere and Cordier developed AC-6 [6], which retains the optimal worst-case behavior

of AC-4 while improving the average-case behavior of AC-3. AC-Inference [8] owes some-

thing to all these predecessors, but permits the use of inferred support; while AC-7 [7, 8]

is the most closely related to AC-6. AC-7 is an hybrid of AC-4 and AC-6 while using the

bidirectionality property of relations associated to constraints.

The basic idea of the AC-7 algorithm consists on two main operations: seeking a current

support for a value, and processing the deletion of a value. For each value, AC-7 seeks

a support in each related constraint. It introduces a total ordering between values in each

domain, it computes one support (the first one) for each label(Xi, vil) on each constraint

Cij if and only if this support can not be inferred by bidirectionnality. In fact, AC7 never

searches a supportvjk
∈ Dj for a valuevil ∈ Di, according to the constraint Cij , if there

exist a valuevjf
still ∈ Dj andvil has been already successfully checked as a support of

vjf
. Therefore AC-7 could saved2 constraint checks. The total space complexity of AC-7 is

O(ed)while its time complexity isO(ed2), with d is the size of the largest initial domain and

e the number of constraints of the CSP. The AC-7 algorithm willbe used in our experiment,

with the DRAC approach as a witness approach to evaluate the final result and to ensure the

efficiency of our proposed DRAC.

Two refinements of AC-3 (known as the simplest algorithm for its data structure), AC2000

and AC2001 [7] are suggested in the literature for binary problems. AC-2000 is a refinement

of AC-3 while avoiding blind search for new support for each valuea in D(Xj) in case of a

domain reduction in D(Xi) (Xi and Xj are neighborhood). In case AC-2000 uses a variable

oriented propagation schema, its spacial complexity is O(nd). This complexity is O(ed) in

case of constraint oriented propagation schema, wheree is the number of constraints in the

CN. AC-2001 is a refinement of AC-2000 in which the authors saved more constraint checks.

The spacial complexity of AC-2001 is O(ed) while its temporal complexity is O(ed2).

Concerning higher consistency, as indicated earlier, few centralized works were directed

towardk-consistency withk > 2 in the literature due to its huge cost. The best centralized

algorithms proposed for reinforcing PC (3-consistency) are PC-5 [33], with O(n3d3) worst-

case time complexity and O(n3d2) worst-case space complexity, and PC-8 [23], with O(n2d)4

worst-case time complexity and O(n3d4) worst-case space complexity.

4As mentioned in [31] this algorithm still requires O(n2d2) data structure for the constraints representation.

38

For restricted path consistency (RPC), the underlying centralized proposed technique re-

moves more inconsistencies than AC while avoiding the drawbacks of PC. The RPC-1 algo-

rithm described in [5] is based on the principle of AC-4 and has O(ed(n+d)) worst-case time

and space complexity wheree is the number of constraints.. In [32] the authors proposed

another RPC algorithm, RPC-2, based on the principle of AC-6. The space complexity of

this algorithm is O(end) and its temporal complexity is O(end2) in the worst-case. Max-RPC

[32] is another extension for RPC-2 with O(end3) temporal complexity and O(end) spacial

complexity.

For non-binary constraint networks

As for GAC-7 [11], the general schema to general constraint networks, it is based on AC-7

algorithm and able to efficiently handle any constraint of the industrial applications. It makes

the use of ”current support” idea, and of ”multidirectionality” (the generalization of bidirec-

tionality to non-binary constraints) in order to save as many constraint checks as possible.

This algorithm never checks whether a tuple is a support for avalue when it has already been

checked for another value, and never looks for a support for avalue on a constraint C when

a tuple supporting this value has already been checked. ThusGAC-7 can savedr constraint

checks onr-ary. constraint. The authors propose many frameworks for searching supports

depending on the type of the constraint.

The total space complexity of GAC-7 is O(r2d) while its time complexity isO(edr).

3.3.2 Parallel and distributed techniques

As mentioned in [3], concerning parallel arc-consistency algorithms, the first algorithms

were developed for the shared memory paradigm: Waltz in [104] designed parallel versions

of AC1, AC3 and AC4 for shared memory computers. They have used p processors with the

complexity O(n
2d2

p
) with n is the number of variables,d is the size of the largest domain. In

[21] the authors implemented and experimented a parallel version of AC-4 for the connection

machine CM-2 with a complexity of O(ndlog(nd)) due to the communication overheads.

As for distributed algorithms, Nguyen and Deville, in [78],proposed DisAC-4 algorithm,

a coarse-grained parallel algorithm designed on the basis of AC-4 and the DisCSP formal-

ism, which defines an agent as responsible of a subset of variables. DisAC4 is used for a

distributed memory computer using asynchronous message passing communication. Unfor-

tunately, it has been restricted to diffusion networks (Ethernet), which leads to an underlying

synchronism between processes. The theoretical complexity is O(n
2d2

k
), wherek is the num-

ber of the processors.

In [53] the author proposed DisAC-6, it is based on AC-6 and DisCSP formalism. The

basic idea of this algorithm is to scatter the problem among autonomous processes and make

them asynchronously interact by point-to-point messages containing useful information (in

39

order to perform the global arc-consistency). The worst time complexity is O(n2d3) and

the space complexity is O(n2d) with O(nd) the amount of message operations. DisAC-9 is

an improvement of DisAC6. It is an optimal algorithm in the number of message passing

operations. It exploits the bidirectionality property of constraint relations, which allows

agents to induce acquaintances relations. The worst time complexity of this algorithm is

O(n2d3) with nd messages and with a total amount of space in O(n2d).

Note that the goal of DisAC-9 is essentially to reduce the total amount of messages by

doing more local computations, because of the high cost of messages passing in a distributed

multiprocessor architecture. As we intend to use a mono-processor machine, we ignore the

cost of messages passing, and rather focus on reducing the local agent computation.

Table3.1 summarizes the worst case time and space complexities of the most existing

efficient algorithms for achieving different levels of local consistencies.

Table 3.1. The temporal and spacial complexities for the mos t efficient existing algorithms

for enforcing different levels of local consistencies with n, the number of variables, d, the

size of the initial largest domain, e the number of constraints, c the number of 3-cliques

in the graph, and r the arity of the constraints.

Algorithm Time complexity Space complexity

AC-3 O(ed3) O(e + nd)

AC-4 O(ed2) O(ed2)

AC-6 O(ed2) O(ed)

AC-7 O(ed2) O(ed)

AC-2000 O(ed3) O(ed)

AC-2001 O(ed2) O(ed)

RPC2 O(en + ed2 + cd2) O(en + cd)

Max-RPC O(en + ed2 + cd3) O(en + cd)

PC-5 O(n3d3) O(n3d2)

PC-8 O(n3d4) O(n2d)

GAC-4 O(edr) O(edr + nd)

GAC-7 O(edr) O(er2d)

DisAC-6 O(n2d3) O(n2d)

DisAC-9 O(n2d3) O(n2d)

3.4 Summary

In this chapter we presented an overview of local consistency property. We reviewed first

various levels of local consistency for binary and non-binary CN. Then, we gave theoret-

40

ical comparison of some local consistencies. Finally, we described some of the proposed

techniques for enforcing local consistency on binary and non-binary CN. Some of these

techniques will be used in our experimental comparative evaluation.

41

Chapter 4

Meeting Scheduling Problem

In this chapter we define first the meeting scheduling problem(MS) as well as its main

features. Second we will present the Clarke Tax (CT) mechanism proposed in the literature

to enhance the efficiency of a multi-part cooperative solverwhere the quality of the result

depends especially on the quality and how trustworthy and reliable the received information

is. Then we discuss some of the proposed research efforts deling with MS problem followed

by an illustration of an important arises issue, privacy issue. Finally we summarize this

chapter.

4.1 Definition

In our daily life, meeting scheduling (MS) is a pre-eminent and typical group decision

support problem that embodies a decision-making process affecting several users. Each user

is assumed to be self-interested. That is every user has its own preferences and desires about

how the world should be and often makes his decisions based onthem. The preference over

a set of alternativesΩ can be measured by means ofutility functions. A utility function

ui:Ω→R assign to every alternative a real number indicating how ”good” the alternative is

for the user. The larger the number the better from the point of view of the agent with the

utility function [105].

A MS problem can be described by the process of scheduling events (meetings) involv-

ing individual constraints, i.e., private preferences over alternative mutual decisions. These

constraints are crucially related to the availabilities and preferences of the users who should

participate in the meetings. Solving MS problem involves determiningwhenandwhereone

or more meeting(s) should be scheduled depending on the available times, timetabling, and

preferences of the involved users. This task is normally time-consuming, iterative, and some-

times tedious.

The two main features of the MS problem are defined respectively by its naturally distri-

bution and its dynamic environment. For the first, the participants in the MS problem may

42

not belong all to the same organization or even to the same city, hence this problem cannot be

solved by a centralized approach. As for the second features, two kinds of MS problem can

be defined static and dynamic problems leading respectivelyto two types of MS schedulers

static and dynamic scheduler based on the definition of static vs. dynamic scheduling given

in [85].

Definition 34 A MS scheduler is called static (or pre-run-time) if it makesits scheduling

decisions off-line and generates a complete schedule of thepossible meetings at compile

time. for this purpose it needs complete prior knowledge about all the meetings and the

underlying participants. These information is needs at runtime to decide at every point of a

discrete time base which meeting is to be scheduled next.

Definition 35 A MS scheduler is called dynamic (or on-line) if it makes its scheduling deci-

sions at run-time on the basis of available request for meetings. Dynamic MS scheduler is

flexible to adapt to an evolving meetings scenario and have tobe incremental, i.e., to reply

to the new requests, adding or cancelation of meeting, without proceeding from scratch.

Nevertheless, in dynamic environment users are frequentlyadding new meetings or re-

moving scheduled ones from their calendar. This process often leads to a series of changes

that must be continuously monitored. Hence, we need to find reach a compromise between

all the attendants’ meeting requirements1 (i.e., date, time and duration) which are usually

conflicting. Automating meeting scheduling is important, not only because it can save hu-

man time and effort, but also because it can lead to more efficient and satisfying schedules

within organizations [40].

Moreover, in real organization or company, meetings do not have same degree of impor-

tance (same priority). Obviously, the great significance ofa meeting depends especially,

but not only, on the leader of the event, the number of participants, and the meeting’s main

topic. Therefore, the search should be for the optimal solution (satisfying some predefined

optimality criteria such that maximizing the summation of utility function of all the involved

users) whenever possible. Different kinds of optimality criteria have been suggested in game

theory, economics and voting theory. Thus, the solver process should seek for a compromise

among different human user’s requirements regarding both the potential meetings’ time and

the meetings’ priorities.

In addition, a multi-part problem requires a negotiation process among all the participant.

However, the main concern in every negotiation protocol is usually that the agreed-upon

decision will be optimal in some sense. The optimality is measure with respect to the partic-

ipants’ private preferences. The key question is

1In the sequel of the thesis, we use the term date to define the date, time and duration of a meeting, while

for the place, we assume that all the attendants belongs to the same city and thus to simplify the problem.

43

How to enforce users to reveal always their TRUE preferences?

Clarke Tax mechanism is a well known mechanism for revealingagents’ preferences [34].

This mechanism, used in our proposed approach, is given in detail in the next section.

Recently another important issue is addressed by many researchers, the privacy issue.

4.2 Clarke Tax mechanism for ensuring truthful preferences

As mentioned in [34]. The basic idea of the clarke Tax mechanism (CT) is to incite

each user to tell thetruth. This mechanism is based on the sealed-bid mechanism, the most

straightforward procedure to choose one alternative amongmany others. Each user bids on

all the alternatives and the alternative that has the maximal sum of bids is chosen.

The basic idea of CT is not only to choose the alternative withhighest bidding, but also

to fine each user with a tax. The tax is computed according to the proportion of the user’s

bid that makes a difference in the outcome. To illustrate more clearly the idea of TC, let’s

consider the following example formed by four users and three alternatives. Assume that

the users are asked to express their degree preferences using numbers from 1 to 30. Table

4.1 shows the truth preferences given by the three users. Table 4.2 shows the summation of

preferences for each alternative withoutai preferences and the corresponding computed CT.

Table 4.1. Example of truth users’ preferences for each alte rnative.

a1 a2 a3

user1 20 33 14

user2 8 30 17

user3 16 2 28

user4 23 12 5

Summ preferences67 77 64

According to Table 4.1, the best alternative with maximum preferences is the alternative

a2. For each useruseri, we compute the summation of the preferences of all the other

usersuserj (i 6= j) for each alternativeai. For example if the useruser2 did not reveal

his preferences, the winning alternative would bea1 rather thana2. The alternativea1 would

overtakea2 with 12, i.e., 59-47=12. The bidding ofuser2 has affected the result with a

”magnitude” of 12. The tax computed foruser2 is 12. The Usersuser3 anduser4 are not

fined because their revealed preferences did not change the result, i.e., the same alternative

always win with or without their bidding. Therefore the dominant strategy for the user2 is to

divulge his true preferences, otherwise he will pay more taxor will not get his choice.

Thus, according to Ephrati and Rosenschein in [34], higher the preference given by a user

for an alternative higher would be the tax to pay in case he affects the result. The user who

44

Table 4.2. The Clarke Tax computed for each users.

a1 a2 a3 Tax

user1 47 44 50 6

user2 59 47 47 12

user3 51 75 36 0

user4 44 65 59 0

overestimate his preferences (to force winning for some preferred alternatives) risks having

to pay tax more than his true preferences. Similarly, if the user underestimate his preferences

(to save tax), the lost of his utility might be larger than thesaved tax. The best strategy is

then to reveal the truth preferences.

This mechanism can be used in our proposed approach to solve MS problems. However,

the user in CT mechanism is provided periodically by a certain amount of points that he can

use to estimate his preferences. The decision of the user on one stage may have impact on

several forthcoming stages. In this case, the user may always underestimate his preferences

for a set ofm meetings in order to accumulate points and use them for his most interesting

meetingm+1. Therefore, we propose to afford to each user for each meeting a fixed amount

of points. The user has to split up the whole amount (minus thetax computed on the previous

meeting) among all the possible dates. In this case The user cannot accumulate points.

Hence, if the user will overestimate his preferences for a meeting m1, then he has to pay

high tax for the next meeting, and he may not have enough points to express his preferences.

If the user will underestimate his true preferences, he willnot get extra points for the next

meetings.

In chapters 7 and , we will discuss the possibility of applying such mechanism to ensure

truthfulness.

4.3 Basic of some meeting scheduling solvers

Many research efforts dealing with solving MS problem were proposed in the literature;

among them there are those based on CSP (constraint satisfaction problem) formalism [67].

The underlying problem is formalized as centralized CSP in which all the users’ informa-

tion is centralized in the same process [1, 4]. These works are essentially focused on over-

constraint CSPs.

However, recently multi-agent systems (MAS) are widely used to address many real-world

combinatorial applications. Hence, recent researches have argued about how to solve MS

problems using an agent-based approach for many reasons. The main reason is that agents

can accomplish their tasks through cooperation while allowing the users to keep their pri-

vacies. A mechanism design approach based on multi-agent system (MAS) to solve MS

problems was reported first by Ephrati et al. [34]. The authors defined two paradigms of

45

MS scenarios, open scheduling systems and closed scheduling system. The first system con-

cerns cases where the users are independent, completely in control of their time resources,

and have no obligation to meet each other unless it serves their own selfish interest. Hence,

the users themselves determine the feasibility of each meeting. Whilst the second system,

closed system such as company or organization, meetings areimposed on involved users.

Thus every participant in a meeting have an obligation to attend the meeting, if feasible. The

constraints are defined by the scheduling system and not by the participants. Therefore, the

scheduling system maintains a consistent and complete global calendar of the organization’s

members.

The authors proposed three scheduling mechanisms, for the closed system, which differ

in the information type that each user has to reveal about hisindividual preferences. The

authors tried to approximate the optimal utilitarian choice while avoiding manipulability by

using Clark Tax mechanism [35].

Garrido and Sycara [49] reported another MAS work that focused on using distributed

autonomous and independent agents to solve the problem. Each agent has its individual goal,

to schedule the meeting while maximizing its individual preferences. This work is based on

the communication protocol presented in [96] where agents are capable of negotiating and

relaxing their constraints in order to reach an agreement ona schedule with high join utility.

Sen et al. [92] have proposed another work based on how an application domain for

intelligent surrogate agents can be analyzed, understood and represented in order to make

these agents able to carry out tasks on behalf of human users,taking into account their

environment. Their prior work has spotlighted on agents adapting to environmental changes

[93], however, in [92] their efforts were directed towards the integration of user preferences.

Often users’ preferences are mutually conflicting, so the authors used techniques from voting

theory to formally represent and reason with conflicting preferences.

Three other multi-agent approaches to MS problems, using the Partial CSP formalism

introduced by [36], were given in the literature. The first work proposed by [63] offered a

new approach for MS problems using fuzzy constraints. The underlying protocol is called the

selfish protocol, where each user tries to maximize their preferences during the negotiation

process.

The second in [101], used the distributed valued constraintsatisfaction problem (DVCSP)

formalism to model the MS problem. The authors propose to convert each already registered

event into a constraint. A weight, an integer between 0 and 9,is assigned to each constraint

and to each event to reflect its importance. Two kinds of agents are used in this model a

group agent and a personnel agent. Each personnel agent is associated to a human user and

acts on his behalf. As for the group agent is needed in order tomaintain and to facilitate the

scheduling process within a group. For each meeting, the proposer agent will communicate

the necessary information to the group agent. The later agent will generate the needed pos-

sible times and send them the participants (within same group or from another group) with a

46

weight thresholdTr. The participant agents will reply by sending their personal constraints

having weight greater than or equal toTr. The group agent will search for a valid assignment

according to the received constraints. If such assignment is found, then the group agent will

broadcast it to all participants. Otherwise, a failure message will be broadcasted to all partic-

ipants. In this protocol, the agents should reveal their constraints, preferences and calendar

to the group agent. Even if this agent is considered a trustedparty in the system, users prefer

not to send any of their private information to another agentin the system. Therefore this

protocol does not guarantee any level of privacy. In addition, to reach an agreement between

participants, requires a high amount of messages of large sizes. This approach is used in our

experimental evaluation.

The third work based on multi-agent systems and using fuzzy constraints to express users’

preferences was presented by Franzin et al. [42]. Their meeting scheduling system was

based on an existing system that includes hard constraints [41]. The authors proposed, in

their work, to integrate preferences to their system and focused on observing the behavior

of this new system under several conditions [41]. Their mainobjective is to evaluate the

relations among solution quality, efficiency and privacy. The correlated protocol is based on

inferring some new knowledge during the solving process which, may clash with the desires

of agents to keep their information private. The authors propose a simple communication

model which consists of several proposal phases for each meeting according to the expected

result, the first feasible solution or the optimal solution.At each phase, a proposal is made

by one of the agent and communicated to the others. This proposal is chosen among the

best in the calendar of the proposer agent and checked as consistent with the knowledge

collected about the other agents. The other agents which receives the proposal reply with

their level of preferences, i.e., preferences=0 if the proposal is rejected, preferences6= 0

otherwise. However, the knowledge about other agents (and also about the proposer) is

updated according to the received proposal and the answer.

In case of a rejection, a new proposal phase is started otherwise, a solution is found with a

preference value the minimum among all the received. In caseof search for optimal solution,

another proposal phase will start for the same meeting, except that all the preferences values

which are smaller than or equal to the value of the last solution found are set to 0. this implies

that a new negotiation phase will start to find better solution or solution with preference = 0.

The author introduce in their system the concept of threshold to choose a feasible solution

which is optimal in some sense. The main goal is to reduce the number of proposals and thus

speed up the whole process.

In [42] the author suggested two basic global criteria to optimize for each agent, the fuzzy

optimality; which consists of having preferences between 0and 1 of maximizing the mini-

mum preference across all agents, and the Pareto optimality[40], where a solution is optimal

if there s no way to improve the preference of any agent without decreasing the preference of

some other agents. However, in this protocol the number of exchanged messages increases

47

with the size of the problem (number of possible proposals and users). In addition, in the

worst-case each agent has to reveal all its proposals in order to reach optimality.

Another research dealing with MS problems were contacted byMaheswaran et al., [68] at

the same time as ours. The authors raised two important points in their work. The first one is

the non-existence of a automated congruent mapping to distributed constraint optimization

(DCOP) formulations. Their main motivation is that this mapping is a tedious process of

modeling an environment, choosing variable sets, and designing constraint utility functions.

The second point is that it is unclear if DCOPs obtained from concrete problems will fall

within a space where complete algorithms for problems withNP complexity are fast enough

to be utilized.

The authors have considered the DiMES framework (distributed multi-event scheduling)

because it captures a rich class of real-world problems where multiple agents must generate

a coordinated schedule for execution of joint activities orresource usage in service of mul-

tiple events. Their main idea is to convert a given DiMES problem into DCOP with binary

constraints and then apply an existing (or improved) algorithms developed for DCOP to ob-

tain an optimal solution. Three DCOP formulations were proposed, which differ in the used

concepts for creating variable sets: time slots as variables, events as variables, and private

evens as variables. They proposed for each variable set a constraint utility functions and they

proved that the obtained solution from the DCOP formulationis congruent to the original

DiMES problem.

Nevertheless, the majority of these works share the following properties:

1. Dealing only with non-dynamic problems (among which [1, 4, 101, 42],).

2. Allowing the relaxation of any user’s preferences, even those related to non-availability

of this user in order to arrive at consensus choices for a meeting’s time. However in

real-world applications this is not always permitted. For example, when the user is

traveling on business, such a constraint would oblige the user to stop his/her travel to

attend the meeting, and this is not always possible (amongst[96, 49, 92, 63, 101, 42]).

3. Not integrating the enforcement of local consistency in their solving process, in spite

of the pre-eminent role of the filtering techniques in the efficiency of solving an NP-

complete problem. Only the authors in [41, 42] deal with the use of some inferred

knowledge to maintain coherence between meetings in order to steer the selection of

the next proposal, while, none of the other works try to maintain any level of consis-

tency during the negotiation process.

4. Judging all the meetings of the whole system with the same level of importance (among

others [49, 63, 42, 101]). In real life, this is not always true. Obviously, the great sig-

nificance of a meeting depends especially, but not only, on the leader of the event, the

number of participants, and the meeting’s main subject. Especially in a dynamic envi-

48

ronment, such discrimination may lead to conflicting meetings, and may also increase

the number of meetings to reschedule.

5. Not considering the high complexity of message passing operations in real distributed

systems ([49, 92, 63, 101, 42]).

4.4 Privacy issues

Privacy is a critical issue that usually arises while talking with cooperative communication

involving independent agents endowed with information about their users. The assumption

is often made that any requisite information will be shared.Agents may want to maintain

and to protect as much as possible their individual users’ privacy while engaging in collabo-

rative problem solving. Therefore, in such system, it is often desirable to exchange as little

information as possible in order to keep private the own dataof the agents. Nevertheless,

the main problem in exchanging information is that an agent can build an approximation of

the private knowledge about other agents by accumulating information. However, the main

question that arise is how to meet the added requirement of privacy maintenance while trying

to solve problems efficiently.

However as we mentioned before, the quality of the solution would depend in a great part

on the exchanged information. Recently, many research efforts were directed toward how to

keep the privacy of users while searching for a solution to the problem.

Franzin et al. [41] have proposed an empirical study of the relations among the three main

features of a multi-part cooperative system, privacy loss,efficiency and solution quality.

Their obtained results show that the number of initial meeting and the threshold influence the

level of such measures. In addition, the authors show that the search for a feasible solution

is not slowed down by the addition of the preferences.

Earlier work on privacy focused on creating secure coordination mechanisms such that

negotiation would not be observable to parties outside the collaborating set of agents [108].

Maheswaran et al., proposed a quantitative approach to deriving metrics for privacy for

general domains [69]. Therefore they proposed a Valuation of Possible States (VPS) to

quantitatively evaluate privacy loss in multi-agent settings. The authors applied their ideas

in a distributed meeting scheduling domain modeled as a distributed constraint optimization

problem (DCOP). The authors modeled the private information of a user as a state among a

set of possible states. Hence, each user has an estimate of the likelihood that another user

lies in in each of the possible states. Therefore they proposed to interpret privacy as on the

other agents’ estimates about the possible states that one lives on. The main objective of

the authors is to build a unifying framework for privacy, in order to capture existing notions

of privacy. The authors applied VPS to a personal assistant domain: distributed meeting

scheduling

49

4.5 Summary

In this chapter we defined a real-world problem, meeting scheduling problem and its main

features. We presented some of the encountered difficultieswith this problems followed by

some of the research efforts discussed in the literature.

50

Chapter 5

DRAC and GDRAC: Distributed

Reinforcement of Arc Consistency for

any General Constraint Network

In this chapter, we begin our investigation on distributed local consistency enforcement for

binary CN. Hence, the main objective of this chapter is to propose two novel approaches for

enforcing arc consistency on any CN in a totally distributedmanner. We present first the

DRAC approach (for Distributed Reinforcement of Arc consistency) followed by its gener-

alization, G-DRAC approach, for any constraint’s arity (general AC).

In the following we present first the multi-agent architecture followed by an illustration

of the proposed heuristics. Then we describe the global constraint-agent interactions of the

two proposed approaches DRAC and G-DRAC. Then, we give the proof of correctness and

termination properties followed by a computation of the complexity of both approaches.

Finally, we exhibit the experimental results and summarizethis chapter.

5.1 Underlying multi-agent architecture

Multi-agent systems (MAS) are considered as natural metaphor for understanding and

building a wide range of distributed real-world applications [105]. These systems are com-

posed of multiple interacting computing elements, known asagents. Agents are computer

systems with mainly two important capabilities: capable ofautonomous action (to some

extent), and capable of interacting with other agents. We have used these systems with

constraint-based graph to model any distributed constraint satisfaction problem.

Hence our proposed multi-agent model, for both approaches,involves two kinds of agents

(Constraint agents and Interface agent) in cooperation. The Interface agent, is an interme-

diate agent between the human user and the machine. it has been added in order to detect

whether the full global arc-consistency has been achieved and, especially, to inform the user

of the result.

51

Each agent has a simple structure: acquaintances (the agents that it knows), a local mem-

ory composed of its static and dynamic knowledge, amailBoxwhere it stores the received

messages and a behavior.

5.1.1 Interface agent

The Interface agent has as acquaintances all the Constraintagents of the system. Its ac-

quaintances, denoted byΓ, represent its static knowledge. The dynamic knowledge of the

Interface agent consists of the internal state of all the agent constraints in the system.

5.1.2 Constraint agents

Each agent Ai has its own variables1. For simplicity reasons, assume that each agent Ai

maintains only one constraints, denoted by CAi

ij.... However, both approaches can deal also

with cases where each agent is responsible of a set of constraints.

As for the agent Ai acquaintances, they consist of both all the agents with which it shares

at least one variableΓAi, i.e., ΓAi={Aj / Aj ∈ Γ andV ar(CAi

ij...)∩ V ar(CAj

ij...) 6= ∅}, and

the Interface agent. Its acquaintances and its associated relation define its static knowledge.

While its dynamic knowledge concerns its internal state, the domains of its own variables

and a parameter calledEndBehavior, which specifies whether its behavior is completed or

not.

Two Constraint agents are connected together if and only if they share at least one variable.

These links are known as inter-agent constraints. All the Constraint agents will negotiate

and cooperate together to enforce arc consistency on the underlying problem. Therefore we

assume the following communication model between all agents:

• The agents in the system negotiate by exchanging asynchronous point-to-point mes-

sages containing the necessary relevant information in a manner that reduces the num-

ber of messages passing.

• An agent can send a message to another one only if it knows thatthis agent belongs to

its acquaintances.

• The messages are received in a finite delivery time and in the same order that they are

sent. Messages sent from different agents to a single agent may be received in any

order.

Note that the goal of our approach is to obtain the full globalarc-consistency as a result of

the interactions between the Constraint Agents by exchanging inconsistent values. In other

words, the full global arc-consistency is obtained as a sideeffect of the interactions between

reactive agents; each one of them having a local goal, i.e., to enforce arc consistency locally

on the subproblem formed by Ai and its acquaintancesΓAi.

1The variables implied in the constraint maintained by Ai.

52

5.2 Proposed heuristics

To enhance the efficiency of both approaches, DRAC and GDRAC,we integrate in their

corresponding protocols the following new heuristics based on the below two properties

and this in order to decrease the number of constraint checkswithout loss of correctness.

Before describing the two properties, we will define first thenew notion oftemporally arc

inconsistent. Note that the condition of the following first property was used AC-7 [8] for

binary constraints as an additional condition to perform a constraint check.

Definition 36 For any binary CN, a subset of values of a variable Xi, D’(Xi) ⊆ D(Xi) is

temporally arc inconsistentfor a value vjk
of a variable Xj if and only if the first support of

each value vil ∈ D’(Xi) in D(Xj), vjm
∈ D(Xj), vjk

≺lo vjm
.

Property 1 For each binary constraint Cij , for each candidate value vjk
∈ D(Xj), ”hide”

from the domain of the related variable D(Xi) all the values vil such that vil is temporally arc

inconsistent for vjk
, and vice versa.

Proof.

We will simply show that each hidden value vil is not compatible with the value vjk
. There-

fore, we suppose that∃ t’ ∈ Cij such thatt’ [index(Cij, Xj)]= vjk
andt’ [index(Cij , Xi)]= vil.

If this tuple exists thent’ ≺lo t (t ∈ Cij such thatt[index(Cij, Xj)]= vjm
and t[index(Cij,

Xi)]= vil because vjm
> vjk

. Sot cannot be the first tuple support of vil.

�

To illustrate the principle of the proposed properties, consider the simple example in

Figure5.1 formed by two variables X1 and X2 related by a binary constraint C12. An ar-

row from a valuev1k
for X1 to a valuev2l

for X2 indicates that a check of the consistency

between these two values has been computed while seeking forthe first support. The bidi-

rectionality property is used to infer the support of the other values. Assume that the value 3

of X1 is no more viable (due to another constraint). Then we shouldseek for another support

for X2=2 in X1. This requires 5 constraint checks. However, we can save 4 constraint checks

by using property 1. (for binary constraint). The idea consists on hiding from the domain

of X1 all the values that have as first supportv2l
such thatv2l

< 2, while searching a new

support for the value 2 of X2.

The following definition generalizes the notion of temporally arc inconsistent to any gen-

eral CN.

Definition 37 For any general CN, for each n-ary constraint Cij..., for each variable Xh ∈

Var(Cij...), a subset of values D’(Xh) ∈ D(Xh) is generalized temporally arc inconsistent for

the value vkl
∈ D(Xk) with Xk ∈ Var(Cij...) if and only if each value vhf

∈ D’(Xh) satisfies the

two following conditions:

53

Figure 5.1. Example of binary constraint. Each arrow illust rates the directions of the

constraint checks performed in order to seek for the first sup port for each variable/value.

1. the first tuple support of vhf
, t ∈ Cij..., t[index(Cij..., Xh)] = v hf

and t[index(Cij..., Xk)]

= vhm
and vhf

≺lo vhm
,

2. ∀ vhf
∈ t; s∈ 1.. |X(Cij...)| such that s6= h ands< k, vhf

= last(D(Xi)).

Property 2 For each n-ary constraint Cij..., for each candidate value vkl
∈ D(Xk) with Xk ∈

Var(Cij...), ”hide” from the domains of all the related variables Xh, Xh ∈ Var(Cij...) andh 6=

k, all the values vhf
such that vhf

is generalized temporally arc inconsistent for vkl
.

Proof.

For the first part of this Property2. the proof is similarly tothe first Property1. However, the

second condition is added in order to guarantee thatt is the highest tuple in Cij... and no tuple

t’ , that containst’ [index(Cij..., Xk)] = vkl
, t’ [index(Cij..., Xh)] = vkl

andt ≺lo t’ , exists.

�

5.3 Global constraint-agents interactions

The main objective of both approaches is to transform a CSPP (X, D, C) into another CSP

P’(X, D’, C) equivalent. P’ is obtained as a result of interactions between the Constraint

agents which are trying to reduce their domains D’⊆ D.

Before detailing these interactions and the underlying global dynamic, we present the

communication protocol, the data structures and the basic primitives relative to an agent Ai.

5.3.1 Communication protocol

The communication protocol is based on the two following message passing primitives.

54

• SendMsg(Sender, Receiver, ”Message”) whereReceivercan be more than one re-

ceiver.

• GetMsg() extracts the first message from themailBox.

As regards to the exchanged messages, the Multi-Agent dynamic involves three types

of messages (without considering those relative to the detection of the equilibrium state)

namely:

• ”Start” message, sent by the interface to all the agent,Γ, in order to activate them,

• ”ReduceDomains”message, sent by a Constraint agent Ai to its acquaintancesΓAi in

order to propagate its deleted values.

• ”StopBehavior”message sent by a Constraint agent Ai, which has a domain wipe-out,

to the interface.

• ”StopLocalBehavior”message sent by the interface to all the agents,Γ, of the system

to make them stop their local behavior.

We must note that, as we have mentioned above, all the messages are received in the same

order in which they were sent, except for those used to detectthe termination of the system.

Therefore, we concede higher priorities to these latest messages. Thus they can overtake any

message in the queue (mailbox). This feature leads to a quicker termination of the whole

process.

5.3.2 Common data structures and basic primitives

In more detail, the common required data structure and basicprimitives for both ap-

proaches, are the following:

• AcqConstAi[X k]={Aj ∈ ΓAi / Xk ∈ V ar(CAi

ij...) ∩ V ar(CAj

ij...)}, is the ordered set of all

the Constraint agents sharing the variable Xk with the agent Ai.

• DAi={DAi(Xk)/ Xk ∈ V ar(CAi

ij...)} represents the local view of the domains DAi(Xk)

of all the variables maintained by Ai. Each domain is supposed to be totally ordered.

For all Xk ∈ V ar(CAi

ij...), DAi(Xk) is called the occurrence of D(Xk). Note that some

occurrences of a given D(Xk) may be different, but all occurrences of D(Xkh), for all

k ∈ {1, . . . , n}, must be identical when the full global arc-consistency is reached. At

this step, let us refer to the final obtained domain DAi(Xk) by f DAi(Xk).

• TupleSupportAi is the set of tuplet wheret is a vector of consistent assignments of the

variables involved in CAi

ij... with t = (vik , vjl
, . . ., y), r is the arity of CAi

ij..., and (vik , vjl
,

55

. . .) satisfies Cij.... The parametery ∈ {0, 1, . . ., r-1} is used to indicate that (vik , vjl
,

. . .) is the ”first” tuple support for the valuet[y+1].

Let’s recall that tuples are ordered according to the natural lexicographic order≺lo

such that for each{t, t’} ∈ CAi

ij..., t ≺lo t’ if and only if there existk such thatt[1..k-

1]=t’ [1..k-1] andt[k]< t’ [k].

• IncValueAi[X k]={vkm
∈DAi(Xk) / there is not any tuplet∈CAi

ij... such thatt[index(CAi

ij...,

Xk)] = vkm
andt is valid}, represents the set of all current inconsistent values for Xl

belonging toV ar(CAi

ij...).

• HDAi[X k]={vkl
/ vkl
∈ DAi(Xk), Xk ∈ V ar(CAi

ij...), andvkm
verifies Property2}, repre-

sents the new current domains after hiding some temporary arc inconsistent values.

• ReviseValueAi is the set of all current values that should be revised.

The common basic primitives are:

• addTo(l, e): adde to the setl; e is added to the end ofl.

• first(l): returns the first element in the setl if |l| >1; otherwise returnsnil;

• last(l): returns the last element in the setl if l 6= ∅; otherwise returnsnil;

• next(e, l): returns the first elemente′ occurring aftere in the setl if e′ 6=Last(l); other-

wise returnsnil;

• delete(l1, l2): for each elemente ∈ l2, if l1 containse thene should be removed from

l1; otherwise nothing to do.

• hideFrom(l, e, var): removetemporallyall the elementse′ from l according to some

conditions related toe ;

• SearchNewSupport(e, t): returns thesmallest2 tuple supportt’ ∈ CAi

ij... such thatt≺lo

t’ and t’ [index(CAi

ij..., Xj)]=e. If t=nil , then this primitive will return thefirst tuple

support.

5.3.3 Agent-based protocol

The DRAC and G-DRAC approaches exhibit almost the same global dynamic. The main

dissimilarity rests in the fact that DRAC is only for binary constraints, while GDRAC is a

generic distributed approach for any general CN.

At the initial state, the Interface agent creates all the Constraint agents,Γ, and activates

them. Each agent Ai maintaining a constraint CAi

ij... reduces the domains (DAi) of its own

2There is no other tuple supportt” such thatt ≺lo t” andt” ≺lo t’ andt” [index(CAi

ij..., Xj)]= vjk

56

variables, i.e.∀ k ∈ {1, . . . , r}; r=|V ar(CAi

ij...)| and Xk ∈ V ar(CAi

ij...) by computing local

viable values for each variable. For achieving this, CAi

ij... looks for one tuple support (the first

one) for each valuevkm
of each of its variables Xk. When the first supportt, that satisfies

CAi

ij... andt[index(CAi

ij..., Xk)] ∈ DAi(Xk), is found, then (vik , vjl
, . . . , (k-1)) is added to the list

of tuple supportsTupleSupportAi.

We must note thatvik , vjl
, . . . are the first values support forvkm

but they are also values

support for each other by applying the multidirectionality3 property of constraint relations.

A valuevkm
is deleted from DAi(Xk) if and only if it has no viable tuple support. Each ob-

tained set of deleted values for a variable should be announcedimmediatelyto the concerned

acquaintances in order to save fruitless consistency checks for these values.

Each agent that received this message starts processing it by updating the domains of

its variables while deleting non-viable received values. At the end of this computation, it

updates computed support information by deleting all non-viable tuples. In the case in which

vkm
is an inconsistent value, the agent determines first all the tuple t such thatt[index(CAi

ij...,

Xk)]= vkm
. Then checks the existence of another viable tuple supportt’ in TupleSupportCj for

each valueajl
∈ t (ajl

∈ DAi(Xj) andk 6= j). If such tuplet′ does not exist, the agent searches

for a new tuple support. Therefore the agent starts first by ”hiding” all the values that are

incompatible withvkm
from the domains of all the related variables using the aforementioned

Property2 (resp. Property1 for binary constraints). This allows us to reduce the number of

constraint checks.

Second, the agent looks for another tuple support for each value vjl
according toy and

using the new domains. Ify=(h-1) then the search must be done from the smallest tuplet’

(according to the predefined order) such thatt≺ lot’ (as AC-6). Otherwise, it looks for a

support from the scratch i.e., the first (smallest) tuple in Cj . This can lead to a new values

deletion and by consequence, to new out going messages. So reducing domains on an agent

may, consequently, cause an eventual domain reductions on another agent.

Hence, the same process must resume until all the arc-consistent values have been deleted

from the domains of all the variables. This state is known as astable equilibrium state,

in which all the agents of the system are satisfied. An agent issatisfied when it has no

more reductions to do on its variables’ domains or when one ofits reduced domains wipes

out. However, it is clear that the satisfaction state of a single agent is not a definitive state.

Indeed, if there exists at least one unsatisfied agent, it maycause the unsatisfaction of other

Constraint agents; this is due to the propagation of constraints.

An agent is satisfied when it has no more reduction to do on its variable domains or

when one of its reduced domain wipes-out. However, it is clear that this satisfaction state

is not definitive. Indeed, if there exists at least one unsatisfied Agent, it may cause the

unsatisfaction of other Constraint agents and this is due tothe propagation of constraints.

We should emphasizes that this dynamic allows a premature detection of the failure i.e.

3or applying the bidirectionality property in case of binaryconstraints.

57

absence of solutions, and this when the domain of at least onevariable wipe-out. Hence, with

regard to agents’ behavior, each Constraint should continue its local behavior until attaining

its satisfaction state4:

• When one of its domains wipes out. In this case, it asks the interface to stop the whole

process and to communicate the failure result to the user.

• When all possible local reductions have been accomplished,while taking into account

the just-received messages containing the values deleted by the other Constraint ac-

quaintances. In this case, it updates its internal state.

Otherwise, i.e., in the case of unsatisfaction behavior, itsends a message containing in-

consistent values to the concerned acquaintances.

The Interface agent is satisfied when all the agents are satisfied or when it has received a

failure message; then it makes all the agents stop their local behavior, and communicates the

obtained result to the user. Otherwise, i.e., in the case of unsatisfaction behavior, it checks

the system state using the algorithm described by Lamport and Chandy [19].

5.4 Theoretical analysis

5.4.1 Correctness

The correctness of the proposed hybrid method (the two approaches) relies, in great part,

on the correctness of the DRAC protocol. The objective of this subsection is to exhibit

the accuracy of the proposed DRAC approach5 and to show that it leads to full global arc-

consistency. For this result, we must prove the following assertions:

• For all Xh ∈ X, h = {1, . . . , n}, for all {Ai, Aj} ∈ Γ such that Xh ∈ Var(CAi

ij...)∩

Var(CAj

ij...), i 6= j, f DAi(Xh) = f DAj (Xh).

• For all Xh ∈ X, h ∈ {1, . . . , n}, for all Ai ∈ Γ, for all Xh ∈ Var(CAi

ij...), for all vkl
∈

f DAi(Xk), vkl
is arc-consistent.

• For all Xh ∈ X, h ∈ {1, . . . , n}, for all Ai ∈ Γ, for all Xh ∈ Var(CAi

ij...), for all vhl
∈

DAi(Xh), if vhl
is viable thenvhl

∈ f DAi(Xh).

In fact, the first assertion concerns the process of deleted values propagation. Since for

all Ai, Aj ∈ Γ, i 6= j such that Xh ∈ Var(CAi

ij...)∩ Var(CAj

ij...) and consequently Aj belongs to

the acquaintances of Ai, Aj ∈ ΓAi (and conversely, Ai ∈ ΓAj), and since all the messages

are received in a finite period of time and in the same order as they were sent, Ai (resp.Aj)

4This state of satisfaction is based on local knowledge to detect whether the local goal is achieved or not.

However, this state may be temporal if the global goal is not accomplished.
5As for the G-DRAC, its protocol is based essentially on DRAC protocol.

58

must be informed by each deleted value6. Then the agents will have the same final domains

f DAi(Xh) andf DAj(Xh).

The second assertion concerns the correctness of theReduceDomains:for:procedure. Each

time, the deletion of a value (from DAi(Xh)) leads to a non-viable value in the domain of a

variable Xh. The agent Ai sends a message to all the concerned acquaintances Aj ∈ ΓAi,

asking them to update their Xh domain. So, all the non-viable values are deleted from the

domains of all the agents. Thus, each value remaining in the final domain of each variable is

arc-consistent.

For the third assertion, there are two cases in which a valuevhl
is deleted from the domain

of a variable Xh. The first is that the agent Ai has detected thatvhl
has no support inat least

one variable Xk (k 6= h) and Xk ∈ Var(CAi

ij...). Therefore,vhl
is a non-viable value and must

be discarded. The second case is when the agent Ai has received a message to update the

domain of Xh by deleting the valuevhl
. Thus, this value has been detected as non-viable by

the agent which sent the message. Consequently, only the non-viable value will be deleted.

5.4.2 Termination detection

The dynamic of DRAC approach stops when the system reaches its stable equilibrium

state. At this state, all the agents are satisfied. An agent issatisfied when it has no more

reductions to do on its variable domains or when one of its related new reduced domains is

wipe-out. In the first case, the global goal of all the agents is reached, i.e., achieving global

full arc consistency.

However, in the second case, the problem is inconsistent i.e. no instantiation satisfies

all the constraints. The detection of the stable equilibrium state in a distributed system can

be achieved by taking a snapshot of the system, using the wellknown algorithm of [19], a

state where all agents are waiting for a message and there is no message in the transmission

channels. If all the agents of the system are in the state of waiting, and there exists only

one agent Ai which has deleted one valuevhl
from the domain of one of its variables (Xh

∈ Var(CAi

ij...). We assume that this agent shared this altered variable with another agent Aj .

The latter must be informed of the loss of the valuevhl
in order to propagate the constraints.

Hence, there is a message in transit for it, which invalidates our transmission hypothesis.

We notice that, the cost of the termination process can be mitigated by combining snap-

shots messages with our protocol messages.

6Let us recall that the deleted values must be immediately transmitted to the concerned acquaintances.

59

5.4.3 Spatial and temporal complexities

Let us consider a CSPP havingn for the total number of variables,d for the size of the

variable domains ande for the total number of constraints. The number of agents ise. If

we consider a fully connected constraint network, we will have e-1acquaintances for each

Constraint agent. Each agent Ai maintains a listTupleSupportAi of supports, with the size of

2d-1in the worst case (for only binary constraints). Since thereareeagents, the total amount

of space is (2d-1)e (for a fully connected graph,e will be set ton(n-1)/2, in the worst case).

So the space needed for DRAC is (n(n-1)/2)*(2d-1) ≃O(n2d). This space is the same as that

of AC-7 one’s.

The worst case in the execution time of a distributed algorithm occurs when it proceeds

with a sequential behavior. For our protocol, this occurs when only one value is deleted at a

time, leading tond successive deletions. Our approach is composed of two steps. The first is

the initializing step, in which each agent performsd2 operations to generate the support sets.

In step 2, for each deleted value, the agent will perform O(d2) operations to search another

support for this value. Thus, each agent performs O(d2) operations. So the total time com-

plexity of DRAC (with e agents andnd successive deletions), in the worst case, is O(end3).

This complexity is equal to that of DisAC-9 down to the numberof variables.

Regarding GDRAC complexity, each agent Aj in the system also maintains a list of tuples

supportTupleSupportAj . Each value should have at most one tuple support, then the total

number of tuples is at mostrd with r for the maximal arity for each constraint. Each tuple has

(r+1) values. Since there aree agents, the total amount of space for each agent is (rd)(r+1).

So the space needed for each agent, in the worst case, is O(r2d), the same as GAC-Schema

one’s. Each agent performsdr operations to generate the tuples support sets, and for each

deleted value the agent will perform O(dr−1) operations to search for another tuple support

for this value. While the total time complexity of GDRAC, in the worst case, is O(endr).

5.5 Experimental comparative evaluation

The implementation of the proposed hybrid method was developed with Actalk, an object

based on concurrent programming language in the Smalltalk-80 environment. In this lan-

guage framework, an agent is implemented as an actor having the Smalltalk object structure

enriched by an ability to send/receive messages to/from itsacquaintances, buffering the re-

ceived messages in its ownmailbox. The experimentations were performed over randomly

generated instances and using five parameters:n is the number of variables,d is the domain

size of each variable,r is the maximal arity of the constraints,p is the graph connectivity

(the proportion of constraint in the network,p=1 corresponds to the complete graph) andq is

the constraint looseness (the proportion of allowed pairs of values in a constraint). We have

performed two groups of experiment to evaluate the two proposed approaches of our hybrid

method.

60

In the first group, the efficiency of the DRAC approach is assessed through a compar-

ison with AC-7. Let us recall that AC-7 is the best centralized algorithm to enforce arc-

consistency on any binary CN. This algorithm is used as a witness algorithm to evaluate the

performance and efficiency of DRAC.

0.25 0.35 0.45 0.55 0.65
0.75 0.85 0.95

0.20

0.40

0.60

0.80

0

1000

2000

3000

4000

5000

6000

7000

Number of

Constraint

Check s

Looseness

Connectivity

Figure 5.2. DRAC results in mean number of Constraint Checks for constraints in inten-

sion on Pentium III (35 instances are generated for each set o f 〈p; q〉 parameters).

Each used sample is designed on the base of the following parameters:n = 20, d = 10,

p={0.2, . . . , 0.9} per step of 0.1 andq={0.25, . . . , 0.95} per step of 0.1 also. For each

pair 〈p, q〉, 35 random examples were generated. Figures 5.6 and 5.7 showthat AC-7 and

DRAC require almost the same number of constraint checks especially for over-constrained

problems. While for CPU time, Figures 5.4 and 5.5 show that AC-7 requires more time than

DRAC especially for large problems.

In the following we will try to focus essentially on the most complex problems for the

same above parameters. Therefore, we directed our attention to evaluate the performance of

DRAC approach for the most hard problems belonging to the transition phase7. Hence, we

brought out two versions of DRAC: DRAC-Ext and DRAC-Int for constraints in extension

and in intension respectively. Figure5.6 shows that AC-7 performs almost the same number

of constraint checks as DRAC-Int, while for CPU time, DRAC-Ext requires a lower time

than the two others (Figure5.7). This result shows that DRACis especially worthwhile for

7Problems for which establishing arc-consistency sometimes succeeds sometimes not.

61

0.25 0.35 0.45 0.55 0.65
0.75 0.85 0.95

0.2

0.4

0.6

0.8

0

1000

2000

3000

4000

5000

6000

7000

Number of

Constraint

Check s

Looseness

Connectivity

Figure 5.3. AC7 results in mean number of Constraint Checks f or constraints in intension

on Pentium III (35 instances are generated for each set of 〈p; q〉 parameters).

constraints in extension, due to the fact that the DRAC first step (initialization) explores the

stored relation of each constraint only once in order to generate the required sets of supports

(TupleSupportAi sets).

The DRAC protocol allows us to perform constraints according to their type of represen-

tation (how they are expressed).

The second group of experiments was designed to test the performance of GDRAC for

general CN. We used GAC-7 [11] as a witness approach to appraise the efficiency of the

results of GDRAC. Another set of instances, was randomly generated according to the fol-

lowing parameters,n=20; d=10; r=3; p∈ {0.2, ..., 0.9} with step of 0.1 andq∈ {0.3, 0.38,

0.41, 0.43, 0.45, 0.46, 0.47, 0.48}. For each〈p, q〉, 10 CNs instances were also tested.

The results reported below represent the average of the obtained number of constraint

checks. We have also implemented four different versions ofour approach in order to check

its efficiency in handling any type of constraints, i.e., those expressed in extension or in

intension.

Figure5.8 represents the result of the two first versions of the proposed approach, GDRAC-

Ext1 and GDRAC-Ext2, for constraints given in extension. The main objective of this ex-

periment is to highlight the impact of immediately processing each received message. Thus,

in the first one, each agent processes out the received message after completing its current

62

0
.2

5

0
.3

5

0
.4

5

0
.5

5

0
.6

5

0
.7

5

0
.8

5

0
.9

5

0.2

0.5

0.8

0

500

1000

1500

2000

2500

CPU time (in

milliseconds)

Looseness

Connectivity

Figure 5.4. DRAC results in mean CPU time for constraints in i ntension on Pentium III (35

instances are generated for each set of 〈p; q〉 parameters).

work. In contrast, in GDRAC-Ext2, each agent tries to execute each received message imme-

diately. GDRAC-Ext1 entails more ccks than GDRAC-Ext2, especially for dense instances.

This can be justified by the fact that giving the agent relevant information in time allows

it to immediately update and propagate the consequence of the received message, thus sav-

ing many fruitless efforts, i.e., re-checking the viability of some values already detected as

inconsistent by another agents.

We carried out a second experiment on GDRAC to check the efficiency of our approach

for the most hard type of constraints (constraint in intension where no particular semantic is

known). We propose in this experiment two other versions of GDRAC, GDRAC-Int1 and

GDRAC-Int2. The objective is to check the usefulness of the proposed property of temporal

inconsistency for n-ary CN (Section5.2). Figure5.9 shows that the number of ccks performed

by GDRAC-Int2, i.e., GDRAC-Int2 with property, converge tothe number given by the best

centralized approach, GAC-7.

The difference in ccks between GDRAC-Int1 and GAC-7 can be vindicated by the fact

that for GDRAC-Int1, each constraint is represented by an agent and each variable can be

shared by several agents. All the agents will perform local arc-consistency in parallel, which

leads to the fact that each value can be detected as inconsistent by several constraints at the

same time, leading to more ccks. However, for the centralized approach, if a value is detected

inconsistent by one constraint, then it will not be checked by the other constraints (sequential

63

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.2

0.4

0.6

0.8

0

500

1000

1500

2000

2500

3000

3500

4000

CPU time (in

milliseconds)

Looseness

Connectivity

Figure 5.5. AC7 results in mean CPU time for constraints in in tension on Pentium III (35

instances are generated for each set of 〈p; q〉 parameters).

treatment). To this end, we can say that the proposed property allows GDRAC to decrease as

maximum the number of constraint checks in order to convergeto the required number for

GAC-7. We should not forget that for some problems it is not possible to solve the problem

by only one agent, for many reasons, such as data privacy and security problems.

We also tested the behavior of our approach toward inconsistent problems. The main ob-

jective of this second type of experimentation is to evaluate the percentage of deleted values

required for detecting the insolubility of a CN. Table 1 shows the ratio of the percentage of

the obtained results of GDRAC divided by those of GAC-7, in the mean of the percentage of

deleted values and CPU time (in milliseconds). In most cases, GDRAC prunes a few more

values than GAC-7 to prove insolubility; in the others, it isalmost the same.

At first glance, this result does not seem good, especially ifthis pruning process needs

more time to be accomplished. However, the CPU time needed for our approach is less than

that of GAC-7 (ratio<1). In the majority of cases GDRAC requires about half of the time

needed by GAC-7. In addition, the difference in the percentage of the deleted values can

be justified by the fact that for our approach all the constraints should be activated at the

same time, leading to more deletions, even if the problem is inconsistent. As for GAC-7

the insolubility of the problem can be detected at the beginning without invoking all the

constraints.

64

<p, q>

N
u

m
b

er
 o

f
C

o
n

st
ra

in
t

C
h

ec
k

s

Figure 5.6. DRAC-Int and DRAC-Ext vs. AC7 Results in mean num ber of Constraint

Checks on Pentium III (10 instances are generated for each se t of 〈p; q〉 parameters).

We should note that for our approach, even though all the constraints are called upon,

the local decisions are quickly propagated globally to prove the inconsistency, especially for

constraints in extension.

5.6 Summary

In this chapter we suggested a new agent-based hybrid methodincorporating two proposed

approaches. The common model, used by these approaches, consists of a set of Constraint

agents, each having a local goal, in communication by exchanging asynchronous point-to-

point messages. These messages contain the local inconsistent values in order to help the

agents to reduce the domains of the variables that they involve. This process is performed

until a stable equilibrium state is reached and correspondsto a failure relative to an absence of

solutions or to the achievement of the global goal. Thus, this state is obtained as a side effect

of the interactions among the Constraint agents, whose behaviors are simple and reactive.

As we associate an agent per Constraint, the dual constraint-graph is proved to be appro-

priate for representing any general CN. Consequently, any generalized CSP can be naturally

and directly handled (without any non-binary=⇒ binary transformation).

In this work, we proposed new properties to improve the efficiency of these approaches.

The experimental comparative evaluation, of the two approaches, shows the efficiency of the

65

<p, q>

C
P

U
 T

im
e

Figure 5.7. DRAC-Int and DRAC-Ext vs. AC7 Results in mean num ber of CPU time on

Pentium III (10 instances are generated for each set of 〈p, q〉 parameters).

DRAC approach especially for constraints in extension, thehigh performance of GDRAC

as a distributed arc-consistency technique for any generalCN. These two approaches have

been published in [4, 5, 6, 10] and under reviewing in theInternational Journal of Artificial

Intelligence Tools[1].

66

<p, q>

N
u

m
b

er
 o

f
C

o
n

st
ra

in
t

C
h

ec
k

s

Figure 5.8. G-DRAC-Ext1 vs. G-DRAC-Ext2 results in mean num ber of Constraint Checks

for constraints expressed in extension.

<p, q>

N
u

m
b

er
 o

f
C

o
m

st
ra

in
t

C
h

ec
k

s

Figure 5.9. G-DRAC vs. GAC7 results in mean number of Constra int Checks for con-

straints expressed in intention.

67

Algorithm 1 Start message executed by each Constraint agent Ai

begin

1: for all Xk ∈ V ar(CAi

ij...) do

2: IncValueAi[X k] ← DAi(Xk);

3: end for

4: /∗We assume that all the values are initially non-viable∗/

5: Choose randomly one variable to process Xk ∈ V ar(CAi

ij...);

6: for all (vkl
∈ DAi(Xk) such thatvkl

∈ IncValueAi[X k]) do

7: t’ ← SearchFirstSupport(vkl
, nil);

8: if t 6= nil then

9: addTo(t, index(CAi

ij..., Xk)-1);

10: addTo(TupleSupportAi, t);

11: delete(IncValueAi[X k], vkl
);

12: end if

13: end for

14: for all Xk ∈ V ar(CAi

ij...) such that IncValueAi[X k] 6= ∅ do

15: delete(DAi(Xk), IncValueAi[Xk]);

16: if (DAi(Xk)=∅) then

17: sendMsg(Self, Interface, ”StopBehavior”);

18: for all Xk ∈ V ar(CAi

ij...) such that IncValueAi[X k]6= ∅ do

19: for all Aj ∈ AcqConstAi[X k] do

20: sendMsg(Aj, Self, ”ReduceDomains:IncValueAi[X k] for:Xk”);

21: end for

22: end for

23: end if

24: end for

25: Process next variable;

26: /∗ Return to step 3. to choose another variable∗/

Table 5.1. Results obtained in ratio of the percentage of del eted values and CPU time

〈0.2; 0.2〉 〈0.3; 0.3〉 〈0.4; 0.35〉 〈0.5; 0.4〉

% Del Values 1.05 0.86 1.03 1.15

CPU Time 0.46 0.61 0.46 0.52

〈0.6; 0.4〉 〈0.7; 0.42〉 〈0.8; 0.43〉 〈0.9; 0.44〉

% Del Values 1.05 1.05 0.98 0.99

CPU Time 0.52 0.51 0.61 0.92

68

Algorithm 2 Propagation procedure executed by each Constraint agent Ai

ReduceDomain:delVal for:Xk

1: for all (vkm
∈ delVal) such that (vkm

∈ DAi(Xk)) do

2: delete(DAi(Xk), vkm
);

3: end for

4: for all t ∈ TupleSupportAi such that t[index(CAi

ij..., Xk)]=vkm
do

5: delete(TupleSupportAi, t);

6: for all vkh
∈ t such thath ∈ {1, . . . , |V ar(CAi

ij...)|} andh 6= m do

7: if (last(t)= (index(CAi

ij..., Xk)-1)) then

8: addTo(ReviseValueAi[index(CAi

ij..., Xk)], (vkh
, t));

9: else

10: addTo(ReviseValueAi[index(CAi

ij..., Xk), (vkh
, nil)]);

11: end if

12: end for

13: end for

14: for all (vkh
, t) ∈ ReviseValueAi do

15: if ((Check:vkh
for:Xk) = false)then

16: HDAi ← hideFrom:DAi for:vkh
of :Xk;

17: t’ ← SearchNewSupport:vkh
from:t in:HDAi;

18: if (t’ = ∅) then

19: delete(DAi[X k], vkh
);

20: if (DAi [X k]=∅) then

21: SendMsg(Self, Interface, ”StopBehavior”);

22: addTo(IncValueAi[X k], vkh
);

23: else

24: addTo(t’ , index(CAi

ij..., Xk)-1);

25: addTo(TupleSupportAi, t);

26: end if

27: end if

28: end if

29: end for

30: for all (Xj ∈ V ar(CAi

ij...) such that IncValueAi[X j]6= ∅) do

31: for all (Ak ∈ AcqConstAi[X j]) do

32: SendMsg(Ak, Self, ”ReduceDomain:IncValueAi[X j] for:Xj”);

33: end for

34: end for

69

0

200

400

600

800

1000

1200

1400

<p, q>

Figure 5.10. GDRAC-Ext1 vs. GDRAC-Ext2 results in mean numb er of exchanged mes-

sages for constraints expressed in intention.

70

Chapter 6

DRAC++ to Enforce more than AC

As mentioned before enforcing AC on some hard CN may be fruitless. The main reason is

that the problem might be initially AC. Performing more thanAC may prune more values

and consequently may enhance better the solving process.

In this chapter we discuss a new approach for performing distributed restricted path con-

sistency property on a binary CN.

6.1 Distributed enforcement of restricted path consistency

In the following, we propose a new property based on RPC that we will use in the proposed

protocol in order to prune more inconsistent values from theCN. The main objective is to

improve the efficiency of DRAC approach without loss of correctness.

6.1.1 Knowledge inference heuristic

Property 3 For each path of three variables P3={Xi, Xj , Xk} of an arc-consistent CN. For

each Xi ∈ P3, for each value vil ∈ D(Xi) and its arc-consistent support1 vjh
∈ D(Xj), vil is

an inconsistent value and consequently should be removed from D(Xi) if and only if:

• There is no common support vkm
∈D(Xk) such that TupleSupportAi[vil] = TupleSupportAj [vjh

]

= vkm
with {Xi, Xk} maintained by Ai and{Xj, Xk}maintained by Aj2.

• For all vjf
∈ D(Xj) with vjf

6= vjh
and for all vkn

∈ D(Xk), TupleSupportAi[vjf
]=v ig

with vig first support of vjf
and vil ≺lo vig and TupleSupportAk[vkn

]=v it with vit first

support of vkn
and vil ≺lo vit.

Note that by using bidirectionality between two variables Xi and Xj while enforcing

AC, we can have knowledge about thefirst support of Xi in Xj and not the inverse.

1This support can be the first support or one support, by using bidirectionality, depending on the used order

between variables.
2TupleSupportAi represents the collected knowledge, concerning arc-consistent pair of values for the vari-

ables maintained by Ai, result of performing AC.

71

Therefore, in case it is not possible to check this condition, we need to perform more

constraint checks to verify the inconsistency ofa by applying RPC property as men-

tioned in the following condition,

• The value vjh
∈ D(Xj) is the only support of vil ∈ D(Xi) and there is no common

value support vkm
∈ D(Xk) such that the pair (vil , vkm

) and the pair (vjh
, vkm

) are

simultaneously arc-consistent.

The two first conditions of the above mentioned property are used to infer the oneness of

supports for the value vil to detect whether it is path inconsistent or not without performing

extra constraint checks.

6.1.2 DRAC++ multi-agent model

The proposed model for the new approach DRAC++ involves (as for DRAC model) two

kinds of agents, Constraint agents,Γ, and the Interface agent, communicating by exchanging

asynchronous point-to-point messages. For transmission of messages, we assume that they

are received in the same order they were sent and in a finite delivering time.

The main goal of DRAC++ is to transform any CSPP (X, D, C) into another CSPP’(X,

D’, C) equivalent via interactions among the Constraint agents, which are trying to reduce

their domains. The underlying new proposed protocol is divided into two steps

• First, enforce arc consistency on the problem (the same as DRAC protocol),

• Second, use the knowledge collected from the previous step to remove some additional

values that cannot belong to any solution by enforcing RPC property.

6.1.3 Basic of the enforcing process

At the initial state, the Interface agent creates all the Constraint agentsΓ and activates

them. Each agent Ai reduces the domains of its own variables by computing local first viable

value for each variable.

Let’s recall that for each variable Xi, for each valuevil ∈ D(Xi), if its first supportvjh
∈

D(Xj) is found, then (vil vjh
y) is added to the list of tuple supportsTupleSupportAi, i.e. y=0

(resp. y=1), if vjh
∈ D(Xj) (resp.vil ∈ D(Xi)) is thefirst support ofvil ∈ D(Xi) (resp.vjh

∈

D(Xj)). We must note thatvjh
is the first value support forvil but they are also values support

for each other by applying the bidirectionality property ofrelations associated to constraints.

A value vil is deleted from D(Xi) if and only if it has no viable value support. Each

obtained set of deleted values for a variable should be announced immediately to the con-

cerned acquaintances in order to save fruitless consistency checks for these values by the

other agents. Obviously, reducing domains on an agent may cause an eventual domains’ re-

ductions on another agents. The same process, domains’ reduction and exchange of deleted

72

values, should resumes until the full global arc-consistency is achieved or a domain wipes

out, i.e. the problem is then detected as inconsistent.

Hence, all the agents starts the second step in order to prunemore non-viable values. Each

agent Ai checks first if it belong to a path formed by three variables. This is can be done by

checking its list of constraint acquaintances,ΓAi. The same agent may belong to more than

one path. First for each path, each agent Ai asks its path acquaintance agents3 (Ak and Aj)

for their sets of first support (TupleSupportAk andTupleSupportAj) with {Xi, Xj}maintained

by Ai, {Xi, Xk} maintained by Ak, and{Xk, Xj} maintained by Aj.

For each received set, the agent Ai determines first the boolean matricesMik andMkj

corresponding to the receivedTupleSupportAj and TupleSupportAk respectively. Second,

performs the multiplication of these two matrices. Each entry of the obtained matrixMProdij

indicates the existence (entry equal to 1) or not (entry equal to 0) of a path of length 2

between the two variables Xi and Xj of the agent Ai through the variable Xk. Finally the

agent performs the convolution ofMProdij
and its first support matrixMij by applying the

multiplication operator as follows:

∀m∈ {1, . . . , D(Xi)} and∀ l ∈ {1, . . . , D(Xj)}

MRes[m][l]=MProdij
[m][l] ∗Mij [m][l].

a1

a2

a3

c1

c2

c3

b1

b2

b3

X1

X2X3

C12C13

C23

Figure 6.1. Example of arc-consistent problem.

To illustrate the principle of the proposed protocol, let usconsider the example in Figure6.1

formed by three variables (X1, X2 and X3) and its corresponding graph of first support in

figure6.2. Figure6.3 shows the proposed model corresponding to the above example. Let

us consider the agent A1 responsible of the constraint C13 (TupleSupportA1={(a1 c1 0) (a2

c2 0) (a3 c2 0) (a2 c3 1)}), it will receive the set of first support from its two acquaintances

3All the constraint agents belonging to the same path.

73

a1

a2

a3

c1

c2

c3

b1

b2

b3

X1

X2X3

C12C13

C13

Figure 6.2. The corresponding graph of first support values.

(TupleSupportA2={(a1 b2 0) (a2 b1 0) (a3 b3 0)} andTupleSupportA3={(b1 c2 0) (b2 c1 0) (b3

c3 0)}). It will determine the corresponding following matrices:

M12 =







0 1 0

1 0 0

0 0 1






, M23 =







0 1 0

1 0 0

0 0 1






andM13 =







1 0 0

0 1 1

0 1 0







Then, it will settle the product of the two first matrices:

M12*M23=MProd13
=







1 0 0

0 1 0

0 0 1







Finally the agent should determineMRes usingMProd13
andM13 as mentioned above.

MRes =







1 0 0

0 1 0

0 0 0







For eacha∈ D(Xi) (resp. b∈ D(Xj))

If Σ
|D(Xj)|
h=1 MRes[a][bh]<1 (resp.Σ|D(Xi)|

h=1 MRes[ah][b]<1)

then the agent should check if the valuea ∈ D(Xi) (resp. b∈ D(Xj)) is restricted path

inconsistent or not and this by using the third criterion of the Property3.

Each value that does not satisfy the property conditions should be deleted and conse-

quently propagated. For our example, we have to check onlya3 andc3.

The same process is repeated for the other paths. However, enforcing local RPC on an

agent may lead to AC enforcement, which in its turn leads to more RPC enforcement. Thus

the same process should continue until the stable equilibrium state is reached. This state can

74

C12

C23 C13

TupleSupportA2 = {(a1 b2 0) (a2 b1 0)

TupleSupportA1 = {(a1 c1 0)
(a2 c2 0) (a3 c2 0) (a2 c3 1)}

TupleSupportA3 = {(b1 c2 0)
(b2 c1 0) (b3 c3 0)}

Figure 6.3. The corresponding model for the proposed approa ch

be defined by the satisfaction of all the agents of the system.An agent is satisfied if and only

if it has no arc inconsistent or restricted path inconsistent value. It is noticeable that we can

be content with enforcingLazyRPC, one pass of RPC, in order to reduce the complexity of

the pruning process.

Note that this dynamic allows a premature detection of failure: absence of solutions. Thus,

in the case of failure, the constraint (which has detected this failure) sends a message to the

interface in order to stop the whole process. For thus, the Interface agent in turn send a

message to each constraint to ask them to stop their activities, and informs the user of the

absence of solutions. The maximal reinforcement of global restricted path-consistency is

obtained as a side effect from the interactions described above.

6.2 Discussion

6.2.1 Termination

The global dynamic of DRAC++ approach stops when the system reaches its finite stable

equilibrium state. The state where all the restricted path inconsistent values are pruned or

when one of the domains wipes out. At this state, all the agents are satisfied. However, in

this second case, the problem is inconsistent i.e. no instantiation satisfies all the constraints.

The detection of the stable equilibrium state in a distributed system can be achieved by

taking a snapshot of the system, using the well known algorithm of [19]. Termination occurs

when all the agents are waiting for a message and there are no messages in the transmission

channels. The cost, of the termination process, can be mitigated by combining snapshot

messages with our protocol messages.

75

6.2.2 Complexity

Let us consider a CSP P havingn for the total number of variables,d for the size of the

variable domains ande for the total number of constraints. The number of Agents ise. If

we consider a fully connected constraint network, we will have e-1acquaintances for each

Constraint agent. DRAC++ is composed of two steps, the complexity of the first step is the

same as DRAC approach. The space complexity of DRAC is (n(n-1)/2)*(2d-1) ≃ O(n2d),

while its time complexity, in the worst case, is O(end3).

For the second step, in the worst case, the maximal number of paths for each agent is

(n-1)(n-2)/2≃ O(n2). Each agent will receive the set of supports from its path acquaintance

agents. it will first perform the boolean product of the two corresponding matrices withd3

elementary operations (logical multiplication and logical additions). Second, it will perform

the convolution of the obtained matrix with its set of supports. This process requires O(d2)

operations. Finally for each values of its second variable,the agent will check if it has a

unique support, at least, in one variable of the two variables of the current path. This process

requires O(d3) operations. Thus the added process to DRAC approach requires, in the worst

case, O(en2d3) operations, and O(ed3) as additional space complexity.

6.3 Experimental comparative evaluation

In this section, we provide experimental tests on the performance and efficiency of the dis-

tributed filtering new approach DRAC++. The experiments were performed over randomly

generated instances using four parameters:n is the number of variables,d is the domain size

of each variable,p is the graph connectivity (the proportion of constraint in the network,

p=1 corresponds to the complete graph) andq is the constraint looseness (the proportion of

allowed pairs of values in a constraint). The implementation was developed with Actalk [15]

under Smalltalk-80 environment.

Two kinds of experiments where performed. The main goal of the first branch were dedi-

cated to evaluate the efficiency of performing more than arc consistency for hard distributed

constraint problems. Therefore, we have randomly generated a list of instances according to

the following parameters,n=20; d=10 and〈p, q〉 belonging to the transition phase, i.e., the

most hard instances including arc-consistent and inconsistent problems,〈p, q〉 = {0.2/0.3;

0.3/0.35; 0.4/0.35; 0.5/0.4; 0.6/0.4; 0.7/0.4; 0.8/0.42;0.9/0.43}.

We have carried our experiments only on the most hard binary arc-consistent problems for

DRAC and DRAC++. The main goal is to highlight the usefulness of using meta-knowledge

inferred from the set of first support to prune more inconsistent values on hard CN and with

the minimum amount of additional constraint checks and CPU time. For each〈p, q〉, 70

CNs instances were randomly generated (the total number of generated instances is 560)

and processed using both approaches DRAC and DRAC++. Note that regarding DRAC++

we performed onlylazy RPC in order to show that for some problems only partial RPC is

76

0

1

2

3

4

5

6

0.
2/0

.3

0.
3/

0.3
5

0.
4/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

C
P

U
 t

im
e
 (

in
 s

e
c
o

n
d

s)

DRAC DRAC++

Figure 6.4. DRAC vs. DRAC ++ mean results in term of the required CPU time for hard

arc-consistent problems.

enough to prove the inconsistency especially of almost all over-constrained problems. Table

6.1 illustrates the percentage of arc-consistent instances among the 70 generated ones.

The results reported below represent the average of the obtained outcomes in means of four

criteria, the CPU time in seconds, the percentage of deletedinconsistent values, the number

of constraint checks and the number of exchanged messages for DRAC and DRAC++.

Figures 6.4 and 6.5 show that performing partial RPC on arc-consistent hard problems

allow us to discard more values (up to 7 times for〈 0.5; 0.4〉) and especially to detect

the inconsistency of a high proportion of them in a reasonable additional CPU time. For

example, in Table 6.2. all the over-constrained arc-consistent problems are proved to be

inconsistent for〈0.4; 0.35〉, 〈0.5; 0.4〉; 〈0.6; 0.4〉, 〈0.7; 0.4〉, 〈0.8; 0.42〉 and 〈0.9; 0.43〉.

Table 6.1. Percentage of arc consistent instances among the 70 generated ones

〈0.2; 0.3〉 〈0.3; 0.35〉 〈0.4; 0.35〉 〈0.5; 0.4〉

%Inconsistent Problems 77.14% 85.71% 37.14% 95.71%

〈0.6; 0.4〉 〈0.7; 0.4〉 〈0.8; 0.42〉 〈0.9; 0.43〉

%Inconsistent Problems 67.71% 35.71% 64.21% 58.57%

77

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

P
er

ce
n

ta
g

e
o

f
P

ru
n

ed
 I

n
co

n
si

st
en

t

V
a

lu
es

DRAC DRAC++

Figure 6.5. DRAC vs. DRAC ++ mean results in term of the percentage of pruned incon-

sistent values. All tested instances are initially arc-con sistent.

While for under-constraint problems〈0.2; 0.3〉, 〈0.3; 0.35〉, the difference in the percentage

of reduced values is lesser. As for the additional needed CPUtime for DRAC++, it varies

from 0.15 seconds for sparse problems to 3 seconds for the most dense problems (case〈0.9;

0.43〉).

Figures 6.6. and 6.7. give the obtained results for the number of constraint checks (ccks).

We can say that the new protocol requires only few supplementary ccks especially for the

case of loose CN (cases〈0.2; 0.3〉, 〈0.3; 0.35〉, and〈0.4; 0.35〉). However, for the cases

〈0.5; 0.4〉 and〈0.9; 0.43〉 to prove the inconsistency necessitates greater ccks. Nevertheless,

the true number of ccks needed for these instancesis much greater. The use of the collected

knowledge of first support allows to decrease the amount of ccks and consequently to amend

the efficiency of the pruning process. This claim will be approved in the next branch of

experiments.

As regard with the exchanged number of messages, at first glance it seems that DRAC++

requires a large number of messages to reinforce RPC; this result can be vindicated by the

fact that in the beginning of the second step, all the agents implied in at least one path should

exchange their set of first support, so this may increase the amount of messages especially,

for over-constrained problems.

At this point, we can say that performing ”even lazy” restricted path consistency is worth-

78

0

2000

4000

6000

8000

10000

12000

14000

16000

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

N
u

m
b

e
r

o
f

C
o

n
st

ra
in

t
C

h
e
c
k

s

DRAC DRAC++

Figure 6.6. DRAC vs. DRAC ++ mean results in term of the number of constraint checks

for hard arc-consistent problems.

while especially, for over-constrained problems. This canbe justified by the fact that for

such problems, the probability of having a path of three variables in the CN is high com-

pared to under-constraint problems leading to the discovery of more path inconsistent values

and consequently to more reduction.

As for the second branch of experiment, We brought out two versions of DRAC++:

DRAC++-1 without proposed property and DRAC++-2 with the proposed property , re-

spectively. The main objective of these experiment is to evaluate the performance of the

proposed property using the same previous parameters. The results reported below represent

the average of the obtained outcomes in terms of three criteria: the CPU time in seconds, the

percentage of pruned values, and the number of constraint checks (ccks).

At first glance the result in Figure6.8 shows that DRAC++-2 required little more CPU time

(≃14%) than DRAC++-1. This additional CPU time is used in order to decrease the number

of constraint checks. Figure6.10 shows that the use of the proposed property leads to save

almost 30% of the needed number of ccks. The saving of ccks increases hand-in-hand with

the hardness of the problem.

The difference in the percentage of deleted values noticed between the two versions of

DRAC++ (Figure6.9) is vindicated by the fact that the used instances include restricted path

consistent instances and inconsistent instances. Therefore, the number of pruned values vary

79

0

500

1000

1500

2000

2500

3000

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

N
u

m
b

er
 o

f
E

x
ch

a
n

g
ed

 M
es

sa
g

es
DRAC DRAC++

Figure 6.7. DRAC vs. DRAC ++ mean results in term of the number of exchanged mes-

sages for hard arc-consistent problems.

Table 6.2. Percentage of problems detected as inconsistent among the arc-consistent

problems

〈0.2; 0.3〉 〈0.3; 0.35〉 〈0.4; 0.35〉 〈0.5; 0.4〉

%Inconsistent Problems 62.96% 81.66% 100% 100%

〈0.6; 0.4〉 〈0.7; 0.4〉 〈0.8; 0.42〉 〈0.9; 0.43〉

%Inconsistent Problems 100% 100% 100% 100%

80

0.00

1.00

2.00

3.00

4.00

5.00

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

DRAC++-1 DRAC++-2

Figure 6.8. Results of DRAC ++-1 without the proposed property vs. DRAC ++-2 with the

proposed property, in mean of CPU time.

for both approaches. Table6.3 shows that almost in all casesDRAC++-2 prunes less values

to prove the inconsistency of the instances. While for restricted path consistent instances,

the two approaches prunes the same non-viable values.

We carried out hypothesis testing, dependant two samples t-test, on the above results

found in terms of constraint checks for both approaches DRAC++-1 without property and

DRAC++-2 with property. The goal is to statistically prove the accuracy of the above result.

The formalization of both the null hypothesis and the alternative hypothesis is as follows:

H0 : µCckDRAC++−2 = µCckDRAC++−1

H1 : µCckDRAC++−2 < µCckDRAC++−1

The means of the 70 random samples are measured using Matlab6.1 using significance

level alpha = 0.05. Table 6.4 reports the obtained results for each pair〈p, q〉. Regarding

these results the null hypothesisH0 is rejected in most cases with low significance varying

from 0.0306 to 4.44E-06. The small significance indicates the strong rejection of the null

hypothesis, which means that the result is highly statistical significant. However, for the

cases〈0.4, 0.35〉 and〈0.7, 0.4〉, the null hypothesis is not rejected, which means that only

in these two cases the means in term of constraint checks for both approaches is almost the

81

50%

55%

60%

65%

70%

75%

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

P
er

ce
n

ta
g

e
o

f
P

ru
n

ed
 I

n
co

n
si

st
en

t

V
a

lu
es

DRAC++-1 DRAC++-2

Figure 6.9. Results of DRAC ++-1 without the proposed property vs. DRAC ++-2 with the

proposed property, in mean of percentage of deleted inconsi stent values.

0

2000

4000

6000

8000

10000

12000

14000

16000

0.2
/0

.3

0.3
/0

.3
5

0.4
/0

.3
5

0.5
/0

.4

0.6
/0

.4

0.7
/0

.4

0.8
/0

.4
2

0.9
/0

.4
3

<p, q>

N
u

m
b

er
 o

f
C

o
n

st
ra

in
t

C
h

ec
k

s

DRAC++-1 DRAC++-2

Figure 6.10. Results in terms of the mean of the required numb er of ccks

82

Table 6.3. Results of the percentage of deleted values for th e inconsistent instances.

〈0.2; 0.3〉 〈0.3; 0.35〉 〈0.4; 0.35〉 〈0.5; 0.4〉

DRAC++-1 66.50% 68.70% 68.09% 61.00%

DRAC++-2 63.41% 68.7% 68.09% 71.00%

〈0.6; 0.4〉 〈0.7; 0.4〉 〈0.8; 0.42〉 〈0.9; 0.43〉

DRAC++-1 62.42% 70.13% 68.26% 68.71%

DRAC++-2 69.42% 70.24% 68.26% 68.71%

Table 6.4. Dependent two samples t-test for the number of con straint checks means of

both approaches DRAC ++ − 1 and DRAC ++ − 2, for each pair 〈p, q〉.

Decision Significance Confidence Interval

0.2/0.3 reject H0 0.0147]-Inf, -50.9654]

0.3/0.35 reject H0 3.03E-05]-Inf, -485.9168]

0.4/0.35 accept H0 0.0803]-Inf, 64.4363]

0.5/0.4 reject H0 4.44E-06]1.0e+003* -Inf, -1.8078]

0.6/0.4 reject H0 0.0158]-Inf, -336.4257]

0.7/0.4 accept H0 0.0819]-Inf, 90.6016]

0.8/0.42 reject H0 0.011]-Inf, -405.7068]

0.9/0.43 reject H0 0.0306]-Inf, -224.9553]

same. The significance for both cases is around 0.0800 which means that we would have

observed values of T more extreme that the one in this sample in 800 among 10000 similar

experiments.

6.4 Summary

The main objective of this chapter is to achieve full global restricted path consistency

(RPC), for any binary constraint network, in an entirely distributed way without any help

from centralized algorithms. Therefore, we described a novel agent-based approach DRAC++

which is a continuity of the work presented in Chapter5 in which we prune substantially more

non-viable values than DRAC approach with the minimal amount of constraint checks and

reasonable CPU time.

The termination and complexity of the new protocol have beenproved. The experi-

mental comparative evaluation shows that this approach is worthwhile especially for hard

over-constrained problems. The new approach is based on DRAC approach and have been

83

published in [12, 13, 14, 15] and under reviewing in theInternational Journal of Artificial

Intelligence Tools[1].

84

Algorithm 3 Start message executed by each Constraint agent Ai

begin

1: for all path (Xi, Xj and Xk) such that Xi, Xj ∈ Var(CAi

ij) do

2: /∗Assume that the problem is initially arc consistent and the agent Ai has received

TupleSupportAj andTupleSupportAk from its two Constraint path acquaintances Aj

and Ak maintaining CAj

kj and CAk

ik respectively/∗

3: CreateMik andMkj corresponding toTupleSupportAk andTupleSupportAj ;

4: CreateMij corresponding to itsSPXiXj
;

5: ComputeMRes= Mik * Mkj;

6: Perform the convolution ofMRes andMij as defined above;

7: end for

8: for all Xi ∈ Var(CAi

ij) do

9: for all vil ∈ DAi(Xi) do

10: if
∑

l∈[1..|DAi(Xj)|]
MRes[vil][l]< 1 then

11: if ((EnforceRPC:vil for: Xi)= false)then

12: addTo(IncValueAi[X i], vil);

13: end if

14: end if

15: end for

16: end for

17: for all vil ∈ IncValueAi[X i] do

18: delete(DAi(Xi), vil);

19: if DAi(Xi)=∅ then

20: Send(Self, Interface, ”StopBehavior”);

21: end if

22: end for

23: for all Aj ∈ AcqConstAi(Xi) do

24: Send(Aj, Self, ”UpdateDomain: IncValueAi[X i] for: Xi”);

25: end for

85

Algorithm 4 EnforceRPC: for:message executed by each invoked agent Ai

EnforceRPC: a for : Xi

1: total← 0;

2: for all t ∈ TupleSupportAi do

3: if t[i] > a andt[3]=(2-i) then

4: total← total+1;

5: end if

6: if t[i] = a then

7: nbsupport← nbSupport+1;

8: uniqSup← t[j];

9: end if

10: end for

11: if nbSupport≤ 1 then

12: if total < (|DAi(Xj)| -1) then

13: if ((CheckOneSupport:Xi for: a from: uniqSup) = true)then

14: Determineset1set of support of Xi=a in Xk;

15: Determineset2set of support of Xj = uniqSupin Xk;

16: if (set1 ∩ set2 = ∅) then

17: c← smallestsupport ofa;

18: found← false;

19: while founddo

20: c’ ← searchNextSupport:uniqSup of:Xj in:Xk;

21: if (a, c’) satisfies Cik then

22: found← true;

23: return false;

24: end if

25: end while

26: end if

27: end if

28: end if

29: end if

30: return true;

86

Chapter 7

Taking DRAC to the Real World: An

Efficient Complete Solution for Static

Meeting Scheduling

In the previous chapter we introduced a new agent-based approach to enforce AC on any

CN. The obtained results motivated us to take this approach to a real world application,

meeting scheduling (MS) problem. As we mentioned before, this problem is still attracting

the attention of many researchers due especially to its preeminent role in the success of

many organizations. However, DRAC cannot solve a problemP but more precisely, allow to

produce a new instanceP’ more simple and equivalent, i.e., having same set of solutions.

In this chapter we propose a novel complete approach to solveany MS problem with

predictable structure, i.e., a problem where the set of coming meetings is known beforehand

and fixed. This approach use DRAC protocol during search for solutions in order to make the

search easier and also to detect earlier global inconsistency. In the following we introduce

first our proposed formalization for any static MS problem. Second, we describe how DRAC

model can be adapted to our MS solver followed by a detailed description of the global

scenario for static MS solver. Third we discuss the termination and complexity properties.

Then, we present the experimental results. Finally we summarize this chapter.

7.1 Formalization for any static meeting scheduling problem

We propose to formalize any static MS problem as a VCSP (valued constraint satisfaction

problem) [88].

Definition 38 We define a static Meeting Scheduling problem, as a valued constraint satis-

faction problem (VCSP) quintuples (X, D, C, S,ϕ) where

• X = {X1, . . . , Xn} is the set ofn meetings that need to be scheduled. Xk with k ∈ {1,

. . . n} denotes thekth meeting to schedule.

87

• D = {D1, . . . , Dn} is the set of all possible time slots for all the meetings X. Di={dti1,

. . . , dtid} (with |Di|=d), is the set of possible time slots for the meeting Xi.

• C is the set of all constraints of the problem. We divide the set C into two types of

constraints: constraints related to the users and constraints related to the meetings.

For the former, we can consider:

– hard constraints: Ch related to the non-availability of all users.

– soft constraints, Cs related to the preferences of all users towards the possible

dates in their calendar.

With regard to the second type of constraints, CallDiff , it represents the set of allDif-

ferent constraints relating each pair of meetings Xk and Xl sharing at least one partic-

ipant Aj (Aj ∈ Part(Xk) and Aj ∈ Part(Xl)1.).

• ϕ : C→ E. C={Ch ∪ CallDiff ∪ Cs}, for each hard constraint ci ∈ {Ch ∪ CallDiff}

we associate a weight⊥ and for each soft constraint cj ∈ Cs we associate a weight

wj ∈ [0..1]2. This weight reports the degree of preference of a user to have a meeting

at the date dtj.

• S represents the valuation structure that defines the proposed optimality criteria (dis-

cussed in next section) and will be used to find the ”best” solution.

In addition, for each meeting Xk we assign a different weight WXk
∈ [0..1] to define the

degree of importance of Xk (k ∈ {1, . . . , n}) and it is used to allow the processing of the

most importantmeeting3 at first.

Solving a MS problem consists in finding a ”good” assignmentsl∗ ∈ Sol:=D1× . . .× Dn

of the variables inX={X1, . . . , Xn} according to their importanceWXk
, such that all the

hard constraints are satisfied while maximizing the utilityof the Proposer agents (selfish

protocol). TheGU is defined by the summation of the preferences of all the attendees for all

the scheduled meetings such that:

sl∗ = arg max sl∈SolGU(sl) (7.1)

GU =
∑

k∈{1,...,|sl|}

wAi

k (7.2)

88

User
1
 Global Calendar

M Tu W TH F

1 0.2 0.8 0.14

2 0.5 0.75 0.26

3 0.23 0.23 0.62

4 0.44 0.65

5 0.65 0.35 0.33 0.48

6 0.52 0.48 0.28 0.29 0.69

7 0.86 0.88

8 0.9 0.74

User
2
 Global Calendar

M Tu W TH F

1 0.23 0.26 0.15

2 0.45 0.43 0.68

3 0.68 0.58 0.52 0.95

4 0.12 0.55 0.14 0.36 0.86

5 0.39

6 0.48

7 0.98 0.15 0.23 0.2

8 0.72 0.26 0.14 0.22

Figure 7.1. Example of a user calendar consisting of non-ava ilability of the user (black

boxes), the possible time slots for the current meetings (gr ay boxes) and the favorite time

slots with their corresponding degree of preferences.

To illustrate this formalization more clearly, let us consider the following example con-

sisting of 2 users, each entrusted with the task of scheduling one meeting. Assume that both

meetings require the participation of all the users. Figure7.1 illustrates the preferences of

each user. The underlying MS formalization (X, D, C, S, ϕ) is as follows:

• X={X1, X2},

• D={D1, D2}, Dk is represented by the gray boxes in Figure 7.1, i.e., possible time slots

for the underlying meeting.

• C= CH ∪ CS where:

– CH is represented by both the black boxes in Figure 7.1 and all the allDiff con-

straints existing between each pair of meetings (X1 6= X2).

– CS represented by the clear boxes in Figure 7.1. The white boxesrepresent the

favorite time slots while the gray boxes represent the possible time slots for the

current meeting to schedule. The number inside the boxes indicates the degree

of preferenceswk of each user for each time slot in their calendar.

7.2 DRAC model adapted to the MS problem

Lets recall that The DRAC model uses two kinds of agents:

1The functionPart(Xk) denotes all the participants in the meetingXk
2This assumption does not contradict the ability of our protocol to support any kind of preferences’ mea-

surement evaluation.
3We assume that the users report truly and accurately the importance of their meetings.

89

• Constraint agents

• Interface agent

Each agent has its own knowledge (static and dynamic), a local behavior to satisfy, and a

mailbox to store incoming messages. The agents communicateby exchanging asynchronous

point-to-point messages. An agent can send a message to another only if it knows the other

belongs to its acquaintances. For transmission between agents, we assume that the messages

are received in a finite delivery time and in the same order they are sent. Messages sent

from several agents to a single one may be received in any order. The Interface agent is an

intermediate interface between all the Constraint agents.It is added in order to create the

agents and, most importantly, to inform the users of the result.

This model can be ”well” adapted to the MS problem. In this problem, each Constraint

agent can be considered as a User agentAi acting on behalf of a human user. A User agent

must maintain the concerned human user’s calendar for his/her availability, preferences and

the already planned meetings. The acquaintances of an agentconsist of all of the agents that

should be present in the same meeting, called Participant agents (represented asPart(Xk)).

Accordingly, in our system an agent is considered as a Proposer agent when it has a meeting

to schedule. It can be also considered as a Participant agentif it is a participant in another

meeting proposed by another agent of the system.

Each scheduled meeting that has been registered (represented asCalendarAi) is considered

as a new constraint. Therefore it must be added to the set of hard constraints maintained by

the corresponding agents. Each agentAi maintains a VCSPAi for which the variablesXAi

∈ X represent the meetings dates to found for its user’s set of meetings (represented as

MeetingsAi), while the constraintsCAi ∈ C (CAi=CAi

H ∪ CAi

S ∪ CAi

allDiff) represent the non-

availability, the preferences, the timetabling of the corresponding user and the constraints

relating to each pair of its meetings.

Thus in the proposed model, the aforementioned constraintsrepresent the intra-agent con-

straints forAi while the inter-agent constraints are represented by a set of strong constraints,

i.e., equality constraints. An equality constraint existsbetween agentsAi andAj if and only if

at leastone meetingXAi

k (resp. XAj

h) exists, such thatAj ∈ Part(XAi

k) (resp. Ai ∈ Part(XAj

h)).

It is noteworthy that the inter-agent constraints are dynamic because the participants and their

number in a meeting differ from one meeting to another. Each attendant has a set of meeting

preferences for each particular meeting. The local goal is to schedule meetings such that all

its hard constraintsCH are satisfied while trying to maximize theGU. The global goal is to

schedule the maximum of users meetings satisfying all the inter-agent constraints.

In this approach, we consider the standpoint of the host of each meeting (who can be

the director of the company or the manager of the department,etc.). In our scenario, we

will adopt the natural, innately fair and self centered behavior of a human being; since the

knowledge of a user is self centered knowledge. Hence, each agent in the meeting scheduling

90

process tries to satisfy its local goal while maximizing itspreferences (selfishprotocol). The

adopted criteria for an MS solver should guarantee some common attributes for both the

resulting decision and the scheduling process itself. Furthermore, in order to ensure such

features for the solver and the outcomes, the proposed system should be able to extract the

truthful preferences [35] and availabilities of the users.

Hence, the optimal solution is based on self-centered initiator preferences. Overbidding

the preferences for any time cannot change the outcome; therefore the dominant strategy for

every agent is to reveal its utility values truthfully. Obviously, the optimality criteria may dif-

fer from one scenario to another according to the measures adopted by the system designer,

e.g., a pure utilitarian approach [35], the Nash approach [75], and others, while, the global

proposed dynamic remains the same for any chosen measurement. In the case of a global

measurement, e.g., maximizing the summation of the participants’ utilities, we propose as

stated in the work of [35] to use convenience points to express preferences over alternative

times for every proposed new meeting. In addition, we propose to embed the Clarck Tax

mechanism [34] to incite the users to truly express their preferences towards the meeting’s

importance and users’ possible timing. As for the non-availability of the participant, we

assume that the users will reveal their real availability ifnecessary.

Hence, each participant in a meeting will get a fixed amount ofconvenience points to

spread among its availability-times according to its preferences and this for each new meeting

added to the system. The Tax can be computed on the amount of convenience points given

for the next meeting. In our formalization, the weightswAi

k associated to soft constraints will

be dynamic and differs according to the current meeting to schedule. The sum of weights

should be equal to the current amount of convenience points.

7.3 Global scenario for static MS solver

The global objective of the proposed approach is to scheduleall meetings for all of the

users while maximizing their local preferences. In addition, we focused on minimizing the

total amount of exchanged messages. The multi-agent meeting scheduling negotiation pro-

tocol is divided into two steps:

• The first step uses the basic idea of the DRAC approach, which consists in trans-

forming the original MS problem into another equivalent MS’. This step is needed to

reinforce some level of local consistency [65] (node and arcconsistency) in the initial

problem.

• The second step solves the obtained MS problem while maintaining arc-consistency

and this is accomplished via interactions and negotiationsbetween Participant agents

and the Proposer agent. Each Proposer agent searches for thebest solution for its

meetings that, on the one hand, fulfils the condition given inthe previous section, and

on the other, satisfies all hard constraints.

91

When a user wants to host a meeting, he has to run the Interfaceagent, which will activate

the corresponding Proposer agent and make it interact with all of the Participant agents.

More than one Proposer agent can be activated at the same time, i.e., in the case of multiple

users who want to schedule their meetings.

Algorithm 5 Start message executed by each Proposer agentAi.

begin

1: for all XAi

k ∈MeetingsAi do

2: for all dtkl
∈ DAi

k such thatdtkl
∈ CH

Ai
OR∃ XAj

h / XAj

h ∈ CalendarAi andXAj

h = dtkl

do

3: DAi

k ← DAi

k dtkl
;

4: end for

5: end for

6: if (DAi

k =∅) then

7: change calendarDAi

k of XAi

k ;

8: else

9: for all Aj ∈ Part(XAi

k) do

10: Send(Aj ,self, ”ReduceCalendar:DAi

k for:XAi

k ”);

11: end for

12: end if

Each activated Proposer agent must first reduce the time slots of the corresponding meet-

ings according to its hard constraints, constraints defining the non-availability of the user.

This process can be viewed as a local reinforcement of node consistency and aims to reduce

the meetings’ slot times by eliminating the dates upon whichthe meeting cannot be held. In

other words, a meeting cannot be held on a date defined as a non-available date for the user

or already planned for another meeting.

If the time slots for a meeting become empty after reduction that indicates that the corre-

sponding user is not available for all of the proposed dates of this meeting. The time slots of

this meeting must then be changed. Otherwise, the Proposer agent must send the obtained

reduced time slots for all of the current meetings to be scheduled to all of the Participant

agents. Each Participant agent that receives this message starts first by eliminating both the

non-viable dates from the received time slots of the meetings (dates that correspond to its

non-availability), and all the dates taken by already scheduled meetings. After that, it returns

the obtained time slots to the sender agent.

At first, the Proposer agent collects all the received reduced slot times, then, begins by

scheduling its meetings. It tries to first find the proposal that maximizes its preferences and

then sends it to the concerned acquaintances. If the Proposer agent cannot find a solution to

this problem, it changes the time slot of this meeting. Each agent, that receives this proposal,

92

Algorithm 6 Main procedures executed by each Proposer agentAi

ReduceCalendar:D for:m

1: for all d ∈ D such thatd ∈ CAi

H ORXAj

h / XAj

h ∈ CalendarAi andXAj

h = d do

2: D← D \ d;

3: end for

4: Send(Sender, self, ”Reply:D for:XAj

h ”);

Reply:D for :XAi

k

1: SetD← SetD∪ D;

2: if (Size(SetD)=|Part(XAi

k)|) then

3: D← D ∩ SetDi∈{1,...,|SetD|}[i];

4: end if

5: if (D = ∅) then

6: ChangeXAi

k possible times;

7: else

8: Choosed ∈ D / satisfy Eq.(1);

9: for all Aj ∈ Part(XAi

k) do

10: Send(Aj, self ,”ReceiveProposal:d for:XAi

k ”);

11: end for

12: end if

must first check if it has, meanwhile, accepted another proposal for the same date. In the

negative case, the agent will first update its hard constraints by adding the new proposal, then

update the dates of its not-yet-scheduled-meetings by eliminating the dates that correspond

to the same date of the just scheduled meeting, in order to maintain the arc-consistency.

Finally it informs the Proposer agent of its agreement. However, if the agent has another

meeting already scheduled at the same time as the proposed meeting, it must send a negative

answer to the Proposer agent and ask it to change its proposal.

Accordingly, each agent that has proposed a meeting and received at least one negative

answer must change its proposal. Consequently, this agent must decrease its degree of pref-

erences and the same process is repeated until an agreement is reached among all of the

participants. If after testing all of the solutions no agreement is reached, the Proposer agent

is obliged to inform the participants of the meeting cancelation.

The aforementioned dynamic resumes running until the system reached its stable equi-

librium state. This state can be defined as the satisfaction of all agents in the system. The

satisfaction of an agent is defined as the scheduling of all its meetings or the cancelation of

the ones that cannot be held at that time.

We should emphasize the fact that in this paper we assume on the one hand that each

newly scheduled meeting will be considered as a hard constraint, and on the other hand, each

93

Algorithm 7 Main procedures executed by each Proposer agent Ai.

ReceiveProposal:d for :X

1: res← true;

2: if (∃ XAj

h ∈ CalendarAi andXAj

h = d) then

3: res← false;

4: end if

5: if (res=true)then

6: Add(CalendarAi, (XAj

h , d));

7: Update setCH ;

8: end if

9: Send(Sender, self, ”Response:resfor:X”);

Response:resfor :X

1: setRep← setRep∩ res;

2: if (Size(SetRep)=|Part(XAi

k)|) then

3: if (SetRep[i],i ∈ {1..|SetRep|}/ SetRep[i]=false)then

4: Choose another dated’;

5: for all Aj ∈ Part(XAi

k)$ do

6: Send(Aj, self, ”ReceiveProposal:d’ for:XAi

k ”);

7: end for

8: else

9: for all Aj ∈ Part(XAi

k) do

10: Send(Aj, self, ”Confirmation:d for:XAi

k ”);

11: end for

12: end if

13: end if

agent performs a selfish protocol. This choice is used in order to avoid dynamic changes and

especially to escape from an infinite processing loop. This work can be considered as the first

version of the proposed approach. The integration of the dynamic process will be discussed

in the next chapter where the proposed protocol focused on maximizing the utility of all the

agents of the system.

7.4 Theoretical discussion

7.4.1 Termination detection

The dynamic of the MSRAC approach ends when the system reaches its stable equilibrium

state. In real application, this state will be temporary, and the whole system will restart with

94

new sets of meetings to schedule. However, at the stable equilibrium state all the agents

are satisfied; that satisfaction is defined for each agent by two aspects, the completion of

scheduling all its current meetings, and the acquisition ofall the confirmations from all the

other Proposer agents. However, this approach is guaranteed to find a useful solution, i.e.,

the best one for the Proposer, if it exists. The host of each meeting will check all possible

dates from the most preferred to the less preferred one to schedule its meeting. Nevertheless,

to prove the termination of this approach we have to prove that the underlying protocol never

goes into an infinite loop while scheduling a meeting.

Let’s assume that this approach goes into an infinite loop while scheduling a meeting. To

schedule a meetingXi
l all the participants will cooperate together to find the bestdate for

this meeting. The system will go into an infinite loop while schedulingXi
l if and only if the

Participant agents reprocess the checked dates (cycle) when no solution is found. However,

the number of possible dates meeting is discrete and finite. Moreover, every unsuccessfully

checked date is removed from the system to avoid returning toit later. The system will stop

when a ”good” date is found or when all possible dates forXi
l are processed and no possible

solution has been found. Hence our assumption is not true.

We have to note that the satisfaction state of all the agents in a distributed system can

be achieved by taking snapshots of the system, using the well-known algorithm of Chandy-

Lamport in [19]. Termination occurs when all agents are waiting for a message and there

is no message in the transmission channels. The cost of the termination process can be

mitigated by combining snapshot messages with our protocolmessages.

7.4.2 Spatial and temporal complexity

Let us consider an MS problem implyingn for total number of users,d for the maximal

number of possible dates per meeting,|CH | = cH for the maximum number of preferred dates

per user and|CS| = cS for the maximum number of non-available time slots per user.The

total number of agents in this system isn the same as the total number of users. Suppose that

each meeting involvesn attendees and each user hasmalready scheduled meetings in his/her

calendar. Let’s compute the complexity of adding a new meeting into the existing schedule.

The solving process of the proposed scenario is divided intotwo steps. In the first step, the

pruning step, the initiator agent will perform O((cH+m)d) operations to filter the slot times

of the new event. Then, this agent will transmit the obtainedset of possible remaining dates

to the (n-1) attendees to carry out the same process. The time complexity of this step, in the

worst case, is O(nd(cH+m)).

For the second step, the initiator agent will first determinethe intersection of the sets of

the received times, leading to (n-1)d2 operations, then choose one proposal amongd dates

, according to the proposed optimal criteria; this process requires O(cSdlog(d)) operations.

The agent will send its proposal to the attendees to check it.Each attendee will perform O(m)

operations to check if it has received in the meanwhile another proposal for the same date.

95

Then the total temporal complexity of the second step is O((n-1)d2+cSdlog(d)+ nm). Finally,

the temporal complexity for each new coming event is, O(nd(cH+m)+nd2+ cSdlog(d)+nm)

in the worst case. The spatial complexity for all the agents is O(n(cS+cH+d+m)) in the worst

case, where (cS+cH+d+m) is the total size of the initial calendar for each agent.

7.5 Experimental comparative evaluations

To evaluate the proposed approach, we have developed the multi-agent dynamic with

Actalk, an object oriented concurrent programming language using the Smalltalk-80 en-

vironment. In our experiment, we generated random meeting scheduling problems. The

parameters used for a meeting problem are:n agents in the system,m meetings per agent,p

participants in a meeting,D global calendar,cH number of initial hard constraints per agent,

cS number of initial soft constraints per agent,d maximal possible time slots per event,wAi

k

weights for the soft constraints, andWAi

Xk
weights of the meetings (the weight of each hard

constraint is equal to 1).

In order to compare our approach with that reported by Tsuruta and Shintani in [101],

we used the same parameters to run both algorithms on randomly generated samples. Note

that the approach in [101] presents some restrictions towards; first the handle of the hard

constraints (i.e., all the constraints could be relaxed by this approach) and second, the dis-

crimination between meetings. This approach processes allthe proposed meetings with the

same importance independently of neither the proposer nor the attendants. However in the

real world, all meetings are not equivalent. For this reasonwe have brought to our consid-

eration the notion of meeting priority in our formalizationby associating a weightW Ai

Xk
to

reflect its greatness. Our approach tries then, in its solving process, tofirst schedule the most

important meeting maintained by each agent, unlike the approach in [101].

In this manner, we attempt to describe ideally the real worldmeeting scheduling problems.

Therefore two kinds of experimentation are given in this section. For the first kind, we

assume that for each generated problem, we have only soft constraints. We carried out the

two approaches on the same meeting instances with:n=15, m∈ {3, 5}, p = 10, cS ∈ {20,

40, 60, 80, 100}, andWAi

Xk
∈ [0..1], wAi

k ∈ [0..1] were randomly chosen. (35 instances are

generated for each〈m; cS〉). The initial calendarD in each problem is equal to 100.

Table 7.1 shows the obtained mean results for the ratio of CPUtime of the approach in

[101] divided by the CPU time of MSS approach. In order to analyze these results, let us

consider the case〈3; 20〉. Both approaches require almost the same CPU time. For this

case, the number of possible time slots is not large leading to a few number of constraints,

so the approach in [101] can rapidly find a solution for each meeting without relaxing many

constraints, causing few iterations on the same meeting. However, when the amount of

soft constraints increases, the needed time for the approach in [101] almost double. With

regard to MSS, the increment in the CPU time is largely lower than Tsuruta et al. approach.

Obviously, the main explanation of this result is that For Tsuruta et al. approach (see chapter

96

4), the agents of the system (the group agent and the participant agents) should exchange the

possible constraints according to the time slots of the current meeting to schedule. As the

number of meeting constraints grows, and so does the probability of getting the same dates

for the meetings. Therefore, the number of relaxed constraints by the approach in [101]

increases leading to additional iterations for the same meeting and hence an increase in the

CPU time.

Table 7.1. Mean results of MSS approach and Tsuruta et al. app roach in term of the CPU

time for meeting problems without hard constraints. Ratio CPU= CPU time Tsuruta et

al. approach / CPU time MSS.

〈3; 20〉 〈3; 40〉 〈3; 60〉 〈3; 80〉 〈3; 100〉

CPU time Tsuruta et al. App. 604.57 1894.74 4479.89 8378.06 13781.29

CPU time MSS 452.49 520.43 617.63 724.40 863.09

Ratio CPU 1.34 3.64 7.25 11.57 15.97

〈5; 20〉 〈5; 40〉 〈5; 60〉 〈5; 80〉 〈5; 100〉

CPU time Tsuruta et al. App. 2116.14 6471.34 14849.86 23997.46 38355.91

CPU time MSS 776.14 871.71 1020.00 1204.80 1466.51

Ratio CPU 2.73 7.42 14.56 19.92 26.15

In addition, The protocol proposed by Tsuruta et al. proceeds by setting up a threshold

equal to zero for the constraints to relax and then through negotiations with personnel agents,

the group agent tries to relax the constraints, i.e., by incrementing the threshold, until attain-

ing a compromise among participants. while our approach relies on aselfishprotocol. We

try to find the solution that maximizes the Proposer’s preferences. Although in our approach;

we try to process the most important meetings at first.

The approach in [101] takes more time than our approach in most cases because both the

number of constraints and the number of meetings grow. Furthermore, in MSS approach

each agent tries to perform all its meetings asynchronouslyand in parallel while for the

approach in [101], it is done in a synchronous sequential manner for the same group agent4.

As for the second kind of experimentation, i.e., to appraisethe greatness of the enforce-

ment of local consistency in the solving meeting problems, we have chosen to measure the

percentage of reduction made by the first step of our approach. For this purpose, examples

including hard constraints were randomly generated withn=10,m=3,p∈ {3, 5, 7}, cH ∈ {0,

10, 20, 30, 40, 50} andd∈ {100%, 83%, 66%, 50%, 33%, 16%} corresponding respectively

to eachcH . For each pair〈p, cH〉, we first generated 35 instances, then we measured the

average of the achieved results.

4Meetings are proceeded in parallel within group agents.

97

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50

Hard Constraints C h

C
P

U
 T

im
e

(i
n

 m
il

li
se

co
n

d
s)

Mss App. for p=3 Tsuruta et al. App. for p=3

Mss App. for p=5 Tsuruta et al. App. for p=5

Mss App. for p=7 Tsuruta et al. App. for p=7

Figure 7.2. MSS approach vs. Tsuruta et al. approach in term o f mean of the required

CPU time in milliseconds. (35 random samples generated for e ach pair 〈Ch, p〉).

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50

Hard Constraints C h

P
er

ce
n

ta
g

e
o

f
S

ch
ed

u
le

d
 M

ee
ti

n
g

s

Mss App. for p=3 Tsuruta et al. App. for p=3

Mss App. for p=5 Tsuruta et al. App. for p=5

Mss App. for p=7 Tsuruta et al. App. for p=7

p=7

p=5

p=3

Figure 7.3. MSS approach vs. Tsuruta et al. approach mean res ults in terms of the

percentage of scheduled meetings.(35 random samples gener ated for each pair 〈Ch, p〉).

98

These results are expressed in term of five criteria: (i) the CPU time spent by each of the

two approaches, (ii) the percentage of scheduled meetings, (iii) the percentage of reduced

soft constraints performed by the first step of the proposed approach, (iv) the required num-

ber of messages passed and (v) the amount of exchanged information. We have introduced

some modifications to the approach in [101] to make it worthwhile for both hard and soft

constraints. These two approaches were carried out on the same meeting examples. Figures

7.2 and 7.3 show the achieved mean results of both approachesin term of CPU time and the

percentage of scheduled meetings. These results show that our approach requires less CPU

time than approach [101]. For example in the case of 7 participants and 50 hard constraints,

the problem is over-constrained and thus no meetings can be planned, i.e., no agreement

can be reached between all the attendants. Therefore, our approach can discover merely the

absence of solution from the first step, and before starting the solving process.

In the case of 7 participants and 20 hard constraints, only a few meetings can be planned.

Table 7.2 shows that the percentage of pruned dates from possible ones is high (=96,66%).

Therefore, our approach is able to schedule the possible meetings in considerably less CPU

time than approach [101], i.e., the approach in [101] requires more than five times the time

needed by our approach. This result can be elucidated by the fact that the first step is useful

in order to discard the dates that cannot be in any solution and consequently avoid exploiting

them in the solving process, leading to decreased CPU time consumption.

Table 7.2. MSS approach mean results in term of the percentag e of reduced time slots for

each pair 〈p, cH 〉.

〈3; 0〉 〈3; 10〉 〈3; 20〉 〈3; 30〉 〈3; 40〉 〈3; 50〉

% Reduction 0.00% 51.44% 80.17% 94.04% 99.13% 99.98%

〈5; 0〉 〈5; 10〉 〈5; 20〉 〈5; 30〉 〈5; 40〉 〈5; 50〉

% Reduction 0.00% 67.25% 91.49% 98.82% 99.95% 100.00%

〈7; 0〉 〈7; 10〉 〈7; 20〉 〈7; 30〉 〈7; 40〉 〈7; 50〉

% Reduction 0.00% 77.14% 96.66% 99.72% 100.00% 100.00%

Nevertheless, for the percentage of the meetings scheduled, the approach in [101] planned,

for some cases, more meetings than our approach. This is defended by the fact that for our

approach we tried to plan the most important meetingat first. For example, in the case〈7;

20〉 the 40% of the meetings scheduled by the approach in [101] may or may not contain the

most important meetings in the problem. Meanwhile, with ourapproach we are sure that the

14% of the meetings scheduled are the most important because they were first chosen to be

processed using their weights.

As for the number of exchanged messages needed to reach an agreement among all the

99

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50

Hard Constraints C h

N
u

m
b

e
r

o
f

E
x

c
h

a
n

g
e
d

 M
e
ss

a
g

e
s

Mss App. for p=3 Tsuruta et al. App. for p=3
Mss App. for p=5 Tsuruta et al. App. for p=5
Mss App. for p=7 Tsuruta et al. App. for p=7

Figure 7.4. Mean results in term of the number of exchanged me ssages.

users, Figure7.4 shows that the proposed approach requiresmany fewer exchanged messages

than the Tsuruta approach [101]. This number increases withthe number of participants in

the meeting, even if the problem has no solution, i.e., thereis no possible time at which

all the participants can be gathered. However, with the proposed approach, the percentage

of reduced values increases with both the number of participants and the number of hard

constraints, consequently the number of exchanged messages decreases.

Finally, concerning the size of exchanged messages, we measured the required amount

of information to reach a consensus among participants for both approaches. Figure 7.5

shows that in all cases MSS transfer less information than Tsuruta et al. approach. Let’s

recall that for Tsuruta et al. approach, the negotiation process is based essentially on sending

constraints related the user. The amount of the transferredinformation decreases at each

step of the iteration process. Nevertheless, this amount largely increases with the number

of participants in the meeting. Regarding MSS approach, only during first step agents need

to exchange all the possible time slots for the concerned meeting. This step is necessary in

order to reduce the set of meeting’s dates and consequently to avoid as much as possible the

checking of initially non-valid dates.

We performed statistical hypothesis testing to evaluate the fairness of the obtained random

experimental results. In order to compare the means of the samples’ results obtained for both

approaches in terms of CPU time and percentage of scheduled meetings, we measured them

using Matlab6.1 the dependent two samples t-test with significant levelα = 0.05.

For the mean in CPU time, we formalized the null hypothesisH0 and the alternative hypoth-

100

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

Hard Constraints C h

Q
u

a
n

ti
ty

 o
f

E
x

c
h

a
n

g
e

d
 I

n
fo

rm
a

ti
o

n

Mss App. for p=3 Tsuruta et al. App. for p=3
Mss App. for p=5 Tsuruta et al. App. for p=5
Mss App. for p=7 Tsuruta et al. App. for p=7

Figure 7.5. Mean results in term of the necessary amount of ex changed information, i.e.,

necessary number of slot times exchanged to reach an agreeme nt.

esisH1 as follows:

H0: µMSS App. = µTsuruta et al. App.

H1: µMSS App. < µTsuruta et al. App.

In all cases, i.e., for each pair〈cH , p〉, with 34 degree of freedom, the null hypothesis

(H0)) is rejected with significance equal to zero, which means that it never happens even

by chancethat the observed value of T-statistic could be as larger or larger with confidence

interval 95%.

As for the means in term of the percentage of scheduled meetings, we carried on the fol-

lowing hypothesis testing:

H0: µMSS App. = µTsuruta et al. App.

H1: µMSS App. 6= µTsuruta et al. App.

For the cases〈0, 3〉, 〈0, 10〉, 〈0, 5〉, 〈50, 0〉, 〈0, 7〉 and〈50, 7〉 the percentages of scheduled

meetings are exactly the same for both approaches. However for the remaining cases and

according to the obtained two samples t-test result, the null hypothesis is rejected for all pair

〈cH , p〉 with maximum significance=0.0399 for〈40, 7〉 which means that for this case by

chance we would have observed values of T more extreme that the one in this example in

101

only 399 of 10000 similar experiments. A 95% confidence interval on the mean is [-0.2232

-0.0054], which includes the theoretical (and hypothesized) difference of both means. Also,

same for the case〈10, 5〉, the significance is higher than other cases equal to 0.0037.Where

as all the other cases, the significance is very low or equal to0.

We can conclude that our approach is a scalable approach thatoutperforms the approach

described in [101] and this is especially true when the number of meetings and the number of

participants increase. One must note also that our approachseems to be more appropriate to

real-world applications by dealing especially with strongconstraints (i.e., inequality) and by

bringing forward consideration of discrimination among the proposed meetings. In addition,

in our approach, agents do not reveal directly any of the information related to the human

user even to a trust person. While the approach in [101] relies especially on exchanging

users’ private information with the group agent, no level ofprivacy is preserved.

The first step of the MSS approach can fulfill a premature detection of the impossibility of

reaching any agreement between all the participants and this by maintaining arc-consistency.

7.6 Summary

In this chapter we proposed a new agent-based solver for any meeting scheduling (MS)

problems with predictable structure that reflects ideally real-world applications. To fulfill

such condition, we have considered, in our model, two kinds of constraints to model the

users’ requirements: hard constraints to model the non-availability of a user and soft con-

straints to define his/her preferences. The underlying multi-agent architecture associates a

User agent to each user and makes them interact by sending asynchronous point-to-point

messages containing only relevant information to keep, as much as possible, their privacy.

The basic idea of this approach consists of two steps: the first reduces the initial problem

by reinforcing some levels of local consistency (node and arc consistency); and the second

step solves the resulting meeting scheduling problem with aminimum amount of exchanged

messages.

This approach was implemented with Actalk under the Smalltalk-80 environment and

compared with an existing approach in literature describedin [101] on randomly generated

instances, in mean of CPU time, percentage of scheduled meetings, the number of exchanged

messages and the amount of transferred information. The obtained results show that our

approach is scalable and worthwhile for processing strong constraints. In addition, in order

to show the importance of the first step, i.e., reduction step, other experiments were made to

measure the percentage of non-viable values discarded fromthe meetings’ calendars. The

obtained results showed that this process is appropriate for reducing the static MS problem

and consequently the search space, without loss of solutions. This work has been published

in [2, 7, 9].

102

Chapter 8

MSRAC: Dynamic Meeting Scheduling

Solver

In the previous chapter, we described a novel approach to solve any static MS problem.

However, for some organization, knowing all the meetings inadvance might be quiet dif-

ficult rather impossible. Therefore, we focused our new research on solving any MS that

are subject to many alterations, i.e., adding of new meetingand/or cancelation of an already

scheduled one. In addition, we focus our second objective onminimizing the amount of

exchanged messages by virtue of the real difficulty of messages passing operations in dis-

tributed systems.

In this chapter we present a novel, scalable, dynamic and entirely distributed solution

for MS problems that accounts for user preferences, handlesseveral events with various

levels of importance and especially minimizes the number ofexchanged messages. In the

sequel we introduce first the new formalization of anydynamicMS problem. Second we

describe the proposed agent-based model. Then, we introduce the global dynamic followed

by an illustration of the new protocol through an example. Finally we give a theoretical and

empirical evaluation of the new approach followed by a summary of this chapter.

8.1 Dynamic meeting scheduling problem formalization

We formalize the dynamic MS problem as a DVCSP (dynamic valued constraint satisfac-

tion problem). Like the previous static approach in Chapter7, each user maintains two kinds

of constraints: hard and soft constraints related to him/her, along with other strong con-

straints defining the specific features of the problem itself. Let’s recall these two constraints

in the following.

Definition 39 We define a dynamic MS problem, as a DVCSP, by a sequence of quintuples

(X, D, C,S, ϕ) where

• X = {X1, . . . , Xn} is the set ofn meetings that need to be scheduled at an instantt. Xk

with k ∈ {1, . . . n} denotes thekth meeting to schedule.

103

• D = {D1, . . . , Dn} is the set of all possible dates for all the meetings X. Di={dti1, . . . ,

dtid} (with |Di|=d), is the set of possible dates for the meeting Xi.

• C is the set of all constraints of the problem. C is composed ofthe following con-

straints:

– hard constraints: represented by, on the one hand, Ch the set of the constraints re-

lated to the non-availability of all users (see the white boxin Figure 8.1). On the

other hand, CallDiff the set of allDiff constraints relating each pair of meetings

Xk and Xl sharing at least one participant Aj (Aj ∈ Part(Xk) and Aj ∈ Part(Xl)1.).

– soft constraints, Cs is the set of the soft constraints related to the preferencesof

all users towards the possible dates in their calendar (see the gray box in Figure

8.1).

• ϕ : C→ E. C={Ch ∩ CallDiff ∩ Cs}, for each hard constraint ci ∈ {Ch ∩ CallDiff}

we associate a weight⊥ and for each soft constraint cj ∈ Cs we associate a weight

wj ∈ [0..1]2. This weight reports the degree of preference of a user to have a meeting

at the datedtj (see the number inside the gray box in Figure 8.1).

• S represents the valuation structure that defines the proposed optimality criteria (dis-

cussed in next section) and will be used to find the ”best” solution.

In addition, for each meeting Xk we assign a different weightWXk
∈ [0..1] to define the

degree of importance of Xk (k ∈ {1, . . . , n}) and it is used to allow the processing of the

most importantmeeting3 at first.

Solving a MS problem consists in finding a ”good” assignmentsl∗ ∈ Sol:=D1× . . .× Dn

of the variables in X={X1, . . . , Xn} according to their importanceWXk
, such that all the

hard constraints are satisfied while maximizing the global utility (GU) of all the users for all

the scheduled meetings such that:

sl∗ = arg max sl∈SolGU(sl) (8.1)

The computation of theGU will be given in detail in the next section.

1The functionPart(Xk) denotes all the participants in the meeting Xk
2This assumption does not contradict the ability of our protocol to support any kind of preferences’ mea-

surement evaluation.
3We assume that the users report truly and accurately the importance of their meetings.

104

Figure 8.1. Example of a user calendar.

8.2 MSRAC multi-agent model

The proposed MSRAC model, is the same as proposed previouslyfor static MS problem

in Chapter7, involving User agents and an Interface agent. Each User agent has its own

acquaintances, own knowledge (static and dynamic) and a reasoning engine. The acquain-

tances of a User agentAi are dynamic and depend on the current meeting to be scheduled(or

rescheduled). At an instantt, the acquaintances ofAi are defined by all the participants User

agents in the current meeting Xk. The static knowledge of a User agent is formed by the pos-

sible dates for the underlying meeting Xk and the user’s constraints. Its dynamic knowledge

is formed by both its acquaintances and its current calendar.

All the User agents will negotiate and cooperate together toschedule all the meetings

proposed by the human users. Therefore we assume as for the static approach the following

communication model between all agents:

• The agents in the system negotiate by exchanging asynchronous point-to-point mes-

sages containing the necessary relevant information in a manner that reduces the num-

ber of messages passing and keeps the most privacy for the involved users.

• An agent can send a message to another only if it knows that this agent belongs to its

acquaintances.

• The messages are received in a finite delivery time and in the same order that they are

sent. Messages sent from different agents to a single agent may be received in any

order.

For efficiency, the proposed approach tolerates parallel execution, i.e., more than one

meeting can be processed at the same time.

Each User agentAi (Ai ∈ A) maintains a sequence of VCSPAi

P (XAi, DAi, CAi , S, ϕ) for

which the set of variables XAi ∈ X represents the user’sAi meetings to schedule at the instant

105

t. The constraints CAi ∈ C (CAi = {CAi

h ∪ CAi
s ∪ CAi

allDiff}) represent the non-availability,

the calendar of this user and the constraints relating each pair of meetings.

In this multi-agent model, the intra-agent constraints aredefined by the aforementioned

constraints, whilst the inter-agent constraints are represented by the set of strong constraints,

i.e. equalityconstraints. An equality constraint exists between two User agentsAi andAj if

and only if there exist at least one meeting XAi

k (resp. XAj

l) such thatAj ∈ Part(XAi

k) (resp.

Ai ∈ Part(XAj

l)). We should discern that the equality constraints are dynamic.

The local goal of each User agentAi is to schedule all its meetings, whenever possible,

such that on the one hand all its hard constraints CAi

h ∪ CAi

allDiff are satisfied, and on the

other hand the higher local utility (LU) for all the planned meetings is achieved. TheLU

brought off by a meeting XAi

k scheduled at the datedtp ∈ DAi

k (LU(XAi

k , dtp) is defined by

the summation of the preferences (soft constraints) of all the participantsAj ∈ Part(XAi

k)

(Eq.8.2)

LU(XAi

k , dtp) =
∑

Aj∈Part(X
Ai
k

)

wAj
p (8.2)

In order to fulfill its local goal, each User agentAi should choose for each of its meetings

XAi

k ∈ XAi the datedtp that maximizes itsLU (Eq.8.3)

max
dtp ∈ DAi

k ;

p ∈ {1, . . . , |DAi

k |}

LU(XAi

k , dtp) (8.3)

The global goal of the whole system is to schedule the maximumof the meetings of all the

User agents satisfying all the inter-agent constraints andachieving the higher global utility

(GU) which defines the quality of the solution. TheGU is represented by the summation of

all local utilities corresponding to the planned meetings (in the set of possible solutionss) by

using Eq.8.4.

GU(sl) =
∑

Ai∈A

∑

(X
Aj

l , dtp) ∈ sl;

dtp ∈ D
Aj

l

LU(X
Aj

l , dtp) (8.4)

However, for any meeting XAi

k , a datedtp ∈ DAi

k may be the most preferred by one par-

ticipant and non-preferred (or less preferred) by the otherparticipants. Therefore, in order

to guarantee the maximum preference similarities between all the participants we propose to

add to our system another criterion to satisfy this condition. The idea is to choose the date

that, in addition to the first criterion (Eq.8.4), minimizesthe distance between the own users’

106

preferences by using Eq.8.5.

min
dtp ∈ D

Aj

l ;

p ∈ {1, . . . , |D
Aj

l |}

max
Ak,Ai∈Part(X

Aj
l

)

|wAk
p − wAi

p | (8.5)

To illustrate the use of Eq.8.5 more clearly, let us considerthe following example of 4 User

agents (users) given the task of scheduling one meeting. We assume thatA1 is the Proposer

of this meeting XA1

1 and all the other User agents are the participants. The possible dates

for XA1

1 are DA1

1 ={(Tu, 7), (Wed, 2), (Wed, 7), (Th, 2), and (Th, 6)}. Table?? illustrates the

preferenceswAi

1 of each attendeeAi ∈ Part(XA1

1) toward each datedtp ∈ DA1

1 .

Table 8.1. Example of the degree of preference of each user Ai towards each possible

date dtp for the meeting X A1

1 .

(Tu, 7) (Wed, 2) (Wed, 7) (Th, 2) (Th, 6)

A1 0.1 0.3 0.9 0.6 0.4

A2 0.6 0.7 0.3 0.5 0.4

A3 0.1 0.2 0.3 0.6 0.7

A4 0.7 0.3 0.4 0.2 0.1

LU(XA1

1 , dtp) 1.5 1.5 1.9 1.9 1.6

However, according to Table 8.1, the dates (Wed, 7) and (Th, 2) maximize the utility (LU)

of the meeting, i.e., the sum of the utilities of all attendees for both of the two dates is 1.9.

If we adopt the same strategy as [41], the optimal solution should be the date (Wed, 7), with

0.3 as the overall preference. But this date is the most preferred only byA1, while it is the

less preferred byA2, A3, A4. Thus with the second criterion we should instead chose the date

(Th, 2), because it minimizes the difference between the users’ preferences (max{|0.9-0.3|;

|0.6-0.2|}), and consequently reinforces the similarity between the attendees4.

It is noteworthy that the above optimality criteria is basedessentially on the preferences

of the attendee toward the possible dates of the underlying meeting. Such criteria require

a common preferences scale otherwise it is not fair to compare the personal preferences of

the participants in a meeting. To satisfy this condition without forcing the participants to

reveal their private Calendar, we propose to integrate a newheuristic in the solving process.

This heuristic allows the use of any ordering or scale to express the preferences of users (no

common scale is imposed on users to express their own preferences). It is worth remarking

at this stage that the use of such optimization criteria may lead to the classical problem of

4We suppose that all the attendees have the same level in the company.

107

constructing interpersonal utilities functions [40], i.e., how to compare users’ preferences

using independent and different ordering and/or measurement scales ?.

In this paper, the used criteria do not require any common ordering or scale over all the

agents to express their preferences. The basic idea is to askeach attendeeAj in a meeting

XAi

k to rank the set of possible dates for XAi

k from the most to the less preferred, i.e.,dtp

≺ dtl if and only if wAi
p > wAi

l . For the previous example, the User agentA2 will rank the

possible dates for XA1

1 as follows: (Wed, 7)≺(Th, 2)≺(Th, 6)≺(Wed, 2)≺(tu, 7). Then the

Proposer agent will generate a new implicit ordinal scale5 as stated by the received ordered

sets. The lowest datedtp in the order has the greatest number of votes associated withit.

The Proposer agent will fist assign an implicit preferencesIwAi
p to eachdtp and then use it to

determine the best date. Table 8.2 presents the candidate dates and their implicit preferences

generated by the Proposer agent.

Table 8.2. Example of users’ implicit preferences generate d by the Proposer agent.

A1 A2 A3 A4

5 (Wed, 7) (Wed, 2) (Th, 6) (Tu, 7)

4 (Th, 2) (Tu, 7) (Th, 2) (Wed, 7)

3 (Th, 6) (Th, 2) (Wed, 7) (Wed, 2)

2 (Wed, 2) (Th, 6) (Wed, 2) (Th, 2)

1 (Tu, 7) (Wed, 7) (Tu, 7) (Th, 6)

In this example the local utilities6 of the two candidates (Wed, 7) and (Th, 2) are the same

(Table 8.3). The Proposer agent will choose (Th, 2) to enforce the similarity7 between the

participants. The maximum difference for (Wed, 7) is|5-1|=4, while it is|4-2| for (Th, 2).

Table 8.3. Example of LU computation for each candidate.

Candidate dates Local Utility

(Tu, 7) 1+4+1+5=11

(Wed, 2) 2+5+2+3=12

(Wed, 7) 5+1+3+4=13

(Th, 2) 4+3+4+2=13

(Th, 6) 3+2+5+1=11

It is noteworthy that this pseudo-common scale is dynamic, and may change according to

the candidate dates for a meeting. Hence, the local utility of a meeting should be normalized

to compare it to another one with different scale.

5This idea cannot handle cardinal preferences
6Computed according to Eq.8.2
7According to Eq.8.5

108

When there is a conflict between two meetingsXAi

k and XAj

l for two different User agents

or for the same agents (XAi

k and XAi

l) (WAi

Xk
= WAj

Xl
), three issues (deterministic and non-

deterministic) can be applied to solve the conflict. If User agentAi, which has a meeting

already scheduledXAi

k in its calendar at the datedp, receives another meetingXAj

l with the

same importance to be scheduled at the same datedp, then it will choose on of the following

issues:

1. The deterministic issue, defined as always scheduling atdp the meeting that will in-

crease LU, i.e., If (LU(XAi

k , dtp) > LU(X
Aj

l , dtp)) then XAi

k will be scheduled atdtp

and XAj

l will be scheduled at another datedth 6= dtp. Otherwise inversely.

2. The non-deterministic issue, consists in arbitrarily choosing one of the meetings in

conflict (XAi

k or XAj

l) to schedule atdp and rescheduling the other one.

3. The second non-deterministic issue, defined as using themetropolis criterionin order

to choose the meeting to reschedule. XAi

h is accepted to be scheduled at datedtp by

applying the following acceptance probability (Eq.8.6). Notice that this process leads

to the rescheduling of XAj

l and perhaps to the rescheduling of other meetings (with less

importance) by propagation. The main idea behind using metropolis criterion to solve

the conflict is that trying always to increaseLU may not lead to the optimal solution,

while accepting some deterioration in theLU may increase the finalGU.

Pc{ acceptXAi

k = dtp} =

{

1 if LU(XAi

k , dtp) ≥ LU(X
Aj

l , dtp)

Exp(
LU(X

Ai
k

,dtp)−LU(X
Aj
l

,dtp)

Tp
) otherwise

(8.6)

whereTp∈ R+ denotes the temperature.

In the sequel, the User agent that proposes the meeting is called the Proposer agent. The

same User agent can be both a Proposer agent and a Participantagent at the same time.

It is noteworthy that our focus in this work, as mentioned in [42], was to find a good

compromise between three main features: minimizing privacy loss, maximizing solution

quality, and minimizing the required time to achieve it. Therefore we propose to integrate,

in our protocol, the above mentioned heuristic to choose thebest solution, according to

the aforementioned optimality criteria, without revealing the real preference values of the

corresponding participants.

8.3 MSRAC global dynamic

The global objective of our proposed approach is to scheduleall meetings for all users,

while maximizing the global utility and ensuring near fulfillment of users’ preferences. The

multi-agent meeting scheduling negotiation protocol is divided into two steps.

109

• Step 1. Use the basic idea of the DRAC approach to transform the initial MS problem

into another equivalent MS’ by enforcing local consistency[65] (node and arc consis-

tency). MS’ is obtained as a result of the interactions between the Proposer agent and

the Participant agents. The primary objective for this stepis to benefit from the main

goal of DRAC in order to make the search for a global solution of any MS problem

easier while saving futile backtracking, i.e., to avoid changing the previous chosen

meeting’s date.

• Step 2. To solve the obtained MS problem via interactions andnegotiations between

agents. Each agent that has a meeting to schedule (Proposer agent) searches for the

best solution for its meeting that, on the one hand, satisfiesthe two conditions given

in Section 3, and on the other hand, satisfies all of the Participant agents’ constraints.

More than one meeting can be processed in parallel (by different Proposer agents).

Thus, the same agent can be, at the same time, a Proposer agent(to fix its meeting)

and a participant agent (in different meeting proposed by another Proposer). This

system does not include any central node to process meetings.

Before introducing the global dynamic, we present the communication protocol.

8.3.1 Communication protocol

For the communication protocol, the two basic message-passing primitives used for each

agent are the same as those used in the DRAC approach (see Section 3).

• sendMsg(Sender, Receiver,Message) is used to send a message to one or more re-

ceivers.

• getMsg() extracts the first message from the mailbox of the agent.

With respect to exchanging messages, the underlying Multi-Agent dynamic involves the

following messages:

• ”Start” message, sent by the Interface agent to the corresponding Proposer agent to

activate it whenever there is a new meeting given by a user.

• ”RedMeetCalendar: with:”message, sent by a Proposer agent to each Participant

agent to ask it to adjust the possible dates of the meeting according to both its user’s

non-availability and its calendar.

• ”Reply” message, sent by each Participant agent to the Proposer agent in order to

propagate its reductions.

• ”ReceiveProp: with:” message, sent by the Proposer agent to the Participant agentto

verify the viability of the proposal.

110

• ”MeetNotPossible”message, sent by each agent to the sender agent to inform it about

the non-possibility of the meeting.

• ”MeetingOK” message, sent by each agent to the sender agent to inform it about its

agreement for the date of the meeting.

• ”UpdateProp: with:” message, sent by a Participant agent to a Proposer agent, in

the case of conflict between two (or more) meetings, in order to invite it to relax its

preferences.

8.3.2 Multi-agent interaction protocol for dynamic MS

A user who wants to host a meeting must tailor the Interface agent, which will activate the

corresponding Proposer agent and make it interact with all of the Participant agents. Note

that more than one Proposer agent can be activated at the sametime. Each activated Pro-

poser agentAi must first reduce the set of possible dates of the corresponding meetingXAi

k

according to its hard constraints. This process can be viewed as node consistency reinforce-

ment and aims to reduce the possible candidates for a meetingby eliminating those dates on

which this meeting cannot be held. If the set of possible dates of the meeting becomes empty

after reduction then its possible dates must be changed. Otherwise, the Proposer agent must

delete all the dates that were used for more important meetings, i.e., all meetings (XAj

l , dp)

∈ CalendarAi for which WXk
< WXl

. This can be viewed as arc consistency reinforcement.

A copy of the deleted proposals should be saved for other use in case the meetingXAj

l is

canceled. Finally, the Proposer agent must send the obtained reduced set of possible dates of

XAi

k to all of the Participant agents to ask them to first, adapt it to their convenience, and then

rank8 the remaining possible dates according to their preferences.

The main objective of this heuristic is to define an ordinal relationship between all the

proposals for each meeting according to users’ interests. We can thus especially avoid the

classical problem in constructing a common interpersonal utility function, which is how

to compare preferences not relying on the same preference scale. Each Participant agent

that has received the message containing the reduced set of possible dates, starts first by

reinforcing node and arc consistency, then by ranking the obtained slot times according to its

preferences (from the most preferred to the less preferred date). The higher an agent ranks

a particular date, the more point that date will receive. Specifically, a date is awarded one

point for each rank below it.

Finally this agent must return the obtained set of possible dates to the Proposer agent.

However, if the set of possible dates for a meeting becomes empty, this Participant agent

must send a message to the Proposer agent to inform it about the non-possible meeting. We

should emphasize the fact that during this step all the agents try to look ahead for already

8This is used as a heuristic to decrease the number of BT and consequently the amount of exchanged

messages and hopefully speed up the whole solution process.

111

Algorithm 8 Start message executed by a User agentAi for each meeting XAi

k

1: Delete from DAi

h all non-viable values;

2: if (DAi

h = Ø) then

3: Change meeting possible dates for XAi

k ;

4: else

5: for all each XAj

l such that (XAj

l , dtp) ∈ CalendarAi andWXl
> WXk

do

6: Delete(DAi

k , dtp);

7: Add(DReserveAi[k], dtp);

8: if (DAi

k = Ø) then

9: Change meeting possible dates forXAi

k ;

10: else

11: for all Aj ∈ Part(XAi

k) do

12: Send(self, Aj, RedMeetCalendar: DAi

k with:WXk
);

13: end for

14: end if

15: end for

16: end if

scheduled meetings while reinforcing arc-consistency; this is in order to avoid maximum

backtracking9 in the next step. Otherwise, the first step is finished and the second step can

be started.

The Proposer agent tries first to find the proposal that maximizes the utility of the meeting,

and then sends it to the concerned acquaintances. To computethe utility of each proposal,

the Proposer agent creates a pseudo common-scale based on the obtained ranking and then

computes the utility of each possible meeting time and choose the proposal according to the

optimality criteria described in Section 4. Each agentAj that has received a proposal for a

meetingXAi

k must check whether it can still accept it or not. In the case ofconflict, i.e., the

agentAj has meanwhile received a proposal for another meetingXAm

l at the same time as the

meetingXAi

k , the agent should act as follows:

• If WXk
< WXl

, it must send a negative answer to the Proposer agentAi and ask it to

relax its proposal.

• Otherwise, in the case ofWXk
> WXl

, the agent must proceed in two steps: first, send

a positive answer to the ProposerAi and second send a message to the Proposer agent

Aj of the meetingXAj

l to invite it to relax its preferences for this meeting.

• Finally, in the case whereWXh
= WXl

(case of conflict between two meetings), the

9To avoid that the proposer choose a date and come back on it in case of non-availability of at least one

participants

112

agent will try to apply one of the three proposed issues (section 3), i.e., choose always

the best, choose one of the meetings at random or apply themetropoliscriterion, to

decide which agent should relax its preferences.

Accordingly, each agent that has proposed a meeting and received at least one negative

answer must change its proposal. The same process resumes until an agreement is reached

among all of the participants or until testing all of the solutions,no agreement has been

reached. In the latter case, the Proposer agent must inform the participants that the meet-

ing is canceled. Note that this dynamic allows a premature detection of failure: absence

of solution for a meeting. This in the case when the set of possible dates of the concerned

meeting becomes empty.

8.3.3 Process of meetings alterations

In real-world applications MS problems are subject to many changes, defined on one side

by the arrival of new, more important meetings (especially when all the other meetings have

been already approved) and on the other side by the cancelation of one (or more) meeting(s)

which, can lead to the possibility of scheduling other meetings, previously detected as non-

possible. Therefore, we have used an incremental approach that can handle all forms of

alteration in the system without restarting the solving process from scratch. In the following,

we present the behavior of our protocol in the case of restrictions and relaxations.

The restrictions

For each new arrival meeting XAi

k with the priorityW Ai

Xk
, the Proposer agent must first elim-

inate non-viable values from the domain of this meeting by enforcing node and arc consis-

tency and secondly, must send the obtained slot times to the participants. At the end of this

step, and after receiving all the answers from the participants, the agent must choose the

date that maximizes the global utility of meeting XAi

k . If this date is used by another less

significant meeting, XAj

l , whereW Ai

Xk
> W

Aj

Xl
, then the latter meetingXAj

l must be changed.

Therefore, the agent Aj (the Proposer of XAj

l) should be invited to relax its preferences. The

proposed date must be communicated to all the participants.Each one of them must check

the date and reply to the Proposer, and the same dynamic resumes until the system reaches

its temporary stable equilibrium state (because of the dynamics of the system).

We must note that in the worst case, all meetings XAj

l with lower priority will be relaxed

and the system will stop temporarily with the schedule of themeeting having the lowest

priority. The revision of all the decisions to fix a new meeting (when adding a new meeting

with highest priority) is slightly unrealistic. Then, in our system we propose applying a

penalty (a decrement in the priority of the new meeting) according to the number of involved

meetings that must be rescheduled at each step. The main goalof this new process is to speed

up the search for the new optimal solution.

113

The relaxations

For each canceled meeting XAi

k , the concerned agent must check if it can increase the utility

of another already scheduled meeting (one or more by propagation). To achieve this goal, this

agent must first examine all meetings XAj

l (called candidate meetings) with Ai ∈ Part(XAj

l)

and W Ai

Xk
> W

Aj

Xl
(starting with the most important candidate meeting). In other words,

the agent Ai can ask the participants inXAj

l for further negotiation, if it realizes that this

meeting can be held in the date that was taken by the canceled meeting. Nevertheless, this

process may increase the utility of some (or all) candidate meetings. This protocol may also

allow some meetings, which had been checked as non-possible, to be scheduled (e.g., some

meetings that could not be scheduled before may become possible). In addition, we can

assume a certain threshold for the meetings to be rescheduled and this is in order to avoid

the need to reschedule all meetings in the worst case.

8.4 Example of algorithm execution

Figure8.7(a) shows a simple example of a meeting-scheduling problem formed by three

users (A1, A2 andA3) and two new meetings to schedule (mA1

i andmA2

j). This example is

meant to illustrate the dynamic search process for the best proposal and the required mes-

sages exchanged among all the participants. Assume that allthe users should participate to

both new arrival meetings. Each user has its own calendar with its preferences in which, the

white boxes represent its availability. While, the gray boxes represent its non-availability.

Each agent has also its calendar for the already scheduled meetings with their degree of im-

portance. Both agentA1 andA2 have to schedule their meetings. Therefore, both agents

begin by concurrently enforcing local consistency on the possible dates of their meetings.

AgentA1 will remove{(M, 5); (W, 4); (Th,5) and (Th, 6)} from the possible dates ofmA1

i

and sends the obtained new time-slot with the importance degree of the corresponding meet-

ing (Wmi
=0.58) toA2 andA3. AgentA2 will go also through a similar execution.

Next, each agent that received the possible dates from its acquaintances (see 8.7(b)), will

start by enforcing local consistency. Second it will rank the remaining possible dates and

return them to the sender. For example,A3 will remove all the times that correspond both

to its non-availability and to each already less important fixed meeting,Wmk
<0.58 (resp.

Wmk
<0.78) from the received time-slots received fromA1 (resp. A2). The agentA3 will

obtain formA1

i {(M, 4); (W, 5); (Tu, 6) (Tu, 7); (W, 6); (F, 1); (F, 2) and (F, 3)} and for

mA2

j {(M, 5); (M, 6) (Tu, 3); (Tu, 4); (W, 5); (W, 6)}. It will rank each set depending on its

preferences (for example formA1

i {(W, 6); (F, 3); (W, 5); (Tu, 7); (F, 2); (Tu, 6), (M, 4); (F,

1)}) and will return them to the senders.

Let us consider the agentA1, it will receive the ranked sets fromA2 andA3. It starts

first by computing their intersection of the three sets , calculates second, the ordinal local

utility (see 8.4) of each remaining possible time (U(mA1

i , (W, 5))=3+4+3=10;U(mA1

i , (M,

114

A1

A3 A2

miA1 (0.58) possible

dates

mjA2 (0.78) possible

dates

A1 Availability calendar

M Tu W Th F

0.38 0.5

0.34 0.85 0.1 0.43

0.52 0.9 0.15 0.32

0.6 0.74 0.9

0.83 0.2 0.8

0.54 0.4 0.7

 0.4 0.65 0.45

 0.38

1
2
3
4
.
.
.
8

M Tu W Th F

 0.9 0.32 0.1

023 0.88 0.21 0.43

0.15 0.58 0.57 0.18 0.59

0.11 0.74 0.15

0.25 0.2 0.58 0.12

0.56 0.34 0.6 0.08

0.56

A3 Availability calendar

1
2
3
4
.
.

8

M Tu W Th F

 0.62 0.44

 0.82 0.23 0.82

0.42 0.8 0.1 0.59

0.37 0.2 0.9 0.96

0.23 0.33 0.85 0.23 0.02

0.18 0.72 0.9 0.12

 0.92 0.11

 0.08

A2 Availability calendar

1
2
3
4
.
.

8

(a)

A1

A3 A2

(b)

Figure 8.2. Example of the meeting scheduling problems with three users.

115

Table 8.4. Different time proposals for meeting mA1

i ranked according to users’ prefer-

ences.

A1 A2 A3

4 (W, 6) (W, 5) (W, 6)

3 (W, 5) (F, 2) (W, 5)

2 (M, 4) (W, 6) (F, 2)

1 (F, 2) (M, 4) (M, 4)

4))=2+1+1=4;U(mA1

i , (W, 6))=4+2+4=10;U(mA1

i , (F, 2))=1+3+2=6) and finally chooses

the date satisfying the mentioned before criteria (see section 3). In this case,A3 will choose

dp=(W, 5) to enforce preferences similarity among the participants. The proposer agent

should receive an agreement for this proposer, from all the participants to confirm it.

Assume that, in the meanwhile,A2 has just received same proposal (same time) for another

meetingm
Ap

k with the same importance (Wmk
=Wmi

=0.58). The agentA2 will apply the

metropolis criteria (see section 3) to decide which meetinghas to be rescheduled (mA1

i or

m
Ap

k) and informed the concerned agent by its decision.

8.5 Evaluation

8.5.1 Theoretical evaluation

Termination

The MSRAC process stops temporarily (dynamic system) when the system reaches a stable

equilibrium state. In this state all the agents are temporarily satisfied. An agent is satisfied

when it has no meetings to schedule or when it has received allthe confirmations from all

the other Proposer agents. We assume that betweent andt’ there is no new (resp.cancelled)

meeting. Thus, at timet, the number of meetings to be fixed is limited and finite, so the

proposed approach stops after making at most this many meetings. We assume that MSRAC

approach goes into an infinite loop. This may happen in two cases:

1. While scheduling a meeting.

2. While rescheduling a meeting.

For the first assumption, to schedule a meeting XAi

l all the participants will cooperate to-

gether to find the best date for this meeting. The system will go into an infinite loop while

scheduling XAi

l if and only if the Participant agents reprocess the checked dates (cycle) when

116

no solution is found. However, the number of possible dates per meeting is discrete and fi-

nite. In addition, every checked date is removed from the system to avoid a return to it later.

The system will stop when a ”good” date if found or when all possible dates for XAi

l are

processed and no possible solution has been found. Therefore our assumption is not true.

For the second assumption, the system goes into an infinite loop if the rescheduling of XAi

l

leads to the rescheduling of XAj
p and the rescheduling of XAj

p leads the same to the reschedul-

ing of XAk
q and finally the rescheduling of XAk

q leads to the rescheduling of XAi

l . However

the rescheduling of XAi

l leads to the rescheduling of XAj
p if and only if WXl

> WXp
and the

same for the other meetings11. ThereforeWXl
< WXp

means that the reschedule ofXAk
q will

never lead to the reschedule ofXAi

l . This contradicts our assumption.

We have to note that the satisfaction state of all the agents in a distributed system can be

detected by taking a snapshot of the system, using the well-known Chandy-Lamport algo-

rithm [19]. The termination occurs when all agents are waiting for a message and there is no

message in the transmission channels. The cost of the termination process can be mitigated

by combining snapshot messages with our protocol messages.

Complexity

Let us consider the complexity of adding a new meeting into anexisting schedule. The

corresponding MS problem involvesn for total number of users,d for the maximal number

of possible dates for each meeting andc for the total number of preferred dates for each user.

The total number of agents in this system isn the same as the total number of users. Suppose

that each meeting involvesn attendees and each user hasm already scheduled meetings in

the calendar. Our approach is composed of two steps.

• In the first step, each agent performs O(cd+md+dLog(d)) operations to reinforce node

and arc-consistency and to rank the remaining dates. The Proposer agent then deter-

mines the intersection of the received sets of possible dates leading to (n-1)d2 opera-

tions, and the utility of each dates with O(nd). Thus, the temporal complexity of this

step in the worst case is

O(n(cd+md+dLog(d))+(n-1)dt2+nd).

• In the second step, in order to compute the cost of rescheduling, we assume that at

each step the chosen date leads to the rescheduling of one meeting (at most12) in the

worst case. This leads tomsuccessive iterations. Each agent checks its calendarmand

sends its answer to the proposer in order to choose a new value. This process requires

11The rescheduling of a meeting leads to the rescheduling of another meeting if and only if the first meeting

is more ”important” than the second.
12Because we assume that all the users are participants in all meetings

117

O(m(nm+d)) operations in the worst case. The space complexity, for all the agents, is

O(n(d+m)).

Message passing optimality

In order to show that our approach requires the minimum amount of messages passing to

reach an agreement among all the attendees, let us assume that we haven agents{A1, . . . ,

An}, each has an already scheduled meeting XAi

1 at the datedl with l ∈ {1, . . . , k }. The total

number of scheduled meetings in the whole system isk at the dates{d1, d2, . . . , dk}.

Suppose that the agentAj proposes a new meeting XAj

2 involving all the agents of the

system. The possible dates for this meeting are{d1, d2, . . . , dk, dk+1}. According to the

mast of the approaches proposed in the literature (including [41, 101, 42]), a proposaldh

(h ∈ {d1, d2, . . . , dk, dk+1}) is selected by agentAj and passed to all the other agents.

Each agent which receives this proposal, replies to the proposer only with a rejection or an

acceptance. The same process resumes with another proposalgiven by another agent13. In

this caseat leastone agent will reject the proposal. Therefore to reach an agreement among

all the participants, this process requires at least2n(k+1)messages.

With MSRAC, the proposer sends all the possible candidate dates for a meeting to the

participants. Each participant receiving this message will first reinforce arc consistency on

the received possible dates in order to avoid as much fruitless backtracking as possible in the

next steps. It then ranks the obtained set and sends it only tothe Proposer, which determines

the intersection of the received sets and obtains the agreement among all of them. Thus the

number of required messages in MSRAC is2n. Note that receiving all the candidate meeting

dates from participants may reveal some information about their local calendars (loss of

some privacy). However the only information that Proposer agent Ai may deduce from a

participant Aj is its non-availability for some dates. The non-availability of an attendee is

due to many different reason, such as another meeting, a business trip, a vacation, personal

preference, etc. The proposer cannot reveal the reason of the rejection of the candidate date

but he may slowly collect more knowledge by asking for the same date or nearby dates. This

is also a common problem for the other approaches. In the worst case the same amount of

information will be revealed by all the approaches. Therefore, in order to decrease privacy

loss for our approach, we propose tohidethe identity of the sender. The Proposer agent will

then get answers from the attendees without knowing to whom each answer belongs.

8.5.2 Experimental comparative evaluation

To evaluate the proposed MSRAC approach, we have developed the Multi-Agent dynamic

with Actalk, an object-oriented concurrent programming language using the Smalltalk-80

environment. In our experiment, we generated random meeting problems. The parameters

13we assume that each agent hasn possible proposals.

118

used are:n agents in the system,m meetings per agent,p participants in each meeting,D

global calendar,d percentage of possible dates per meeting,wc weights for the soft con-

straints,WXl
weight of the eventXl (the weight of each hard constraint is equal to 1) andc

the control parameter.

We carried out three kinds of experiments to test the proposed approach. The main goal

of the first experiment was to evaluate the efficiency of the three issues proposed to be used

in case of conflict (Section 3). We used three versions of the approaches:i) MSRAC-1,

the deterministic approach in which each agent always chooses the meeting that increases its

local utility (LU); ii) MSRAC-2, a non-deterministic approach in which each agentrandomly

chooses the meeting to schedule on the conflicting date; MSRAC-3, a non-deterministic

approach in which each agent apply the metropolis criteria to solve the conflict.

We generated random instances with different numbers of meetings to schedule, in order

to vary the number of possible conflicts that may occur, withn =10,m= {5, 8, 10, 15}, p = 6,

D = 50, i.e., each meeting starts between 8AM and 6PM, from Monday to Friday and is one

hour long,wc ∈ [0..1], WXl
∈ [1..20]14, d = 50, |Ch| = 10 andTp=10. The total number of

meetings per instance is, respectively 50, 80, 100, 150. Each instance is executed 30 times.

For MSRAC-3 the initial temperatureTp is decreased slowly at each run.

Figure8.3 shows that for the most part, MSRAC-3 is closer to MSRAC-1. MSRAC-2 os-

cillates more especially when the number of conflicts increases (Figures 8.3c2 and 8.3d2)

leading to a great deterioration in the result (in Figure8.3c1 the number of scheduled meet-

ings vary from 34 to 44). This difference can be justified by the fact that MSRAC-3 accepts

a deterioration of theLU (accept a meeting with lowerLU) only when the difference inLU

between the two conflicting meetings is small, with MSRAC-2 the selection of the meeting

is totally random which may also increase the number of conflicts. Notice that the number of

generated conflicts for MSRAC-3 is almost always the same forall the runs, while there is a

big variation for MSRAC-2 (Figures 8.3a2, 8.3b2, 8.3c2 and 8.3d2). Hence, using metropo-

lis criterion to solve the conflict might be more appropriatethan random choice and may lead

to a better solution than the deterministic approach MSRAC-1 (Figures 8.3b1 and 8.3c1).

In the second kind of experiment, we used two approaches withMSRAC-3, which we will

call MSRAC: Asynchronous Backtracking [107] (ABT) and Tsuruta’s approach [101].

Recall that, the ABT algorithm is used as a witness approach to appraise the correctness

of the results obtained with our approach. As mentioned in Section 1, ABT is a generic and

complete algorithm for solving non-dynamic distributed constraint satisfaction problems.

Therefore, for this algorithm all the applied problems are treated as static instances. Each

agent in the system maintains one variable of the instance. The agents are ordered according

to the degree of importance of the variables, i.e., degree ofimportance (WXl
) of the under-

lying meetingXl. The variables (meetings) sharing the same constraint (at least one same

participant) are linked together. The approach in [101] presents some restrictions: on the

14to increase the probability of having several meetings withsame degree of importance.

119

(a1) (b1)

(c1) (d1)

37

38

39

40

41

42

43

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

sc
h

e
d

u
le

d
 m

e
e
ti

n
g

s

MSRAC-1 MSRAC-2 MSRAC-3

42

43

44

45

46

47

48

49

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

sc
h

e
d

u
le

d
 m

e
e
ti

n
g

s

MSRAC-1 MSRAC-2 MSRAC-3

t

32

34

36

38

40

42

44

46

48

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

sc
h

e
d

u
le

d
 m

e
e
ti

n
g

s

MSRAC-1 MSRAC-2 MSRAC-3

38

39

40

41

42

43

44

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

sc
h

e
d

u
le

d
 m

e
e
ti

n
g

s

MSRAC-1 MSRAC-2 MSRAC-3

Figure 8.3. Results obtained by the three approaches in mean of number of scheduled

meetings (a1, b1, c1 and d1).

120

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

c
o

n
fl

ic
ts

MSRAC-2 MSRAC-3

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

er
 o

f
co

n
fl

ic
ts

MSRAC-2 MSRAC-3

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

c
o

n
fl

ic
ts

MSRAC-2 MSRAC-3

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of runs

N
u

m
b

e
r

o
f

c
o

n
fl

ic
ts

MSRAC-2 MSRAC-3

(a2) (b2)

(c2) (d2)

Figure 8.4. Results obtained by the three approaches in mean of number of generated

conflicts corresponding to the previous graphs(a2, b2, c2 an d d2).

121

0

4

8

12

16

20

12.50% 25% 37.50% 50% 62.50% 75%

% possible dates

N
u

m
b

er
 o

f
S

ch
ed

u
le

d
 M

ee
ti

n
g

s

Tsuruta et al. App. ABT MSRAC

Figure 8.5. Results obtained in mean of number of scheduled m eetings.

one hand, the handle of the hard constraints (i.e., all the constraints could be relaxed by this

approach) and on other hand, the discrimination between meetings. This approach indepen-

dently processes all the proposed meetings without regard to their importance to either of the

proposer or the attendees.

However in the real world, meetings are not equivalent. Our approach tries then, in its

solving process (second step), to schedule the most important meeting maintained by each

agent first (unlike the approach in [101]). For this purpose,instances including hard con-

straints are randomly generated withn =10,m= 5,p = 8,D = 40,wc ∈ [0..1],WXl
∈ [0..1], d

∈ {12.5%, 25%, 37.5%, 62.5% and 75%}, |Ch| = 10 andc=50. The total number of meetings

per instance is 50. For eachd we generated 35 instances, then measured the average of the

results.

These results are expressed in terms of five criteria: the CPUtime (in milliseconds), the

number of scheduled meetings, the importance of the meetings, the measurement of real

global utility, and the number of exchanged messages. Notice that the first three criteria

allow us to especially measure the efficiency of MSRAC. To this end, we have introduced

some modifications to the approach in [101] to make it worthwhile for both hard and soft

constraints. We carried out the three approaches on the samegenerated examples using the

same parameters.

To simulate a dynamic environment, at each timet each agent knows only aboutoneof its

meetings (an arbitrary one from itsm meetings) and either schedules it or declares its failure

to find a solution for it. Once finished the agent will receive anew meeting (another one

chosen arbitrarily from the remaining meetings) with higher or lesser importance to process.

Every new meetings may lead to the rescheduling of another scheduled one (depending on

its importance and the candidate date that will be chosen). Hence at each timet, 1 orn new

122

0

2

4

6

8

10

12

12.50% 25% 37.50% 50% 62.50% 75%

% possible dates

Im
p

o
rt

a
n

ce
 o

f
S

ch
ed

u
le

d
 M

ee
ti

n
g

s

Tsuruta et al. App. ABT MSRAC

Figure 8.6. Results obtained in mean of the importance of the scheduled meetings.

0

10

20

30

40

50

60

70

12.50% 25% 37.50% 50% 62.50% 75%

% possible dates

R
ea

l
G

lo
b

a
l

U
ti

li
ty

Tsuruta et al. App. ABT MSRAC

Figure 8.7. Results obtained in mean of the real global utili ty.

123

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

12.50% 25% 37.50% 50% 62.50% 75%

% possible dates

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

Tsuruta et al. App. ABT MSRAC

Figure 8.8. Results obtained in term of CPU time.

meetings might be added to the system according to the time required to process the previous

ones.

The obtained results show that the MSRAC approach requires,in the majority of cases,

less CPU time than the other approaches (Figure8.8), while the CPU time needed by the

approach in [101] is about three times more than that needed by our approach. This is can

be elucidated by the fact that the first step (reinforcement of local consistency) is useful in

order to discard the dates that cannot be in any solution and consequently to avoid exploiting

them in the solving process, which leads to CPU time consumption. Let us consider the case

of over-constrained instances (possible dates less than orequal 25%)., Figure8.8. shows that

ABT requires less CPU time than MSRAC. The main reason is thatin such instances, the

number of conflicts between meetings is high which may lead tothe augmentation of the

number of rescheduled meetings. For ABT on the other hand, there is no conflict between

meetings; the whole problem, the number of all the possible meetings that may occur in the

system is static and known in advance.

As for the number of scheduled meetings (Figure8.5.), ABT and MSRAC schedule almost

the same number of meetings. while the Tsuruta approach schedules fewer meetings than

the other two approaches. This result shows the efficiency ofMSRAC. The small difference

noticed in the number of results given by ABT and MSRAC can be justified by the fact

that MSRAC uses themetropolis criterionin case of conflict. Thus the final result depends

on the decision taken towards conflicting meetings. Nevertheless, both approaches provide

the same results for the degree of importance of the scheduled meetings (Figure8.6) and the

same real global utility (Figure8.7).

In the case of over-constrained problems (d=12,5%), ABT requires fewer exchanged mes-

sages than our approach (Figure8.9.). This can be justified by the fact that for this kind

124

0

2000

4000

6000

8000

12.50% 25% 37.50% 50% 62.50% 75%

% possible dates

N
u

m
b

er
 o

f
E

x
ch

a
n

g
ed

 M
es

sa
g

es

Tsuruta et al. App. ABT MSRAC

Figure 8.9. Results obtained in term of exchanged messages.

of problem, the agents in ABT can discover merely the absenceof solutions due to the

low number of possible dates to check. While this number increases, the total number of

exchanged messages increases also. With our approach the number of conflicts increases

for over-constrained problems, leading to more rescheduling and consequently to more ex-

changed messages. It is remarkable that the observed difference in the number of exchanged

messages between ABT and MSRAC for over-constrained problems is negligible, while the

approach in [101], requires more than three times the numberof exchanged messages needed

for our approach.

In order to appraise the fairness of the above results, we conducted statistical testing, using

dependent two samples t-test, to determine whether MSRAC approach and ABT approach

could have same mean in terms of CPU time and number of scheduled meetings. The for-

malization of the null hypothesis and the alternative hypothesis is given in Table 8.5.

Table 8.5. Formalization of the null hypothesis and the alte rnative hypothesis for both

CPU time and number of scheduled meetings.

CPU time Number of scheduled meetings

H0: µCPU MSRAC = µCPU ABT H0: µNbMt MSRAC = µNbMt ABT

H1: µCPU MSRAC < µCPU ABT H1: µNbMt MSRAC > µNbMt ABT

The means are measured using Matlab6.1 using significant levelα = 0.05 and 34 as degree

of freedom. For the means in CPU time, Table 8.6 reports the obtained results of eachd, i.e.,

percentage of possible time slots for each meeting. According to these results,H0 is accepted

125

only for the first case (d=12.5%) with significance equal to 0.997 which means that for this

case by chance we would have observed values of T more extremethat the one in this samples

in 997 of 1000 similar experiment. The high significance showthat in most cases the CPU

time required by MSRAC is less than that required by ABT approach. A 95% confidence

interval on the mean is [-Inf, 38.3583]. Regarding the othercases,H0 is rejected with low

significance, varying from 0.0114 to 6.36E-12, which means that in all these cases the mean

of MSRAC in term of CPU time is almost always less than the meanof ABT approach. The

probability to have grater values of T is very low. A 95% confidence interval on the mean is

becoming more and more small for high percentage of possibletime slots.

Table 8.6. Dependent two samples t-test for the CPU time mean s of both approaches

MSRAC and ABT, for each d.

Decision Significance Confidence Interval

12.5% accept H0 0.997]-Inf, 38.3583]

25% reject H0 0.0114]-Inf, -7.4012]

37.5% reject H0 9.03E-09]-Inf, -73.7447]

50% reject H0 5.90E-06]-Inf, -77.5420]

62.5% reject H0 2.72E-10]-Inf,-171.7848]

75% reject H0 6.36E-12]-Inf, -231.1478]

For the means in term of the number of scheduled meetings, Table 8.7 indicates that the

H0 is accepted in all cases with high significance for small values ofd. For example in case

d=25%, the significance≃ 0.5 which means that for this case the probability to observemore

extreme value of T is 5 of 10 similar experiments. A 95% confidence interval on the mean

is]-0.8593, Inf] for this case.

To highlight the scalability of our approach, we conducted asecond type of experiment

in which we tried to increase the size of the problem. We generated 6 groups of random

problems. The parameters of the three first groups (groups I,II and III) were: n=10; m∈{5,

8, 10}; D=50; d=60%; p=7 and|Ch|=10. While for the three last groups (groups IV, V and

VI): n=20;m={10, 15, 20}; D=100;d=60%; p=13 and|Ch|=20. We generated 35 instances

for eachm. Each instance was executed 10 times. Tables 8.8 and 8.9 showthe average of

the obtained results in term of CPU time and percentage of scheduled meetings for the three

approaches.

From these results, we can conclude that MSRAC is scalable, up to 4 times faster than the

Sturuta approach (case of〈20; 15〉 and〈20; 20〉) and up to 100 times faster than the ABT ap-

proach (〈20; 20〉). For the number of scheduled meetings, MSRAC and ABT planned almost

same percentage of meetings, while for Tsuruta approach in [101], the number of scheduled

126

Table 8.7. Dependent two samples t-test for the number of sch eduled meetings means of

both approaches MSRAC and ABT, for each d.

Decision Significance Confidence Interval

12.5% accept H0 0.3465]-0.5498, Inf]

25% accept H0 0.4587]-0.8593, Inf]

37.5% accept H0 0.2638]-0.4646, Inf]

50% accept H0 0.3301]-0.5894, Inf]

62.5% accept H0 0.1666]-0.3234, Inf]

75% accept H0 0.0872]-0.1480, Inf]

meetings at each instance is about 50% of that achieved by the two other approaches. Hence,

it is noteworthy that our approach seems to be more appropriate to real-world applications

by dealing with users’ hard constraints and by bringing forward consideration of discrimina-

tion among the proposed meetings. In addition, the first stepof the proposed approach can

prematurely detect the impossibility for reaching any agreement among all the participants.

Table 8.8. Results obtained in mean of CPU time.
〈10; 5〉 〈10; 8〉 〈10; 10〉 〈20; 10〉 〈20; 15〉 〈20; 20〉

Tsuruta App 1349.91 1933.15 2418.35 22883.18 34086.74 48248.95

ABT App 911.91 3729.94 8845.74 29713.62 90353.53 185200.63

MSRAC 544.94 777.24 936.79 5225.35 7807.74 9551.53

Table 8.9. Results obtained in mean of percentage of schedul ing meetings.

〈10; 5〉 〈10; 8〉 〈10; 10〉 〈20; 10〉 〈20; 15〉 〈20; 20〉

Tsuruta App 28.91% 21.91% 18.44% 8.37% 6.84% 5.20%

ABT App 46.91% 33.86% 28.12% 21.63% 15.94% 12.36%

MSRAC 50.36% 35.18% 29.68% 22.22% 16.51% 12.91%

8.6 Summary

In this chapter, we propose a new scalable and dynamic approach (MSRAC) to solve

meeting scheduling problems. In this approach, we tried to integrate the main features of

the MS problem such as: user preferences, user non-availability, importance of the meeting,

etc. to reflect ideally real-world applications. To this end, we proposed to use two kinds of

127

constraints to model the users’ requirements: hard constraints to model the non-availability

of a user and soft constraints to define the user’s preferences. Note that the integration of

these features transforms the problem into an optimizationproblem.

The Multi-Agent underlying model associates an agent with each user and makes the

agents interact by sending point-to point messages containing only relevant information.

Basically, this approach consists of two steps. The first reduces the initial problem by rein-

forcing some level of local consistency (node and arc consistency). The second step solves

the resulting meeting scheduling problem while maintaining arc-consistency. In the pro-

posed protocol, the information shared among all the agentsis kept to a minimum without

reflecting on the efficiency of the cooperative decision taken by all these agents.

All the meetings can be processed in a parallel and distributed manner, while achieving the

meetings’ higher utilities. This can be obtained as a side effect of interactions between the

agents of the system, while both minimizing the amount of message passing and ensuring the

user’s privacy. We should note that the underlying protocolforbids only parallel meetings

with common participants. The MSRAC approach was compared with the ABT approach

[107] and Tsuruta’s approach [101]. The obtained results show that our approach is efficient,

scales better and performs less message passing for almost the same solutions. This approach

has been published in [8, 11] and under reviewing in theInternational Journal of Engineering

Applications of Artificial Intelligence[3].

128

Algorithm 9 Main procedures executed by each Proposer agent Ai

RedMeetCalendar:D with :W

1: Delete fromD all non-viable values;

2: if (D =⊘) then

3: Send(self,sender,MeetNotPossible);

4: end if

5: for all XAj

l such that (XAj

l , dtp) ∈ CalendarAi andWXl
> W do

6: Delete(D, dtp);

7: if (D =⊘) then

8: Send(self, sender, MeetNotPossible);

9: else

10: Rank(D);

11: /* According toAi preferenceswAi
p */

12: Send(self, sender,Reply:D);

13: end if

14: end for

Reply: D

1: if (All rankedD are received from allAj ∈ Part(XAi

k)) then

2: Update(DAi

k) /* According to receivedDs*/

3: end if

4: dtp ← the date ofhigher utility; /* The choice of the date should be done according to

the two equations 2 and 3 given in section 310 */

5: if (dtp = nil) then

6: for all Aj ∈ Part(XAi

k) do

7: Send(self, Aj, MeetNotPossible);

8: end for

9: else

10: for all Aj ∈ Part(XAi

k) do

11: Send(self, Aj, ReceiveProp:dtp with:WXk
);

12: end for

13: end if

129

Algorithm 10 Main procedures executed by each Proposer agent Ai

ReceiveProp:Prop with :W

1: if ((∃ (XAj

l , dtp) ∈ CalendarAi
such thatProp= dl andWXl

> W)) then

2: Send(self, sender, UpdateProp:Propwith:W);

3: else

4: if (∃ (XAj

l , dtp) ∈ CalendarAi such thatProp= dtl andWXl
< W) then

5: Send(self, Aj, UpdateProp:dp with: WXl
);

6: Send(self, sender, MeetingOK);

7: else

8: apply one of the three proposed issues (section 3.) to decidewhich agent should

relax its preferences;

9: end if

10: end if

UpdateProp:Prop with :W

1: Delete (DAi

k , Prop);

2: Add(DReserveAi[k], Prop);

3: if (DAi

k 6= nil) then

4: dtp← the date of higher utility;

5: for all Ak ∈ Part(XAi

k) do

6: Send(self, Aj, ReceiveProp:dtp with: WXk
);

7: end for

8: else

9: for all Aj ∈ Part(XAi

k) do

10: Send(self, Aj, MeetNotPossible);

11: end for

12: end if

130

Chapter 9

Asynchronous Constraint-based

Approach: A New-Born in the ABT

Family

In this chapter we present a novel constraint-based complete and generic constraint-based

approach to solve a CN with any arity. However, as mentioned before most the existing

approaches for solving DisCSP are variable-based approaches, allow the adding of new links

and especially proceed by recording nogoods in order to ensure completeness. The cost of the

search process grows with the number of connections, the amount of nogoods recorded and

with the required constraint checks. Only the work of Silaghi (AAS) in [98] is constraint-

based approach. It is considered as ABT for dual graph. Nevertheless, this techniques is

based on exchanging aggregating ranges of tuples rather than single values. Nevertheless,

determining ranges of tuples requires a high amount of constraint checks and consequently

may increase the cost of the solver.

The new approach (that we called DisAS for distributed asynchronous search) described

in this chapter, is based in a part on alazyversion of DRAC protocol, without adding new

links and especially without any nogood recording. In addition in this work we propose a

generic distributed approach to compute a static ordering,in which we save as many links

as possible hopefully to decrease the set of exchanged messages and to make it practically

useable.

In this chapter, we present first the constraint-based new approach. Second we give the

proposed protocol. Then we discuss the theoretical result.Finally, we illustrate the experi-

mental results followed by a conclusion.

131

9.1 Constraint-based asynchronous search approach

9.1.1 Multi-agent architecture

The proposed multi-agent architecture is based on the dual representation of a CN. This

model involves two kinds of agents: Constraint agents and anInterface agent. The latter

agent is added to the system in order to inform the user of the result. Each agent has a simple

structure formed by its acquaintances (the agents that it knows), a local memory composed

of its static and dynamic knowledge, a mailbox where the agent stores the received messages,

and a local behavior.

All the agents communicate by exchanging asynchronous point-to-point messages con-

taining only relevant information. An agent can send a message to another one only if it

knows it (it belongs to its acquaintances). For transmission between agents, we assume that

messages are received in the order in which they were sent. The delivery time for messages

is finite.

9.1.2 Generic parallel new method for static constraint ordering

The complexity of the CN and the number of exchanged messagesare highly depending

on the existing connections between the agents of the system. In this section we propose a

new distributed method to define an optimal global order (i.e., optimal in term of connec-

tions) between the agents. In our system, each agent will locally compute its position in the

ordering according to its variables. The first variable of anagent Ai, defines its level and will

be used to determine both its set of higher level acquaintances, i.e.,ParentsAi, and its set

of lower level acquaintances, i.e.,ChildrenAi . The agent Ai responsible of the constraint

Cij will be the leveli. The obtained graph should satisfy Property4 in order to ensure the

completeness of the solving approach.

Property 4 For each variable Xi ∈ X, for all the agents Ak such that Xi ∈ Var(CAk

ij), Aks’

are related through a single and continuous path.

To illustrate the main principle of this method, we assume initially that for each agent

Ai the set of children is all the constraints with which the agent shares at least one variable

(basis of the dual graph). Each agent Ai will reduce the set of its children,ChildrenAi , by

using the following rules:

Rule 1. Remove all Al, Var(CAl

ik)={Xi, Xk}, from ChildrenAi (Var(CAi

ij)={Xi, Xj}) such

that Al ≺lo Ai, i.e., Al ≺lo Ai if and only if k < j.

Rule 2. Remove all Ah, Var(CAh

fj), from ChildrenAi (Var(CAi

ij)={Xi, Xj}) such that

f>i+1 and there is no Al ∈ ChildrenAi with Var(CAl

mj)={Xm, Xj} andm ∈ {i, . . . , (f -

132

l)}.

Once the set of the children is reduced, each agent Ai will inform each agent Al ∈

ChildrenAi that it is the father. Then each agent Al receiving the above message will add Ai

to its set of parents,ParentsAl=ParentsAl ∪ {Ai}.

It is noteworthy that for a full connected graph, usingn variables, the total number of

constraints isn(n-1)/2. For each constraint we will have 2(n-2) links then the total number

of links, for the dual graph is O(n3). In case of an ordered dual graph, each constraint Cij

has (2n-(i+j)-1) ordered links. The total number of ordered links isn(n-1)/2*(2n-(i+j)-1).

As for our ordering method, each constraint of leveli ∈ {2, . . . , (n-1)} will be connected to

2(n-i) other constraints in the next level; only the first leveli=1 needs more (n-2) ordered

connections. Thus the remaining ordered connections for the proposed method isn(n-2).

We can easily see that our method saves many more connectionsand consequently decreases

the complexity of the exchanged messages in a real distributed computer architecture. In

addition, we assume to designate a leader for each variable,which will be responsible of this

variable. Each agent Ai that has no parent for at least one of its variables Xk, it will be the

leader of this variable.

Figure9.1 illustrates the proposed distributed static ordering proposed method, where in

the upper side a dual constraint graph is represented. To achieve the required order with the

minimum connections, each agent performs the algorithm detailed in Algorithm11. Each

agent possesses the set of its acquaintances. Once this method is executed, the constraint

ordering obtained is the one represented in Figure9.1(b) where:

A1: ParentsA1={}; ChildrenA1={A3}.

A2: ParentsA2={}; ChildrenA2={A3, A4, A5}.

A3: ParentsA3={A1}; ChildrenA3={A5}.

A4: ParentsA4={A2}; ChildrenA4={A6}.

A5: ParentsA5={A2, A3}; ChildrenA5={A6}.

A6: ParentsA6={A4, A5}; ChildrenA6={ }.

The gray circles represent the leaders of the variables. Themaximal number of leaders is

n. These agents will be used to perform backjumping (second step) in the solving process.

The ordering technique can be performed with a fixed number ofmessages and all the agents

are totally independent. All the agents can perform parallel computations at the same time,

leading to a good parallelization feature.

Furthermore, this method can be used to detect the existenceof cycles in the CN in a

distributed manner. When an agent and its two parents share the same variable, then this

agent and its parents form a cycle of three variables. For example, in Figure9.1(b){A4, A5,

133

A5 C35

A6C45

A1 C15

C23 A2

A3 C25

C34 A4

A6

A3

A5

 A2

C15

Leader(X1, X5)

C25

C35

C45

C23

Leader(X2, X3)

C34

Leader(X4)
 A4

Level 1

Level 2

Level 3

Level 4

A1

(a)

(b)

Figure 9.1. Distributed asynchronous constraint ordering .

134

Algorithm 11 Distributed constraint ordering main process executed by each agent Ai.

begin

1: ChildrenAi ← Ak ∈ A / V arAi ∩ V arAk 6= ∅ ;

2: ParentAi ← ∅ ;

3: for all Ak ∈ ChildrenAi do

4: if (Ak ≺lo Ai) OR ((level(Ak) > level(Ai)) AND (∃ Ah ∈ ChildrenAi such that Ah
≺lo Ak andV arAi ∩ V arAk = V arAi ∩ V arAh)) then

5: ChildrenAi ← ChildrenAi Ak;

6: end if

7: end for

8: for all Ah ∈ ChildrenAi do

9: sharedV ar ← V arAi ∩ V arAh;

10: sendMsg(Self , Ak, ”IamY ourParent:self for:sharedV ar”);

11: end for

A6} define a cycle, i.e., the two parents A4 and A5, of A6, share the variable X3.

9.1.3 Solving asynchronous process global dynamic

The main common global objective of all the agents is to solveany constraint problem.

This dynamic is divided into two steps:

• First step, a ”partial” enforcement of arc consistency [65], consists in pruning some

non-viable values and propagating them to higher level agents in order to decrease the

amount of backtracking and hence reduce the complexity of the solver. This step can

be viewed as alazyversion of DRAC approach.

• Second step, the solving process, consists in solving the obtained problem via inter-

actions and negotiations among all the agents of the system.Each agent searches for

the suitable tuple that, on the one hand, satisfies its associated constraints and, on the

other hand, satisfies all the agents belonging to its parentsand children, i.e.,∀ Ah such

that Ah ∈ ParentsAi ∪ ChildrenAi .

In this protocol, agents are ordered statically and inter-agent links are directed from high

priority to low priority agents, for two main reasons, to build an acyclic graph and to en-

sure a continuous path between agents sharing the same variable (using the aforementioned

method).

Each agent has at most two parents and none or many children. Each agent maintains

only a short and current view of the values taken by its parents. This view is defined by the

tuple t chosen by its parent(s). Each agent runs a similar process, and updates the stored

information received from its parent(s) in the form of an agent view.

135

During the first step, each agent Ai enforces lazy arc consistency on the domain of its

variablesVar(CAl

ij). Each agent seeks the ”first support” [6] of each value a of its variables.

If a valid tuplet, such thatt[index(Var(CAl

ij)), Xj]=a, is found, then (t y) is stored in the set

of first support. Each agent maintains this set in order to avoid redundant checks. The value

of y=(i-1) is added in order to indicate whethert is the first tuple support for Xi or not. Each

deleted valuea in D(Xi) should be communicated only to the parents (lazy enforcement).

The main reason is to minimize the number of exchanged messages and to avoid seeking

solution containing these non-viable values which may increase the number of constraint

checks.

The same process resumes; each agent that received a non-viable value has to send it

to its concerned parents. The deletion process continues until there are no more values to

propagate. If a domain of at least one variable becomes an empty set, then this agent has to

inform the Interface agent of the inconsistency of the problem in order to stop the system.

The system then moves to the solving process (second step). Each agent Ai in A will

choose a tuplet from its set of first support, i.e.,firstSupportAi. If the agent is a leader of

at least one variable,Leader(Xi), he has to choose the ”first possible viable tuplet” in order

to guarantee the completeness of the proposed approach and not escape any solution. The

agent has to communicate the chosen tuple t to its childrenChildrenAi as a new proposal.

Each agent that received a proposal from its parents updatesfirst its set of received proposals,

listP ropAi and then tries to adjust its proposal,ProposalAi according to the ones it receives.

If the agent succeeds in finding a new viable proposal compatible with its current view,

then this new proposal has to be communicated to its children. Otherwise, the agent chooses

the ”nearest” leader of its variables and asks it to change the value of the concerned vari-

able. This jump allows us to speed up the solving process and also to reduce the number of

exchanged messages.

The leader has to inform the agent whether or not it can changethe value. In the negative

case, in which there is no possible other value for the underlying variable, the agent has to

ask a second leader before propagating the request to a high priority agent (the leader of the

leader). If the head of all the agents receives a request to change its value and he cannot find

any more viable tuple, the agent sends an interruption message to the interface to inform it

of the non-existence of a solution.

9.2 Illustrative example

9.3 Theoretical analysis

9.3.1 DisAS soundness and completeness

For the correctness of our approach we have to prove the following two propositions:

136

Algorithm 12 Start Process executed by each agent Ai.

begin

1: for all Ai ∈ A do

2: propStateAi ← false;

3: if |ParentsAi| ≤ 1 then

4: Choose the first tuplet such thatt satisfy Const(Ai);

5: if |ParentsAi|=0 then

6: propStateAi ← true;

7: else

8: Chooset such thatt ∈ firstSupportAi;

9: end if

10: end if

11: end for

12: proposalAi ← t ;

13: for all Aj ∈ childrenAi do

14: var← CommonV ar(Ai, Aj);

15: ind← index(V arAi, var);

16: sendMsg(self, Aj , ”ProcessProposal:proposalAi for: var at:ind withProp-

State:propState”);

17: end for

Propostion 1 The combination of all the tuples received by the interface agent at the stable

state is a non-empty set,∀ Ai and Aj such thatV arAi ∩ V arAj 6= Ø, tAi andtAj have same

value for the shared variable.

Proof. Assume that the interface agent received two instantiations with different values

for the common variable,tAi=((Xk, vk) (Xl, vl)) andtAi=((Xm, vm) (Xk, v′
k)). The two agents

are linked, assume thatAj ≺lo Ai. The agentAi can send its instantiation to the interface

agent only, and only if its state is true, i.e., its instantiation satisfies that of its parents and

all the states of its children are true (see termination detection conditions). The state ofAj

depends on the received instantiation fromAi, i.e., its instantiation should satisfy the one

received, otherwise the agent should generate a conflict with state set to false. Then the two

received values for the variable Xk should be the same.

Propostion 2 Every found combination of variables is a solution of the problem.

Proof. Let considerS as a combination of variables’ values generated by the Interface

agent after receiving tuples from all the agents. Assume that S is not a solution for the prob-

lem, there exists Cij ∈ C such thatS does not satisfy Cij . Assume that this constraint is

137

Algorithm 13 Main messages exchanged by the agents of the system.

ProcessProposal:prop for :shVarat:ind withPropState:myState

1: add(listP ropAi, prop);

2: add(statePrAi, mySate);

3: if (|parentsAi | = 1) then

4: if (proposalAi [index(Ai, shVar)]= prop[ind])then

5: for all Aj ∈ childrenAi do

6: var← CommonV ar(Ai, Aj);

7: ind← index(V arAi, var);

8: propStateAi ← true;

9: sendMsg(self, Aj, ”ProcessProposal:proposalAi for:var at:ind withProp-

State:propStateAi”);

10: end for

11: else

12: /* value of shared variable not the same*/

13: InconsistentValueFor:prop at:ind

14: end if

15: else

16: /* A i has two parents*/

17: CycleConflictFor:prop at:ind

18: end if

maintained by the agentAi. If Sdoes not satisfy Cij this means that the instantiation gener-

ated byAi is not compatible with its parents. Then the state of the agent cannot be true and

then this agent cannot send its instantiation to the interface, which contradicts our assump-

tion.

As for the completeness of the proposed approach, the directed used dual graph has no

cycle. Also, every agent that is a leader of at least one its variables cannot return to a already

chosen tuple; this agent always tries to go ahead in order to avoid arriving at the same conflict.

Therefore, in case of backtracking, i.e., the tupletAi

1 is inconsistent with at least one agent of

lower priority,Aj will choosetAi

2 ≻ tAi

1 . The other agents may consider any consistent tuple

because their instantiation depends on that of their two parents.

The absence of solution can be detected during the enforcement of lazy arc consistency

(during the first step), or in the case where a agent cannot finda consistent instantiation even

after performing a local exhaustive search, by asking its leaders to provide more values. In

this case, the agent will inform the interface to stop the whole system and communicate the

non-existence of a solution to the human user.

138

Algorithm 14 Main procedure to process inconsistent value.

InconsistentValueFor:prop at:ind

1: tuple← searchFirstTupleIncludes:prop[ind];

2: if (tuple= nil) then

3: /*no viable tuple is found*/

4: propStateAi ← false;

5: if (myState = true)then

6: /* his parent not in conflict*/

7: progLevelAi[shVar] ++;

8: sendMsg(self,LeaderAi [shVar], ”moreValueFor:shVarnot:prop[ind]”);

9: else

10: /* Ai parent’s did not take his final decision the prop might bechanged*/

11: end if

12: else

13: proposalAi ← tuple;

14: propStateAi ← true;

15: for all Aj ∈ childrenAi do

16: var← CommonV ar(Ai, Aj);

17: ind← index(V arAi , var);

18: sendMsg(self, Aj ,”ProcessProposal:proposalAi for:var at:ind withPropState:

propStateAi”);

19: end for

20: end if

9.3.2 Termination

Most of the termination processes of the existing MAS approach are based on the well-

known algorithm of [19]. This algorithm requires the takingof snapshots of the system at

different stages leading to an increase in the number of exchanged messages. In our work,

we propose that the stable state will be detected progressively by the agents of the systems.

The main idea consists of defining a state for each agent Ai, this state is set to true if Ai
and all its children, i.e.,∀ Al / Al ∈ ChildrenAi , succeed in instantiating their variables.

The detection process will be detected by the leaves of the graph, i.e., all the agents Al
such thatChildrenAi=∅, and will be progressively propagated to the head(s), i.e.,all the

agents Al such thatParentsAi=∅, of the graph to be announced to the Interface agent. Each

agent Al that has no child and succeeds in instantiating its variables will set its state to true,

StateAi=true. ThenAl will inform its parents by its state.

The acyclic structure of the graph allows us to avoid entering an infinite loop and conse-

quently to gradually detect the final state. To summarize, ifthe head of the graph receives

139

Algorithm 15 Main procedure to process a cycle conflict.

CycleConflictFor:prop at:ind

1: if |listP ropAi| > 1 then

2: if ¬consistent(listP ropAi) then

3: /* A i has to wait because one of the two parents will change its proposal */

4: else

5: tuple← generateTuple(listP ropAi);

6: if (tuple 6= proposalAi) AND (tuplenotin firstSupportAi) AND (tupleNot Satisfy

Const(Ai)) then

7: /* the nearest Leader to Ai */

8: propStateAi ← false;

9: progLevelAi[1] ++;

10: sendMsg(self,LeaderAi[1], ”moreValueFor:sharedVarnot:prop[ind]”);

11: /* message sent to the nearest Leader to Ai */

12: else

13: proposalAi ← tuple;

14: propStateAi ← true;

15: for all Aj in childrenAi do

16: var← CommonV ar(Ai, Aj);

17: ind← index(V arAi, var);

18: sendMsg(self, Aj,”ProcessProposal:proposalAi for:var at:ind withProp-

State:propStateAi”);

19: end for

20: end if

21: end if

22: end if

true for all the states of its children, and its variables arealready well instantiated then it will

set its state to true and inform the Interface agent of the endof the solving process.

9.4 Experimental comparative evaluation

We have developed the multi-agent dynamic with Actalk [15],an object-oriented, con-

current programming language using the Smalltalk-80 environment. In our experiment, we

generated random constraint problems. The parameters usedfor a meeting problem are:n

variables in the system,d size of the maximal domain,p the density of the problem, andq

the tightness of the constraints.

Our goal in this section is to evaluate the performance of thenew DisAS approach, espe-

cially on the most hard problems. For this purpose, we conducted two branches of exper-

140

iment. In the first branch, we generated random problems nearthe peak of difficulty [24]

with n=15,d=5, p=30% andq varied from 25% to 85%. For each〈p, q〉 we generated 5 in-

stances. Then we measured the average of the obtained results. These results are expressed

in terms of three criteria: the number of constraint checks,the CPU time, and the number of

exchanged messages. Note that these are our first experiments.

Table 9.1. Results in mean of constraints checks and CPU time .
〈0.3, 0.25〉 〈0.3, 0.35〉 〈0.3, 0.45〉 〈0.3, 0.55〉

Constraint Checks 684.8 659.2 542 446

CPU time 112.2 170.4 177.75 198.6

Nber of Messages 112.4 305.2 322 363.4

〈0.3, 0.65〉 〈0.3, 0.75〉 〈0.3, 0.85〉

Constraint Checks 387 402.6 379.6

CPU time 194 241.4 260.6

Nber of Messages 326.6 398.6 438.6

We used the same parameters as those given by most researchers when solving distributed

complex problems. Table9.1 shows that this approach required a low number of constraint

checks and consequently less CPU time and fewer exchanged messages (compared to the

results presented in [54, 98], where for example, in [54] therequired number of constraint

checks for this same parameters is very high, i.e., in most cases, this number varies from 2000

and 10000 ccks.). The notices substantial increasing in theamount of constraint checks,

can be justified by the use of the knowledge collected during the lazy enforcement of arc

consistency (the set of supports), i.e., many redundant constraint checks are avoided.

For the second group of experiments. We focused our goal on evaluating the performance

and efficiency of DisAS vs. AWC search algorithm [110]. This algorithm performs better

than ABT due to its dynamic variable ordering, where a bad decision taken by a higher order

agent can be easily revised without conducting any exhaustive search.

We randomly generated a set of hard instances according alsoto the same parameters given

by most researchers,n=15; d=5; p=30% andq varying from 0.45 to 0.95 with step of 0.1.

We generated about 10 instances for each〈p, q〉. We carried our second experiments only

on consistent problems. The results reported in Figure9.2 illustrates the obtained outcome

in terms of number of constraint checks. We can say that DisASrequires considerably less

constraint checks than AWC search to prove the consistency of each instance, e.g., Forp=0.3

andq=0.55, AWC search needs seven times the amount of constraintchecks performed by

DisAS.

Note that forp ∈ {0.25, 0.35}, almost all generated problems are inconsistent. In almost

all the instances, DisAS detects their inconsistency during the first step.

141

0

500

1000

1500

2000

2500

3000

3500

4000

<0.3, 0.45> <0.3, 0.55> <0.3, 0.65> <0.3, 0.75> <0.3, 0.85> <0.3, 0.95>

<p, q>

N
u

m
b

er
 o

f
C

o
n

st
ra

in
t

C
h

ec
k

s

DisAS AWCSearch

Figure 9.2. DisAS approach vs. AWC Search approach results i n mean of the number of

constraint checks for binary random CN.

142

0

500

1000

1500

2000

2500

<0.3; 0.45> <0.3; 0.55> <0.3; 0.65> <0.3; 0.75> <0.3; 0.85> <0.3; 0.95>

<p, q>

N
u

m
b

er
 o

f
E

x
ch

a
n

g
ed

 M
es

sa
g

es

DisAS AWCSearch

Figure 9.3. DisAS approach vs. AWC Search approach results i n mean of the number of

exchanged messages for binary random CN.

143

As for the results expressed in terms of exchanged messages given in Figure9.3. At first

glance, it seems that AWC search overtake DisAS. However, itis evident the number of

exchanged messages grows with the number of entities in the system. For AWC search the

number of agent is only 15 agents, which is the same as the number of variable. While for

DisAS, the number of agent is the number of constraints, which is equal to 30% of n2,≃ 30

agents for each instance. Nevertheless, the use of AWC search for any non-binary problems

will require the additions of new agents (new variables), which is not the case for DisAS, also

for real-life problems, usually the number of involved constraints in less than the number of

variables. This will be as a part of our perspective.

9.5 Summary

We have presented in this chapter a new distributed asynchronous approach to solve any

constraints network (DisAS for Distributed Asynchronous Search). The proposed multi-

agent model is based on a dual graph representation of CSP in which each agent maintains a

constraint of the problem. These agents cooperate concurrently and asynchronously without

any central control. However, in addition we proposed a new distributed method to establish

a total order among agents with the minimum number of connections. The main reason is

to make it easy to use in a real distributed environment and also to decrease the required

exchanged messages.

There are two main ideas underlying this approach. First is to perform lazy enforcement

of arc consistency, in order to avoid basing high order agents’ decisions on arc-inconsistent

values. Second is that in case of a conflict, a backjumping is performed to the leader of the

concerned shared variable and not to the nearest parent. Thereason for this is to avoid all the

useless backtracking that can be done between the agent source of the conflict and the first

agent responsible of the concerned variable.

In addition, we d not perform either nogood recordings or no new links addition in the

new approach. This approach includes an enhanced detectionmechanism.

144

Chapter 10

Conclusions and Future Work

Constraint satisfaction problem (CSP) is a potent formalism to express and to solve many

ranges of NP-complete real-world problems, such as planning, resource allocation, time

tabling and meeting scheduling. This problem of schedulingmeetings (MS) is one the tradi-

tional real world problems that continues to fascinate manyresearchers. This problem em-

bodies a decision-making process affecting several users,in which it is necessary to decide

when and where one or more meeting(s) should be scheduled according to several restric-

tions related to users, meetings, environment, etc. This problem can be naturally expressed

using CSP formalism.

A CSP is a triplet (X, D, C) composed of a finite set ofn variables X, each of which is

taking values in an associated finite domain D and a set ofe constraints C between these

variables. Solving a CSP consists in finding one or all-complete assignments of values to

variables satisfying all the constraints. This task is hardand many efforts were devoted to-

wards enhancing it by reducing the complexity of the original problem. Hence, this paradigm

is marked by the ubiquitous use of local consistency properties and their corresponding en-

forcement techniques. The basic of these techniques is to prune values that cannot belong

to any solution and this in order to reduce the search space and consequently enhance the

efficiency of the constraint solver. Many levels of local consistency have been proposed in

the literature; among them, reinforcing arc-consistency is the most preeminent one because

of its low time and space complexities. Many centralized approaches for reinforcing arc

consistency have been proposed in the literature.

However, with the advents of both distributed computing andnetworking technologies,

and due to the natural distribution of many real CSP applications, recently, some efforts were

devoted toward centralized techniques. Furthermore, the majority of constraint programming

techniques are devoted to binary constraints, i.e., problems where all the constraints imply

each at most two variables. Only very few techniques deal directly with n-ary constraints

(non-binary constraints). Note that last years the interest to n-ary constraint network (CN)

has largely increased, but such algorithms have not been widely studied yet.

145

10.1 Conclusions

The most important results and contributions from the work presented in this thesis are the

following:

• DRAC and G-DRAC, two new approaches for any CNWe have proposed a new

distributed approach for reinforcing arc consistency for binary constraints (that we

called DRAC for Distributed Reinforcement of Arc Consistency) based on a Multi-

Agent system. This approach has been implemented with Actalk (with Smalltalk-80

environment) and compared with the best existing centralized approach (AC-7) on

the basis of randomly generated samples of the phase transition (the most difficult

generated problems). The experimental results show that our approach outperforms

the existing one in term of constraint checks [14, 15, 16]. Therefore, our second

objective was to focus our research on i). Improving DRAC approach by integrating

some new heuristics [1], ii) Adapting directly DRAC approach to general constraint

network (n-ary constraints). The new approach G-DRAC [6, 1]was implemented and

compared to the best existing centralized one (no distributed approach for enforcing

AC on n-ary constraints).

• DRAC++, to deal with more complex problemsWe have proposed an improvement

of DRAC approach to perform more than arc-consistency. The main motivation is that

for some hard constraint network performing only arc-consistency is fruitless because

it may not prune any values, or prune only few inconsistent values. Therefore achiev-

ing more local consistency pruning levels, with reasonablecost, can be worthwhile.

Hence, we should find the best compromise between the cost of the filtering process

and the amount of deleted values. Our main contribution is torefine DRAC approach

to perform restricted path consistency property (RPC) withthe minimum amount of

additional constraint checks. The experimental comparative evaluation shows that the

new approach, that we called DRAC++, is worthwhile especially for over-constrained

problems [10, 11, 8, 4].

• MSS, a novel static agent-based meeting scheduling solverWe have proposed a

novel, complete, deterministic, and static approach to solve any static meeting schedul-

ing problem. For which we proposed two types of constraints,hard constraints, i.e. to

express the non-availability of a user that cannot be relaxed, and soft constraints, i.e.

to define the preferences of the user that can be relaxed. Thisdiscrimination allows

us to more closely reflect real applications. In our proposedmodel, an MS problem is

viewed as a set of distributed reactive agents in communications. Each of them acts

on behalf of one user. The final result is obtained as a consequence of agents’ inter-

actions, each having a local goal. All the agents act in parallel and asynchronously

146

via sending point-to-point messages. All the agents of the system negotiate by ex-

changing only necessary relevant information in such a manner to reduce the amount

of messages and especially to preserve as much as possible users’ privacy. The local

goal for each agent is reach the Higher Utility for each scheduled meeting according

to defined criteria. The global goal of all the agents is to schedule all the meetings of

all the users while satisfying all the inter-agent constraints and achieving the Higher

Utility for each scheduled meeting [2, 5, 12].

• MSRAC, to deal with any meetings’ alterationsWe have proposed a new approach

to deal with any dynamic MS problem. This new approach is expected to be incremen-

tal and able to process alterations (the integration of a newmeeting and/or cancelation

of an already scheduled one). Our main target is to allow the processing of all kind of

conflicts among meetings (especially in the case of meetingswith same importance).

Therefore, to solve this kind of conflicts, we proposed threeissues: accept always the

meeting with higher local utility, choose randomly one meeting, or apply the metropo-

lis criterion to solve the conflict, i.e., accepting some deterioration in the local utility

may increase the global utility [3, 7, 13].

• DisAS, a new asynchronous solver in the ABT familyFinally we proposed a novel,

multi-constraint asynchronous search approach for any constraint network (n-ary con-

straints). The proposed approach is based in a part on a lazy version of the G-DRAC

approach, and without adding any new links and without recording any nogoods as

for the existing techniques in the literature. The idea behind using a lazy version of

G-DRAC is to save as many as possible fruitless backtrackingand consequently to

enhance the efficiency of the solving process. We have proposed a new generic dis-

tributed method to compute a static constraints ordering were proposed, in which we

save as many links as possible leading hopefully to decreasethe set of exchanged

messages.

10.2 Future work

Our study on ways of solving combinatorial problems and especially meeting scheduling

problems stir up our attention to do more further investigations on other challenging research

points that have not been address yet. In the following we will discuss some of them.

• N-ary constraints As first perspective of our research, we propose to improve DisAS

the asynchronous constraint-based solver to deal with any CN, make an exhaustive

empirical and theoretical study, and address a practical problem that arises in the real

world. We will try to examine the behavior of our proposed work directly on the n-ary

problem and also on its encoded binary version.

147

• More sophisticated personal computer assistantOur second perspective is to make

our meeting scheduling solver more sophisticated personalcomputer assistant while

integrating the three following issues:

– Temporal reasoning: For this first issue, the events are handled in our system

independently. To find a good schedule does not require specification of any re-

lation between two eventsEi andEj. If Ei andEj have the same welfare, for

the participants, to be scheduled at dated1 andd2 then choosing randomly one

date for each event is enough. Two possible solutions are possible in such situa-

tion. However, if the eventEj can be scheduled only whenEi is already planned,

then this problem can have only one solution. This temporal relationship among

events can be expressed using temporal constraints satisfaction formalism [29].

Khatib et al. proposed in [60] a framework to define soft temporal constraints

based on the temporal constraint satisfaction formalism.

An extension of the proposed formulation (calledtemporal constraint satisfac-

tion problems with preferences) can be used to express temporal aspect among

preferences of users that can be relaxed. The main reason is that for MS prob-

lems, the preferences of the users are naturally dynamic. Inreal world the prob-

ability of alteration in the calendar of a user differs from one person to another

according to his importance in the company. Hence, to formalize dynamic prefer-

ence of a user we need to use a dynamic temporal constraint reasoning formalism

with preferences.

– Uncertainty: For the second issue, the integration of the uncertainty insolv-

ing meeting scheduling problem, we noticed that for some cases the arrival of

new meetings may lead to a huge perturbation in the already generated schedule.

However, in the majority of companies, it is practically impossible to know be-

fore hand all the possible coming meetings, and when a suddenmeeting occurs

it may lead to the reschedule of other meetings or sometimes may lead even to

the cancelation of some of them. This may in most cases trouble all the partici-

pants. Therefore we need to make some assumptions about future meetings (even

a fuzzy view of the coming meetings) to establish some how a stable schedule.

The idea consists of integrating in the system some uncertain events, depending

on the current knowledge about the participant and the status of the company, and

trying to include them in the solving process. Luo et al. propose to formulate a

static MS problem using Fuzzy constraints [63]. Their idea is to make the system

more flexible by integrating soft constraints which can be partially violated and

this by using fuzzy constraints to express only users’ preferences and not to rep-

resent possible coming meetings. In a different manner we will formalize the MS

problem using an extended version of the CSP formalism able to represent real-

148

life scenario especially where the knowledge is not completely available. One

possible idea is to use in our modeling SCSP [18] (for semiring-based CSP) for-

malism to express the level of consistency of the constraints (probability that the

event will occur). However, a semiring is associated to the standard definition

of a CSP, so that different choices of the semiring representdifferent concrete

constraint satisfaction schemes. In addition we will try tomake our system more

flexible in the sense that a meeting may be planned even if someparticipants

are not present. This issue depends in a part on the participants, the head of the

meeting and also on the number of absent participants.

– Learning process: For the third issue, one of the fundamental aspects of a per-

sonal computer assistant is that it is enduring and self-improving. It is expected to

persist indefinitely and learn over time to make good decisions that better reflect

user constraints and preferences. Therefore, we will try toaddress the problem of

how to make the autonomous agents of the system, that sense and act on behalf of

the users, learn from the already processed meetings and thus they become able

to choose optimal actions to achieve their goals. Let’s recall that these agents

should cooperate and coordinate in the sense to jointly reach a consensus over

which actions to perform. For that, we will try to integrate learning process and

consequently to decrease the cost of the communication and increase the per-

formance of the system. Agents must learn to coordinate their actions through

other agents’ feedbacks. This learning process requires the access to the user’s

calendar, the incoming and outgoing meeting requests, the answer of the user and

especially the confirmed time slots.

However, integrating learning process in our approach may lead to an increase

in the privacy loss because; learning process requires recording some knowledge

about other agents (other human users) to avoid repeating the same task (asking

for the same place or asking same person twice about same datealready rejected).

However, in many settings, users may want to maintain their privacy as much as

possible while still engaging in a collaborative task. Onlyin recent years that

this concern has been taken into consideration while designing new techniques

for solving real-world problems and evaluating them. Even with limited com-

munication policy, an agent (acting on behalf of a human user) may collect and

deduce some private information about other agents. Hence,to have efficient sys-

tem raises the question of how to integrate learning processwhile maintaining as

much as possible the privacy of the implied users. Therefore, we need to find

good compromise between the revealed information and the gain obtained from

the learning process. Thus, the main problem is how to reach agreement among

all the agents of the system without revealing private information. In addition,

the calendars of the participants are dynamic, and a rejected date by a participant

149

may be accepted later. Maintaining the consistency of the users’ calendars may

affect the efficiency of the learning process.

150

Bibliography

[1] Abdennadher, S. and Schlenker, H., Nurse scheduling using constraint logic program-

ming. In Proceedings Eleventh Annual Conference on Innovative Applications of Arti-

ficial Intelligence, IAAI-99, pp. 838-843, 1999.

[2] Abrahamson, K., Dadoun, N., Kirkpatrick, D. G. and Przytycka, T., A Simple Parallel

Tree Contraction Algorithm.In Journal Algorithms, Vol. 10, No.2, pp. 287-302, 1989.

[3] Baudot, B., Deville, Y., Analysis of Distributed Arc Consistency Algorithms.Technical

Report, RR-97-07, 1997.

[4] Bakker, R.R., Dikker, F., Tempelman, F., Wognum P. M., Diagnosing and Solving

Over-determined Constraint Satisfaction Problems.In Proceedings of IJCAI-93, pp.

276-281, 1993.

[5] Berlandier, P., Improving Domain Filtering Using Restricted Path Consistency.In Pro-

ceedings of IEEE CAIA-95, pp. 32-37, 1995.

[6] Bessière, C., Arc consistency and arc consistency again. In Artificial Intelligence Jour-

nal, Vol. 65, pp. 179-190, 1994.

[7] Bessière, C., Freuder, E.C., Regin, J-C., Using Inference to Reduce Arc Consistency

Computation.In Proceedings of IJCAI-95, pp. 592-598, 1995.

[8] Bessière, C., Freuder, E., and Régin, J-C., Using constraint Metaknowledge to Reduce

Arc Consistency Computation.In Artificial Intelligence Journal, Vol. 107, pp. 125-148,

1999.

[9] Bessière, C. Régin, J-C., Refining the Basic Constraint Propagation Algorithm.In Pro-

ceedings of IJCAI-01, pp. 309-315, 2001.

[10] Bessière, C., Hentenryck, P.V., To Be or Not to Be ... a Global Constraint.In the pro-

ceedings of CP-03, pp. 789-794, 2003.

[11] Bessière, C., Regin, J-C., Arc consistency for general constraint networks : preliminary

results.In Proceedings of IJCAI-97, pp. 398-404, 1997.

151

[12] Bessière, C., Meseguer, P., Freuder, E.C., and Larossa J., On Forward Checking for

non-binary Constraint Satiafaction.In Proceedings of CP-99, pp. 88-102, 1999.

[13] Bessière, C., Brito, I., Maestre, A., and Meseguer, P., Asynchronous Backtracking with-

out Adding Links: A New Member in the ABT Family.In Artificial Intelligence Jour-

nal, vol. 161, pp. 7-24, 2005.

[14] Bessière, C., Regin, J-C., Enforcing Arc Consistencyon Global Constraints by Solving

Subproblem on the Fly,In Proceedings of CP-99, pp. 103-117, 1999.

[15] Briot, J.P., Actalk., A Framework for Object-OrientedConcurrent Programming - De-

sign and Experience.In Object-Oriented Parallel and Distributed Programming,Her-

mes Science Publications, pp. 209-231, 2000.

[16] Bacchus, F., Chen, X., Beek, P.V., and Walsh T., Binary vs. non-binary constraints.In

the Artificial Intelligence Journal, Vol. 140, No. 1-2, pp. 1-37, 2002.

[17] Bliek, C., and Sam-Haroud, D., Path Consistency on triangular Constraint Graphs.In

the Proceedings of IJCAI-99, pp. 456-461, 1999.

[18] Bistarelli, S. Montanari, U., and Rossi F., ConstraintSolving over Semirings.In Pro-

ceedings of IJCAI-95, pp. 624-630, 1995.

[19] Chandy, K.M. and Lamport, L., Distributed snapshots: Determining global states of

distributed systems.ACM Trans. on Comp. Systems, Vol. 3, No. 1, pp. 63-75, 1985.

[20] Chmeiss, A. and Jegou, P., New Constraint Propagation Algorithms Requiring Small

Space Complexity.In Proceedings of the 8th IEEE ICTAI-96, pp. 286-289, 1996.

[21] Cooper, P. R., Swain, M.J., Arc consistency: Parallelism and Domain Dependence.In

Artificial Intelligence Journal, Vol. 65, pp. 179-190, 1994.

[22] Conry S.E., Kuwabara K., Lesser V.R., and Meyer R.A. Multistage Negotiation for

Distributed Constraint Satisfaction.In IEEE Transactions on Systems, Man and Cyber-

netics, Vol. 21, No.6, pp. 1462-1477, 1991.

[23] Chmeiss, A. and Jegou, P., New Constraint Propagation Algorithms Requiring Small

Space Complexity.In Proceedings of the 8th IEEE ICTAI-96, pp. 286-289, 1996.

[24] Cheesman, P., Kanefsky, B., and Taylor, W., Where the Really Hard Problems are.In

Proceedings of the 12th IJCAI-91, pp. 331-337, 1991.

[25] Dent, M.J., Mercer, R.E., Minimal Forward Checking.In Proceedings of the 6th ICTAI-

94, pp. 432-438, 1994.

152

[26] Dechter, R. and Dechter, A., Belief maintenance in dynamic constraint networks.In

Proceedings 7th National Conference on Artificial Intelligence, AAAI-88, pp.37-42,

1988.

[27] Dechter, R., Pearl, J., Tree-Clustering Schemes for Constraint-Processing.In Proceed-

ings of AAAI-88, pp. 150-154, 1988.

[28] Dechter, R., On the Expressiveness of Networks with Hidden Variables.In the Proceed-

ings of the Eight National Conference on Artificial Intelligence, pp. 556-562, 1990.

[29] Dechter, R., Meiri, I and Pearl, J., Temporal constraint networks.In Artificial Intelli-

gence Journal, Vol. 49, pp. 61-95, 1991.

[30] Deville, Y. and Hentenryck, P. V., En efficient arc consistency algorithm for a class of

CSP problems.In Proceedings of the 12th IJCAI-91, pp. 325-330, 1991.

[31] Debruyne, R. and Bessière, C., Some Practical Filtering Techniques for Constraint Sat-

isfaction Problems.In Proceedings of IJCAI-97, pp. 412-417, 1997.

[32] Debruyne, R. and Bessière, C., From Restricted Path Conssitency to Max Restricted

Path Consistency.In Proceedings CP-97, pp. 312-326, 1997.

[33] Debruyne, R., and Bessière, C., Domain fitering consistencies.In Journal of Artificial

Intelligence Research, Vol. 14, pp. 205-230, 2001.

[34] Ephrati, E. and Rosenschein, J. S., The Clarke Tax as a Consensus Mechanism Among

Automated Agents.In Proceedings of the 9th National Conference on Artificial Intelli-

gence, pp. 173-178, 1991.

[35] Ephrati, E., Zlotkin, G. and Rosenschein, J. S., A Non-manipulable Meeting Schedul-

ing System.In Proceedings International Workshop on Distributed Artificial Intelli-

gence, pp. 105-125, 1994.

[36] Freuder, E.C., Wallace, R.J., Partial Constraint Satisfaction.In Artificial Intelligence

Journal, Vol. 58, No. 1-3, pp. 21-70, 1990.

[37] Freuder, E.C., A Sufficient Condition for Backtrack-free Search.In Journal of the ACM,

Vol. 29, No. 1, pp. 24-32, 1982.

[38] Freuder, E.C., A Sufficient Condition for Backtrack-bounded Search.In Journal of the

ACM, Vol. 32, No. 4, pp. 755-761, 1985.

[39] Freuder, E., and Elfe, C., Neighborhood Inverse Cnsistency Preprocessing.In the Pro-

ceedings of AAAI-96, pp. 202-208, 1996.

[40] Feldman, A.M.Welfare Economics and Social Choice Theory. Kluwer, Boston, 1980.

153

[41] Franzin, M.S., Freuder, E.C., Rossi, F. and Wallace, R., Multi-agent meeting scheduling

with preferences: efficiency, privacy loss, and solution quality. In Proceedings of AAAI-

2002 workshop on preference in AI and CP, 2002.

[42] Franzin, M.S., Freuder, E.C., Rossi, F. and Wallace, R., Multi-agent meeting scheduling

with preferences: efficiency, Solution quality and privacyloss.In the special issue of

computational Intelligence on Preferences in AI and CP, Vol. 20, No. 2, pp. 264-286,

2004.

[43] Garey, M. R., and Johnson, D. S.,Computers and Intractability- A guide to the Theory

of NP-Completeness. W.H.Freeman&Co, 1979.

[44] Grandoni, F., and Italiano, G. F., Improved algorithmsfor max-restricted path consis-

tency.In Proceedings of Principles and Practice of Constraint Programming CP-03,

pp. 858-862, 2003.

[45] Golomb, S.W., and Baumert, L.D., Backtrack Programming. Journal of the ACM,

Vol.12, No.4, pp. 516-524, 1965.

[46] Gaschnig, J., Performance Measurement and Analysis ofCertain Search Algorithms.

Technical Report CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh, PA, 1979.

[47] Gaschnig, J., A General Backtrack Algorithm that Eliminates most Redundant Tests.

In Proceedings of the IJCAI-77, Vol. 1, pp. 457, 1977.

[48] Grant, S.A. and Smith, B.M., The phase transition behavior of maintaning arc-

consistency.In Proceedings of ECAI-96, pp. 175-179, 1996.

[49] Garrido, L. and Sycara, K. Multi-Agent Meeting Scheduling: Preliminary Experimen-

tal Results.In Proceedings 2nd International Conference Multi-Agent Systems, ICMAS-

96, pp. 95-102, 1996.

[50] Getoor, L., Ottosson, G., Fromherz, M., and Carlson, B., Effective Redundant Cos-

ntraints for Online Scheduling.In Proceedings of fourtheenth National Conference on

Artificial Intelligence, pp. 302-307, 1997.

[51] Goldwasser, S., and Bellare, M., Lecture notes on cryptography.MIT Press, 1996.

[52] Gent, I., Underwood, J., The Logic of Search Algorithms: Theory and Applications.

In Proceedings of the Third International Conference on Principles and Practice of

Constraint Programming, CP-97, pp. 77-91, 1997.

[53] Hamadi, Y., Optimal Distributed Arc-Consistency.In Proceedings of Constraint Pro-

gramming, pp. 219-233, 1999.

154

[54] Hamadi, Y., Bessière, C., and Quinqueton, J., Backtracking in Distributed Constraint

Networks.In proceedings of ECAI-98, pp. 219-223, 1998.

[55] Huhns M.N., and Bridgeland D. M., Multiagent Truth Maintenance.In IEEE Transac-

tions on Systems, Man and Cybernetics, Vol. 21, No. 6, pp. 1437-1445, 1991.

[56] Haralick, R., Elliot, G., Increasing Tree Efficiency for Constraint Satisfaction Prob-

lems.In Artificial Intelligence Journal, Vol. 14, pp. 263-314, 1980.

[57] Hentenryck, P. Van, Constraint Satisfaction in Logic Programming.MIT Press, 1989.

[58] Hentenryck, P. Van., Deville, Y. and Teng, C-M. A generic arc-consistency algorithm

and its specifications.In Journal Artificial Intelligence Research, Vol. 27, pp. 291-322,

1992.

[59] Kondrak, G., Van Beek, P., A Theoretical Evaluation of Selected Backtracking Algo-

rithms.In Aritificial Intelligence Journal, Vol. 89, pp. 365-387, 1997.

[60] Khatib,L., Morris, P., Morris, R., and Rossi F., Temporal constraint reasoning with

preferences.In Proceedings of IJCAI-01, pp. 322-327, 2001.

[61] Lee, J., and Van Emden, M., Interval Computation as Deduction in CHIP.In Journal of

Logic Programming, Vol. 16, pp. 255-276, 1993.

[62] Lemaitre, M. and Verfaillie, G., An Incomplete Method for Solving Distributed Valued

Constraint Satisfaction Problems.In Proceedings AAAI-97 Workshop on Constraints

and Agents, 1997.

[63] Luo, X., Leung,H. and Lee, J.H., Theory and Properties of Selfish Protocol for Multi-

Agent Meeting Scheduling Using Fuzzy Constraints.In Proceedings of 14th ECAI-00,

pp.373-377, 2000.

[64] McGregor, J.J., Relational consistency algorithms and their application in finding sub-

graph and graph isomorphism.In Information Science, Vol. 19, pp. 229-250, 1979.

[65] Mackworth, A. K., Consistency in Networks of Relations. In Artificial Intelligence

Journal, Vol. 8, pp. 99-118, 1977.

[66] Mackworth, A. K., On reading sketch maps.In Proceedings IJCAI-77, pp. 598-606,

1977.

[67] Montanari, U., NetWorks of Constraints: Fundamental Properties and Applications to

Picture Processing.In Information Sciences, Vol. 7, pp. 95-132, 1974.

155

[68] Maheswaran, R.T., Tambe, M., and Bowring E., Taking DCOP to the Real World:

Efficiet Complete Solutions for Distributed Multi-Event Scheduling.In the Proceedings

of AAMAS-2004, pp. 310-318, 2004.

[69] Maheswaran, R.T., Pearce J.P., varakantham P., Bowring E., and Tambe M., Valua-

tion of possible states (VPS):A Quantitative Framework forAnalysis of Privacy Loss

Among Collaborative Personal Assistant Agents.In the Proceedings of AMAS-2005,

(to appear).

[70] Maestre, A., and Bessière, C., Improving Asynchronous Backtracking for Dealing with

Complex Local Problems.In Proceedings of ECAI-04, pp. 206-210, 2004.

[71] Mohr, R. and Henderson, T. C., Arc and path consistency revisited.In Artificial Intelli-

gence Journal, Vol. 28, pp. 225-233, 1986.

[72] Mohr, R., Masini, G., Good old discrete relaxation.In Proceedings ECAI-88, pp. 651-

656, 1988.

[73] Minton, S., Johnston, M.D., Philips, A.B., and Laird P., Minimizing Conflicts: A

Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems.In Arti-

ficial Intelligence Journal, Vol.5 8, No. 1-3, pp. 161-205, 1992.

[74] Morris, P., The Breakout Method for Escaping from LocalMinima. In Proceedings of

the 11th National Conference on Artificial Intelligence, pp. 40-45, 1993.

[75] Nash, J. F., Two-person Cooperatives Games.In Econometrica, Vol. 21, pp. 128-140,

1953.

[76] Nadel, B.A., Representation Selection for ConstraintSatisfaction: A Case Study Using

n-queens.In the IEEE Expert, Vol. 5, pp. 16-23, 1990.

[77] Nguyen, T. and Deville, Y., A Distributed Arc-Consistency Algorithm. In the First

International Workshop on concurrent Constraint Satisfaction, 1995.

[78] Nguyen, T. and Deville, Y., A Distributed Arc-Consistency Algorithm. In Science of

Computer Programming, Vol. 30, pp. 227-250, 1997.

[79] Perlin

[80] Prosser, P., Hybrid Algorithms for the Constraint Satisfaction Problem.In Computa-

tional Intelligence, Vol. 9, No.3, pp. 268-299, 1993.

[81] Prosser, P., Forward Checking with Backmarking.In Constraint Processing(LNCS),

Vol. 923, pp. 185-204, 1995.

156

[82] Puget, J.-F., A Fast Algorithm for the Bound Consistency of Alldiff Constraints. In

Proceedings of AAAI-98, pp. 359-366, 1998.

[83] Rao., V.N. and Kumar, V., On the Efficiency of Parallel Backtracking.In the IEEE

transactions on Parallel and Distributed Systems, Vol.4, No. 4, pp. 427-437, 1993.

[84] Regin, J. C., A filtering algorithm for constraints of difference in CSPs.In Proceedings

AAAI-94, pp. 362-367, 1994.

[85] Mullender, S.,Distributed Systems. Addison-Wesley, Second Edition, 1995.

[86] Sabin, D., and Freuder, E.C., Contradicting Conventional Wisdom in Constraint Satis-

faction. In Proceedings ECAI-94, pp. 125-129, 1994.

[87] Samal, S., Henderson, T.C., Parallel Consistent Labeling Algorithms.In International

Journal of Parallel Programming Archive, Vol. 16, pp. 341-364, 1987.

[88] Schiex, T, Fargier, H. and Verfaillie, G., Valued Constraint Satisfaction Problems: Hard

and Easy Problems.In Proceedings of 14th IJCAI-95, pp. 631-637, 1995.

[89] Singh, M.: Path Consistency revisited.In Proceedings of the 7th IEEE ICTAI-95, pp.

318-325, 1995.

[90] Stergiou, k., Walsh, T., The Difference All-Difference Makes.In Proceedings of IJCAI-

99, pp. 414-419, 1999.

[91] Stergiou, K., Representation and Reasoning with non-binary Constraints.PhD disser-

tation, Departement of Computer Science, Glasgow, Scotland, 2001.

[92] Sen, S., Haynes, T., Arora, N., Satisfying User Preferences While Negotiating Meet-

ings. In Inter.In Journal of Human-Computer Studies, Vol. 47, pp. 407-427, 1997.

[93] Sen, S. and Durfee, E.H. On the design of an adaptive meeting scheduler.In Proceed-

ings of 10th IEEE Conference AI Applications, pp. 40-46, 1994.

[94] Smith, B., Brailsford, S.C., Hubbard, P.M., and Williams, H.P., The Progressive Party

Problem: Integer Linear Programming and Constraint Programming Compared.In

Constraints, Vol. 1, pp. 119-138, 1996.

[95] Sycara K.P., Roth S., Sadeh N., and Fox M.S. DistributedConstrained Heuristic Search.

In IEEE Transactions on Systems, Man and Cybernetics, Vol. 21, No. 6, pp. 1446-1461,

1991.

[96] Sycara, K. and Liu, J.S. Distributed meeting scheduling. In Proceedings 16th Annual

Conference of Cognitive Society, 1994.

157

[97] K. N. Sivarajan, R. J. McEliece, J. W. Ketchum., ChannelAssignment in Cellular Ra-

dio, In Proceedings of the 39th IEEE Vehicular Technology Conference, pp. 846-850,

1989.

[98] Silaghi, M.-C., Sam-Haroud D., and Faltings, B.V. Asynchronous Search with Ag-

gregations.In Proceedings of the 17th National Conference on ArtificialIntelligence

AAAI-00, pp. 917-922, 2000.

[99] Schwald, E., and Dechter, R., Processing Disjunctionsin Temporal Constraint Net-

works.In Artificial Intelligence Journal, Vol. 93, pp. 29-61, 1997.

[100] Tsang, E., Foundations of Constraint Satisfaction.In Computation in Cognitive Sci-

ence, Academic Press, 1993.

[101] Tsuruta, T. ans Shintani, T. Scheduling Meetings using Distributed Valued Constraint

Satisfaction Algorithm.In Proceedings 14th ECAI-00, pp. 383-387, 2000.

[102] Van Beek, P., Dechter, R. On the minimality and global consistency of row-convex

con-straint networks.Journal of the ACM, Vol. 42, No. 3, pp. 543-561, 1995.

[103] Verfaillie, G., Martinez, D., and Bessiere, C., A Generic Customizable Framework for

Inverse Local Consistency.In Proceedings of AAAI-99, pp. 169-174, 1999.

[104] Waltz, D. L., Understanding Line Drawings of Scenes with Shadows.In the Psychol-

ogy of Computer Vision, McGraw Hill, pp. 19-91, 1975 (first published in:Tech.Rep.

AI271, MIT MA, 1972).

[105] Wooldridge, M.,An Introduction to Multi-Agent Systems. John Wiley & Sons, LTD,

2002.

[106] Yokoo, M. Ishida. T, and Kuwabara, K. Distributed Constraints Satisfaction for DAI

Problems.In 10th International Workshop in Distributed Artificial Intelligence (DAI-

90), 1990.

[107] Yokoo, M. and Hirayama, K. Algorithms for DistributedConstraints Satisfaction: A

Review.In International Journal Autonomous Agent and Multi-AgentSystems, Vol. 3,

No. 2, pp. 185-207, 2000.

[108] Yokoo, M., Suzuki, K., and Hirayama, K., Secure distributed constraint satisfaction:

Reaching agreement without revealing private information. In Principles and Practice

of Constraint Programming, CP-02, LNCS 2470, pp.387-401, 2002.

[109] Yokoo, M., Durfee, E.H., Ishida, T., and Kuwabara, K.,The Distributed Constraint

Satisfaction Problem: formalism and algorithms.In the IEEE Transactions on Knowl-

edge and Data Engineering, Vol.10, No. 5, pp. 673-685, 1998.

158

[110] Yokoo, M., Asynchronous Weak-commitment Search for Solving Distributed Con-

straint Satisfaction Problems.In the Proceedings of the First International Conference

on Principles and Practice of Constraint Programming, CP-95, pp.88-102, 1995.

[111] Yokoo M., Durfee E.H., Ishida T., and Kuwabara K. Distributed Constraint Satisfac-

tion Formalizing Distributed Problem Solving.In Proceedings of DCS, pp. 614-621,

1992.

159

Publications

International Journals

1. Ben Hassine, A. and Ho, T.B., ”How to Enforce Local Consistency on any Constraint

Network by Reactive Agents”. Submitted to the International Journal of Artificial

Intelligence Tools (IJAIT), 30 pages, World Scientific Published (Under Review) 2004.

2. Ben Hassine, A., Ito, T. and Ho, T. B., ”Meetings Scheduling Solver Enhancement with

Local Consistency Reinforcement”. The International Journal of Applied Intelligence

(Kluwer Publishers), 11 pages, 2004 (to appear).

3. Ben Hassine, A. and Ho, T. B., ”An Agent-Based Approach to Solve Dynamic Meeting

Scheduling Problems with Preferences”. Submitted to the International Journal of En-

gineering Applications of Artificial Intelligence (EAAI),30 pages, Elsevier Publisher

(Under Review), 2005.

Refereed International Conferences

4. Ben Hassine, A. and Ghédira, K. ”A Distributed Arc-Consistency Reinforcement for

Constraint Satisfaction Problems”. In the Acts of the Second Scientific workshop

of the Young Researchers in Electronic and Data-processingEngineering, GEI’2002,

Hammamet, Tunisia, 2002.

5. Ben Hassine, A. and Ghédira, K. ”How to Establish Arc-Consistency by Reactive

Agents”. In Proceedings of the 15th European Conference on Artificial Intelligence,

p. 156-160, ECAI-2002 Lyon, French, 2002.

6. Ben Hassine, A. and Ghédira, K. ”Using Reactive Agents toEstablish Arc-Consistency”.

In Proceedings of the Seventh Pacific Rim International Conference on Artificial In-

telligence, p. 97-107, PRICAI-2002 Tokyo-Japan, 2002.

7. Ben Hassine, A., Ito, T. and Ho, T. B. ”A New Distributed Approach to Solve Meet-

ing Scheduling Problems”. In Proceedings IEEE/WIC Int. Conf. Intelligent Agent

Technology (IAT’03), Halifax, Canada, 2003.

8. Ben Hassine, A., Xavier Défago and Ho, T. B. ”Nouvelle Approche pour la Résolution

Dynamique des Problèmes d’Ordonnancement des Rencontres”. Presented in the Sci-

entific French-speaking Workshops (JSF’03), 24-26 November, Tokyo, 2003.

160

9. Ben Hassine, A., Ito, T. and Ho, T. B. ”Scheduling Meetingswith Distributed Local

Consistency Reinforcement”. In the Proceedings of the 17thInternational Conference

on Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-

tems (IEA/AIE 2004), pp. 679-688, Ottawa, Canada, 2004 (nominated for the best

paper).

10. Ben Hassine, A., Ghédira, K. and Ho, T. B. ”New Distributed Filtering-Consistency

Approach to General Networks”. In the Proceedings of the 17th International Confer-

ence on Industrial and Engineering Applications of Artificial Intelligence and Expert

Systems (IEA/AIE 2004), pp. 708-717, Ottawa, Canada, 2004.

11. Ben Hassine, A., Défago, X. and Ho, T. B. ”Agent-Based Approach to Dynamic Meet-

ing Scheduling Problems”.In the Third International Joint Conference on Autonomous

Agents and Multi Agent Systems(AAMAS04), pp. 1132-1139, NewYork, 2004, (ac-

ceptance rate 24

12. Ben Hassine, A. and Ho, T. B. ”DRAC++ for Distributed Restricted Path Consis-

tency”. In the Proceedings of the Japan-Tunisia Workshop onComputer Systems and

Information Technology (JT-CSIT04), Tokyo, 2004.

13. Idrissi, A. and Ben Hassine, A. ”Circuit Consistencies”. In the Proceedings of 8th

Pacific Rim International Conference on Artificial Intelligence, pp. 124-133, 2004

(acceptance rate 26%).

14. Ben Hassine, A. and Ho, T. B. ”Nouvelle Approche Générique pour le Renforcement

Distribué de la Consistance de Chemin Restreint”. In Proceedings of the Scientific

French-speaking Workshops (JSF’04), 4-5 November, Tokyo,2004.

15. Ben Hassine, A. and Ho, T. B. ”Restricted Path Consistency Enforcement for any

Constraint Network”. In Proceedings of the Joint Workshop of Vietnamese Society

of AI, SIGKBS-JSAI, ICS-IPSJ and IEICE-SIGAI on Active Mining AM’04, (IEICE

Technical Report Vol.104 No.485), 4-7 December, Hanoi-Vietnam, 2004.

16. Ben Hassine, A. and Ho, T. B., Performing more than AC for Hard Distributed Con-

straint Satisfaction Problems.In the Proceedings of AAMAS-RRS Workshop, Nether-

land, 2005 (to appear).

161

