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Abstract

Constraint satisfaction problem (CSP) is a powerful foismalto represent and to solve
many real-life NP-complete problems such as, planninge® allocation, meeting schedul-
ing, etc. The great success of this formalism is due esdlgribats simplicity in expressing
any real-world problem subject to constraints. A CSP is@dti(X, D, C) composed of a
finite set ofn variables X, each of which is taking values in an associatetefdomain D
and a set o€ constraints C between these variables.

Solving a CSP consists in finding one or all-complete assegmof values to variables
satisfying all the constraints. However, this task is hard many efforts were devoted to-
wards enhancing it by reducing the complexity of the origprablem. Essentially, the com-
plexity reduction in CSP formalism is achieved by integrgtihe local consistency property
(LC) and its corresponding filtering techniques. Thosenegples allow the simplification
of the original problem by eliminating values or combinataf values that cannot belong to
any solution. Many levels of LC have been proposed in theditee, among them enforcing
arc-consistency is the most preeminent one because ofutsrite and space complexities.
Most efforts dealing with enforcing AC on any constraintwetk (CN) are centralized al-
most always limited to binary CN, i.e., where each constiairolves at most two variables.
Non-binary CNs, where constraints involve more than twoaldes, are often strongly re-
quired to deal with hard applications. Nevertheless, tiewery few works involving non-
binary constraints and they pertain only to the centralfzachework.

Recently, with the advent of distributed computing and roeking technologies, espe-
cially with the omnipresence of naturally distributed realrld problems, the interest in
enforcing LC property in naturally distributed manner and lhoth binary and non-binary
CN has largely increased, but such techniques have not bieehystudied yet. Moreover,
solving real-life applications, mainly meeting schedglproblems, requires also more stud-
ies to cope with the new environment requirements.

Our main target i$) to find solutions and build a novel generic system to enfemae
levels of LC with reasonable cost on any CN aindo take this system to the real-life through
one among the important combinatorial applications, mgstscheduling problems.

Our study on CSP framework and its related research directiecluding, LC enforce-
ment techniques, and especially ways of solving real agipdins, mainly meeting schedul-
ing problems (MS) stir up our attention to do more invesima in this framework. Five
main contributions of this thesis are the following.

e The integration of LC enforcement techniques in a congteaitver reduces the expo-
nential space, in the number of variables, of the search Tit@is clear benefit coupled



with the very few existing research efforts dealing withumally distributed problems,
motivated us to design a new hybrid agent-based method tocenérc consistency on
any CN. This hybrid method involves two main approaches DRAG G-DRAC, for
binary and non-binary constraints, respectively. The ieation of the two underlying
techniques is guaranteed with equal polynomial time corifyles the best exist-
ing distributed technique for DRAC and the best centralisstinique for G-DRAE
down to the number of variable. As for the spatial complexitth techniques DRAC
and G-DRAC save as much space as possible compared to g@xists. The empiri-
cal study of DRAC and G-DRAC shows their efficiency for esp#gihard problems
(Chapterb.).

e Enforcing only arc consistency for some hard CN is fruitléBse main reason is that
the problem could be initially AC, thus the filtering proce@il not prune any values,
or prune only few inconsistent values. Achieving higheelesf LC could be worth-
while. The main deal here is to find a good compromise betweetevel to enforce
and its cost. Note that no distributed techniques for achgehigher level than AC
exist in the literature. We designed an agent-based teghnifjat we called DRACH
to enforce restricted path consistency, a stronger lewl &C with reasonable cost.
Moreover, a new heuristic is described in this work to desedhe practical complex-
ity of DRAC**. The experimental results exhibit the efficiency of this regproach
towards over-constrained problems (Chapter6.).

e Taking our research results to a real life combinatorialiappon was our main moti-
vation for the next contribution. Therefore, we choose tal@ate the performance of
DRAC on a real decision-making problem: Meeting Schedupingplem (MS). This
problem is one the traditional real world problems that oargs to fascinate many re-
searchers. This problem embodies a decision-making paféescting several users,
in which it is necessary to decide when and where one or moetimggs) should be
scheduled according to several restrictions related tosuseeetings, environment,
etc. Evidently, solving MS problems, is always time consugniiterative and also
tedious. Despite the continuous efforts of many reseascitieis problem needs more
investigations to arise many daily encountered difficsltiee to the incremental en-
vironment requirements. However, DRAC is a filtering tecjug; it cannot solve any
problem but only reduce it without loss of solutions. We caupdn this thesis with
another novel, agent-based, complete, and determinggtioach (that we called MSS
for meeting scheduling solver) to reduce and solve any M8 pigédictable structure.
The proposed underlying protocol is based aseHishwelfare to reach the best solu-
tion with polynomial cost. The experimental comparisondgrened using a typical
MS solver show the high performance and scalability of M$&ast for the used data

There is not any technique to enforce arc consistency orbirmary CN in a naturally distributed manner.



set (Chapter7.).

e The previous work requires a total knowledge about all thetmgs in advance. How-
ever, for some organizations knowing all meetings befardimight be quiet difficult
rather impossible. This motivated us to tackle a new dioeckor MS problems, prob-
lems with unpredictable structure. Therefore, anotherensophisticated solution to
solve any dynamic MS problem is described in this thesis.rdvetechnique, that we
called MSRAC, is an incremental approach, able to cope withsgstem alterations,
and consequently process any meetings’ conflict using thfea¥ent heuristics. An
empirical study highlights the benefit of using timetropolis criterionin case of con-
flict against other heuristics. Moreover, the main goal inRAE is to maximize
the global system welfare, defined by the optimal solutiom)evwscheduling dynamic
meetings (Chapter8.).

e Finally, our last contribution in this thesis is a novel, straint-based asynchronous
search approach (that we called DisAS for distributed asyomous search). This
work is able to tackle directly any constraint network (witbn-binary constraints).
The proposed approach is based in a part azaversion of the G-DRAC approach,
and without adding any new links and without recording angouals as for the ex-
isting techniques in the literature. The idea behind usitaggversion of G-DRAC
Is to save as many as possible fruitless backtracking ansecuently to enhance the
efficiency of the solving process. Furthermore, a new gerdistributed method to
compute a static constraints ordering were also propostddisAS in order to estab-
lish an optimal ordering between agents, in which we saveasgyrtinks as possible
leading hopefully to decrease the set of exchanged mesaadgesake it of a great
practical use. The designed technique is generic and casdukto solve any naturally
distributed real application (Chapter9.).

Keywords: Constraint satisfaction problem (CSP), Distributed C&ied CSP, Local
consistency, filtering techniques, Arc consistency, Magient systems, Meeting scheduling
problems, Asynchronous backtracking techniques.
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Chapter 1

Introduction

1.1 Context and motivation

Many combinatorial applications in real-world, known as-RBmplete problems, need to
be solved. Several formalisms dealing with such problem®\weoposed in the literature,
among which: linear programming problem formalism (PLN@ppositional satisfiability
problem formalism (SAT), constraint satisfaction problEmmalism (CSP).

The constraint satisfaction problem (CSP) formalism [6%}idely used to formulate and
solve several combinatorial problems, e.g., planninggue=e allocation, time tabling and
scheduling. The great success of this paradigm is due eslbetd its natural expressiveness
of real-world applications. A CSP is defined by a set of vddapa domain of values for
each variable and a set of constraints between these \esighblving a CSP involves finding
assignments of values to variables that satisfy all thetcainss.

In instance, let’'s consider a simple real application, tteg+ooloring problem shown in
Figurel.l. Assume that we have a map formed by four regiothsvarhave only three colors
to use for this mapréd, blueandgreer). Our goal is to color each region in the map so that
no adjacent regions have the same color and also the seahsidie not be colored in blue
(assume that only one of the four regions is located neardhg sThis problem can be
easily formulated as a CSP in which, we have four variaples X,, X3, X4}, each variable
depicts one region. The domain of each variable is definetidogvailable color$red, blue,
greer}. Two constraints occurs in this problem; The first one dogsattow the use of the
same color for each pair of variables corresponding to twacatt regions. The second
constraint is that the color used for the variablg ¥Which is assumed to be the region near
the sea, should not be blue. Solving this problem is assigomtors to variables (regions)
with regards to the two constraints mentioned before.

Solving a CSP is a hard task and a blind search often leadsdmhbinatorial explosion
in the search tree. However, this framework is marked by bhguitous use of local consis-
tency (LC) properties and enforcing techniques; notingltkkais a relaxation of consistency.
For any consistent CSP there is a unique equivalent locally consistent and morg@l&m
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Figure 1.1. A simple example of the map-coloring problem. Th ree possible colors can be
used for each region {red, blue, green}. Each arrow depicts two adjacent regions that

should be painted with different colors. The region X is supposed to be in the sea-side.

CSPP’. FindingP’ is achievable in polynomial time by so-called enforcing tiefing algo-
rithms. These algorithms allow the simplification of any staint problems by eliminating
values or combination of values that cannot be involved ynswiution. In instance, in the
above map-coloring problem, the variable should be different fronblueaccording to the
second constraint. For that reason, the véalue in the domain of X cannot belong to any
solution of the problem. Therefore, the valiae can be removed from the domain of X
without loss of solutions.

Integrating the enforcing of local consistency as a preggsing step and/or within the
search process is worthwhile for pruning inconsistent esliconsequently saving much
fruitless exploration of the search tree especially on laaudilarge problems. Several levels
of local consistency (node, arc, path dadonsistency) have been proposed in the literature.
Obviously, as indicated in [31], the overhead caused by vamganconsistency has to be
outweighed by its gain. This overhead fluctuates accordinye problem to solve.

Which level should be enforced when seeking for solutionsaiiconstraint networfk

Two main criteria should be taken into consideration whileasing a suitable level of con-
sistency to achieve for a constraint network (CN). The feghie pruning efficiency of the
filtering involved and, the second is its time and space cexifpés.

Arc consistency (AC) is the widely preeminent existing lesfdocal consistency because
it eliminates some values that cannot belong to any solwtagima low cost. Enforcing AC
embodies checking the consistency among each pair of V@siabnnected by a constraint.
This framework has been widely studied in many researchteff@he main reason is that
maintaining AC during a search has been definitively showbet@ worthwhile approach
when solving hard and large problems [7, 48].

There are two kinds of approaches to achieve AC, centrafimelddistributed approaches,
both of them can be applied thnary CN and non-binary CN. In the binary CN, each con-
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straint involves at most two variables while in then-binaryCN (called alsa-ary CN or
generalCN) there is at least one constraint that implies more thanvaviables.

Some typical works in the centralized framework where dised in the literature, such as
in[104, 65, 71, 30], and [6]. As mentioned by Baudot and De\8], very few works deling
with distributed approach can be found in the literature [BF, 78, 53], despite the natural
distribution of many real-world applications and the adveiboth distributed computing
and networking technologies.

It is noteworthy that most efforts in constraint satisfantproblems assume that any real-
life application can be exclusively formulated using bynaonstraints. Many of the aca-
demic problems amongst: n-queen, zebra, fit this condiubiist for other real-application,
their formulation requires imperatively the use of nonasjnconstraints in order to preserve
problem semantic. Nevertheless, most efforts were devarigdto binary CN. The main
reason is that any non-binary problem can be transformedairitinary one. Thus, many
methods have been proposed in literature to translate mamybconstraints into an equiv-
alent set of binary ones. Theoretically, this equivaleralees the issues of algorithms for
non-binary problems. However, in practice, this translapresents several limitations con-
cerning spacial and temporal requirements, which makegpiicable. Furthermore, in [84]
the author proved that this transformation could lead tddkse of a part of the constraints’
semantics.

Recently further efforts have been devoted to extend bitechiniques to non-binary
versions able to deal with general constraints in theirinagform. However, only few
works on enforcing arc-consistency for non-binary protderan be found in the literature
[66, 72, 84, 11]. All these works address a centralized fiaonk; no distributed approaches
were suggested in the literature.

Is AC enough for hard CNe

Performing only AC for some hard CNs might be fruitless; Cakproblems initially AC.
Consequently, applying this property may not delete anyaslor may delete only few in-
consistent ones. Therefore in achieving more local cagrsistpruning levelsg-consistency
(k > 2), can be more efficient.

Higher consistency levels such as, path consistdacgnsistency, can prune more non-
viable values. Some works dealing with enforcing path ciesicy (PC) were proposed in
[31, 23]. These techniques check the consistency amongssilpe paths of three variables
connected by three constraints in a complete CN. Howevesgtkechniques are never used
in practice because of their very high complexities (or they used only for very small
and easy problems). Furthermore, enfordirgpnsistencyK > 3) may change the graph of
constraints and especially require high computational cost.

1As mentioned in [103], these levels require the recordingdfidden tuples, which implies either the cre-
ation of new extensionally defined constraints, or the &ldibf an extensional definition to existing possibly
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What about a level higher than AC and less than PC

Obviously, we should find a suitable level of consistencydbi@ve while considering the
best compromise between the cost of the filtering processrenelficiency of the deletions
involved. In [5] the author proposed the restricted patrseiancy (RPC) property, which is
higher than the AC property and requires much less compuiateffort than PC. This level
does not suffer from the drawbacks of PC. We notice also thataerk has been proposed
in the literature to enforce any level of local consistenather than AC, in an entirely
distributed manner.

What about tackling one of the hard real-world applicatiofis

The great success of the filtering techniques in the enhagrtieat the solving process of
many combinatorial problems, motivated us to tackle onerantbe hard real-world appli-
cations, which is the meeting scheduling problem. This jgmobis of great importance in
our life and especially in the success of any organizatiorgoAd scheduling may lead a
high gain for the organization and consequently to the $pdiself.

This problem embodies a decision-making process affectavgral users, in which it is
necessary to decidehenandwhereone or more meeting(s) should be scheduled. To satisfy
real-world efficiency requirements, in this work we focusedtwo challenging character-
istics: the distributed and dynamic nature of the problerhe MS problem is inherently
distributed and hence cannot be solved by a centralizedbaphpr it is dynamic because
users are frequently adding new meetings or removing sééedaumes from their calendar.
This process often leads to a series of changes that musthbawously monitored.

The general task of solving an MS problem is normally timestoning, iterative, and
sometimes tedious, particularly when dealing with a dymagnvironment. More precisely,
solving the MS problem involves finding a compromise betwakithe attendants’ meet-
ing requirements(i.e., date, time and duration) which are usually confligtitience, this
problem is subject to several restrictions, essentialted to the availability, calendars and
preferences of each user. Automating meeting schedulimggertant, not only because it
can save human time and effort, but also because it can leadr® efficient and satisfying
schedules within organizations [40].

Many significant research efforts were proposed in theditee among which [1, 4, 49,
96, 92, 63, 42]. Nevertheless, most of these waeyldeal only with non-dynamic problems,
i7) allow the relaxation of any user’s preferencés) do not integrate the enforcement of
local consistency in their solving procegs) judge all the meetings of the whole system
with the same level of importance), do not consider the high complexity of message passing
operations in real distributed systems.

intentionally defined constraints.
2To simplify the problem, we assume that all the attendartsrathe same city.



1.2 Obijectives

We have learned from all the previous works and focused cgeareh on the bellow
points. Figurel.2 illustrates a summary the main objestofehis thesis.

e Propose new distributed hybrid method to enforce local isterscy on any general
CN. This new method involves two agent-based approachesseltwo approaches,
called DRAC and GDRAC, are value-oriented propagation amttern distributed
enforcement of AC for any binary and any general CN, respelgti

e Suggest a new solution to tackle higher level of consistevityreasonable complex-
ities. The main idea is to propose a refinement of the DRACaggir to enforce more
than AC with low cost, restricted path consistency (RPC)aomy hard binary CN.

e Take the DRAC approach to the real world. We main of our thbgkctive is to tackle
one among the important combinatorial real-world appiwgtthe MS problem, while
integrating filtering in the solving process. We focus etiaély, in this work, on MS
problem with predictable structure, i.e., All meetings lamewn in advance.

e Extend the protocol for solving any static MS problems tol deigh unpredictable
structure, i.e., case where the complete knowledge abooliewdtoblem is not avail-
able beforehand. Therefore, the underlying protocol mogseavith all difficulties that
may encounter with the dynamic environment requirements.

e Propose a new generic constraint-based asynchronous tohieal directly with any
constraint network.

New hybrid distributed method to enforce AC on any CN
For this point, the new hybrid method we suggest has thevintigp characteristics:
¢ None of the approaches involved relies on any existing aépéd algorithm.

e The underlying model, which is common for all the involveghagaches, is based on a
multi-agent system associating a reactive agent per @nsteach having a local goal.
The full global goal of each approach is obtained as a restliednteractions between
the reactive agents by exchanging asynchronous pointitt-pessages containing
inconsistent values.

e A dual constraint-graph is used to represent any CSP. Togoged model is different
from the DisCSP [106] model, which is based on the primales@ntation of a CSP.
The main objective is to be able to directly address any ge&@M without having any
claim to any existing transformation non-binarybinary techniques. It is known that
this transformation procedure may increase both the teahpad spatial complexity.
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e The method can handle any kind of constraints, especialhtomost important form
defined by predicates for which no particular semantics aswn

e The global goal of each proposed approach in the system @gudished with the
minimum number of constraint checks and with the lowest GRig tequired.

New agent-based approach to enforce more than AC on binary CN

For this second point, the new approach, called DRAGIoes not rely also on any central-
ized techniques and it addresses especially hard CN wheievaty only AC is ineffective.

New approach to solve any static MS problems

A new static multi-agent MS approach is proposed in thisighe$his approach closely
reflects real applications while improving the process besiling meetings. The proposed
protocol is based on distributed reinforcement for arc stescy (DRAC) approach. The
basic idea is to benefit from the main goal of DRAC in order wume the complexity of

a meeting-scheduling problem solving process. In this wak propose to formalize the
MS problem as a valued constraint satisfaction problem ®)S36] in which each user
maintains two kinds of constraintdiard and soft constraints related to them besides the
other strong constraints defining the problem. The hardtcainss (which can never be
violated) represent the non-availability of the user, wltile soft constraints (which can be
violated) represent the preference calendar of a usehé&munbre, each new scheduled event
is considered as a hard constraint.

More sophisticated and flexible solution to solve any dynarMsS problems

Another more sophisticated MS solver is proposed in thisitheWe have also adopted
the agent-based model to this approach, because it is thecogruent system for a rich
class of decision-making real-world problems. The MSRAG&&INg Scheduling with Re-
inforcement of Arc Consistency), multi-agent coordinatapproach is a novel, scales better,
dynamic and entirely distributed solution to the meetinigestuling problem that accounts
for user preferences, handles several events with varswessl of importance and especially
minimizes the number of exchanged messages. The basictdratcs of MSRAC are the
following.

e First, itis an incremental approach capable of processialglem alterations without
conducting any exhaustive search.

e Second, it is based on the DRAC approach to enhance the effjc@a the solving
process.



e Third, in the MSRAC approach the MS problem is contemplated set of distributed
reactive self-interested agents in communication, eath the ability to make local
decisions on behalf of the user. The agents’ decisions ar&éased on any global
view? but only on currently available local knowledge. The finalukis obtained as a
consequence of their interactions. This purpose is actiith the minimum number
of exchanged messages by virtue of the real difficulty of mgsgassing operations
in a distributed systems.

e Finally, the use of preferences naturally implies the adopdbf an optimization cri-
terion, both for each agent and also for the system as a whbles, we adopted the
dynamic valued constraint satisfaction problem formal{B¥CSP) to model any MS
problems. This formalism provides a useful framework fafestigating how agents
can coordinate their decision-making in such dynamic emvirent leading to more
flexible and widely applicable approach to real-life.

New generic asynchronous approach to solve any distributedstraint problem

As for our main contribution in the fith point, is to propose @vel complete and generic
multi-agent algorithm for any CN. The new approach is abledlve any CSP while per-
forming distributed enforcement of AC, without adding amywlinks and without recording
any nogoods. The main reason for using a lazy version of DRSAIG save some fruitless
backtracking and consequently to enhance the efficiendyegbtoposed approach.

In addition, we propose a generic distributed method to agmp static constraint order-
ing in which we save as many links as possible in order to @dser¢he set of exchanged
messages. Furthermore, information about variables miaydeo different agents while
information about constraints belongs only to the ownenagad is kept confidential.

1.3 Thesis guideline

This thesis is divided into ten chapters.

Chapter 2 introduces some useful definitions and proposed techniguélse constraint
satisfaction problem formalism and its extensions.

Chapter 3 presents some useful definitions of local consistency ptp@and discusses
some of the existing centralized and distributed enforegreehniques.

3The agents exchange as little information as possible tp kesst of their personal information private.



Chapter 4 defines one of the real world application, meeting schedulinth a review of
some of the related works.

Chapter 5 introduces a novel hybrid agent-based method includingwlefollowing
approaches, to enforce AC on binary CN, DRAC approach, and-goy CN, G-DRAC ap-
proach.

Chapter 6 presents an agent-based approach to enforce more thanreisteacy on
binary and hard constraint network, DRAC for distributed restricted path consistency en-
forcement.

Chapter 7 illustrates a novel approach to solve any static meetingduling problem,
MSS (forMS Solvey.

Chapter 8 introduces a more sophisticated solver for any dynamic MBIlpm, to cope
with encountered difficulties in the dynamic environmentSRAC (Meeting Scheduling

with Reinforcement of Arc-Consistefcy

Chapter 9 discusses a generic, new distributed, complete and cantsha@sed approach
to solve any distributed problems, DisAS (rstributed Asynchronous Seaich

Finally, Chapter 10 concludes the thesis.



1.4 Notations and conventions

The abbreviations used in this thesis are summarized irotteving table:

CSP Constraint satisfaction problem

SAT Satisfiability problem

CN Constraint network

DisCSP Distributed constraint satisfaction problem
VCSP Valued constraint satisfaction problem
DCSP Dynamic Constraint Satisfaction problem

DynVCSP Dynamic valued constraint satisfaction problermiism
BT Backtracking
AWC Search Asynchronous weak-commitment search

AAS Asynchronous aggregation search

LC Local consistency

NC Node consistency

AC Arc conssitency

PC Path consistency

RPC Restricted path consistency

CT Clarck Tax mechanism

MS Meeting scheduling

MAS Multi-agent system

DRAC Distributed reinforcement of arc consistency
G-DRAC General distributed reinforcement of arc consisgen
MSRAC Meeting scheduling with reinforcement of arc coresisty
MSS Meeting scheduling solver

DisAS Distributed asynchronous solver

GU Global utility

LU Local utility
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The most used notations are as follows:

A

X;

D(X;)

ng

Ci.

C;

Rij...

ConstX;)
Var(C,;...)

t

Vi

indexC;;..., Xi)
r

A
TupleSupport:
m,

d,

C,

Ch

W;‘i

Wy

k

Agent numbet

Variable numbei

Domain of the variable number

Non-binary constraint

Non-binary constraint maintained by the agént
Binary constraint involving only two variables;énd X;
Relation associated to the constraint C

Set of constraints involving of variable; X

Set of variables involved in the constraing C

Vector of viable variables/values

thel'h Value in the domain of the variable; X

Position of the variable Xin the constraint

Set of all Constraint agents in the system

Set of acquaintance of the agent A

Set of tuples allowed by the constraint associated;to A
ht" meeting of the agent A
p* date in the domain
Soft constraint

Hard constraint

Degree of preference of the agenttd schedule meeting at thé" date

Importance of thé* meeting
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Chapter 2

Constraint Satisfaction Problem
Formalism

Constraint satisfaction problem (CSP) formalism [67] isl&y used to formulate and to
solve many combinatorial problems, such as planning, resailocation, time tabling and
scheduling. The great success of this formalism is due &aBgito its natural expressive-
ness of real-world applications. Several ways of modelirggvan problem as a CSP, are
possible. Nevertheless, the choice of the model can hage larpact on the required time
to find solutions [76]. However, as mentioned by Bacchus et[&6], besides the vari-
ous possible modeling techniques that have been developbédisat adding redundant and
symmetry-breaking constraints [50, 94], adding hiddermeddes [28]. One important mod-
eling decision is the arity of each used constraints, ifee,tumber of variables involved
in each constraint. A constraint can be expressed over apaariables, case of a binary
constraint, or over a set of variables (more than two), cAsenon-binary constraints.

In the sequel of this chapter, we will give first some basicrdiédins and notations for
the CSP formalism and some of its extensions. Then we wiltri®s some of the existing
solvers.

2.1 Definitions and preliminaries

Definition 1 Informally, a constraint satisfaction problem [67] (CSR)a tuple (X, D, C)
where:

o X={Xy, ..., X}, is afinite set of variables,

e D={D(X;), ..., D(X,)}, is a set ofn finite domains. D(¥={v;,, ..., v, } with
|ID(X;)|=d. A total order <, can be defined on the values of each domain, without
loss of generality. For each pair of valugs;, , v;, } C D(X)), Vi, <, V;, if and only if
Vi, <Vi,.

k1
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e C={C; , ...} is asetofeconstraints between these variables. Each constrajnt C
implies an ordered set of variables Var(C)={X;, X;, ... }. [Var(C;, . )|=r is the arity
of the constraint. Let’'s denote by Consl(¥he set of all constraints £ involving
X; while index(G;..., X;) is the position of variable Xin C;; . |Const(X)|=m, mis
called the degree of X The constraints restrict the values of the r variables ttet
be simultaneously taken.

Each constraint ¢ can be represented implicitly by an arithmetic relation or b
a predicate, where a computation is needed to check if thenyidg constraint is

satisfied or not. Or explicitly by the set of allowed (or faltden) tuples (denoted by
Ri;...), where the answer to a constraint check is already recordexidatabase. The
majority of works on constraint reasoning has focused onstayeduce the number
of constraint checks required in order to decrease the tealpomplexity of the solver.

An instantiation of the variables in Var(C ) is called a tuple on Var(§_). Assume
that there are two tuples tand t, on Var(G;. ). A lexicographical order<;, can be
also set between the tuples on variables of a constrajnt @ which § <, t if and
only if it exists k such that fil..k-1]=t5[1..k-1] and t[K] <4t2[K] (where t;[1.. k-1] is
the prefix of size k of tand t [K] is the Kk value of t).

Definition 2 A full or partial assignmenti}:{vlj, Vo, e vmp} is a vector of values such
that every y e D(X,).

Example 1 Let’s consider one of the most important problem of the galr@rstem for mo-
bile communication GSM, which is the frequency assignmeoblem (called also channel
assignment problem) [97]. Given a set of geographicallyded, typically hexagonal re-
gions called cells (see Figure2.1). Frequencies (channalst be assigned to each cell
according to the number of call requests. This problem haettypes of electro-magnetic
separation constraints:

1. Co-channel constraint: the same frequency cannot be &skigra pairs of cells that
are geographically close to each other.

2. Adjacent channel constraint: similar frequencies canediitmultaneously assigned to
adjacent cells.

3. Co-site constraint: any pair of frequencies assigned tedhee cell must have a certain
separation.

To solve this problem is to find a frequency assignment thizfses the above mentioned
constraints and while minimizing the sum over all co-chdamel adjacent channel interfer-
ences.

14



A possible formulation of this problem is as given by Sivaragt al. [97] where frequen-
cies are represented by positive integers 1,2,3,
Given

e N, the number of cells,
e d;,i€{1,.,N}, the number of requested calls (demands) incell

e (j;, 1< 4,57 < N, the frequency separation required between a cell in:@id a call
in cell 5.

We need to find:f;;, the frequency assigned to th& call in cell i with 1< i < N and K
k < d;, such thatf;, — fi| > C;; for all 4, 5, k, | excepti=j andk=[ and whilemin max f;,
for all 4, k.

Figure 2.1. Example of the hexagonal regions used in the freq uency assignment problem.

Definition 3 Let (X, D, C) be a CSP, A solution of the CSP is defined by theeundset of
variables X and an assignment of a value to each variable in X satisfying all the con-
straints in C.

Ix={(X;, v;, )|V X; € XandV C;; € C/X; € Var(C;;.); (X, v;,) satisfies all Const(}. }

Solving a CSP consists in finding one or all full assignmeiitsis type of problems is
known as NP-Complete for which the solving task is hard, wleeblind search often leads
to a combinatorial explosion. The NP-complete problemgfaamost difficult problems in
NP.

Definition 4 NP is the class of problems for which a claimed solution carelséad within
a polynomial time on the length of the problem description.

Definition 5 A NP-complete problems [43] is a subclass of NP problems tctwa SAT
problem can be mapped within a polynomial time bounded byahgth of the problem
description.
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Definition 6 A binary CSP is a problem where all the constraints are binawpstraints;
otherwise is it called n-ary CSP.

Definition 7 A constraint is a binary constraint if and only if it involvas most two vari-
ables; otherwise the constraint is called non-binary (iy-aonstraint).

Following Montanari [67], a binary relation correspondittga constraint ¢ between
two variables X and X can be represented by a (0, 1)-matrix WiEi{(X;)| rows and D(X,)|
columns by imposing an order on the domains of the varialesroentry at row a column
b means that the pair consisting of thé element of D(X) and theb™ element of D(X) is
not permitted; mneentry means that the pair is permitted. However for the casersstraint
in intension, to determine all the allowed couples of vahaeglires high time and space cost.

Definition 8 A binary relation R; corresponding to a constraint,Crepresented as a (0,
1)-matrix is row convex if and only if in each row all of the sreee consecutive; that is, no
two ones within a single row are separated by a zero in thatesaow.

Consider the example given in Figure 2.2, the binary rata@g, between X and X is
row convex relation.

0111

_loor11
R<= 0001
0000
Xj Xj
C.
D(X)={1, 2,3, 4} D(X))=(1, 2, 3,4}

Figure 2.2. Example of a row-convex binary relation.

We give now the definition of a special constraiall;different constraint, which will be
used throughout this thesis.

Definition 9 A constraint G; . on variables{X;,, X;,, ..., X; } with r is the arity of the
constraint, is called armll-different constraint [90] if and only if it allows the tuplea(, a-,
.., ap) € D(X;,) x D(X;,)x ... x D(X;,) such thaty, € D(X;,) and for alll # m, a; # a,,.

Three graphic representations can be used to represent:gp@®RI graph, dual graph
[27] and hypergraph [100].
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X;
(a) (b)
Figure 2.3. Example of a primal graph for a binary constraint problem (a) and a non-
binary constraint problem (b). The nodes represent the vari ables while the (hyper)-links

illustrate the common constraints.

e The primal graph: a CSP is represented as a graph where tles acel the variables
of the underlying problem and the links are the constraigtch pair of variables X
and X; are linked together if and only if they share at least one ttaimgs (see Figure
2.3(a)).

e The dual graph: this representation comes from the relatatabase community and
was introduced to the CSP community by Dechter an Pearl [Ri7ihis representa-
tion the constraints labeled the nodes of the graph, andahables labeled the links
relating the nodes (see Figure 2.4).

e The hypergraph: This graph is used to represent non-birarstiaints. The variables
labeled the nodes of the graph and the hyper-links représemt-ary constraints (see
Figure 2.3(b)).

However with the advent of both distributed computing antivoeking technologies,
many naturally distributed problems arise leading to thithtaf a new subfield of the Al,
the distributed Al (DAI). This new subfield requires a newnfalism to develop a general
framework for DAI. The distributed constraint satisfactiproblem (DisCSP) is an exten-
sion of the CSP formalism [106] to represent a variety ofrthiated problems where con-
straints and/or variables are controlled by a set of indépenbut communicating agents,
such as distributed resource allocation problem [22]rihisted scheduling problem [95],
multi-agent truth maintenance tasks [55].

Definition 10 A distributed constraint satisfaction problem (DisCSP)§lis a CSP whose
variables and constraints are distributed among multipjerats.

e There exisk agents 1, 2,..,n.
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{X?, XI}

Figure 2.4. Example of a dual graph for any constraint proble m. The nodes represent the

n-ary constraints while the links define the shared variable S.

e Each agent has several variables.

e Each agent knows all constraint predicates relevant to its variablesr(straint pred-
icates which take i's variables as arguments).

Another extension of the CSP formalism was also proposeteariterature, mainly to
represent some real-life scenarios where it is impossidatisfy all the constraints. In, this
case known as over-constrained problems, we may allow tagatgon of some constraints
to solve it. The proposed valued constraint satisfactiablem (VCSP) formalism consists
of giving a weight or a valuation to each constraint to reftaetimportance of satisfying it.

Definition 11 A valued constraint satisfaction problem (VCSP) [88] is auple (X, D, C,
S,¢) where (X, D, C) is the classical CSP formalism, S=¢&;-) is a valuation structure,
andy : C — E. Eis the set of possible valuationsjs a total order on E;L. € E corresponds
to the maximal satisfaction and € E corresponds to the maximal dissatisfactionjs an
aggregation operator used to aggregate valuation. AsstinaeA is an assignment of all the
variables of the problem. The valuation of A is definedt§)= ®.ccp(A, c) where

1, if cis satisfied by A;

2.1
¢, otherwise. @D

p(A,c) = {
In the aforementioned formalisms, CSP and VCSP, the knayel@dout the problem is
assumed to be totally known and fixed. However, this is noagsypossible especially when
dealing with real situation where the underlying problemyragolve in time due ta) the
environment, evolution of the set of tasks to be perform @nalf their execution conditions
in scheduling applications;) the user, evolution of the user requirements in the frantewo
of an interactive design; and) the other agents is the framework of a distributed system.
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The notion of dynamic CSP (DCSP) [26] has been introducedpoesent such situations.

Definition 12 A dynamicconstraint satisfaction problem® (DCSP) [26] is a sequence of
static CSPP,, ..., P,, P, 1, ... each resulting from a restriction (a constraint or a \able is
added) or relaxation (a constraint or a variable is retrad)en the preceding one.

Several techniques to solve constraint satisfaction problwere proposed in the litera-
ture. These techniques can be divided into several catsgocentralized and distributed,
complete and incomplete, synchronous and asynchronaus,letthe following we will
present some of them.

Definition 13 An algorithm is complete if and only if it guarantees to findbéusion, if one
exists, or to prove that the problem is insoluble, otherwise

Definition 14 Let (X, D, C) be a CSP, A partial solution to the CSP is defined bydered
subset of variables ¥ X and an assignmerit- of a value to each variable in Y.

2.2 Constraint reasoning techniques

Two types of real-world applications can raise accordinth&r physical location. The
first concerns the traditional centralized problems, wiadirhe data is gathered on the same
site. The second kind deals with the naturally distributexbfems among several sites and
for which it is not convenient to gather the whole problemktealge into a single site. The
main reason and not the only one is the cost of collectinghédrmation into the same site
could be taxing. Furthermore, gathering all informatiotoia single site could be undesir-
able essentially for security or privacy reasons. Our mrefeaere motivated by the second
type besides its importance and frequency in our real lifvéler for centralized problems,
the large variety of existing centralized techniques arghwehile to solve them. Whilst, for
the second type of problems we need to apply a distributdthigaes. Hence, during last
few years Al community has shown an increasing interest Iairs® such problems us-
ing multi-agent system (MAS) paradigm. Moreover, note #nan for some centralized
problems applying distributed techniques is better ansl fibvi security reason [51]. These
problems are known as atrtificially distributed problems.

In the sequel of this chapter, we will review the two existipges of constraint program-
ming techniques, centralized techniques and paralléiifiged techniques.

2.2.1 Centralized search

Two main groups of centralized CSP solvers exist in theditge: The search algorithms
and the consistency algorithms. The former can be dividedwo groups Backtracking al-
gorithms and iterative improvement algorithms. Howevetlie consistency algorithm, they
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can be used as preprocessing techniques or during the geacdss to reduce futile back-
tracking and consequently to enhance the efficiency of thechgrocess. These techniques
will be given in detail in Chapter 3.

Backtracking algorithms

Chronological Backtracking(BT) algorithm [45] is the basic for most systematic algamits
for solving CSPs. Such algorithm is known to be completeatpeds first by constructing a
partial solution including a value assignment of a subsgaabblesy” C X that satisfies all
the constraints withiry”. This partial solution will be extended progressively tooanplete
solution (if possible) by adding new variables (the nextha trdering) one by one until
exploring all the variables of the underlying problem. A demd is detected when for
one variableX;, no possible value, satisfying all the constraints betwegand the partial
solution, is found. In this case, the value of the most rdgewmtded variable Xto the partial
solution is changed. This operation is calleacktracking(BT). This algorithm terminates
when all the variables have been assigned a value, in thesitasturns this solution, or
when all the variable-values combinations have been cldeakd failed, case of insoluble
problem.

This algorithm is depth-first tree search algorithm wheseeificiency is subject to en-
hancement. Several heuristics have been proposed iné¢hatlite to ameliorate the search
process of the BT algorithm, such as the order of selectinigbies, the order of selecting
values, etc. The value-order heuristic known as min-cdrtilearistic [73] is the most suc-
cessful one among the existing ones. The basic of min-coBflicconsists in choosing the
value that satisfies as many constraints with the tentativiables in the partial solution.

Several complete centralized enhanced search algorithsesion backtracking have been
proposed in the literature for binary CSPs.

Backjumping(BJ) [46] is more intelligent than BT in the way to behave wiaetead-end
occurs. This algorithm avoids the computational overhdaglToby using syntactic meth-
ods to estimate the point to which BT is necessary. Instedhdktracking to the previous
variable, it backjumps to the deepest past variabl€X. < X;) in conflict with the current
variable X;. In this way BJ avoids redundant reassignment of values yovanables X
with X, < X; < X; since these variables are not involved in the detected canflowever,
BJ needs to record the deepest conflicting variabléoX each.X; in order to avoid the re-
exploration of the dead-end branch of the search tree.

Conflict-direct backjumping(CBJ) [80] is a refinement of BJ while doing more sophisti-
cated backjumping. This algorithm proceeds by recordieg#t of conflicting past variables
X, for each variableX;. Therefore, it requires more complicated data structuae\lil be
used in case of dead-end to perform a backjump not to the s@ficonflict but to the con-
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flicting variable closest to the root of the search tree, ilee deepest variable in its conflict
set. Hence, in case of conflict CBJ would jump to further positn the search tree com-
pared to BJ.

Backmarking[47] (BM) is another refinement of backtracking algorithnséd on mark-
ing scheme process. This process saves many redundansteonyi checks in order to
avoid repeating them. When the instantiation of two vagalilave not changed since last
time they were checked, they will be marked and this inforomavill be recorded in special
data structures to avoid checking them again. Other enhaamts of BM algorithm were
proposed in the literature, amongst: backmarking with ettrdlirected backjumping [80]
(BM-CBJ), BM-CBJ2 [59].

Forward checking[56] (FC) is a look-ahead algorithm. It checks the curresigrament
against all future variables/values that are connecteldg@tirrent variable;. Each incon-
sistent value belonging to a future variabie is temporarily removed from the domain of
X;. If a domain of a future variabl&’; becomes empty, the instantiation of the current vari-
able is undone, and another value is tried. If no possiblerotalue is found for the current
variable then a backtrack is performed. FC guarantees fdr earrent partial solution the
consistency of the current value with the already assigraetl yariables (by construction
they are consistent and no need to check them again). Sexteaisions of FC were pro-
posed in the literature, amongst: FC-CBJ [80], FC-BM [81inivhal FC [25].

Maintaining arc consistency (MAC]86] is also a look-ahead algorithm. This algorithm
performs more than lazy arc consistency. While checkingctivesistency of the current
assignment with the connected future variables, this dlgurproceeds by enforcing arc
consistency on the whole subproblem formed by all the futamgables. This extra-work
performed by MAC may delete more values from the domains twfréuvariables and con-
sequently may lead to more pruning in the search space cechpaFC.

It is noteworthy that most of the backtracking algorithmaldmly with binary CN. Some
researchers claimed that their algorithms are also woitbWdr general CN, others provided
an extension of their work to deal with non-binary cases aysyithe work done by Gent and
Underwood [52]. In this work, the authors presented a gédefaition and implementation
of CBJ for constraints of arbitrary arity. FC has been alsoegalized in a straightforward
way to handle n-ary constraints [57]. Others and more sepggneralizations of FC to
n-ary problems were introduced by Bessiere et al. [12].
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Iterative improvement algorithms

As described by Yokoo and Hirayama [107], these algorithnasbased on hill-climbing
search. An initial value is given randomly to each varialdi¢he problem. The obtained
configuration is then progressively revised by using Hilhbing search until finding a con-
sistent solution, if it exists. The main limitation of theakgyorithms is to fall into local-
minima rather than global one, case where some constramis@ated and the number of
these violated constraints cannot be decreased by chaagyrgingle variable/value. Several
technigues were proposed to escape from local-minima,damele in the breakout algo-
rithm [74] a weight is defined for each constraint (initialighg is 1). The summation of the
weights of violated constraints is used as an evaluatiamevah case of local-minima, this
algorithm increases the weights of violated constraintisescurrent configuration by 1. The
evaluation value of this configuration will be larger thangh of the neighboring configura-
tions. Hence, the iterative improvement algorithms canfbeient, but their completeness
cannot be guaranteed.

2.2.2 Parallel and distributed search

At this point we have to distinguish first between two maingoiggms, parallel problem
solving and distributed problem solving. According to Wiradige [105], parallel problem
solving merely involves the exploitation of parallelismsnolving problems. The compu-
tational components are simply processors; a single notid&responsible for splitting
up the overall problem into sub-components, allocatindheafcthem to a processor, and
subsequently assembling the solution. Nodes are assuniegllitomogenous. In contrast
a distributed system is defined by a set of entities sharimghawon goal and thus there is
no potential for conflict between them. The problem cannatddeed without cooperation.
Cooperation is necessary between the entities becauseediffnodes might have different
parts of the problem.

The two main objectives behind distributing the solvingqass arej) to speed up the
running time of a central algorithm, @f) to solve the problem that is already distributed
among these entities and there is no way to gather all thenraftion on the same node, i.e.,
for time/cost or for security reasons.

However, the main assumption made by most work on distribpteblem solving con-
cerning implicitly sharing the same goal for all the enstia the system, is worthwhile
for entities belonging to the same organization or indigiduln contrast, in multi-agent
systems [105] paradigm (MAS), it is assumed instead thatien{called agents) are self-
interested entities and they are concerned with their owlfavee(of course on behalf of
some users/owner).

In addition, some real applications require negotiatiogsveen the entities of the prob-
lem, such problems: meeting scheduling problems, didettesource allocation problems,
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etc. Hence, MAS concerns issues such as how agents can rgagment through ne-

gotiation on matters of common interest, and how agents gaardically coordinate and

cooperate their local activities with other ones whose gaall motives are unknown. Sev-
eral applications in real-world are concerned with findingpasistent combination of agent
actions (e.g., distributed resource allocation proble22$, [distributed scheduling problems
[95], multi-agent truth maintenance tasks [55]). Thesdlenms can be naturally formalized
as a DisCSP [111] and consequently can be solved usinghditad algorithms. However,

as mentioned by Yokoo [107] existing parallel/distribuégiorithms for CSP are not worth-

while for DisCSP due to the fact that they usually requirebgldknowledge/control among

agents.

Another point should come up while talking about distrilslsystem modeling. As in-
dicated in [85], it is useful to distinguish between synetooes and asynchronous system.
With asynchronous systems we have no assumptions abowssrexecution speeds and/or
message delivery delays; with synchronous systems we de asdumptions about these
parameters. Hence, in asynchronous protocols, agentsroaeqa independently without
explicit synchronization. Nevertheless, asynchronousgjagents more freedom in the way
they can contribute to the search, and especially allowiagitto enforce individual policies
such as privacy. In this thesis we are interested by the gexpalgorithms for DisCSP.

Mainly two types of models are used in most of the algorithmesented in the literature
for solving constraint satisfaction problems in a disttdzbmanner, the variable-based model
and the constraint-based model.

Definition 15 A variable-based model is a model where each variable balémgne agent
and constraints are shared between agents. A constraisgdbenodel is a model where each
constraint belongs to one agent and involved variables heged between agents.

In the following we briefly review some of the most importaristing distributed tech-
nigues for solving distributed constraint problems.

Asynchronous backtracking (ABT)

This algorithm proposed by Yokoo et al. [106] is a distrilaliteersion of the backtracking
algorithm to solve DisCSP. This algorithm assumes a vaetablsed model. Let's recall
that for this model, constraints and variables of the pnobée distributed among a set
of automated agents. Each agent is responsible for maimgegme variablé it has a link
toward any agent that owns a constraint involving that \deiaAgents are arranged in a fixed
priority order>-, i.e., A, = A; ifand only ifi < j. A constraint is enforced by the lowest
priority agent among those that are responsible for thealsbes in the constraints. ABT is
executed autonomously and asynchronously by each agene inetwork. It computes a
global consistent solution (or detects that no solutiostsXiin finite time.

tAlthough ABT can be applied to the situation where one agastrhultiple local variables.
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Each agent instantiates randomly its variable and commatesdhe value to the relevant
agents (connected by outgoing links) wk? message. No agent has to wait other agents’
decisions. Each agent that receivedbd message with varaiable/value assignment, evalu-
ates its constraints involving received variables. If thel@ation process succeeds, i.e., all
constraints involving this variable are satisfied with tlesvrassignment, do nothing. Oth-
erwise, the concerned agent will try to assign a new valu@dorariable if possible. If no
other viable value is found, the agent generatasgoodmessage and send it to the lowest
priority agent generating a dead-end assignment, i.e ssigrament that cannot be extended
to a complete solution. The agent receiving this nogood aggswill incorporate this infor-
mation in its local knowledge, change its current assigrtiigrossible, otherwise generate
anothemogoodmessage accordingly. The local knowledge of an agens formed by its
own agent view and a set of nogoods. The agent view;0$ a set of values that it believes
to be assigned to agents connected to it by incoming linkéevthe set of nogoods is kept
as a justificative of inconsistent value. The process teateBywhen achieving quiescence,
meaning that a solution has been found, or when the emptyatbigogenerated, meaning
that the problem is unsolvable. The completeness of thrighgn is given by Yokoo et al.
[109].

Asynchronous weak-commitment search (AWC Search)

In the previous algorithm, ABT algorithm, lower priority @gts need to make an exhaustive
search to revise bad decision(s) made by higher prioritytégle Therefore, Yokoo [110]
proposed an extension of ABT algorithm based on both, theawoinlict heuristic to reduce
the risk of making bad decisions, and the dynamic agent mrgler order to be able to revise
bad decisions without conducting and exhaustive searchcéjdor the asynchronous weak-
commitment search algorithm (AWC), the priority value isedenined for each variable and
communicated to other agents \0&? message. The priority order is determined by the
communicated priority values, i.e., the agent/variablghwhe larger priority value has the
higher priority. In case of conflict, the current value of #gent is inconsistent with the
received assignment, the agent choose another value Um@nmin-conflict heuristic, i.e.,
choose the value that minimizes the number of violated camss.

Each agent that cannot instantiate its variable, i.e., msistent value is found, sends a
nogoodmessage to the nearest higher priority agent and increagggority value. However
if the agent cannot generate a new nogood, it will not chatsggriority value but will wait
for the next message. This process is used in order to geardm¢ completeness of the
algorithm. The author provides in [110] a proof of the conghess of the AWC algorithm.
However, as mentioned by Maestre and Bessiere [70], thmrighm is incomplete unless
agents can store a potentially exponential number of nagiood
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Distributed backtracking (DIBT)

The basic of this algorithm is the backtracking algorithnT)B45]. The authors proposed
[54] a new ordering schema that fits the constraint graphlogyao take advantage of the
features of the problem. This order is dissimilar to thedegraphic ordering of agents used
in ABT. They proposed a generic method for distributed cotafen of any static variable
ordering according to a chosen heuristic, antax-degredeuristic that chooses higher order
of the variable involved in maximum number of constraint.

The authors perform an exhaustive domain exploration tarenge completeness of
DIBT. In their algorithm, the author avoided learning sclesmsuch as nogood recording.
the constraint checks are parallelized and whole systematgsein a conservative strategy
for saving benefits of previous search in independent patteaetwork. The authors used
an ordering that fits the constraint graph topology, whidbvesd a free graph-based back-
jumping behavior during failure phases. However, DIBT is camplete.

Asynchronous aggregation search (AAS)

Another extension of ABT algorithm was proposed by Silagtale [98] where constraints
can be private knowledge of some agents and several agendi@wed to simultaneously
propose instantiations for the same shared variable. Tteupropose to integrate the
aggregation process of tuples to enhance the efficiencyeoafdlyorithm, the asynchronous
aggregation search (AAS). The authors propose three elifferariant of this technique based
respectively on full, partial and no nogoods recording.

This work is considered as an ABT for dual graph. The basia @ieAAS technique con-
sists in propagating aggregated tuples of Cartesian ptaduw@lues rather than individual
values themselves. The agents are assigned static pria#igally based on the lexico-
graphic order. A link is set between each pair of agents if gfeare at least one variable.
AAS works in exactly the same manner as ABT, except that ngess&fer to Cartesian prod-
ucts. If an agent find no combination in the Cartesian pro@et{a,, ..., a;} } x{X;={by,
..., by} } is compatible with its constraints, it generates a nogoodHis combination and
sends it to a higher order agent. The result of the search lenger a list of individual
assignments but a set of domains whose Cartesian produetim®only solutions. The au-
thors claim that several techniques can be used for aggragand that these techniques are
sound and terminate in a finite time. However, aggregationcgss might be expensive in
terms of constraint checks.

Asynchronous backtracking without links ABT ,,;

This algorithm is a new member in the ABT family proposed iB][1It is an ABT-based
algorithm that does not require the addition of communazalinks between initially uncon-
nected agents. This algorithm proceeds like ABT withouunegg additing of new links.
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The authors propose first the ART.,.; algorithm, which requires like ABT, that constraints
should be directed from the constraint-sending agent tstcaint-evaluating agent forming
a directed acyclic graph. In this algorithm, every new nabismbtained as a conjunction of
stored nogoods sharing the faulty variable. However, tigigrahm is sound but may fail to
terminate due to obsolete nogoods.

Hence, in their work, the author proposed several altareatio rely to this limitation.
Adding new links can be performed under several conditiadgdjng new permanent links
as preprocessing (ABJ algorithm), adding new permanent links during search (ABT a
gorithm), adding temporary links (ABd,,,), i.e., these links will be removed after a fixed
number of messages, without adding any links (AB), i.e., in case of failure the agent
backtracks and forgets all the nogoods that hypotheticadly become obsolete. Neverthe-
less, as longer as the obsolete nogoods remain in the looall&dge of an agent, it will
absolutely affect the efficiency of the constraint solver.

2.3 Summary

In this chapter we presented an overview of research retatéte constraint satisfaction
problem formalism and its extensions. We gave some usefulitiens to allow a better
understanding of this paradigm followed by a review of mdshe proposed algorithms for
solving CSPs and DisCSPs for binary and non-binary comstrabome of these techniques
will be used in our experimental comparative evaluation.
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Chapter 3

Local Consistencies for Constraint
Networks

Constraint propagation (or filtering) techniques are indbee of constraint programming.
They involve removing local inconsistencies from a CN. heshniques can be applied as
a preprocessing step or throughout the search of solutiamsler to encounter the major dif-
ficulties of search algorithms which is thrashing causedlbwgllinconsistency [65]. Hence,
a LC is a relaxation of consistency, which mean that for anyNChhere is an equivalent
non-empty locally consistent CN’. N’ is unique and can be found in polynomial time by
so-called enforcing or filtering algorithms.

Local inconsistencies can be defined by single values or ow@tibns of values that cannot
belong to any solution because they violate some consiratar example, assume that we
have a value,, for a variable X and there is no possible valwg for another variable X
that satisfies G (where X and X are related by a constraint{J. Therefore the value
a cannot belong to any solution because it does not satisfictngistency between the
two variable X and X% and that we call, arc-consistency propérteveral levels of local
consistency have been proposed in the literature. Theséslewll be given in details in
Section3.1.

However, LC enforcement does not involve only values prgnifhe transformation of
the CN may involve (but not only) also the reduction of somestint relations or may
lead to the integration of new constraints to the CN [16]. éNlndbwever, in all cases the set
of variables X should remain unchanged in order to ensuredbe/alence property.

Notation 1 Given two constraint networks N (X, D, C) and N’ (X', D’, C’), &note N=<
N’ if and only if X=X, C=C’, and D(X) C D'(X’).

Definition 16 Given a constraint network N, and a local consistency LC,dlbsure LC(N)
is the constraint network N’ such that X' N and, for all local consistent constraint network
N” such that N” < N, we have N"'< N'.

LArc-consistency is one of the existing levels of consisyethat will be given in more details below.
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Definition 17 Given two networks N and N’. N is equivalent to N’ if and onli}{iand N’
have the same set of solutions, sol(N)=sol(LC(N)).

The author in [38] has defined a generic notion of consisteattgd (, j)-consistency.

Definition 18 A problem is {, j)-consistent if any solution of a subproblem including
variables can be extended to a solution including any addél ;j variables.

In the following we will present some properties for someelsvof local consistency
followed by some of the existing enforcement techniques.

3.1 Properties of some levels of local consistency

In the following we will review some of the proposed LC projpes for binary and non-
binary CN. We give first some useful definitions of the notidésupport for general CN.

Definition 19 Let P (X, D, C) be a CSP and a constraint,C € C and X, € Var(C;; ). A
value v, € D(X;, ) has asupportin C;;  if and only if there is a tuple t that satisfies;C

and such that tlindex(G ., Xi)]=V,, 2. tis then called the support of (Xv;,,) in C;; ...

Definition 20 For each variable Xthe neighborhood of Xs the set of all the variables,;X
adjacent to Xin the constraint graph, i.e. every variablg Xwolved with X in the same
constraint.

Definition 21 A value vy, of a variable X, denoted as (XV;,), is viable if and only if it has
at least one support in the domain of every variabjarXthe neighborhood of X

The simplest local consistency is referred tanade-consistency

Definition 22 A CSP P (X, D, C) ismiode-consistenif and only if, for each Xe X, for all
v;, € D(X;); v;, satisfies all the unary constraints involving X

Example 2 Consider a variable Xvith D(X;)={-2, -1, 1, 2, 3 and a unary constraint,CX;
> 0. Node-consistency enforcement technique will removevéthees{-2, -1} from D(X;).

3.1.1 Local consistencies for binary CN

Arc-consistency property

This level is the most used level of LC due to its low time analcgpcomplexities. Enforcing
arc-consistency on a CN removes every value that has no guppat least one involved
constraint. The deletion of a value may lead to the loss gbstifgor another variable/value.
Thus, the value deletions have to be propagated throughetveork since it can lead to
value inconsistency of other values detected as viablaqusly. This process is known as
constraint propagation

2index(G;..., Xx) returns the index of Xin C;;..
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Definition 23 A binary CSP isarc consisten{65] if and only if it has non-empty domains
and each of its constraints is arc-consistent.

Definition 24 A binary constraint G is arc-consistent if and only if each valug wf each
variable X € X(C;), i.e. Var(G;)={X;, X;}; v;, has a support in X(vise versa).

Example 3 Let’s consider for example a CSP formed by three variables X,, X3} and
three constraints relating these variables. The graphgareéB.1 shows the allowed pairs of
values. To make the domain of;>arc consistent, the valueneed to be pruned because it
has no support in the domain of;XHowever, the value of X, will loose his support in
X1 and consequently the domain of Xill become arc-inconsistent. Due to the deletion of
(X1, ©), (X2, ¢) will be also deleted by constraint propagation. Figuresh@ws the resulting
problem after enforcing arc-consistency on all the vaaabliomains.

Figure 3.1. A graph based on possible consistent pairs of val ues of a constraint problem

formed by three variables.

However, any consistent CSP is arc-consistent but the savisrnot always true. The
example in Figure3.2 is arc-consistent but it is inconsigpeoblem, e.i., there is no solution
that can satisfy the three constraints.

For binary constraint, [7, 8] proposed the property of l@diionality of constraints. It is
defined by the fact that for any binary constrainj €uch that Var(G)={X;, X;}:

e never checks\,, v;, ) if there existsy;, still in D(X;) such that¥;,, v;,) has already
been successfully checked foy; C

e never checks\,, v;, ) if there existsy;, still in D(X;) such thaty;,, v;) has already
been successfully checked foy; C
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Figure 3.2. The resulting problem after enforcing arc-cons istency.

This property is based on the use of constraint metaknowléalmfer or avoid constraint
checks. Let’s consider our previous example, while enfigyeirc consistency on the domain
of X; we found that (%, a) is the support of (X, b) and (%, b) is the support of (X, a),
knowing that the constraint relating,>and X; is symmetric, thus no need to check the arc-
consistency of the domain od; Xby bidirectionality property this domain is arc-consrigte

Path-consistency property

Path consistency (PC) property is a higher level of LC thay uhelete more values than
arc-consistency. Enforcing PC requires checking the piathility of each consistent pair of
variables/values (Xv;,) and (X, v;,). This means, checking the existence of viable value
for each variable along any path betweenaXd X;.

Definition 25 A CN N ispath-consisten{65] if and only if, all paths in P are path consis-
tent.

Definition 26 A path Ch ={X;, ..., X,, ..., X;} in a CN N is path-consistent [17], if for
all consistent pair of values for (Xv;,, X;=v,,), i.e., (X=V;,, X;=v,,) satisfies ¢, one can
find values for the intermediate variableg Xo that all the constraints & ..., C..., ...,
C,; in N along the path are satisfied (see Figure3.3).

However, Montanari [67] showed that a CSP is path-condigtand only if the comple-
tion of its constraint graph is PC. This latter means thahendomplete graph, every path of
length two is PC. Therefore, existing techniques for enfy®C, proceed first by complet-
ing the sparse graph by adding universal binary constratms enforce PC on each path of
length two. This process requires high computational cemifyl. Despite this cost, PC can
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be used to find solution for binary convex CSP in a backtraek-manner according to the
following theorem [102].

Theorem 1 Let N be a path consistent binary constraint network. If B# binary rela-
tions are row convex or can be made row convex, then the nktiwaninimal and globally
consistent.

Knowing that a globally consistent network have the proptrat a solution can be found
without backtracking.

Figure 3.3. Path consistency.

When a path-consistent problem is also arc-consistent add-oonsistent it is strongly
stronglypath consistent.

Example 4 Consider the example proposed by Stergiou in [91] formedhbget variables
X1, X5, and X; related by two all-different constraints £and G3. The original example is
arc-consistent (Figure3.4(a)) since each variable vadsealsupport. However enforcing PC
will induce a new equality binary constrainty{as in Figure3.4(b).

It is noteworthy that PC property has received particuléerigst in the area of temporal
reasoning [99] where lower forms of consistency prove tofidess interest.

k-consistency property

Definition 27 A CSP isk-consisten{38] if and only if, for all (k-1)-assignment (k-1) con-
sistent can be extended to any additiorfdhariable.

The time and space complexities to enfokeeonsistency are polynomial with the expo-
nent depending oh. Nevertheless, for k 3, enforcingk-consistency requires the addition
of new constraints which may change the structure of the Gis Teads to huge space
requirements and subsequently to an important CPU time ddst cost of the enforcing
technique increases with the level to enforce, in pracbogy arc-consistency can be used,
while for path consistency it can be used only on small proisle
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Figure 3.4. Example of an arc consistent problem for which we would enforce path con-
sistency. The original problem (a) and the resulting path co nsistent problem with a new

constraint structure (b).

Restricted path consistency property

Arc-consistency and path consistency properties were st kmown levels of consistency.
Ac is more used in practice than PC due to the drawbacks of @herfforcement. Hence,
Berlandier [5] proposed a partial level of consistencyirieted path consistency (RPC), in
order to prune more values than AC while trying to avoid theadracks of PC. The basic
of RPC is to perform only the most pruningful PC checks. Ini@oid to AC, RPC checks
whether pairs of values{, v;, ) of variables X and X; respectively, such that, is theonly
supportof v;, on G, are path consistent. If the paw;( v;, ) is path-inconsistent, its deletion
would lead to the arc-inconsistencywf. Thusy;, can be removed. These deletions make
RPC able to prune more values than AC while it is cheaper ti@arl without having to
delete any pair of values, and so without changing the straaif the network.

Definition 28 A binary CN isRestricted Path ConsistefRPC) [5] if and only if:
e V X; € X, D(X) is non empty arc consistent domain and,
e Vv, € D(X), forall X; € X such that a has a unique supperf € D(X;),

o forall X, € Xlinked to both Xand X;, 3 v;,, € D(X;) such thaty;,, vi,,) satisfies G
AND (v;,, vi,.) satisfies G, (C;x.(Vi,, Vi..) A Cit(Vis Vi, ))-

Example 5 Consider a problem formed by three variables X,, and X all with domain

{1, 2} and three constraints,; X< X,, X; = Xy, and % # Xj this problem is arc consistent
(Figure 3.5(a)). The variable/value {}2) has only one support inpXwhich is (X, 2), but

the pair (2, 2) of respectivelyXand X is path-inconsistent, i.e., this pair of values cannot be
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extended to a consistent instantiation including the weiX;. Therefore, enforcing RPC
will remove the value 2 from the domain of, XSame process will be used to remove 1 from
Xs. The resulting RPC problem is given in the Figure 3.5(b).

Cit X1=X: Co3: Xo# X3

@ Xs ® X

Figure 3.5. Example of arc-consistent problem for which we w ould enforce restricted path

consistency. The arc-consistent original problem (a) and t he resulting RPC problem (b).

Several extensions of RPC to more pruningful local consestéave been proposed in the
literature. The authors in [32] extended the idea of RPC &l déth k-supports instead of
only onesupport. The basic idea is that checking the path consigtmoore supports may
remove more values without falling in the drawbacks of PGeiThC property, k-restricted
path consistency looks for path consistent support on at@nsfor each value having at
mostk supports on this constraint.

Another extension of RPC, max-restricted path consistemay introduced by Debruyne
and Bessiére in [32]. A constraint network is max-restdicpath consistency if all the val-
ues have at least one path consistent support on each ¢ofstfaatever is the number of
supports. Enforcing Max-RPC involves deleting all #aeestricted path inconsistent values
for all .

Other local consistency properties

Several other levels of LC have been proposed in the litezdtuprune more values than
AC without falling into the traps of PC. Debruyne and Bessietroduced in their work [31]
the singleton consistency (SC) property. This propertyaseld on the following remark:

if a valuev;, of a variable X is consistent, the CN obtained by restricting the domain of
X; to the singleton{v;, } is consistent. Enforcing SC on a problgMmconsists of checking
the inconsistency of the sub-probleRip,_(,, 3. P|p.=(.,} denotes the obtained problem
by restricting the domain of Xto {v; }. Many singleton consistencies can be considered,
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amongst singleton arc-consistency [31]. To enforce SACcareapply any AC algorithm
to check whether the sub-probleﬁjDi:{vil} is arc-inconsistent. As mentioned in [31] if
the local consistency can be enforced in a polynomial tirhe,dorresponding singleton
consistency can be also has a polynomial worst case timelewityp

Freuder and Elfe have introduced another level of local isterscy [39] to achieve high
order local consistencies with good space complexity. @iba of the new level, inverse con-
sistency (IC), is to remove values from variables that atecoasistent with any consistent
instantiation of some set of additional variables. Manyenmse consistencies have been pro-
posed. Generally-inverse consistency (or (k;1)-consistency according to Freuder [38])
removes the values that cannot be extended to a consisséatiiation involving any:-1 ad-
ditional variables. The advantage of inverse consistarteighniques is that they only delete
values from variables without adding new constraints arh thave space. Nevertheless,
k-inverse consistency can be applied only for small valugs ddie to the time complexity
tat is polynomial with the exponent dependention

The first level ofk-inverse consistency is the path inverse consiste(iC) given in
[39]. In [32] the authors show that a CP is PIC if and only ifitarc-consistent and for each
variable/value (X a), for any clique of three variables; XX; and X, the assignment (X
a) can be extended to a consistent instantiation XX and X,.

Another level where also introduced in [39] the neighborhowerse consistency (NIC).
This level checks the consistency of a variable/valug ¢Xand its neighborhood.

amongst: singleton consistency and inverse consistentlyedvetical comparison of the
existing levels of LC have been done in the literature, wé giwe an overview of the result
of this result in Section 3.2.

3.1.2 Local consistencies for n-ary CN

Generalized arc-consistency property

Definition 29 A non-binary CSP is a generalized arc-consistent (GAC) [72hd only if
for any variable in a constraint and value that it is assignéiekre exist compatible value for
all the other variables in the constraints.

Example 6 Consider a non-binary constraint involving four variab]&s, X, X3, X4} with
domains{1, 2}, {1, 4}, {1}, and{1, 2} respectively. This constraint requires that the sum
of the four variables is less or equal to 6. Hence, the valutdeovariable X% has no tuple
support in this constraint, i.e., there is no viable tup&uding X,=4. Enforcing GAC will
remove the value 4 from the domain of.X

Definition 30 For non-binary constraint, [14] proposed the property wiultidirectionality
of constraints. It is defined by the fact that for any consiri,; , a tuple t on Var(G..)

3Arc inverse consistency is equivalent to arc-consistefigyl)-consistency.
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is a support for the value t[index(£ , X;)] where X, € Var(C;;.) if and only if for all X,
€ Var(C;; ), tis a support for tlindex(G._, X,)]. We say that an algorithm "deals with”
multidirectionality if and only if

e it never checks whether a tuple is a support for a value whdra# already been
checked for another value, and

¢ never looks for a support for a value on a constraint Gvhen a tuple supporting this
value has already been checked.

Other local consistency property

In [102], the authors have proposed another definition ofcartsistency for non-binary
constraint network, namellational arc-consistencyThis definition requires global con-
sistency on the subnetwork formed by the variables of thetcaimt and all the other smaller
constraints implying some of these variables.

For some CN applying arc-consistency or stronger localisterscy can be too expensive
especially for large domain problems and for continuous @iomwhere values are real
numbers or floating point numbers. Bound consistency [6d\{n also in the literature as
interval consistengyis an approximation of arc-consistency which requireckimg only
lower and upper bounds of a variable domain. This propemybeaapplied to any CN with
any arity.

Definition 31 A CSP (X, D, C) idound consistentf and only if for all X, € X is bound
consistent. A Variable Xs bound consistent if and only if D(X# @ and min(D(X)) and
max(D(X)) are consistent with each;C.such that X< Var(C; ).

Example 7 [82] Consider the CSP with six variables X .., Xs; with the following do-
mains, X € [3, 4], Xy € [2, 4], X3 € [3, 4], X4, € [2, 5], X5 € [3, 6], and X% € [1, 6]; and

a single constraint alldifferent(X. . ., X;). Enforcing bounds consistency on the constraint
reduces the domains of the variables as follows:eX[3, 4], X, € [2], X5 € [3, 4], X, €

[5], X5 € [6], and X5 € [1].

3.2 Theoretical comparison of local consistencies

In the previous section, we discussed several levels of lmmasistency that have been
proposed in the literature. These levels can be comparedmmaf pruning efficiency of the
corresponding enforcement techniques. However, amorsg tleeels, arc consistency and
partial forms of arc consistency are the most used for tlogirdpace an time complexity.
Higher levels are more costly but recently they became mse&ulifor large problems.

Debruyne and Besiere in [33] proposed a qualitative studyphefrelations between var-
ious local consistencies. These relations are based onmahsitivity relation strongef
introduced in [31].
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Definition 32 A local consistency LC istrongerthan another local consistency LC’ if in
any CN in which LC holds, LC’ holds too.

Hence, if a local consistency LC is stronger than anothezl |le€’ then any algorithm
achieving LC deletes at least all the values removed by arietign achieving LC'.

Definition 33 A local consistency LC istrictly strongerthan another local consistency LC’
if LC is stronger than LC’ and there is at least one CN in whi€ bolds and LC does not.

Figure 3.6 taken from [33], summarizes the study performe®ébruyne and Bessiere
in [33] of the relations between some of the levels of LC nmmed above for binary CN
according to their pruning efficiency.

B e I
SRPC— » SAC —» Max-RP —»k-RP */ /AC
- RPC
Strong PC

A —» B: Ais strictly stronger than B.

A—H— B: A and B are incomparable w.r.t the stronger relation.

Figure 3.6. Relations between some levels of local consiste ncies for binary CN.

3.3 Local consistency enforcement techniques

Filtering techniques (known also as constraint propagatézhniques) can be used to
detect the inconsistency in a CN, and under some assumpggrcan ensure a backtrack-
free search [37]. The main purpose of these techniques i®fioid a solution in a CN, but
to remove some local inconsistency and hence detect sonunsdg the search space that
do not contain any solution. However, applying these tempines does not guarantee that all
the remaining values are parts of solutions. The main gaambdehese techniques is that in
case of a substantial reductions are made the search beeasies These techniques can
be divided into two main groups, centralized techniquesdisitibuted techniques.

In this section we review some of the proposed efforts ontcaims propagations. We fo-
cus essentially on arc consistency techniques for bothialez®d and distributed framework
and for binary and non-binary CNs, since they play impontal& in our research. For other
techniques we will just give a general overview because #neyutside the main scope of
this thesis.
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3.3.1 Centralized techniques

For binary constraint networks

The first level of local consistency existing in the liter&us node consistency (NC). This
level is established by NC-1 algorithm [65]. This algoritip@rforms a consistency check
for each node Xin the CN. However, for a CSP with nvariablesd size of largest domain,
the NC enforcement can be be performed imd)(

As for AC enforcement, it can be obtained for any binary CSFhensing the following
domain restriction operation. Assume tkaits the constraint graph associatedPtd.inkqG)
denotes the set of possible links in the constraint gaph

V (Xi, X;) € Link(G): D(X;)={v;, / v;, € D(X;), v;, € D(X;) and {;,, v;,) satisfies G }.

Hence, we have to check all the links;(X;) in G and remove each valug € D(X;)
(resp v;, € D(X,)) that has no supportin DX (resp D(X;)).

Most research efforts were devoted to arc-consistencyregritent due to its low cost for
both binary and non-binary problems. Thus, there has beemaer of proposed algorithms
in the literature. These algorithms can be divided intoghrein groups according to the
type of schema used, i.e., type of information propagatedase of constraint propagation.

e Constraint oriented propagation schema (AC-1, AC-2 and3A465], AC2000, AC-
2001 [9]),

¢ Variable oriented propagation schema (AC-3 [64], AC2000;2001 [9]),

e Value oriented propagation schema (AC-4 [71], AC-6, ACehehce and AC-7 [7, 8])

The first algorithm proposed in the literature for enforcarg-consistency on any binary
CN is AC-1 [65]. The basic of AC-1 relies on a systematic rievis of all the links in the
constraint graph in case of a value deletion. However, thegide of a value may have direct
impact only on the neighborhood variables. The temporalgerity of AC-1 is O¢q3d?)
while its spacial complexity negligible, i.e., no extraalatructure is used by AC-1.

As a remedy to the limitation of AC-1, Waltz proposed anotakgorithm AC-2 [104]
based on AC-1. The basic of AC-2 is that in case a revision ofla(X;, X;) yield to the
deletion of a valuey;, from D(;) revise all the links (XX, X;) wherek < i andk # j. AC-2
uses two queue structures to store the links needed to Isedeat eat iteration.

AC-3 is another extension of AC-1, that uses the same prppsrAC-2. This algorithm
was discussed in [65] uses only one queue structure. Theot@aigmplexity of this algo-
rithm is O(:2d®) while its spacial complexity is Qf).

Mohr and Henderson proposed another arc-consistencyithigpoAC-4 [71] where the
revision of a variable’s domain is based only on the valuggpstted by the deleted one.
In other words, if a valua is deleted from a domain of a variable,Xhen this deletion
affects directly only the values of neighborhood varialsiegportinga. AC-4 seeks first all
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supports for each variable value in the constraint graplthvimay increase the complexity
of the this algorithm especially when the number of allowed pf values is high. AC-4
computes a total support count initially and then updatas utalues are deleted. The spacial
and temporal complexities of AC-4 are/3¢?).

For some period the state of the art resided in two algorit#@s4 for its optimal worst-
case behavior and AC-3 which often exhibits better aveage- behavior. Two other algo-
rithms, AC-5, proposed in [30] and in [58], and another in][ & rmit exploitation of certain
specific constraint structures, but reduce to AC-3 and AG#¢ general case.

Bessiere and Cordier developed AC-6 [6], which retains titereal worst-case behavior
of AC-4 while improving the average-case behavior of AC-&-Kference [8] owes some-
thing to all these predecessors, but permits the use ofr@dfesupport; while AC-7 [7, 8]
is the most closely related to AC-6. AC-7 is an hybrid of ACAtlaAC-6 while using the
bidirectionality property of relations associated to doaists.

The basic idea of the AC-7 algorithm consists on two main afp@ns: seeking a current
support for a value, and processing the deletion of a valuw@. ekch value, AC-7 seeks
a support in each related constraint. It introduces a tot#ring between values in each
domain, it computes one support (the first one) for each Igbglv;,) on each constraint
C,; if and only if this support can not be inferred by bidirectiatity. In fact, AC7 never
searches a supporf, € D; for a valuev;, € D;, according to the constraint;C if there
exist a valuey;, still € D; andv;, has been already successfully checked as a support of
v;,. Therefore AC-7 could sawd#” constraint checks. The total space complexity of AC-7 is
O(ed)while its time complexity iSO(ect), with d is the size of the largest initial domain and
e the number of constraints of the CSP. The AC-7 algorithm lused in our experiment,
with the DRAC approach as a witness approach to evaluaterthleréisult and to ensure the
efficiency of our proposed DRAC.

Two refinements of AC-3 (known as the simplest algorithmt®data structure), AC2000
and AC2001 [7] are suggested in the literature for binarplanms. AC-2000 is a refinement
of AC-3 while avoiding blind search for new support for eaetinea in D(X;) in case of a
domain reduction in D(} (X; and X; are neighborhood). In case AC-2000 uses a variable
oriented propagation schema, its spacial complexity isdD(This complexity is O{d) in
case of constraint oriented propagation schema, whexr¢he number of constraints in the
CN. AC-2001 is a refinement of AC-2000 in which the authorgsawnore constraint checks.
The spacial complexity of AC-2001 is @) while its temporal complexity is @¢?).

Concerning higher consistency, as indicated earlier, femiralized works were directed
towardk-consistency wittk > 2 in the literature due to its huge cost. The best centralized
algorithms proposed for reinforcing PC (3-consistencg)R€-5 [33], with Of*d®) worst-
case time complexity and @{d?) worst-case space complexity, and PC-8 [23], with®@f*
worst-case time complexity and @¥¢*) worst-case space complexity.

4As mentioned in [31] this algorithm still requires 83¢1?) data structure for the constraints representation.

38



For restricted path consistency (RPC), the underlyingraéméd proposed technique re-
moves more inconsistencies than AC while avoiding the deakb of PC. The RPC-1 algo-
rithm described in [5] is based on the principle of AC-4 and @ded(n+d) worst-case time
and space complexity wheeeis the number of constraints.. In [32] the authors proposed
another RPC algorithm, RPC-2, based on the principle of AQ4te space complexity of
this algorithm is O¢nd) and its temporal complexity is @{d?) in the worst-case. Max-RPC
[32] is another extension for RPC-2 with @®) temporal complexity and @(d) spacial
complexity.

For non-binary constraint networks

As for GAC-7 [11], the general schema to general constratwarks, it is based on AC-7
algorithm and able to efficiently handle any constraint efittdustrial applications. It makes
the use of "current support” idea, and of "multidirectiahgl (the generalization of bidirec-
tionality to non-binary constraints) in order to save as yneonstraint checks as possible.
This algorithm never checks whether a tuple is a support ¥@ai@e when it has already been
checked for another value, and never looks for a support ¥@ie on a constraint C when
a tuple supporting this value has already been checked. GAGs7 can savel” constraint
checks orr-ary. constraint. The authors propose many frameworksdarching supports
depending on the type of the constraint.

The total space complexity of GAC-7 is B¢) while its time complexity iO(ed).

3.3.2 Parallel and distributed techniques

As mentioned in [3], concerning parallel arc-consistengp@athms, the first algorithms
were developed for the shared memory paradigm: Waltz in][d@digned parallel versions
of AC1, AC3 and AC4 for shared memory computers. They havd pggocessors with the
complexity O@) with nis the number of variables, is the size of the largest domain. In
[21] the authors implemented and experimented a paraltel@of AC-4 for the connection
machine CM-2 with a complexity of @flog(nd) due to the communication overheads.

As for distributed algorithms, Nguyen and Deville, in [7Btpposed DisAC-4 algorithm,
a coarse-grained parallel algorithm designed on the b&#i€el and the DisCSP formal-
ism, which defines an agent as responsible of a subset obilesiaDisAC4 is used for a
distributed memory computer using asynchronous messagampgecommunication. Unfor-
tunately, it has been restricted to diffusion netwoikghernej, which leads to an underlying
synchronism between processes. The theoretical conuolem(ﬁi), wherek is the num-
ber of the processors.

In [53] the author proposed DisAC-6, it is based on AC-6 ansld3@P formalism. The
basic idea of this algorithm is to scatter the problem amangraomous processes and make
them asynchronously interact by point-to-point messagesaming useful information (in
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order to perform the global arc-consistency). The worsetitnmplexity is Of2d?) and
the space complexity is @td) with O(nd) the amount of message operations. DiSAC-9 is
an improvement of DiSAC6. It is an optimal algorithm in thenmher of message passing
operations. It exploits the bidirectionality property adnstraint relations, which allows
agents to induce acquaintances relations. The worst timlexity of this algorithm is
O(n?d?) with nd messages and with a total amount of space @)

Note that the goal of DiSAC-9 is essentially to reduce thaltatnount of messages by
doing more local computations, because of the high cost esages passing in a distributed
multiprocessor architecture. As we intend to use a moncga®or machine, we ignore the
cost of messages passing, and rather focus on reducingctilealpent computation.

Table3.1 summarizes the worst case time and space conigdesitthe most existing
efficient algorithms for achieving different levels of lécansistencies.

Table 3.1. The temporal and spacial complexities for the mos t efficient existing algorithms

d, the

C the number of 3-cliques

for enforcing different levels of local consistencies with N, the number of variables,

size of the initial largest domain, € the number of constraints,

in the graph, and I the arity of the constraints.

Algorithm | Time complexity | Space complexity
AC-3 O(ed®) O(e + nd)
AC-4 O(ed?) O(ed?)
AC-6 O(ed?) O(ed)
AC-7 O(ed?) O(ed)

AC-2000 O(ed?) O(ed)

AC-2001 O(ed?) O(ed)
RPC2 | O(en + ed? + cd?) O(en + cd)

Max-RPC | O(en + ed? + cd?) O(en + cd)
PC-5 On3d?) O(n3d?)
PC-8 O(n3d*) O(n?d)

GAC-4 O(ed") O(ed" + nd)

GAC-7 O(ed") O(er?d)

DisAC-6 O(n3d?) O(n?d)

DisAC-9 O(n2d?) O(n%d)
3.4 Summary

In this chapter we presented an overview of local consigtpnaperty. We reviewed first
various levels of local consistency for binary and non-byn@N. Then, we gave theoret-
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ical comparison of some local consistencies. Finally, wecdbed some of the proposed
techniques for enforcing local consistency on binary and-lmoary CN. Some of these
techniques will be used in our experimental comparativéuet@n.
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Chapter 4

Meeting Scheduling Problem

In this chapter we define first the meeting scheduling prob(E18) as well as its main
features. Second we will present the Clarke Tax (CT) meahapiroposed in the literature
to enhance the efficiency of a multi-part cooperative solvieere the quality of the result
depends especially on the quality and how trustworthy alahie the received information
is. Then we discuss some of the proposed research effongagdth MS problem followed
by an illustration of an important arises issue, privacyéss Finally we summarize this
chapter.

4.1 Definition

In our daily life, meeting scheduling (MS) is a pre-eminent aypical group decision
support problem that embodies a decision-making procésstiaiigy several users. Each user
is assumed to be self-interested. That is every user hasitgeferences and desires about
how the world should be and often makes his decisions bas#dteom The preference over
a set of alternative§) can be measured by meansudiiity functions A utility function
u;:{) — R assign to every alternative a real number indicating hovotfjdhe alternative is
for the user. The larger the number the better from the pdintesv of the agent with the
utility function [105].

A MS problem can be described by the process of schedulingteymeetings) involv-
ing individual constraints, i.e., private preferencesraleernative mutual decisions. These
constraints are crucially related to the availabilitied areferences of the users who should
participate in the meetings. Solving MS problem involvetedainingwhenandwhereone
or more meeting(s) should be scheduled depending on thialalaiimes, timetabling, and
preferences of the involved users. This task is normallgtoonsuming, iterative, and some-
times tedious.

The two main features of the MS problem are defined respégtdyeits naturally distri-
bution and its dynamic environment. For the first, the pgordiots in the MS problem may
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not belong all to the same organization or even to the samyéeice this problem cannot be
solved by a centralized approach. As for the second feattwesinds of MS problem can
be defined static and dynamic problems leading respectigeiyo types of MS schedulers
static and dynamic scheduler based on the definition otstatidynamic scheduling given
in [85].

Definition 34 A MS scheduler is called static (or pre-run-time) if it makissscheduling
decisions off-line and generates a complete schedule opdlsible meetings at compile
time. for this purpose it needs complete prior knowledgeualadl the meetings and the
underlying participants. These information is needs attrare to decide at every point of a
discrete time base which meeting is to be scheduled next.

Definition 35 A MS scheduler is called dynamic (or on-line) if it makes dsexluling deci-
sions at run-time on the basis of available request for mesti Dynamic MS scheduler is
flexible to adapt to an evolving meetings scenario and haletimcremental, i.e., to reply
to the new requests, adding or cancelation of meeting, withmceeding from scratch.

Nevertheless, in dynamic environment users are frequewltijng new meetings or re-
moving scheduled ones from their calendar. This proceses ddiads to a series of changes
that must be continuously monitored. Hence, we need to fiadhra compromise between
all the attendants’ meeting requiremeéntise., date, time and duration) which are usually
conflicting. Automating meeting scheduling is importardt only because it can save hu-
man time and effort, but also because it can lead to moreaitieind satisfying schedules
within organizations [40].

Moreover, in real organization or company, meetings do avetsame degree of impor-
tance (same priority). Obviously, the great significance aheeting depends especially,
but not only, on the leader of the event, the number of paditis, and the meeting’s main
topic. Therefore, the search should be for the optimal smiutsatisfying some predefined
optimality criteria such that maximizing the summation blity function of all the involved
users) whenever possible. Different kinds of optimalityecra have been suggested in game
theory, economics and voting theory. Thus, the solver m®sbould seek for a compromise
among different human user’s requirements regarding &ipotential meetings’ time and
the meetings’ priorities.

In addition, a multi-part problem requires a negotiatioogass among all the participant.
However, the main concern in every negotiation protocolgsally that the agreed-upon
decision will be optimal in some sense. The optimality is suga with respect to the partic-
ipants’ private preferences. The key question is

LIn the sequel of the thesis, we use the term date to define teetiae and duration of a meeting, while
for the place, we assume that all the attendants belongse &atie city and thus to simplify the problem.
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How to enforce users to reveal always their TRUE preferehices

Clarke Tax mechanism is a well known mechanism for reveagents’ preferences [34].
This mechanism, used in our proposed approach, is givertail dethe next section.
Recently another important issue is addressed by manyrobses, the privacy issue.

4.2 Clarke Tax mechanism for ensuring truthful preferences

As mentioned in [34]. The basic idea of the clarke Tax medrman{CT) is to incite
each user to tell theeuth. This mechanism is based on the sealed-bid mechanism, tsie mo
straightforward procedure to choose one alternative amuangy others. Each user bids on
all the alternatives and the alternative that has the maxsora of bids is chosen.

The basic idea of CT is not only to choose the alternative wigihest bidding, but also
to fine each user with a tax. The tax is computed accordingeg@tbportion of the user’s
bid that makes a difference in the outcome. To illustrateerabearly the idea of TC, let’s
consider the following example formed by four users anderakernatives. Assume that
the users are asked to express their degree preferencgsnusiibers from 1 to 30. Table
4.1 shows the truth preferences given by the three usersée Fagbshows the summation of
preferences for each alternative withaupreferences and the corresponding computed CT.

Table 4.1. Example of truth users’ preferences for each alte  rnative.
ap | az | as

user 20| 33| 14
usen 8 | 30| 17
usek 16| 2 | 28
user 23112 5

Summ preferences67 | 77 | 64

According to Table 4.1, the best alternative with maximumf@rences is the alternative
a,. For each useuser, we compute the summation of the preferences of all the other
usersuser; (i # j) for each alternative,;. For example if the usemser, did not reveal
his preferences, the winning alternative wouldipeather thanu,. The alternative; would
overtakea, with 12, i.e., 59-47=12. The bidding afser has affected the result with a
"magnitude” of 12. The tax computed foiser, is 12. The Usersiser anduser, are not
fined because their revealed preferences did not changeshk,r.e., the same alternative
always win with or without their bidding. Therefore the dorant strategy for the usgis to
divulge his true preferences, otherwise he will pay moreotawill not get his choice.

Thus, according to Ephrati and Rosenschein in [34], highepteference given by a user
for an alternative higher would be the tax to pay in case hectdfthe result. The user who
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Table 4.2. The Clarke Tax computed for each users.
a1 | az | asz | Tax

user, | 47|44 50| 6

user | 59| 47 | 47| 12

useg | 5175|136 O

user, | 44| 65|59 0

overestimate his preferences (to force winning for somémed alternatives) risks having
to pay tax more than his true preferences. Similarly, if teerwnderestimate his preferences
(to save tax), the lost of his utility might be larger than Haved tax. The best strategy is
then to reveal the truth preferences.

This mechanism can be used in our proposed approach to s@verdblems. However,
the user in CT mechanism is provided periodically by a ceranount of points that he can
use to estimate his preferences. The decision of the usen@stage may have impact on
several forthcoming stages. In this case, the user may alwagerestimate his preferences
for a set ofm meetings in order to accumulate points and use them for h& mteresting
meetingm+1. Therefore, we propose to afford to each user for eachingegffixed amount
of points. The user has to split up the whole amount (minusatheomputed on the previous
meeting) among all the possible dates. In this case The @serot accumulate points.
Hence, if the user will overestimate his preferences for atmg my, then he has to pay
high tax for the next meeting, and he may not have enoughgtmrexpress his preferences.
If the user will underestimate his true preferences, he natl get extra points for the next
meetings.

In chapters 7 and , we will discuss the possibility of appdysuch mechanism to ensure
truthfulness.

4.3 Basic of some meeting scheduling solvers

Many research efforts dealing with solving MS problem wereppsed in the literature;
among them there are those based on CSP (constraint saisfamblem) formalism [67].
The underlying problem is formalized as centralized CSP ictv all the users’ informa-
tion is centralized in the same process [1, 4]. These workessentially focused on over-
constraint CSPs.

However, recently multi-agent systems (MAS) are widelydiseaddress many real-world
combinatorial applications. Hence, recent researches Aayued about how to solve MS
problems using an agent-based approach for many reasorandin reason is that agents
can accomplish their tasks through cooperation while atigwthe users to keep their pri-
vacies. A mechanism design approach based on multi-agstérsy(MAS) to solve MS
problems was reported first by Ephrati et al. [34]. The awghi®fined two paradigms of
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MS scenarios, open scheduling systems and closed schgdystem. The first system con-
cerns cases where the users are independent, completaytiolcof their time resources,
and have no obligation to meet each other unless it servetlie selfish interest. Hence,
the users themselves determine the feasibility of eachingeetVhilst the second system,
closed system such as company or organization, meetingsmposed on involved users.
Thus every participant in a meeting have an obligation enatthe meeting, if feasible. The
constraints are defined by the scheduling system and noteyatiicipants. Therefore, the
scheduling system maintains a consistent and completalgtatendar of the organization’s
members.

The authors proposed three scheduling mechanisms, fotdeedcsystem, which differ
in the information type that each user has to reveal abouinbisidual preferences. The
authors tried to approximate the optimal utilitarian cleorchile avoiding manipulability by
using Clark Tax mechanism [35].

Garrido and Sycara [49] reported another MAS work that fedusn using distributed
autonomous and independent agents to solve the problerh.ageaat has its individual goal,
to schedule the meeting while maximizing its individualfprences. This work is based on
the communication protocol presented in [96] where agemtsapable of negotiating and
relaxing their constraints in order to reach an agreemeatsohedule with high join utility.

Sen et al. [92] have proposed another work based on how amcaj@h domain for
intelligent surrogate agents can be analyzed, understoddepresented in order to make
these agents able to carry out tasks on behalf of human us&isg into account their
environment. Their prior work has spotlighted on agentg#dg to environmental changes
[93], however, in [92] their efforts were directed towarte tntegration of user preferences.
Often users’ preferences are mutually conflicting, so thleas used techniques from voting
theory to formally represent and reason with conflictinggmences.

Three other multi-agent approaches to MS problems, usiadgtrtial CSP formalism
introduced by [36], were given in the literature. The firstrivproposed by [63] offered a
new approach for MS problems using fuzzy constraints. Tliedying protocol is called the
selfish protocol, where each user tries to maximize thefepeaces during the negotiation
process.

The second in [101], used the distributed valued constsaitisfaction problem (DVCSP)
formalism to model the MS problem. The authors propose to@dmeach already registered
event into a constraint. A weight, an integer between 0 arnsl &signed to each constraint
and to each event to reflect its importance. Two kinds of agerg used in this model a
group agent and a personnel agent. Each personnel agesb@aisd to a human user and
acts on his behalf. As for the group agent is needed in orderaiatain and to facilitate the
scheduling process within a group. For each meeting, thegser agent will communicate
the necessary information to the group agent. The latertagérgenerate the needed pos-
sible times and send them the participants (within samepgoodrom another group) with a
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weight thresholdr. The participant agents will reply by sending their pers@oastraints
having weight greater than or equalfio The group agent will search for a valid assignment
according to the received constraints. If such assignnseouind, then the group agent will
broadcast it to all participants. Otherwise, a failure rageswill be broadcasted to all partic-
ipants. In this protocol, the agents should reveal theistramts, preferences and calendar
to the group agent. Even if this agent is considered a trysteg in the system, users prefer
not to send any of their private information to another agerthe system. Therefore this
protocol does not guarantee any level of privacy. In addjtio reach an agreement between
participants, requires a high amount of messages of lazgs.sihis approach is used in our
experimental evaluation.

The third work based on multi-agent systems and using fuamgtcaints to express users’
preferences was presented by Franzin et al. [42]. Theiringestheduling system was
based on an existing system that includes hard constrdififs The authors proposed, in
their work, to integrate preferences to their system andded on observing the behavior
of this new system under several conditions [41]. Their nwbfective is to evaluate the
relations among solution quality, efficiency and privachieTcorrelated protocol is based on
inferring some new knowledge during the solving processihinay clash with the desires
of agents to keep their information private. The authorgppse a simple communication
model which consists of several proposal phases for eactirgeecording to the expected
result, the first feasible solution or the optimal solutidi.each phase, a proposal is made
by one of the agent and communicated to the others. This pabp® chosen among the
best in the calendar of the proposer agent and checked astemsvith the knowledge
collected about the other agents. The other agents whidivescthe proposal reply with
their level of preferences, i.e., preferences=0 if the psap is rejected, preferences0
otherwise. However, the knowledge about other agents (&uadbout the proposer) is
updated according to the received proposal and the answer.

In case of a rejection, a new proposal phase is started asesravsolution is found with a
preference value the minimum among all the received. In ocbsearch for optimal solution,
another proposal phase will start for the same meeting pexiat all the preferences values
which are smaller than or equal to the value of the last smitfound are set to 0. thisimplies
that a new negotiation phase will start to find better sotutipsolution with preference = 0.
The author introduce in their system the concept of threstichoose a feasible solution
which is optimal in some sense. The main goal is to reduceuh®er of proposals and thus
speed up the whole process.

In [42] the author suggested two basic global criteria tomizie for each agent, the fuzzy
optimality; which consists of having preferences betweem@ 1 of maximizing the mini-
mum preference across all agents, and the Pareto optirfditywhere a solution is optimal
if there s no way to improve the preference of any agent witdeareasing the preference of
some other agents. However, in this protocol the number dfi@xged messages increases

a7



with the size of the problem (number of possible proposatsiusers). In addition, in the
worst-case each agent has to reveal all its proposals im twdeach optimality.

Another research dealing with MS problems were contactdddiyeswaran et al., [68] at
the same time as ours. The authors raised two importantgioititeir work. The first one is
the non-existence of a automated congruent mapping tokditgd constraint optimization
(DCOP) formulations. Their main motivation is that this rpap is a tedious process of
modeling an environment, choosing variable sets, and diegjgonstraint utility functions.
The second point is that it is unclear if DCOPs obtained framcecete problems will fall
within a space where complete algorithms for problems WEcomplexity are fast enough
to be utilized.

The authors have considered the DIMES framework (distetbumulti-event scheduling)
because it captures a rich class of real-world problemsevimeritiple agents must generate
a coordinated schedule for execution of joint activitiesemource usage in service of mul-
tiple events. Their main idea is to convert a given DIMES peabinto DCOP with binary
constraints and then apply an existing (or improved) atgors developed for DCOP to ob-
tain an optimal solution. Three DCOP formulations were pssa, which differ in the used
concepts for creating variable sets: time slots as vaaleleents as variables, and private
evens as variables. They proposed for each variable ses&ramm utility functions and they
proved that the obtained solution from the DCOP formulat®nongruent to the original
DIMES problem.

Nevertheless, the majority of these works share the foligvaroperties:

1. Dealing only with non-dynamic problems (among which [11@1, 42],).

2. Allowing the relaxation of any user’s preferences, evase related to non-availability
of this user in order to arrive at consensus choices for ainggetime. However in
real-world applications this is not always permitted. Fearmaple, when the user is
traveling on business, such a constraint would oblige tlee tesstop his/her travel to
attend the meeting, and this is not always possible (am¢8§s49, 92, 63, 101, 42]).

3. Not integrating the enforcement of local consistencyhirtsolving process, in spite
of the pre-eminent role of the filtering techniques in thecedficy of solving an NP-
complete problem. Only the authors in [41, 42] deal with tke of some inferred
knowledge to maintain coherence between meetings in ood&geer the selection of
the next proposal, while, none of the other works try to namany level of consis-
tency during the negotiation process.

4. Judging all the meetings of the whole system with the sawed bf importance (among
others [49, 63, 42, 101]). In real life, this is not alwaysetr@®bviously, the great sig-
nificance of a meeting depends especially, but not only, erehder of the event, the
number of participants, and the meeting’s main subjecte&isfly in a dynamic envi-
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ronment, such discrimination may lead to conflicting megdjrand may also increase
the number of meetings to reschedule.

5. Not considering the high complexity of message passiegations in real distributed
systems ([49, 92, 63, 101, 42]).

4.4 Privacy issues

Privacy is a critical issue that usually arises while tadkivith cooperative communication
involving independent agents endowed with informationudtibeir users. The assumption
is often made that any requisite information will be shar&dents may want to maintain
and to protect as much as possible their individual usergapy while engaging in collabo-
rative problem solving. Therefore, in such system, it ieoftlesirable to exchange as little
information as possible in order to keep private the own datihe agents. Nevertheless,
the main problem in exchanging information is that an agantlwild an approximation of
the private knowledge about other agents by accumulatiiognration. However, the main
guestion that arise is how to meet the added requiremenivafggrmaintenance while trying
to solve problems efficiently.

However as we mentioned before, the quality of the solutionlddepend in a great part
on the exchanged information. Recently, many researchteffeere directed toward how to
keep the privacy of users while searching for a solution égpfoblem.

Franzin et al. [41] have proposed an empirical study of theimns among the three main
features of a multi-part cooperative system, privacy l&fBciency and solution quality.
Their obtained results show that the number of initial mmegéind the threshold influence the
level of such measures. In addition, the authors show tleasélarch for a feasible solution
is not slowed down by the addition of the preferences.

Earlier work on privacy focused on creating secure coottnamechanisms such that
negotiation would not be observable to parties outside dflalmorating set of agents [108].

Maheswaran et al., proposed a quantitative approach teimgnnetrics for privacy for
general domains [69]. Therefore they proposed a ValuatioRassible States (VPS) to
quantitatively evaluate privacy loss in multi-agent seji. The authors applied their ideas
in a distributed meeting scheduling domain modeled as alais¢d constraint optimization
problem (DCOP). The authors modeled the private infornmatioa user as a state among a
set of possible states. Hence, each user has an estimate I[dalihood that another user
lies in in each of the possible states. Therefore they preghts interpret privacy as on the
other agents’ estimates about the possible states thaivaseodn. The main objective of
the authors is to build a unifying framework for privacy, irder to capture existing notions
of privacy. The authors applied VPS to a personal assistamiach: distributed meeting
scheduling
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4.5 Summary

In this chapter we defined a real-world problem, meeting dalieg problem and its main
features. We presented some of the encountered difficwitaghis problems followed by
some of the research efforts discussed in the literature.
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Chapter 5

DRAC and GDRAC: Distributed
Reinforcement of Arc Consistency for
any General Constraint Network

In this chapter, we begin our investigation on distributechl consistency enforcement for
binary CN. Hence, the main objective of this chapter is t@pse two novel approaches for
enforcing arc consistency on any CN in a totally distributegihner. We present first the
DRAC approach (for Distributed Reinforcement of Arc coteigy) followed by its gener-
alization, G-DRAC approach, for any constraint’s arityrigeal AC).

In the following we present first the multi-agent architeetiollowed by an illustration
of the proposed heuristics. Then we describe the globalt@nsagent interactions of the
two proposed approaches DRAC and G-DRAC. Then, we give thef jof correctness and
termination properties followed by a computation of the ptewity of both approaches.
Finally, we exhibit the experimental results and summateechapter.

5.1 Underlying multi-agent architecture

Multi-agent systems (MAS) are considered as natural metafdr understanding and
building a wide range of distributed real-world applicatd105]. These systems are com-
posed of multiple interacting computing elements, knowmag@ents. Agents are computer
systems with mainly two important capabilities: capableanofonomous action (to some
extent), and capable of interacting with other agents. We hesed these systems with
constraint-based graph to model any distributed constsatinsfaction problem.

Hence our proposed multi-agent model, for both approadmesyes two kinds of agents
(Constraint agents and Interface agent) in cooperatior Ifiterface agent, is an interme-
diate agent between the human user and the machine. it hasatlded in order to detect
whether the full global arc-consistency has been achienddespecially, to inform the user
of the result.
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Each agent has a simple structure: acquaintances (thesapanit knows), a local mem-
ory composed of its static and dynamic knowledgeyalBoxwhere it stores the received
messages and a behavior.

5.1.1 Interface agent

The Interface agent has as acquaintances all the Consaigants of the system. Its ac-
guaintances, denoted by represent its static knowledge. The dynamic knowledgéef t
Interface agent consists of the internal state of all thebgenstraints in the system.

5.1.2 Constraint agents

Each agent Ahas its own variablés For simplicity reasons, assume that each agent A
maintains only one constraints, denoted tﬁlC However, both approaches can deal also
with cases where each agent is responsible of a set of cotstra

As for the agent Aacquaintances, they consist of both all the agents withiwibighares
at least one variable:, i.e., T4={A; / A; € " and Var(C;; )N Var(CiAj{) # (0}, and
the Interface agent. Its acquaintances and its assoceltgtn define its static knowledge.
While its dynamic knowledge concerns its internal state,dbmains of its own variables
and a parameter calldehdBehavioy which specifies whether its behavior is completed or
not.

Two Constraint agents are connected together if and orthg¥f share at least one variable.
These links are known as inter-agent constraints. All thas@taint agents will negotiate
and cooperate together to enforce arc consistency on trexlyimd) problem. Therefore we
assume the following communication model between all agent

e The agents in the system negotiate by exchanging asynalsgunt-to-point mes-
sages containing the necessary relevant information inmmardhat reduces the num-
ber of messages passing.

e An agent can send a message to another one only if it know#hikatgent belongs to
its acquaintances.

e The messages are received in a finite delivery time and inatme ®rder that they are
sent. Messages sent from different agents to a single agaytm received in any
order.

Note that the goal of our approach is to obtain the full gl@atconsistency as a result of
the interactions between the Constraint Agents by excingngconsistent values. In other
words, the full global arc-consistency is obtained as asff#et of the interactions between
reactive agents; each one of them having a local goal,a.enforce arc consistency locally
on the subproblem formed by; And its acquaintancés®:.

1The variables implied in the constraint maintained hy A
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5.2 Proposed heuristics

To enhance the efficiency of both approaches, DRAC and GDRA&ntegrate in their
corresponding protocols the following new heuristics lbdase the below two properties
and this in order to decrease the number of constraint cheitksut loss of correctness.
Before describing the two properties, we will define first tlesv notion oftemporally arc
inconsistent Note that the condition of the following first property wased AC-7 [8] for
binary constraints as an additional condition to perfornomstraint check.

Definition 36 For any binary CN, a subset of values of a variablg B'(X;) C D(X,) is
temporally arc inconsistentor a value v, of a variable X if and only if the first support of
each value y € D'(X;) in D(X)), V;,. € D(X;), Vj, <o V.-

Property 1 For each binary constraint , for each candidate value;ve D(X;), "hide”
from the domain of the related variable D&ll the values y such that y is temporally arc
inconsistent for y , and vice versa.

Proof.
We will simply show that each hidden valug is not compatible with the value,v. There-
fore, we suppose thatt' € C;; such that’'[index(G;, X;)]=v;, andt’[index(G;, X,)]= v;,.
If this tuple exists ther’ <, t (t € C;; such that[index(C;, X;)]= v;,, andt[index(C;,
X;)]=v,, because y, > v;,. Sot cannot be the first tuple support of v

To illustrate the principle of the proposed properties, stdar the simple example in
Figure5.1 formed by two variables;Xand X% related by a binary constraint; An ar-
row from a valuev;, for X; to a valuev,, for X, indicates that a check of the consistency
between these two values has been computed while seekitigeféirst support. The bidi-
rectionality property is used to infer the support of thesptvalues. Assume that the value 3
of X; is no more viable (due to another constraint). Then we sheegdt for another support
for X,=2in X;. This requires 5 constraint checks. However, we can savegti@nt checks
by using property 1. (for binary constraint). The idea cetsson hiding from the domain
of X, all the values that have as first suppestsuch that,, < 2, while searching a new
support for the value 2 of X

The following definition generalizes the notion of tempbyalrc inconsistent to any gen-
eral CN.

Definition 37 For any general CN, for each n-ary constrain;C, for each variable X €
Var(C;;..), a subset of values D'(X € D(X;) is generalized temporally arc inconsistent for
the value y, € D(X;) with X, € Var(C;;..) if and only if each value;y € D'(X;) satisfies the
two following conditions:
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Figure 5.1. Example of binary constraint. Each arrow illust rates the directions of the

constraint checks performed in order to seek for the first sup port for each variable/value.

1. the firsttuple support ofy, t € C;; _, tlindex(G;..., X»)] = v, and tlindex(G;..., X)]
=Vp,, and Vi, <, Vi,

2. Vv, €t;s€ 1. [X(Cy;..)| such that s# hands < k, v;, .= last(D(X;)).

Property 2 For each n-ary constraint _, for each candidate valug,ve D(X;) with X, €
Var(C;;..), "hide” from the domains of all the related variables, XX, € Var(C;; ) andh #
k, all the values y, such that y, is generalized temporally arc inconsistent fqr.v

Proof.
For the first part of this Property2. the proof is similarlytie first Propertyl. However, the
second condition is added in order to guaranteettisahe highest tuple in €. and no tuple
t', that containg’ [index(C;. , Xi)] = V,, t' [index(C;. , X;,)] = vy, andt <, t', exists.

5.3 Global constraint-agents interactions

The main objective of both approaches is to transform aESg D, C) into another CSP
P'(X, D, C) equivalent. P’ is obtained as a result of interactions between the Constra
agents which are trying to reduce their domainsDD.

Before detailing these interactions and the underlyindaglalynamic, we present the
communication protocol, the data structures and the basittives relative to an agent,A

5.3.1 Communication protocol
The communication protocol is based on the two following sage passing primitives.

54



e SendMs(Sender Receiver "Message”) where Receivercan be more than one re-
ceiver.

o GetMsd) extracts the first message from timailBox

As regards to the exchanged messages, the Multi-Agent dgnarolves three types
of messages (without considering those relative to thectleteof the equilibrium state)
namely:

e "Start” message, sent by the interface to all the agent) order to activate them,

¢ "ReduceDomains’message, sent by a Constraint agentodits acquaintances?: in
order to propagate its deleted values.

¢ "StopBehavior’message sent by a Constraint ageptwhich has a domain wipe-out,
to the interface.

e "StopLocalBehavior'message sent by the interface to all the agdntsf the system
to make them stop their local behavior.

We must note that, as we have mentioned above, all the messegeeceived in the same
order in which they were sent, except for those used to d#ted¢ermination of the system.
Therefore, we concede higher priorities to these latessages. Thus they can overtake any
message in the queuméilboy. This feature leads to a quicker termination of the whole
process.

5.3.2 Common data structures and basic primitives

In more detail, the common required data structure and kasnitives for both ap-
proaches, are the following:

e AcqConsti[X,;]={A; e T4 [ X, € Var(C;‘;f__) N Var(Cf;’:“)}, is the ordered set of all
the Constraint agents sharing the variabjlemth the agent A

o DA={DA(X,) X, € Var(Cf;f__)} represents the local view of the domains:(X;,)
of all the variables maintained by; AEach domain is supposed to be totally ordered.
For all X, € Var(Cf;f“), D4i(X,,) is called the occurrence of D{X Note that some
occurrences of a given DX may be different, but all occurrences of DY, for all
ke {1,...,n}, must be identical when the full global arc-consistencyesched. At
this step, let us refer to the final obtained domaih(;) by f D4:(X).

e TupleSupporti is the set of tupleé wheret is a vector of consistent assignments of the
variables involved in € with ¢ = (v;,, vj,, ..., y), I is the arity of G}’ , and @;,, vj,,
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...) satisfies G_. The parametey € {0, 1,. .., r-1} is used to indicate thav{ , v;,,
...) Is the "first” tuple support for the valugy+1].

Let’s recall that tuples are ordered according to the natarécographic order<;,

such that for eacht, t'} € CiAjfn, t <, U if and only if there exisk such that[1. k-

1]=t [1.k-1] andt[K] < t'[K].

o IncValue[X;]={uvy, € D*(Xy)/thereis notany tuples C;;' such that[indexC;;' ,
Xi)] = vi,, andt is valid}, represents the set of all current inconsistent values for X
belonging toVar(C’ ).

o HDA[X,]={vs, [ vy, € DA(X}), X, € Var(Cf;f“), andu,,, verifies Property, repre-
sents the new current domains after hiding some temporarnypeonsistent values.

e ReviseValué is the set of all current values that should be revised.
The common basic primitives are:

e addTd/, e): adde to the sef; e is added to the end of

first(l): returns the first element in the get |I| >1; otherwise returnail;
e last(]): returns the last element in the gétl +# (); otherwise returnail;

e nexie, [): returns the first elemet occurring after in the set if ¢’ #£Las{(/); other-
wise returnsil;

o deletdi1, [2): for each element € (2, if [1 containse thene should be removed from
[1; otherwise nothing to do.

e hideFron(/, e, var): removetemporallyall the elements’ from [ according to some
conditions related te ;

e SearchNewSuppdt, t): returns thesmallest tuple support’ Cf‘jf” such that~;,
t andt'[index(C; , X;)]=e. If t=nil, then this primitive will return thdirst tuple
support.

5.3.3 Agent-based protocol

The DRAC and G-DRAC approaches exhibit almost the same btbweamic. The main
dissimilarity rests in the fact that DRAC is only for binargrestraints, while GDRAC is a
generic distributed approach for any general CN.

At the initial state, the Interface agent creates all thesframt agentsl’, and activates
them. Each agent Amaintaining a constraint{@i_. reduces the domains (D) of its own

°There is no other tuple suppdttsuch that <;, t” andt” <, t" andt” [index(C{‘j’f”, X)1= vy,
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variables, i.e.V k € {1, ..., r}; r=|Var(C;} )| and X, € Var(C;;' ) by computing local
viable values for each variable. For achieving thigj.@ooks for one tuple support (the first
one) for each value,,, of each of its variables X When the first suppoti that satisfies
Cg‘;f“ andt[index(cj‘j%__, Xi)] € DA(X}), is found, thend;, , v;,, . .., (k-1)) is added to the list
of tuple support3upleSupport:.

We must note that;, , v;,, ... are the first values support for,, but they are also values
support for each other by applying the multidirection&lipyoperty of constraint relations.
A valuew, is deleted from B:(X,) if and only if it has no viable tuple support. Each ob-
tained set of deleted values for a variable should be anmalimmediatelyto the concerned
acquaintances in order to save fruitless consistency sheckhese values.

Each agent that received this message starts processigguppdating the domains of
its variables while deleting non-viable received valueg.th® end of this computation, it
updates computed support information by deleting all niaiple tuples. In the case in which
v, IS @an inconsistent value, the agent determines first allupket such that[index(Cj}f”,
X1)]= vk, . Then checks the existence of another viable tuple supgorfupleSuppoft: for
each value,, € t (a;, € D4(X;) andk # ). If such tuplet’ does not exist, the agent searches
for a new tuple support. Therefore the agent starts first lgirig” all the values that are
incompatible withv,, . from the domains of all the related variables using the afemioned
Property2 (esp Propertyl for binary constraints). This allows us to rextlee number of
constraint checks.

Second, the agent looks for another tuple support for ealtle vg according toy and
using the new domains. {f=(h-1) then the search must be done from the smallest tiple
(according to the predefined order) such that,,t' (as AC-6). Otherwise, it looks for a
support from the scratch i.e., the first (smallest) tuple jn This can lead to a new values
deletion and by consequence, to new out going messagesd$orrg domains on an agent
may, consequently, cause an eventual domain reductionsathex agent.

Hence, the same process must resume until all the arc-temisiglues have been deleted
from the domains of all the variables. This state is known asable equilibrium state,
in which all the agents of the system are satisfied. An agestisfied when it has no
more reductions to do on its variables’ domains or when oriessgeduced domains wipes
out. However, it is clear that the satisfaction state of glsimgent is not a definitive state.
Indeed, if there exists at least one unsatisfied agent, itcaage the unsatisfaction of other
Constraint agents; this is due to the propagation of coingsta

An agent is satisfied when it has no more reduction to do ondtgsble domains or
when one of its reduced domain wipes-out. However, it isrdleat this satisfaction state
is not definitive. Indeed, if there exists at least one usSat Agent, it may cause the
unsatisfaction of other Constraint agents and this is ddleg@ropagation of constraints.

We should emphasizes that this dynamic allows a prematueetiten of the failure i.e.

Sor applying the bidirectionality property in case of binagnstraints.
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absence of solutions, and this when the domain of at leastarable wipe-out. Hence, with
regard to agents’ behavior, each Constraint should coaitsudocal behavior until attaining
its satisfaction stafe

¢ When one of its domains wipes out. In this case, it asks tleefatte to stop the whole
process and to communicate the failure result to the user.

e When all possible local reductions have been accomplishleite taking into account
the just-received messages containing the values delgtduelother Constraint ac-
guaintances. In this case, it updates its internal state.

Otherwise, i.e., in the case of unsatisfaction behavigeitds a message containing in-
consistent values to the concerned acquaintances.

The Interface agent is satisfied when all the agents ardisdts when it has received a
failure message; then it makes all the agents stop theirbetevior, and communicates the
obtained result to the user. Otherwise, i.e., in the casasditisfaction behavior, it checks
the system state using the algorithm described by LampdrCrandy [19].

5.4 Theoretical analysis
5.4.1 Correctness

The correctness of the proposed hybrid method (the two appes) relies, in great part,
on the correctness of the DRAC protocol. The objective of ubsection is to exhibit
the accuracy of the proposed DRAC apprcdaahd to show that it leads to full global arc-
consistency. For this result, we must prove the followinggaisons:

e Forall X, € X, h={1,..., n}, for all {A;, A;} €T such that X € Var(C;; )N
Var(C;’ ), i #J, 1D4(X,) = FD4 (X,,).

e Forall X, € X, he{l,...,n}, forall A; € T, forall X, € Var(CiAjf”), for all v, €
fD4:(X}), vy, is arc-consistent.

e Forall X, ¢ X,he {1,...,n}, forall A; € T, for all X;, € Var(CiAjf”), for all vy, €
DAi(X},), if vy, is viable thery,, € fDAi(X},).

In fact, the first assertion concerns the process of deledkges propagation. Since for
all A;, A; €I',i #jsuchthat X Var(Cf‘j%“)m Var(Cf}{'”) and consequently Abelongs to
the acquaintances of,AA; € I'* (and conversely, Ac '), and since all the messages
are received in a finite period of time and in the same ordeheswere sent, A(resp.A;)

4This state of satisfaction is based on local knowledge teaethether the local goal is achieved or not.

However, this state may be temporal if the global goal is wobanplished.
5As for the G-DRAC, its protocol is based essentially on DRAGY@co.
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must be informed by each deleted v&lu&hen the agents will have the same final domains
fD4(X;,) andf D4 (X},).

The second assertion concerns the correctness éGtédaceDomains:forprocedure. Each
time, the deletion of a value (from“®(X},)) leads to a non-viable value in the domain of a
variable X,. The agent Asends a message to all the concerned acquaintanceslA,
asking them to update their,Xdomain. So, all the non-viable values are deleted from the
domains of all the agents. Thus, each value remaining intlaédiomain of each variable is
arc-consistent.

For the third assertion, there are two cases in which a valuis deleted from the domain

of a variable X%,. The first is that the agent;/Aas detected that, has no support iat least

one variable X (k # h) and X, € Var(ij%__). Thereforeyy, is a non-viable value and must
be discarded. The second case is when the agehag received a message to update the
domain of %, by deleting the value,,. Thus, this value has been detected as non-viable by
the agent which sent the message. Consequently, only theiable value will be deleted.

5.4.2 Termination detection

The dynamic of DRAC approach stops when the system reacheasaible equilibrium
state. At this state, all the agents are satisfied. An agesdtisfied when it has no more
reductions to do on its variable domains or when one of itsteel new reduced domains is
wipe-out. In the first case, the global goal of all the agesiteached, i.e., achieving global
full arc consistency.

However, in the second case, the problem is inconsistentniceinstantiation satisfies
all the constraints. The detection of the stable equiliioratate in a distributed system can
be achieved by taking a snapshot of the system, using thekn@in algorithm of [19], a
state where all agents are waiting for a message and theoenegsage in the transmission
channels. If all the agents of the system are in the state adingaand there exists only
one agent Awhich has deleted one valug, from the domain of one of its variables (X
€ Var(Cf‘j%“). We assume that this agent shared this altered variabteanitther agent A
The latter must be informed of the loss of the vaidygin order to propagate the constraints.
Hence, there is a message in transit for it, which invalislate transmission hypothesis.

We notice that, the cost of the termination process can bigatatd by combining snap-
shots messages with our protocol messages.

SLet us recall that the deleted values must be immediatehginétted to the concerned acquaintances.
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5.4.3 Spatial and temporal complexities

Let us consider a CSP havingn for the total number of variablesd, for the size of the
variable domains and for the total number of constraints. The number of agents i§
we consider a fully connected constraint network, we willda-1 acquaintances for each
Constraint agent. Each agentmaintains a lisTupleSupport: of supports, with the size of
2d-1in the worst case (for only binary constraints). Since tlaeee agents, the total amount
of space is2d-1)e (for a fully connected graple will be set ton(n-1)/2 in the worst case).
So the space needed for DRAC ig1f-1)/2*(2d-1) ~O(n?d). This space is the same as that
of AC-7 one’s.

The worst case in the execution time of a distributed alforibccurs when it proceeds
with a sequential behavior. For our protocol, this occuremvanly one value is deleted at a
time, leading tand successive deletions. Our approach is composed of two. Stapdirst is
the initializing step, in which each agent perfordisoperations to generate the support sets.

In step 2, for each deleted value, the agent will perforni?Dgperations to search another
support for this value. Thus, each agent performg®gperations. So the total time com-
plexity of DRAC (with e agents anahd successive deletions), in the worst case, isr@).
This complexity is equal to that of DiSAC-9 down to the numbgvariables.

Regarding GDRAC complexity, each agentiA the system also maintains a list of tuples
supportTupleSupporti. Each value should have at most one tuple support, then thie to
number of tuples is at mogl with r for the maximal arity for each constraint. Each tuple has
(r+1) values. Since there aesmgents, the total amount of space for each agemdl)¢r¢1).

So the space needed for each agent, in the worst case;’d) Ghe same as GAC-Schema
one’s. Each agent perforna operations to generate the tuples support sets, and for each
deleted value the agent will perform @(!) operations to search for another tuple support
for this value. While the total time complexity of GDRAC, ing worst case, is @0d).

5.5 Experimental comparative evaluation

The implementation of the proposed hybrid method was deeelovith Actalk, an object
based on concurrent programming language in the SmaB@l&nvironment. In this lan-
guage framework, an agent is implemented as an actor hawn8rhalltalk object structure
enriched by an ability to send/receive messages to/froacigsiaintances, buffering the re-
ceived messages in its ownailbox The experimentations were performed over randomly
generated instances and using five parametessthe number of variablesl,is the domain
size of each variable, is the maximal arity of the constraintg,is the graph connectivity
(the proportion of constraint in the netwogks1 corresponds to the complete graph) gmsl
the constraint looseness (the proportion of allowed pdixslues in a constraint). We have
performed two groups of experiment to evaluate the two pgeg@pproaches of our hybrid
method.
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In the first group, the efficiency of the DRAC approach is asséshrough a compar-
ison with AC-7. Let us recall that AC-7 is the best centralizdgorithm to enforce arc-
consistency on any binary CN. This algorithm is used as aesgmlgorithm to evaluate the
performance and efficiency of DRAC.

Number of 4000
Constraint
Checks 3000

2000
0.80

Connectivity

Figure 5.2. DRAC results in mean number of Constraint Checks for constraints in inten-

sion on Pentium Il (35 instances are generated for each seto  f <p; q) parameters).

Each used sample is designed on the base of the followingneseas:n = 20,d = 10,
p={0.2, ..., 0.9} per step of 0.1 and={0.25, ..., 0.95} per step of 0.1 also. For each
pair (p, ), 35 random examples were generated. Figures 5.6 and 5.7tkhoWC-7 and
DRAC require almost the same number of constraint checkscesfy for over-constrained
problems. While for CPU time, Figures 5.4 and 5.5 show that7/A@quires more time than
DRAC especially for large problems.

In the following we will try to focus essentially on the mosimplex problems for the
same above parameters. Therefore, we directed our attdntevaluate the performance of
DRAC approach for the most hard problems belonging to thesttian phasé Hence, we
brought out two versions of DRAC: DRAC-Ext and DRAC-Int fasrestraints in extension
and in intension respectively. Figure5.6 shows that AC+Tgoes almost the same number
of constraint checks as DRAC-Int, while for CPU time, DRARtEequires a lower time
than the two others (Figure5.7). This result shows that DRAEspecially worthwhile for

"Problems for which establishing arc-consistency sometisneceeds sometimes not.
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Figure 5.3. AC7 results in mean number of Constraint Checks f or constraints in intension

on Pentium Il (35 instances are generated for each set of <p; q) parameters).

constraints in extension, due to the fact that the DRAC fiegh §initialization) explores the
stored relation of each constraint only once in order to gerehe required sets of supports
(TupleSupport: sets).

The DRAC protocol allows us to perform constraints accaydmtheir type of represen-
tation (how they are expressed).

The second group of experiments was designed to test therpenice of GDRAC for
general CN. We used GAC-7 [11] as a witness approach to aaptiae efficiency of the
results of GDRAC. Another set of instances, was randomhegaerd according to the fol-
lowing parameters)=20; d=10; r=3; pc {0.2, ..., 0.9 with step of 0.1 andjc {0.3, 0.38,
0.41, 0.43, 0.45, 0.46, 0.47, 0. 48 or eachp, ¢), 10 CNs instances were also tested.

The results reported below represent the average of théneldtamumber of constraint
checks. We have also implemented four different versiormiofipproach in order to check
its efficiency in handling any type of constraints, i.e., d6@xpressed in extension or in
intension.

Figure5.8 represents the result of the two first versionseptoposed approach, GDRAC-
Extl and GDRAC-Ext2, for constraints given in extension.eThain objective of this ex-
periment is to highlight the impact of immediately procegseach received message. Thus,
in the first one, each agent processes out the received neegfiagcompleting its current
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Figure 5.4. DRAC results in mean CPU time for constraints in i ntension on Pentium 111 (35

instances are generated for each set of <p; q) parameters).

work. In contrast, in GDRAC-Ext2, each agent tries to exeeaich received message imme-
diately. GDRAC-Ext1 entails more ccks than GDRAC-Ext2,ex3ally for dense instances.
This can be justified by the fact that giving the agent relewaiormation in time allows

it to immediately update and propagate the consequence aoéteived message, thus sav-
ing many fruitless efforts, i.e., re-checking the vialyildf some values already detected as
inconsistent by another agents.

We carried out a second experiment on GDRAC to check the exfiftgi of our approach
for the most hard type of constraints (constraint in intensvhere no particular semantic is
known). We propose in this experiment two other versions DPRBC, GDRAC-Int1 and
GDRAC-Int2. The objective is to check the usefulness of tluppsed property of temporal
inconsistency for n-ary CN (Section5.2). Figure5.9 shdvas the number of ccks performed
by GDRAC-Int2, i.e., GDRAC-Int2 with property, convergettee number given by the best
centralized approach, GAC-7.

The difference in ccks between GDRAC-Intl and GAC-7 can Inglicated by the fact
that for GDRAC-Int1, each constraint is represented by antgnd each variable can be
shared by several agents. All the agents will perform locakcansistency in parallel, which
leads to the fact that each value can be detected as inaamtdist several constraints at the
same time, leading to more ccks. However, for the centrdligmroach, if a value is detected
inconsistent by one constraint, then it will not be checkgthie other constraints (sequential
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Figure 5.5. AC7 results in mean CPU time for constraints in in tension on Pentium Il (35
instances are generated for each set of <p; q) parameters).

treatment). To this end, we can say that the proposed pyopértvs GDRAC to decrease as
maximum the number of constraint checks in order to converdgbe required number for
GAC-7. We should not forget that for some problems it is nagiole to solve the problem
by only one agent, for many reasons, such as data privacyemudity problems.

We also tested the behavior of our approach toward incamigroblems. The main ob-
jective of this second type of experimentation is to evaluhe percentage of deleted values
required for detecting the insolubility of a CN. Table 1 slsale ratio of the percentage of
the obtained results of GDRAC divided by those of GAC-7, miean of the percentage of
deleted values and CPU time (in milliseconds). In most GaS&RAC prunes a few more
values than GAC-7 to prove insolubility; in the others, ilmost the same.

At first glance, this result does not seem good, especialllyisf pruning process needs
more time to be accomplished. However, the CPU time needealifcapproach is less than
that of GAC-7 (ratia<1). In the majority of cases GDRAC requires about half of iheet
needed by GAC-7. In addition, the difference in the peragmtaf the deleted values can
be justified by the fact that for our approach all the constsashould be activated at the
same time, leading to more deletions, even if the problemasnsistent. As for GAC-7

the insolubility of the problem can be detected at the bagmmvithout invoking all the
constraints.

64



—>¢—AC-7 —A—DRAC-Ext —#—DRAC-Int ‘

8000

6000 /.//<.

4000 +

2000 +

Number of Constraint Checks

0 1 1 1 1 1 1 1 1
3 ¥ ) 4 4 4 2
1 2T 2 A

<p, 4>

Q- Q>

Figure 5.6. DRAC-Int and DRAC-Ext vs. AC7 Results in mean num  ber of Constraint

Checks on Pentium Ill (10 instances are generated for each se  t of (p; q) parameters).

We should note that for our approach, even though all thetainss are called upon,
the local decisions are quickly propagated globally to prihve inconsistency, especially for
constraints in extension.

5.6 Summary

In this chapter we suggested a new agent-based hybrid mieitmgorating two proposed
approaches. The common model, used by these approachsstsaf a set of Constraint
agents, each having a local goal, in communication by exgihgrasynchronous point-to-
point messages. These messages contain the local in@mtsiatues in order to help the
agents to reduce the domains of the variables that theyviavadlhis process is performed
until a stable equilibrium state is reached and corresptmasailure relative to an absence of
solutions or to the achievement of the global goal. Thus,dtate is obtained as a side effect
of the interactions among the Constraint agents, whose/imrbare simple and reactive.

As we associate an agent per Constraint, the dual consgph is proved to be appro-
priate for representing any general CN. Consequently, angiglized CSP can be naturally
and directly handled (without any non-binagg- binary transformation).

In this work, we proposed new properties to improve the efficy of these approaches.
The experimental comparative evaluation, of the two apgres, shows the efficiency of the
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Figure 5.7. DRAC-Int and DRAC-Ext vs. AC7 Results in mean num  ber of CPU time on

Pentium 11l (10 instances are generated for each setof (P, () parameters).

DRAC approach especially for constraints in extension,higé performance of GDRAC
as a distributed arc-consistency technique for any ge@MalThese two approaches have
been published in [4, 5, 6, 10] and under reviewing inltiternational Journal of Artificial
Intelligence Tool$1].
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Algorithm 1 Start message executed by each Constraint agent A

begin

1:

N RN NN NRNDNERR R B R B B R R
@ a0 A ®WNhNR O O N AR ®DNRO

for all X, € Var(C;; ) do
IncValue:[X ;] « D4 (X});
end for
/* We assume that all the values are initially non-viable
Choose randomly one variable to proce%s@(Var(Cg‘;fn);
for all (v, € D4(X;) such thatv;, € IncValue'[X,;]) do
t' «— SearchFirstSuppofty,, nil);
if t # nil then
addTog, indexC;}' , Xi)-1);
addTo{TupleSupport:, t);
delete(ncValue'i[X ], v,);
end if
. end for
: for all X; € Var(Cj}' ) such that IncValue'[X;] # ¢ do
delete(D' (X}), IncValue'i [ X,]);
if (D4¢(X;)=0) then
sendMs¢Self Interface, 'StopBehavidh);
for all X;, € Var(C;' ) such thatIncValue':[X ;] 0 do
for all A; € AcqConsti[X,] do

end for
end for
end if
. end for
: Process next variable;
: /* Return to step 3. to choose another variakfe

sendMs@A ;, Self, "/ReduceDomaingicValue'[X ;] for:X;");

Table 5.1. Results obtained in ratio of the percentage of del

eted values and CPU time

(0.2;0.2 | (0.3;0.3 | (0.4;0.35 | (0.5;0.4
% Del Values| 1.05 0.86 1.03 1.15
CPUTime | 0.46 0.61 0.46 0.52
(0.6;0.4 | (0.7,0.42 | (0.8;0.43 | (0.9;0.44
% Del Values| 1.05 1.05 0.98 0.99
CPUTime | 0.52 0.51 0.61 0.92
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Algorithm 2 Propagation procedure executed by each Constraint agent A

ReduceDomairdelValfor: X,
1: for all (v;,, € delva)) such that(v,,, € D?4¢(X,)) do

2:  delete(D"(Xy), Vi, );

3: end for

4: for all t € TupleSupport: such thatt[indexC;}’ , Xi)]=Vs,, do
5.  deletefTupleSupporti, t);

6: forall v, €tsuchthath € {1,..., |Var(C} )|} andh # m do
7 if (last)= (inde>(C;‘;.%”, Xi)-1)) then

8: addToReviseValué[indexC;}’ , Xp)], (Vi,, 1));

9: else

10 addToReviseValué[indexC/}' , Xy), (Vi,, nil)]);

11: end if

12:  end for

13: end for

14: for all (v, t) € ReviseValué do
15:  if ((Checkuvy, for:X;) = false)then

16: HD#i « hideFromD*: for:vy, of:X;

17: t' « SearchNewSupport,, fromtin:HD4:;
18: if (' = 0) then

19: delete(D'[X}], vk,);

20: if (D4[X;]=0) then

21: SendMs¢Self Interface, 'StopBehavid);
22: addTo(ncValue'i[X ], vk, );

23: else

24: addTo(', index(G} , Xi)-1);

25; addTo{TupleSupport, t);

26: end if

27: end if

28: endif

29: end for

30: forall (X; € Var(Cj}',) such thatIncValue'[X ;] 0) do

31:  forall (A, € AcqConsti[X;]) do

32: SendMsA;, Self "ReduceDomaiincValue':[X ;] for:X,");
33: end for

34: end for
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Chapter 6

DRAC T to Enforce more than AC

As mentioned before enforcing AC on some hard CN may be ésstl The main reason is
that the problem might be initially AC. Performing more th&@ may prune more values
and consequently may enhance better the solving process.

In this chapter we discuss a new approach for performingibliged restricted path con-
sistency property on a binary CN.

6.1 Distributed enforcement of restricted path consisteng

In the following, we propose a new property based on RPC tkatiuse in the proposed
protocol in order to prune more inconsistent values fromG@hke The main objective is to
improve the efficiency of DRAC approach without loss of cotness.

6.1.1 Knowledge inference heuristic

Property 3 For each path of three variables;P{X;, X;, X, } of an arc-consistent CN. For
each X € P;, for each value y € D(X;) and its arc-consistent suppérn;, € D(X;), v, is
an inconsistent value and consequently should be remowedd(X) if and only if:

e There is no common suppoitve D(X;,) such that TupleSuppoltv;, ] = TupleSupporti[v;, ]
= vy, With {X;, X, } maintained by Aand{X;, X;.} maintained by A¢.

e Forallv;, € D(X;) with v;, # v;, and for all v, € D(Xy), TupIeSuppor‘ti[vjf]=vZ-g
with v;, first support of y, and v, <, v;, and TupleSuppoft[v,, ]=v;, with v, first
supportofy, and v, <, V;,.

Note that by using bidirectionality between two variablesaid X while enforcing
AC, we can have knowledge about first support of X in X; and not the inverse.

1This support can be the first support or one support, by usiiggbtionality, depending on the used order

between variables.
2TupleSupport: represents the collected knowledge, concerning arc-stemsipair of values for the vari-

ables maintained by Aresult of performing AC.
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Therefore, in case it is not possible to check this condjtvea need to perform more
constraint checks to verify the inconsistencyadfy applying RPC property as men-
tioned in the following condition,

e The value y, € D(X;) is the only support of v € D(X;) and there is no common
value support v, € D(X;) such that the pair (y, v,.) and the pair (y,, v,,) are
simultaneously arc-consistent.

The two first conditions of the above mentioned property aeguo infer the oneness of
supports for the value;vto detect whether it is path inconsistent or not without geniing
extra constraint checks.

6.1.2 DRAC++ multi-agent model

The proposed model for the new approach DRAGnvolves (as for DRAC model) two
kinds of agents, Constraint agerfs and the Interface agent, communicating by exchanging
asynchronous point-to-point messages. For transmisgioressages, we assume that they
are received in the same order they were sent and in a finiteedal time.

The main goal of DRAC™ is to transform any CSP (X, D, C) into another CSPP’(X,

D’, C) equivalent via interactions among the Constraintragiewhich are trying to reduce
their domains. The underlying new proposed protocol isddigliinto two steps

e First, enforce arc consistency on the problem (the same #g#Rotocol),

e Second, use the knowledge collected from the previous stegoriove some additional
values that cannot belong to any solution by enforcing RRpemnty.

6.1.3 Basic of the enforcing process

At the initial state, the Interface agent creates all thesframt agentd’ and activates
them. Each agentAeduces the domains of its own variables by computing lostifiable
value for each variable.

Let's recall that for each variable; Xfor each value;, € D(X;), if its first supportv,, €
D(X;) is found, then;, v;, y) is added to the list of tuple suppofspleSupport;, i.e. y=0
(resp. ¥1), if v;, € D(X,) (resp.v;, € D(X;)) is thefirst support ofv;, € D(X;) (resp.v;, €
D(X;)). We must note that;, is the first value support far;, but they are also values support
for each other by applying the bidirectionality propertyretations associated to constraints.

A value v;, is deleted from D(X) if and only if it has no viable value support. Each
obtained set of deleted values for a variable should be armmsaLimmediately to the con-
cerned acquaintances in order to save fruitless consisterecks for these values by the
other agents. Obviously, reducing domains on an agent meecn eventual domains’ re-
ductions on another agents. The same process, domainsti@dand exchange of deleted
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values, should resumes until the full global arc-consistaa achieved or a domain wipes
out, i.e. the problem is then detected as inconsistent.

Hence, all the agents starts the second step in order to prareenon-viable values. Each
agent A checks first if it belong to a path formed by three variabldssTs can be done by
checking its list of constraint acquaintancEs:. The same agent may belong to more than
one path. First for each path, each agenasks its path acquaintance agériss, and A))
for their sets of first supporffuple Support andTupleSupport’) with {X;, X;} maintained
by A;, {X;, X;} maintained by A, and{X,, X;} maintained by A.

For each received set, the agentdetermines first the boolean matridels, and My;
corresponding to the receivellipleSupport: and TupleSupport: respectively. Second,
performs the multiplication of these two matrices. Eacmeotthe obtained matri¥ p,.q,;
indicates the existence (entry equal to 1) or not (entry ketpu8) of a path of length 2
between the two variables;Xand X; of the agent Athrough the variable X Finally the
agent performs the convolution & p,.4,, and its first support matri¥;; by applying the
multiplication operator as follows:

Vme {1,...,D(X;)} andV1 e {1,...,D(X;)}
M ges[MI[1]=M prog,, [MI[1] + My [mI[1].

Figure 6.1. Example of arc-consistent problem.

To illustrate the principle of the proposed protocol, letassider the example in Figure6.1
formed by three variables (XX, and X;) and its corresponding graph of first support in
figure6.2. Figure6.3 shows the proposed model correspgridithe above example. Let
us consider the agent,Aesponsible of the constraint £(TupleSupport:={(a; c; 0) (a»

2 0) (ag 2 0) (ag c3 1)}), it will receive the set of first support from its two acquainces

3All the constraint agents belonging to the same path.
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Figure 6.2. The corresponding graph of first support values.
(TupleSuppOI‘P:{(al ba O) (ag by O) (a3 bg O)} andTupleSuppOﬁ3={(bl Co O) (b2 C1 O) (bg

c3 0)}). It will determine the corresponding following matrices:

My = andM13:

_ o o
o o
— = O
o = o

0 01
0 |'Myz=110
1 0 0

S = O
o O =

Then, it will settle the product of the two first matrices:

1 00
Mi2*Mo3=Mpoq; = 0 1 0
0 01
Finally the agent should determiiy. s usingM p,..q,, andM;3 as mentioned above.
100
Mgres=1 0 1 0
000

For eacha € D(X;) (resp. be D(X}))

If 2,20 Mgea[allbr] <1 (resp. 2,20 M [an][b] <1)

then the agent should check if the valme D(X;) (resp. be D(X})) is restricted path
inconsistent or not and this by using the third criterionref Property3.

Each value that does not satisfy the property conditionsilshbe deleted and conse-
quently propagated. For our example, we have to check@riydcs.

The same process is repeated for the other paths. Howevercieg local RPC on an
agent may lead to AC enforcement, which in its turn leads teen®PC enforcement. Thus
the same process should continue until the stable equifibstate is reached. This state can
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TupleSupporti?= {(a; b2 0) (az b; 0)

Cas Cis

TupleSupport?3= {(b; c20)  TupleSupporti’= {(a; ¢; 0)
(b2 1 0) (b3 c30)} (azc20) (azc20) (azcs 1)}

Figure 6.3. The corresponding model for the proposed approa ch

be defined by the satisfaction of all the agents of the sysfanagent is satisfied if and only

if it has no arc inconsistent or restricted path inconsistatue. It is noticeable that we can
be content with enforcingazyRPC, one pass of RPC, in order to reduce the complexity of
the pruning process.

Note that this dynamic allows a premature detection of failabsence of solutions. Thus,
in the case of failure, the constraint (which has detectedf#éiiure) sends a message to the
interface in order to stop the whole process. For thus, therface agent in turn send a
message to each constraint to ask them to stop their agsiydéind informs the user of the
absence of solutions. The maximal reinforcement of globsiricted path-consistency is
obtained as a side effect from the interactions describedeab

6.2 Discussion
6.2.1 Termination

The global dynamic of DRAC" approach stops when the system reaches its finite stable
equilibrium state. The state where all the restricted patlomsistent values are pruned or
when one of the domains wipes out. At this state, all the agar satisfied. However, in
this second case, the problem is inconsistent i.e. no ifigteom satisfies all the constraints.

The detection of the stable equilibrium state in a disteldusystem can be achieved by
taking a snapshot of the system, using the well known algoriaf [19]. Termination occurs
when all the agents are waiting for a message and there aressages in the transmission
channels. The cost, of the termination process, can be atetigby combining snapshot
messages with our protocol messages.
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6.2.2 Complexity

Let us consider a CSP P havindor the total number of variablesg, for the size of the
variable domains and for the total number of constraints. The number of Agents i#
we consider a fully connected constraint network, we willda-1 acquaintances for each
Constraint agent. DRAC' is composed of two steps, the complexity of the first stepes th
same as DRAC approach. The space complexity of DRAQ@(S-1)/2*(2d-1) ~ O(n2d),
while its time complexity, in the worst case, is€@¢?).

For the second step, in the worst case, the maximal numbeatbs gor each agent is
(n-1)(n-2)/2~ O(n?). Each agent will receive the set of supports from its patjuamtance
agents. it will first perform the boolean product of the twaresponding matrices witt?
elementary operations (logical multiplication and logj@aditions). Second, it will perform
the convolution of the obtained matrix with its set of sugpoiThis process requires @)
operations. Finally for each values of its second variatile,agent will check if it has a
unique support, at least, in one variable of the two varmbfehe current path. This process
requires O¢®) operations. Thus the added process to DRAC approach esqinirthe worst
case, O¢r*d?®) operations, and @¢*) as additional space complexity.

6.3 Experimental comparative evaluation

In this section, we provide experimental tests on the perémce and efficiency of the dis-
tributed filtering new approach DRAC. The experiments were performed over randomly
generated instances using four parametersthe number of variables,is the domain size
of each variablep is the graph connectivity (the proportion of constraint hie ihetwork,
p=1 corresponds to the complete graph) gnd the constraint looseness (the proportion of
allowed pairs of values in a constraint). The implementaivas developed with Actalk [15]
under Smalltalk-80 environment.

Two kinds of experiments where performed. The main goal effitist branch were dedi-
cated to evaluate the efficiency of performing more than ansistency for hard distributed
constraint problems. Therefore, we have randomly gengealist of instances according to
the following parameters)=20; d=10 and(p, g) belonging to the transition phase, i.e., the
most hard instances including arc-consistent and inctamgiproblemsp, q) = {0.2/0.3;
0.3/0.35; 0.4/0.35; 0.5/0.4; 0.6/0.4; 0.7/0.4; 0.8/0@12/0.43.

We have carried our experiments only on the most hard birrarg@nsistent problems for
DRAC and DRAC . The main goal is to highlight the usefulness of using metavwkedge
inferred from the set of first support to prune more incomesisvalues on hard CN and with
the minimum amount of additional constraint checks and Ciaté.t For eachp, q), 70
CNs instances were randomly generated (the total numbeertdrgted instances is 560)
and processed using both approaches DRAC and DRAGIote that regarding DRAC"
we performed onlyfazy RPC in order to show that for some problems only partial RPC is
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Figure 6.4. DRAC vs. DRAC ™ mean results in term of the required CPU time for hard

arc-consistent problems.

enough to prove the inconsistency especially of almostai-constrained problems. Table
6.1 illustrates the percentage of arc-consistent instaag®ng the 70 generated ones.

The results reported below represent the average of thaebtautcomes in means of four
criteria, the CPU time in seconds, the percentage of delatehsistent values, the number
of constraint checks and the number of exchanged messageRAC and DRAC .

Figures 6.4 and 6.5 show that performing partial RPC on ansistent hard problems
allow us to discard more values (up to 7 times {d@.5; 0.4)) and especially to detect
the inconsistency of a high proportion of them in a reasanalblditional CPU time. For
example, in Table 6.2. all the over-constrained arc-comsigproblems are proved to be
inconsistent for{0.4; 0.35, (0.5; 0.4; (0.6; 0.4, (0.7; 0.4, (0.8; 0.42 and (0.9; 0.43.

Table 6.1. Percentage of arc consistent instances among the 70 generated ones

(0.2;0.3 | (0.3;0.35 | (0.4;0.35 | (0.5;0.4
%Inconsistent Problems 77.14% 85.71% 37.14% 95.71%

(0.6;0.4 | (0.7;0.4 | (0.8;0.42 | (0.9;0.43
%Inconsistent Problems 67.71% 35.71% 64.21% 58.57%
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Figure 6.5. DRAC vs. DRAC ™1 mean results in term of the percentage of pruned incon-

sistent values. All tested instances are initially arc-con sistent.

While for under-constraint problem®.2; 0.3, (0.3; 0.35, the difference in the percentage
of reduced values is lesser. As for the additional needed @Re&for DRAC'T, it varies
from 0.15 seconds for sparse problems to 3 seconds for thedwanse problems (case.9;
0.43).

Figures 6.6. and 6.7. give the obtained results for the nuwib&nstraint checks (ccks).
We can say that the new protocol requires only few suppleangmicks especially for the
case of loose CN (cas€6.2; 0.3, (0.3; 0.35, and(0.4; 0.35). However, for the cases
(0.5; 0.4 and(0.9; 0.43 to prove the inconsistency necessitates greater ccks.riieless,
the true number of ccks needed for these instancesis muategr@he use of the collected
knowledge of first support allows to decrease the amountks and consequently to amend
the efficiency of the pruning process. This claim will be aped in the next branch of
experiments.

As regard with the exchanged number of messages, at firstaglaseems that DRAC"
requires a large number of messages to reinforce RPC; sudt ian be vindicated by the
fact that in the beginning of the second step, all the agemptied in at least one path should
exchange their set of first support, so this may increasertteiat of messages especially,
for over-constrained problems.

At this point, we can say that performingven lazyrestricted path consistency is worth-
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Figure 6.6. DRAC vs. DRAC ' mean results in term of the number of constraint checks

for hard arc-consistent problems.

while especially, for over-constrained problems. This banustified by the fact that for

such problems, the probability of having a path of threealdés in the CN is high com-

pared to under-constraint problems leading to the disgoMamore path inconsistent values
and consequently to more reduction.

As for the second branch of experiment, We brought out tweigas of DRAC *:
DRAC**-1 without proposed property and DRAC-2 with the proposed property , re-
spectively. The main objective of these experiment is tduata the performance of the
proposed property using the same previous parameterse$uksreported below represent
the average of the obtained outcomes in terms of threeieritdwe CPU time in seconds, the
percentage of pruned values, and the number of constraaksl{ccks).

At first glance the result in Figure6.8 shows that DRAE2 required little more CPU time
(~14%) than DRAC *-1. This additional CPU time is used in order to decrease tinetrer
of constraint checks. Figure6.10 shows that the use of thegsed property leads to save
almost 304 of the needed number of ccks. The saving of ccks increaseasihamand with
the hardness of the problem.

The difference in the percentage of deleted values notieddden the two versions of
DRAC** (Figure6.9) is vindicated by the fact that the used instaimelude restricted path
consistent instances and inconsistent instances. Theréh@ number of pruned values vary
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Figure 6.7. DRAC vs. DRAC T+ mean results in term of the number of exchanged mes-

sages for hard arc-consistent problems.

Table 6.2. Percentage of problems detected as inconsistent among the arc-consistent

problems
(0.2;0.3 | (0.3;0.35 | (0.4;0.35 | (0.5;0.4
%Inconsistent Problems 62.96% 81.66% 100% 100%
(0.6;0.4 | (0.7;0.4 | (0.8;0.42 | (0.9;0.43
%Inconsistent Problems 100% 100% 100% 100%
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Figure 6.8. Results of DRAC T T-1 without the proposed property vs. DRAC ~ T1-2 with the

proposed property, in mean of CPU time.

for both approaches. Table6.3 shows that almost in all daB#SC* -2 prunes less values
to prove the inconsistency of the instances. While for resl path consistent instances,
the two approaches prunes the same non-viable values.

We carried out hypothesis testing, dependant two sampiest,t-on the above results
found in terms of constraint checks for both approaches DRAC without property and
DRAC**-2 with property. The goal is to statistically prove the aeay of the above result.
The formalization of both the null hypothesis and the aléiue hypothesis is as follows:

Ho : flockprACH —2 = WCckDRACH —1

Hi : pockprac++—2 < lockDRACH —1

The means of the 70 random samples are measured using Matlafg significance
level alpha = 0.05. Table 6.4 reports the obtained results for each (paig). Regarding
these results the null hypothesis is rejected in most cases with low significance varying
from 0.0306 to 4.44E-06. The small significance indicatesdinong rejection of the null
hypothesis, which means that the result is highly stagisagynificant. However, for the
cases(0.4, 0.35 and (0.7, 0.4, the null hypothesis is not rejected, which means that only
in these two cases the means in term of constraint checkofbrdpproaches is almost the
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Figure 6.9. Results of DRAC TT-1 without the proposed property vs. DRAC ~ T1-2 with the

proposed property, in mean of percentage of deleted inconsi stent values.
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Table 6.3. Results of the percentage of deleted values for th e inconsistent instances.

(0.2;0.3 | (0.3;0.35 | (0.4;0.35 | (0.5;0.4
DRAC*-1| 66504 | 68.704 | 68.0% | 61.00%
DRAC+™-2| 63.41% | 68.7% 68.094 | 71.00%
(0.6;0.4 | (0.7;0.4 |(0.8;0.42 | (0.9;0.43
DRAC*-1| 62.4% | 70.13% | 68264 | 68.7%%
DRAC*-2| 69.4% | 70.24% | 68264 | 68.7%%

Table 6.4. Dependent two samples t-test for the number of con straint checks means of
both approaches DRAC ** — 1 and DRAC " — 2, for each pair (p, Q).

Decision | Significance| Confidence Interval
0.2/0.3 | reject H, 0.0147 ]-Inf, -50.9654]
0.3/0.35| reject H, 3.03E-05 ]-Inf, -485.9168]
0.4/0.35| accept H 0.0803 ]-Inf, 64.4363]
0.5/0.4 | reject H, 4.44E-06 | ]1.0e+003* -Inf, -1.8078]
0.6/0.4 | reject H, 0.0158 ]-Inf, -336.4257]
0.7/0.4 | accept K 0.0819 ]-Inf, 90.6016]
0.8/0.42| reject H, 0.011 ]-Inf, -405.7068]
0.9/0.43| reject H, 0.0306 ]-Inf, -224.9553]

same. The significance for both cases is around 0.0800 wheamsnthat we would have
observed values of T more extreme that the one in this sam@é0 among 10000 similar
experiments.

6.4 Summary

The main objective of this chapter is to achieve full globadtricted path consistency
(RPC), for any binary constraint network, in an entirelytdimited way without any help
from centralized algorithms. Therefore, we described &hagent-based approach DRAC
which is a continuity of the work presented in Chapter5 inchhwe prune substantially more
non-viable values than DRAC approach with the minimal amaidirconstraint checks and
reasonable CPU time.

The termination and complexity of the new protocol have bpesved. The experi-
mental comparative evaluation shows that this approactorshwhile especially for hard
over-constrained problems. The new approach is based orCDdpfiroach and have been
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published in [12, 13, 14, 15] and under reviewing in theernational Journal of Artificial
Intelligence Tool$1].
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Algorithm 3 Start message executed by each Constraint agent A

begin

1: for all path (X, X; and X;) such that X, X; € Var(C;}’) do

2:  /+xAssume that the problem is initially arc consistent and tipen& A has received
TupleSupport: and TupleSupport: from its two Constraint path acquaintances A
and A, maintaining C,?j and C;‘,‘j respectivelyx

3 CreateM;;, andMy; corresponding tdupleSupport: andTupleSupport/;

4. CreateM;; corresponding to itSPy, x;;

5 ComputeM .= M, * My;;

6:  Perform the convolution df1z.; andM;; as defined above;

7: end for

8: for all X; € Var(C;}’) do

9: forall v;, € D4(X;) do

10: if Zle[l__‘DAi(Xj)H Mpes[vi,][1]1< 1 then

11: if ((EnforceRPCy;, for: X;)= false)then
12: addTo(ncValue'i[X,], v;,);

13: end if

14: end if

15:  end for

16: end for

17: for all v;, € IncValue![X,] do
18:  delete(D'(X;), v;,);
19:  if DA(X;)=0 then

20: Sendgelf Interface, 'StopBehavidh);
21:  endif
22: end for

23: forall A; € AcqConsti(X;) do
24:  SendA;, Self, "UpdateDomainIncValue'i[X,] for: X;");
25: end for
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Algorithm 4 EnforceRPC: formessage executed by each invoked agent A

EnforceRPC: afor: X;

1: total — O;

2: forall ¢ € TupleSupport: do
3. if t[i] > aandt[3]=(2-) then
4 total «— total+1;

5 endif

6. if t[i] = athen

7 nbsupport— nbSupportl;
8 unigSup— t[j];

9. endif

10: end for

11: if nbSuppor 1 then

12:  if total < (|D4(X,)| -1) then

13: if ((CheckOneSuppakX; for: a fromt unigSup = true)then
14: Determinesetlset of support of X=a in X;

15: Determineset2set of support of X=uniqSupin Xj;
16: if (setl N set2 =) then

17: ¢ «— smallestsupport ofg;

18: found« false;

19: while founddo

20: ¢’ < searchNextSupport:uniqgSup ¥f:in: Xy;
21: if (a, ¢’) satisfies G, then

22: found« true;

23: return false;

24: end if

25: end while

26: end if

27: end if

28: endif

29: end if

30: return true;
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Chapter 7

Taking DRAC to the Real World: An
Efficient Complete Solution for Static
Meeting Scheduling

In the previous chapter we introduced a new agent-basedagpito enforce AC on any
CN. The obtained results motivated us to take this approach real world application,
meeting scheduling (MS) problem. As we mentioned beforis,glhoblem is still attracting
the attention of many researchers due especially to itsmprest role in the success of
many organizations. However, DRAC cannot solve a prolidmt more precisely, allow to
produce a new instané® more simple and equivalent, i.e., having same set of solsitio

In this chapter we propose a novel complete approach to solyeMS problem with
predictable structure, i.e., a problem where the set of ngmieetings is known beforehand
and fixed. This approach use DRAC protocol during searchdiotions in order to make the
search easier and also to detect earlier global inconsigtén the following we introduce
first our proposed formalization for any static MS probleracéhd, we describe how DRAC
model can be adapted to our MS solver followed by a detailetrgeion of the global
scenario for static MS solver. Third we discuss the ternmmaand complexity properties.
Then, we present the experimental results. Finally we sumamthis chapter.

7.1 Formalization for any static meeting scheduling problen

We propose to formalize any static MS problem as a VCSP (datoastraint satisfaction
problem) [88].

Definition 38 We define a static Meeting Scheduling problem, as a valuesti@ont satis-
faction problem (VCSP) quintuples (X, D, C8where

e X={Xi,..., X,} is the set oh meetings that need to be scheduleg with k& € {1,
. n} denotes thé'™ meeting to schedule.
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e D={Dy,...,D,} isthe set of all possible time slots for all the meetings ) {dt; ,
..., dt,} (with |D;|=d), is the set of possible time slots for the meeting X

e C is the set of all constraints of the problem. We divide theCsato two types of
constraints: constraints related to the users and constsarelated to the meetings.
For the former, we can consider:

— hard constraints: G related to the non-availability of all users.

— soft constraints, Crelated to the preferences of all users towards the possible
dates in their calendar.

With regard to the second type of constraintsy £y, it represents the set of allDif-
ferent constraints relating each pair of meetingsaxid X sharing at least one partic-
ipant A (A; € Part(X;) and A € Part(X)".).

e ¢: C— E.C={C, UCupiss UC,}, for each hard constraint;oc {C;, U Coypifs}
we associate a weight and for each soft constraint c= C, we associate a weight
w; € [0..1]2. This weight reports the degree of preference of a user te aveeting
at the date dt

e Srepresents the valuation structure that defines the progpoptimality criteria (dis-
cussed in next section) and will be used to find the "best” soiu

In addition, for each meeting,Xve assign a different weight W < [0..1] to define the
degree of importance of Xk € {1, ..., n}) and it is used to allow the processing of the
most importanmeeting at first.

Solving a MS problem consists in finding a "good” assignneht Sot=D;x ... x D,
of the variables inX={X, ..., X,,} according to their importancé/y,, such that all the
hard constraints are satisfied while maximizing the utibfythe Proposer agentsdlfish
protocol). TheGU is defined by the summation of the preferences of all the é¢tesfor all
the scheduled meetings such that:

sl* = arg maz yc g, GU(sl) (7.1)

GU= > (7.2)

ke{l,...,|sl[}
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User ' Global Calendar User ? Global Calendar

M Tu w TH F M Tu w TH F

0.8 . 1 023 | 0.26 0.15

0.45 | 043 0.68

0.68 | 0.58 0.95

0.55 | 0.14 0.86

Figure 7.1. Example of a user calendar consisting of non-ava ilability of the user (black
boxes), the possible time slots for the current meetings (gr ay boxes) and the favorite time

slots with their corresponding degree of preferences.

To illustrate this formalization more clearly, let us caiei the following example con-
sisting of 2 users, each entrusted with the task of scheglolwe meeting. Assume that both
meetings require the participation of all the users. Figufeillustrates the preferences of
each user. The underlying MS formalizatiof D, C, S, ¢) is as follows:

o X={Xi, Xz},

e D={D;, Dy}, D, is represented by the gray boxes in Figure 7.1, i.e., passibk slots
for the underlying meeting.

e C=Cy U Cg Where:

— Cy is represented by both the black boxes in Figure 7.1 anda@lltBiff con-
straints existing between each pair of meetings+£ Xs).

— Cgs represented by the clear boxes in Figure 7.1. The white be@esent the
favorite time slots while the gray boxes represent the ptssime slots for the
current meeting to schedule. The number inside the boxesaites the degree
of preferencesu;, of each user for each time slot in their calendar.

7.2 DRAC model adapted to the MS problem

Lets recall that The DRAC model uses two kinds of agents:

1The functionPart(X;,) denotes all the participants in the meetiyg
2This assumption does not contradict the ability of our protdo support any kind of preferences’ mea-

surement evaluation.
3We assume that the users report truly and accurately thertenue of their meetings.
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e Constraint agents
¢ Interface agent

Each agent has its own knowledge (static and dynamic), & lh@tevior to satisfy, and a
mailbox to store incoming messages. The agents commutiga&echanging asynchronous
point-to-point messages. An agent can send a message teeanaty if it knows the other
belongs to its acquaintances. For transmission betweensagee assume that the messages
are received in a finite delivery time and in the same ordey #re sent. Messages sent
from several agents to a single one may be received in any.coftle Interface agent is an
intermediate interface between all the Constraint ageihts. added in order to create the
agents and, most importantly, to inform the users of theltesu

This model can be "well” adapted to the MS problem. In thishbea, each Constraint
agent can be considered as a User agelcting on behalf of a human user. A User agent
must maintain the concerned human user’s calendar fordnisirailability, preferences and
the already planned meetings. The acquaintances of an eyesist of all of the agents that
should be present in the same meeting, called Participamtagrepresented &art(Xy)).
Accordingly, in our system an agent is considered as a Pevgagent when it has a meeting
to schedule. It can be also considered as a Participant dgeista participant in another
meeting proposed by another agent of the system.

Each scheduled meeting that has been registered (reprdseffialendar':) is considered
as a new constraint. Therefore it must be added to the setrdfdoastraints maintained by
the corresponding agents. Each ag&nimaintains a VCSP for which the variable*
€ X represent the meetings dates to found for its user’s set etings (represented as
Meetings'), while the constraint€: € C (C*=Cjy U C{’ U C.J,,,) represent the non-
availability, the preferences, the timetabling of the esponding user and the constraints
relating to each pair of its meetings.

Thus in the proposed model, the aforementioned constr@ptssent the intra-agent con-
straints forA’ while the inter-agent constraints are represented by & setomg constraints,
I.e., equality constraints. An equality constraint existsveen agent; andA,; if and only if
at leastone meeting(; (resp X;") exists, such thak; € Part(X;"*) (resp A; € Part(X;")).
Itis noteworthy that the inter-agent constraints are dyindracause the participants and their
number in a meeting differ from one meeting to another. Edigimdant has a set of meeting
preferences for each particular meeting. The local goa sshedule meetings such that all
its hard constraint€ are satisfied while trying to maximize tii&&U. The global goal is to
schedule the maximum of users meetings satisfying all tee-eBgent constraints.

In this approach, we consider the standpoint of the host o @aeeting (who can be
the director of the company or the manager of the departne¢ni). In our scenario, we
will adopt the natural, innately fair and self centered wédraof a human being; since the
knowledge of a user is self centered knowledge. Hence, emstt an the meeting scheduling
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process tries to satisfy its local goal while maximizingateferencesselfishprotocol). The
adopted criteria for an MS solver should guarantee some aattributes for both the
resulting decision and the scheduling process itself. Heanmiore, in order to ensure such
features for the solver and the outcomes, the proposednsytieuld be able to extract the
truthful preferences [35] and availabilities of the users.

Hence, the optimal solution is based on self-centerechtottipreferences. Overbidding
the preferences for any time cannot change the outcomeftierthe dominant strategy for
every agent is to reveal its utility values truthfully. Obusly, the optimality criteria may dif-
fer from one scenario to another according to the measumsted by the system designer,
e.g., a pure utilitarian approach [35], the Nash approabh phd others, while, the global
proposed dynamic remains the same for any chosen measureiméhe case of a global
measurement, e.g., maximizing the summation of the ppatints’ utilities, we propose as
stated in the work of [35] to use convenience points to exppesferences over alternative
times for every proposed new meeting. In addition, we pregosembed the Clarck Tax
mechanism [34] to incite the users to truly express theifgpemces towards the meeting’s
importance and users’ possible timing. As for the non-abdlity of the participant, we
assume that the users will reveal their real availabilitye€essary.

Hence, each participant in a meeting will get a fixed amountarivenience points to
spread among its availability-times according to its pierfiees and this for each new meeting
added to the system. The Tax can be computed on the amount\rgence points given
for the next meeting. In our formalization, the weigim;é associated to soft constraints will
be dynamic and differs according to the current meeting kedale. The sum of weights
should be equal to the current amount of convenience points.

7.3 Global scenario for static MS solver

The global objective of the proposed approach is to schemlulaeetings for all of the
users while maximizing their local preferences. In additiwe focused on minimizing the
total amount of exchanged messages. The multi-agent nyestireduling negotiation pro-
tocol is divided into two steps:

e The first step uses the basic idea of the DRAC approach, wlookists in trans-
forming the original MS problem into another equivalent MBhis step is needed to
reinforce some level of local consistency [65] (hode andcartsistency) in the initial
problem.

e The second step solves the obtained MS problem while maintaarc-consistency
and this is accomplished via interactions and negotiati@t@een Participant agents
and the Proposer agent. Each Proposer agent searches togsthsolution for its
meetings that, on the one hand, fulfils the condition giveth@previous section, and
on the other, satisfies all hard constraints.
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When a user wants to host a meeting, he has to run the Intex¢gce;, which will activate
the corresponding Proposer agent and make it interact Withf #he Participant agents.
More than one Proposer agent can be activated at the same.amm the case of multiple
users who want to schedule their meetings.

Algorithm 5 Start message executed by each Proposer @gent

begin
1: forall X;' € Meetings': do
2:  forall dt,, € D} such thadt,, € C// OR3 X | X% € Calendar andX; = dt,
do
D, « D dt,;
end for
end for
if (D;"=0) then
change calendd;" of X:;
else
for all A; € Part(X;") do
10: Sendf, self "ReduceCalendaD; for:X:'");
11:  end for
12: end if

Each activated Proposer agent must first reduce the timeathe corresponding meet-
ings according to its hard constraints, constraints dejitite@ non-availability of the user.
This process can be viewed as a local reinforcement of naagstency and aims to reduce
the meetings’ slot times by eliminating the dates upon wkiehmeeting cannot be held. In
other words, a meeting cannot be held on a date defined as avadable date for the user
or already planned for another meeting.

If the time slots for a meeting become empty after reductnat indicates that the corre-
sponding user is not available for all of the proposed datés®meeting. The time slots of
this meeting must then be changed. Otherwise, the Propgset emust send the obtained
reduced time slots for all of the current meetings to be sgleedto all of the Participant
agents. Each Participant agent that receives this mestatgefsst by eliminating both the
non-viable dates from the received time slots of the mest{dgtes that correspond to its
non-availability), and all the dates taken by already salestimeetings. After that, it returns
the obtained time slots to the sender agent.

At first, the Proposer agent collects all the received redwstet times, then, begins by
scheduling its meetings. It tries to first find the proposat thaximizes its preferences and
then sends it to the concerned acquaintances. If the Pnopgset cannot find a solution to
this problem, it changes the time slot of this meeting. Eagng that receives this proposal,
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Algorithm 6 Main procedures executed by each Proposer afyent

ReduceCalendab for:m
1: for all d € D such thatl € C/i ORX;” / X; € Calendar andX."” = d do
22 D<D\d;
3: end for
4: SendSendeyself "ReplyD for:X;"™);

Reply:D for:X:"
1. SetD— SetDuU D;
if (SizeSetD=|Part(X;")|) then
D « DN SetDiequ,... |setppylil;
end if
if (D = @) then
ChangeX;" possible times;
else
Choosel € D/ satisfy Eq.(1);
for all A; € Part(X;") do

10: SendA,, sel f,”ReceiveProposal for:X;*");
11: end for
12: end if

must first check if it has, meanwhile, accepted another malpfor the same date. In the
negative case, the agent will first update its hard consgrayadding the new proposal, then
update the dates of its not-yet-scheduled-meetings byirediing the dates that correspond
to the same date of the just scheduled meeting, in order tatenaithe arc-consistency.
Finally it informs the Proposer agent of its agreement. Heweif the agent has another
meeting already scheduled at the same time as the propostthg)é must send a negative
answer to the Proposer agent and ask it to change its proposal

Accordingly, each agent that has proposed a meeting and/e€lcat least one negative
answer must change its proposal. Consequently, this agesttdecrease its degree of pref-
erences and the same process is repeated until an agreesmeathed among all of the
participants. If after testing all of the solutions no agneat is reached, the Proposer agent
is obliged to inform the participants of the meeting cantoeta

The aforementioned dynamic resumes running until the syséached its stable equi-
librium state. This state can be defined as the satisfacfial agents in the system. The
satisfaction of an agent is defined as the scheduling ofsathéetings or the cancelation of
the ones that cannot be held at that time.

We should emphasize the fact that in this paper we assumeeoanth hand that each
newly scheduled meeting will be considered as a hard constaad on the other hand, each
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Algorithm 7 Main procedures executed by each Proposer agent A

ReceiveProposat for:X

res— true;

if (3X” € Calendar andX;"’ = d) then
res« false;

end if

if (res=true)hen
Add(Calendar, (X7, d));
Update seCy;

end if

SendSenderself "Responseesfor:X”);

Responsaesfor:X
1. setRep— setRepn res;
2: if (SizeGetRep=|Part(X;")|) then
3. if (SetRefi],i € {1.|SetRep|}/ SetRefi]=false)then

4 Choose another datg;

5 for all A; € Part(X;")$ do

6: SendA,, self "ReceiveProposal’ for:X;"");
7 end for

8. else

9 for all A; € Part(X;) do

10: SendA,, self "Confirmationd for:X;'");

11: end for

12:  endif

13: end if

agent performs a selfish protocol. This choice is used inrdcd@void dynamic changes and
especially to escape from an infinite processing loop. Toikwan be considered as the first
version of the proposed approach. The integration of thehyo process will be discussed
in the next chapter where the proposed protocol focused oimmmng the utility of all the
agents of the system.

7.4 Theoretical discussion
7.4.1 Termination detection

The dynamic of the MSRAC approach ends when the system reéststable equilibrium
state. In real application, this state will be temporary #re whole system will restart with
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new sets of meetings to schedule. However, at the stabléilequn state all the agents
are satisfied; that satisfaction is defined for each agenwbyasspects, the completion of
scheduling all its current meetings, and the acquisitioallafhe confirmations from all the
other Proposer agents. However, this approach is guachtddend a useful solution, i.e.,
the best one for the Proposer, if it exists. The host of eaostimgwill check all possible
dates from the most preferred to the less preferred one talstdits meeting. Nevertheless,
to prove the termination of this approach we have to provettieaunderlying protocol never
goes into an infinite loop while scheduling a meeting.

Let’s assume that this approach goes into an infinite looperdtheduling a meeting. To
schedule a meeting; all the participants will cooperate together to find the luke for
this meeting. The system will go into an infinite loop whilénedulingX; if and only if the
Participant agents reprocess the checked dates (cycle) méhsolution is found. However,
the number of possible dates meeting is discrete and finitge®er, every unsuccessfully
checked date is removed from the system to avoid returniitdater. The system will stop
when a "good” date is found or when all possible datesq§oare processed and no possible
solution has been found. Hence our assumption is not true.

We have to note that the satisfaction state of all the agenésdistributed system can
be achieved by taking snapshots of the system, using thekweltn algorithm of Chandy-
Lamport in [19]. Termination occurs when all agents are wgifor a message and there
IS no message in the transmission channels. The cost of tmentgion process can be
mitigated by combining snapshot messages with our protneskages.

7.4.2 Spatial and temporal complexity

Let us consider an MS problem implyimgfor total number of userg for the maximal
number of possible dates per meetij@y | = cy for the maximum number of preferred dates
per user andCs| = cs for the maximum number of non-available time slots per uSée
total number of agents in this systermithe same as the total number of users. Suppose that
each meeting involvesattendees and each user haalready scheduled meetings in his/her
calendar. Let's compute the complexity of adding a new meatito the existing schedule.

The solving process of the proposed scenario is dividedwiicsteps. In the first step, the
pruning step, the initiator agent will perform ©@f(+m)d) operations to filter the slot times
of the new event. Then, this agent will transmit the obtaisetdof possible remaining dates
to the (-1) attendees to carry out the same process. The time coitypbdéxhis step, in the
worst case, is @(d(cy+m)).

For the second step, the initiator agent will first deternthmeintersection of the sets of
the received times, leading ta-Q)d? operations, then choose one proposal ambagtes
, according to the proposed optimal criteria; this procesgiires O(gdlog(d)) operations.
The agent will send its proposal to the attendees to cheElath attendee will perform @
operations to check if it has received in the meanwhile argbhoposal for the same date.

95



Then the total temporal complexity of the second step is-Qj{>+csdlog(d)+ nm). Finally,

the temporal complexity for each new coming event isydd§;+m)+nd*+ csdlog(d)+nm)

in the worst case. The spatial complexity for all the agen@(n(cs+cy+d+m)) in the worst
case, whereds+cy+d+m) is the total size of the initial calendar for each agent.

7.5 Experimental comparative evaluations

To evaluate the proposed approach, we have developed theageht dynamic with
Actalk, an object oriented concurrent programming languaging the Smalltalk-80 en-
vironment. In our experiment, we generated random meethgduling problems. The
parameters used for a meeting problem aragents in the systerm meetings per agenp,
participants in a meetind@) global calendarg; number of initial hard constraints per agent,
cs humber of initial soft constraints per agedtmaximal possible time slots per eveW;ji
weights for the soft constraints, aw;}; weights of the meetings (the weight of each hard
constraint is equal to 1).

In order to compare our approach with that reported by Tauamd Shintani in [101],
we used the same parameters to run both algorithms on rapdmmnérated samples. Note
that the approach in [101] presents some restrictions tsydirst the handle of the hard
constraints (i.e., all the constraints could be relaxedhiy approach) and second, the dis-
crimination between meetings. This approach process#seafiroposed meetings with the
same importance independently of neither the proposer@oattendants. However in the
real world, all meetings are not equivalent. For this reaserhave brought to our consid-
eration the notion of meeting priority in our formalizatiby associating a weigm/;‘; to
reflect its greatness. Our approach tries then, in its spiprocess, tdirst schedule the most
important meeting maintained by each agent, unlike theagmbrin [101].

In this manner, we attempt to describe ideally the real waoreting scheduling problems.
Therefore two kinds of experimentation are given in thistisec For the first kind, we
assume that for each generated problem, we have only saftraorts. We carried out the
two approaches on the same meeting instances with5, m € {3, 5}, p = 10,cs € {20,
40, 60, 80, 100, andWﬁ‘(; € [0..1], w,j‘ € [0..1] were randomly chosen. (35 instances are
generated for eacim; cg)). The initial calendab in each problem is equal to 100.

Table 7.1 shows the obtained mean results for the ratio of @RE of the approach in
[101] divided by the CPU time of MSS approach. In order to gpalthese results, let us
consider the casé3; 20). Both approaches require almost the same CPU time. For this
case, the number of possible time slots is not large leadiregfew number of constraints,
so the approach in [101] can rapidly find a solution for eacleting without relaxing many
constraints, causing few iterations on the same meetingweMer, when the amount of
soft constraints increases, the needed time for the appriogd01] almost double. With
regard to MSS, the increment in the CPU time is largely lowantTsuruta et al. approach.
Obviously, the main explanation of this result is that FonfTsa et al. approach (see chapter

96



4), the agents of the system (the group agent and the pamnicggents) should exchange the
possible constraints according to the time slots of theetiirmeeting to schedule. As the
number of meeting constraints grows, and so does the pildpaifigetting the same dates
for the meetings. Therefore, the number of relaxed comtfrdiy the approach in [101]
increases leading to additional iterations for the sametingeand hence an increase in the

CPU time.

Table 7.1. Mean results of MSS approach and Tsuruta et al. app
Ratio CPU= CPU time Tsuruta et

time for meeting problems without hard constraints.

al. approach / CPU time MSS.

roach in term of the CPU

(3;20) | (3;40) | (3;60) | (3;80) | (3;100
CPU time Tsuruta et al. App] 604.57 | 1894.74| 4479.89 | 8378.06 | 13781.29
CPU time MSS 452.49 | 520.43| 617.63 | 724.40 | 863.09
Ratio CPU 134 | 364 | 7.25 1157 | 15.97
(5:20) | (5;40) | (5;60) | (5;80) | (5;100
CPU time Tsuruta et al. App| 2116.14| 6471.34| 14849.86| 23997.46| 38355.91
CPU time MSS 776.14 | 871.71| 1020.00| 1204.80 | 1466.51
Ratio CPU 273 | 742 | 1456 | 19.92 | 26.15

In addition, The protocol proposed by Tsuruta et al. prosd®dsetting up a threshold
equal to zero for the constraints to relax and then througbtietions with personnel agents,
the group agent tries to relax the constraints, i.e., byeimanting the threshold, until attain-
ing a compromise among participants. while our approagbes@n aselfishprotocol. We
try to find the solution that maximizes the Proposer’s perfees. Although in our approach;
we try to process the most important meetings at first.

The approach in [101] takes more time than our approach irt cases because both the
number of constraints and the number of meetings grow. Eurtbre, in MSS approach
each agent tries to perform all its meetings asynchronoasty in parallel while for the
approach in [101], it is done in a synchronous sequentiain@afor the same group agént

As for the second kind of experimentation, i.e., to appréisegreatness of the enforce-
ment of local consistency in the solving meeting problems have chosen to measure the
percentage of reduction made by the first step of our apprdashthis purpose, examples
including hard constraints were randomly generated wath0,m=3,p € {3, 5, 7}, cy € {0,

10, 20, 30, 40, 5pandd € {100%, 83%, 66%, 50%, 33%, 16%} corresponding respectively
to eachcy. For each pairp, cy), we first generated 35 instances, then we measured the
average of the achieved results.

4Meetings are proceeded in parallel within group agents.
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These results are expressed in term of five criterjathé CPU time spent by each of the
two approachesji the percentage of scheduled meetings) the percentage of reduced
soft constraints performed by the first step of the propoggdaach, i) the required num-
ber of messages passed amgtfie amount of exchanged information. We have introduced
some modifications to the approach in [101] to make it wortilevfor both hard and soft
constraints. These two approaches were carried out on the seeeting examples. Figures
7.2 and 7.3 show the achieved mean results of both approactersn of CPU time and the
percentage of scheduled meetings. These results shomthapproach requires less CPU
time than approach [101]. For example in the case of 7 ppants and 50 hard constraints,
the problem is over-constrained and thus no meetings canapeegx, i.e., no agreement
can be reached between all the attendants. Therefore, proagh can discover merely the
absence of solution from the first step, and before startiagolving process.

In the case of 7 participants and 20 hard constraints, orgyvarieetings can be planned.
Table 7.2 shows that the percentage of pruned dates fronibpmsses is high (=96,66).
Therefore, our approach is able to schedule the possiblangeen considerably less CPU
time than approach [101], i.e., the approach in [101] rexgumore than five times the time
needed by our approach. This result can be elucidated byathéhfat the first step is useful
in order to discard the dates that cannot be in any solutidrcansequently avoid exploiting
them in the solving process, leading to decreased CPU timgucoption.

Table 7.2. MSS approach mean results in term of the percentag e of reduced time slots for

each pair (p, Cy ).

(3;0) | (3;10) | (3;20) | (3;30) | (3;40) | (3;50)
% Reduction| 0.00% | 51.44% | 80.1%% | 94.04% | 99.13% | 99.98%

(5,0) | (5;10) | (5;20) | (5;30) | (5;40) | (5;50)
% Reduction| 0.00% | 67.25% | 91.49% | 98.82% | 99.95% | 100.00%

(7,0) | (7;10) | (7;20) | (7;30) | (7;40) | (7;50)
% Reduction| 0.00% | 77.14% | 96.66% | 99.72% | 100.00% | 100.00%

Nevertheless, for the percentage of the meetings schedhédpproach in [101] planned,
for some cases, more meetings than our approach. This isdifdy the fact that for our
approach we tried to plan the most important meeéihfirst For example, in the cas#;
20) the 40% of the meetings scheduled by the approach in [101] may or raagontain the
most important meetings in the problem. Meanwhile, withapproach we are sure that the
14% of the meetings scheduled are the most important becaugevtre first chosen to be
processed using their weights.

As for the number of exchanged messages needed to reachesmeggt among all the
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users, Figure7.4 shows that the proposed approach requamesfewer exchanged messages
than the Tsuruta approach [101]. This number increasestidtimumber of participants in
the meeting, even if the problem has no solution, i.e., thero possible time at which
all the participants can be gathered. However, with the ggegd approach, the percentage
of reduced values increases with both the number of paaintgpand the number of hard
constraints, consequently the number of exchanged mesdageeases.

Finally, concerning the size of exchanged messages, weumsehthe required amount
of information to reach a consensus among participants dtin bpproaches. Figure 7.5
shows that in all cases MSS transfer less information thamuta et al. approach. Let’s
recall that for Tsuruta et al. approach, the negotiatioc@ss is based essentially on sending
constraints related the user. The amount of the transfenfednation decreases at each
step of the iteration process. Nevertheless, this amougeliaincreases with the number
of participants in the meeting. Regarding MSS approacly, dating first step agents need
to exchange all the possible time slots for the concernedinge€erhis step is necessary in
order to reduce the set of meeting’s dates and consequerglotd as much as possible the
checking of initially non-valid dates.

We performed statistical hypothesis testing to evaluadaiiness of the obtained random
experimental results. In order to compare the means of thelea’ results obtained for both
approaches in terms of CPU time and percentage of sched@etings, we measured them
using Matlab6.1 the dependent two samples t-test with fsognit levela = 0.05.

For the mean in CPU time, we formalized the null hypothekignd the alternative hypoth-
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esisH; as follows:

HO: HMSS App. = UTsuruta et al. App.

Hl: HASS App. < UTsuruta et al. App.

In all cases, i.e., for each pajcy, p), with 34 degree of freedom, the null hypothesis
(Ho)) is rejected with significance equal to zero, which meaias thnever happens even
by chancehat the observed value of T-statistic could be as largeargelr with confidence
interval 99%.

As for the means in term of the percentage of scheduled ngsgtive carried on the fol-
lowing hypothesis testing:

Ho: tarss App. = BT suruta et al. App.

Hl: HASS App. 7é HTsuruta et al. App.

For the casedD, 3), (0, 10, (0, 5), (50, 0, (0, 7) and(50, 7) the percentages of scheduled
meetings are exactly the same for both approaches. Howew#nd remaining cases and
according to the obtained two samples t-test result, thdwpbthesis is rejected for all pair
{(cy, p) with maximum significance=0.0399 f@40, 7) which means that for this case by
chance we would have observed values of T more extreme thairtd in this example in
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only 399 of 10000 similar experiments. A 95confidence interval on the mean is [-0.2232
-0.0054], which includes the theoretical (and hypothelizifference of both means. Also,
same for the cas@l0, 5), the significance is higher than other cases equal to 0.00B@re
as all the other cases, the significance is very low or equal to

We can conclude that our approach is a scalable approachutgsrforms the approach
described in [101] and this is especially true when the nurabmeetings and the number of
participants increase. One must note also that our apps®erhs to be more appropriate to
real-world applications by dealing especially with straogstraints (i.e., inequality) and by
bringing forward consideration of discrimination among giroposed meetings. In addition,
in our approach, agents do not reveal directly any of thermé&ion related to the human
user even to a trust person. While the approach in [101]g@specially on exchanging
users’ private information with the group agent, no levegbobacy is preserved.

The first step of the MSS approach can fulfill a premature deteof the impossibility of
reaching any agreement between all the participants asthyimaintaining arc-consistency.

7.6 Summary

In this chapter we proposed a new agent-based solver for aeyimy scheduling (MS)
problems with predictable structure that reflects ideatigl+world applications. To fulfill
such condition, we have considered, in our model, two kinfdsoostraints to model the
users’ requirements: hard constraints to model the noiadiay of a user and soft con-
straints to define his/her preferences. The underlyingiragknt architecture associates a
User agent to each user and makes them interact by sendinghasgous point-to-point
messages containing only relevant information to keep, @ashnas possible, their privacy.
The basic idea of this approach consists of two steps: therdéidsices the initial problem
by reinforcing some levels of local consistency (node amdcansistency); and the second
step solves the resulting meeting scheduling problem witlrémum amount of exchanged
messages.

This approach was implemented with Actalk under the SnikiB@ environment and
compared with an existing approach in literature describg@01] on randomly generated
instances, in mean of CPU time, percentage of scheduledngegthe number of exchanged
messages and the amount of transferred information. Thaanaat results show that our
approach is scalable and worthwhile for processing stramgtcaints. In addition, in order
to show the importance of the first step, i.e., reduction,sidper experiments were made to
measure the percentage of non-viable values discardedtfremmeetings’ calendars. The
obtained results showed that this process is appropriatedocing the static MS problem
and consequently the search space, without loss of sotutidmns work has been published
in[2,7,9].
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Chapter 8

MSRAC: Dynamic Meeting Scheduling
Solver

In the previous chapter, we described a novel approach te soly static MS problem.
However, for some organization, knowing all the meetingadwance might be quiet dif-
ficult rather impossible. Therefore, we focused our newaeseon solving any MS that
are subject to many alterations, i.e., adding of new meetmfjor cancelation of an already
scheduled one. In addition, we focus our second objectivenmrimizing the amount of
exchanged messages by virtue of the real difficulty of messpgssing operations in dis-
tributed systems.

In this chapter we present a novel, scalable, dynamic andebntlistributed solution
for MS problems that accounts for user preferences, harsdesral events with various
levels of importance and especially minimizes the numbesxahanged messages. In the
sequel we introduce first the new formalization of atyhamicMS problem. Second we
describe the proposed agent-based model. Then, we ineddeglobal dynamic followed
by an illustration of the new protocol through an exampl@aly we give a theoretical and
empirical evaluation of the new approach followed by a sunyroéthis chapter.

8.1 Dynamic meeting scheduling problem formalization

We formalize the dynamic MS problem as a DVCSP (dynamic wh@enstraint satisfac-
tion problem). Like the previous static approach in Chafiteach user maintains two kinds
of constraints: hard and soft constraints related to him/aleng with other strong con-
straints defining the specific features of the problem itdedf’s recall these two constraints
in the following.

Definition 39 We define a dynamic MS problem, as a DVCSP, by a sequence bafglem
(X, D, C,S, ¢) where

o X={Xy,...,X,} isthe set of. meetings that need to be scheduled at an instaxit
with k € {1,... n} denotes thé&'* meeting to schedule.
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e D={Dy,...,D,}isthe set of all possible dates for all the meetings }c ¢, , . . .,
dt;,} (with |D;|=d), is the set of possible dates for the meeting X

e C is the set of all constraints of the problem. C is composeth®ffollowing con-
straints:

— hard constraintgepresented by, on the one hand, t@e set of the constraints re-
lated to the non-availability of all users (see the white bokigure 8.1). On the
other hand, Gip;ss the set of allDiff constraints relating each pair of meeting
X;. and X sharing at least one participantAA; € Part(X;) and A € Part(X)*.).

— soft constraintsC, is the set of the soft constraints related to the preferentes
all users towards the possible dates in their calendar (keggray box in Figure
8.1).

e ¢: C— E.C={C, N Cupirs N Cs}, for each hard constraint;cc {C, N Cuupifs}
we associate a weight and for each soft constraint;c= C; we associate a weight
w; € [0..1]% This weight reports the degree of preference of a user te aveeting
at the datedt; (see the number inside the gray box in Figure 8.1).

e Srepresents the valuation structure that defines the progpoptimality criteria (dis-
cussed in next section) and will be used to find the "best” sotu

In addition, for each meeting,Xve assign a different weigh'x, < [0..1] to define the
degree of importance of Xk € {1, ..., n}) and it is used to allow the processing of the
most importantmeeting at first.

Solving a MS problem consists in finding a "good” assignnshe Sot=D;x ... x D,
of the variables in X£X;, ..., X,,} according to their importancé’y,, such that all the
hard constraints are satisfied while maximizing the gloti&ityi( GU) of all the users for all
the scheduled meetings such that:

sl* = arg maz ye g, GU (sl) (8.1)

The computation of th&U will be given in detail in the next section.

The functionPart(X ) denotes all the participants in the meeting X
2This assumption does not contradict the ability of our protdo support any kind of preferences’ mea-

surement evaluation.
3We assume that the users report truly and accurately thertenmue of their meetings.
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Figure 8.1. Example of a user calendar.

8.2 MSRAC multi-agent model

The proposed MSRAC model, is the same as proposed previfmusdyatic MS problem
in Chapter7, involving User agents and an Interface ageachBJser agent has its own
acquaintances, own knowledge (static and dynamic) andsamé®y engine. The acquain-
tances of a User ageAt are dynamic and depend on the current meeting to be sche@uled
rescheduled). At an instaptthe acquaintances é§ are defined by all the participants User
agents in the current meeting XThe static knowledge of a User agent is formed by the pos-
sible dates for the underlying meeting &And the user’s constraints. Its dynamic knowledge
is formed by both its acquaintances and its current calendar

All the User agents will negotiate and cooperate togethescteedule all the meetings
proposed by the human users. Therefore we assume as foattoeapiproach the following
communication model between all agents:

e The agents in the system negotiate by exchanging asynalsqgrmnt-to-point mes-
sages containing the necessary relevant information inreerahat reduces the num-
ber of messages passing and keeps the most privacy for thigeawsers.

e An agent can send a message to another only if it knows treagent belongs to its
acquaintances.

e The messages are received in a finite delivery time and inaime ©rder that they are
sent. Messages sent from different agents to a single agaytm received in any
order.

For efficiency, the proposed approach tolerates paralletwion, i.e., more than one
meeting can be processed at the same time.

Each User agem; (A; € A) maintains a sequence of VCSRX#:, D4, C, S, o) for
which the set of variables’X € X represents the users meetings to schedule at the instant
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t. The constraints & € C (C* = {C;"" U CX U CJyi,,;,}) represent the non-availability,
the calendar of this user and the constraints relating eaictopmeetings.

In this multi-agent model, the intra-agent constraintsdaned by the aforementioned
constraints, whilst the inter-agent constraints are apreed by the set of strong constraints,
I.e. equalityconstraints. An equality constraint exists between tworlagentsA; andA,; if
and only if there exist at least one meetin@i)(resp. )fj) such thath; Part(x,fi) (resp.

A € Part(XlAj)). We should discern that the equality constraints are ayoia

The local goal of each User ageMtis to schedule all its meetings, whenever possible,
such that on the one hand all its hard constrairs L@C;‘};Diff are satisfied, and on the
other hand the higher local utilityQ) for all the planned meetings is achieved. Té
brought off by a meeting X' scheduled at the dati, € D; (LU(X;",dt,) is defined by
the summation of the preferences (soft constraints) ofnalgarticipant\; e Part(Xﬁi)
(Eq.8.2)

LU(X[ dty) = Y wih (8.2)

Aj EPart(X:i )

In order to fulfill its local goal, each User ageitshould choose for each of its meetings
X ¢ X4i the datelt, that maximizes ité U (EqQ.8.3)

max LU(X}Y, dt,) (8.3)
dt, € Dﬁi;
pE{l,...,\D?i

}

The global goal of the whole system is to schedule the maximiuthne meetings of all the
User agents satisfying all the inter-agent constraintsaaieving the higher global utility
(GU) which defines the quality of the solution. T is represented by the summation of
all local utilities corresponding to the planned meetiriggi{e set of possible solutiossby
using Eq.8.4.

GU(sl) =) > LU(X;Y  dt,) (8.4)
MER X dty) € si;
dt, € D"

However, for any meeting Q« a datedt, D;;‘i may be the most preferred by one par-
ticipant and non-preferred (or less preferred) by the oplagticipants. Therefore, in order
to guarantee the maximum preference similarities betwkdmegparticipants we propose to
add to our system another criterion to satisfy this conditidhe idea is to choose the date
that, in addition to the first criterion (Eq.8.4), minimizée distance between the own users’
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preferences by using Eq.8.5.

min max \wﬁ’“ — w}f‘i (8.5)
A; :
dtp c Dl '7; Ak,AZEPart(XZ 7)

Aj
pef{l,....|D;”|}

To illustrate the use of Eq.8.5 more clearly, let us condidefollowing example of 4 User
agents (users) given the task of scheduling one meeting.s#¥¢evee that\, is the Proposer
of this meeting X' and all the other User agents are the participants. Thelpessates
for X< are D"'={(Tu, 7), (Wed, 2), (Wed, 7), (Th, 2), and (Th,}6)Table??illustrates the
preferencesv, of each attended; € Part(X;") toward each datét, € Di".

Table 8.1. Example of the degree of preference of each user A, towards each possible

. A
date dt, for the meeting X 1.

(Tu, 7) | (Wed, 2)| (Wed, 7) | (Th, 2) | (Th, 6)
A 0.1 0.3 0.9 06 | 04
A, 0.6 0.7 0.3 05 | 0.4
A 0.1 0.2 0.3 06 | 0.7
Ay 0.7 0.3 0.4 02 | 01

LUXY, dt) [ 15 1.5 1.9 1.9 | 16

However, according to Table 8.1, the dates (Wed, 7) and (limaXimize the utility (LU)
of the meeting, i.e., the sum of the utilities of all atterslés both of the two dates is 1.9.
If we adopt the same strategy as [41], the optimal soluti@ukhbe the date (Wed, 7), with
0.3 as the overall preference. But this date is the mostpesf@nly byA;, while it is the
less preferred by, As, A;. Thus with the second criterion we should instead chosedtes d
(Th, 2), because it minimizes the difference between thesupeeferences (mg}0.9-0.3;
|0.6-0.2}), and consequently reinforces the similarity between ttendees

It is noteworthy that the above optimality criteria is bassdentially on the preferences
of the attendee toward the possible dates of the underlyieting. Such criteria require
a common preferences scale otherwise it is not fair to coenthesr personal preferences of
the participants in a meeting. To satisfy this conditionhwiit forcing the participants to
reveal their private Calendar, we propose to integrate ahewistic in the solving process.
This heuristic allows the use of any ordering or scale to espthe preferences of users (no
common scale is imposed on users to express their own pnegsk It is worth remarking
at this stage that the use of such optimization criteria neag Ito the classical problem of

4We suppose that all the attendees have the same level inrigany.
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constructing interpersonal utilities functions [40],.j.eow to compare users’ preferences
using independent and different ordering and/or measurgrseales ?

In this paper, the used criteria do not require any commoerarg or scale over all the
agents to express their preferences. The basic idea is @aaskattended; in a meeting
X to rank the set of possible dates for,Xfrom the most to the less preferred, i.ét,
< dt; if and only if w;;‘i > w;“i. For the previous example, the User agdntwill rank the
possible dates for X as follows: (Wed, 7X(Th, 2)<(Th, 6)<(Wed, 2)<(tu, 7). Then the
Proposer agent will generate a new implicit ordinal stakestated by the received ordered
sets. The lowest dat#, in the order has the greatest number of votes associatedtwith
The Proposer agent will fist assign an implicit prefererfae§i to eachdt, and then use it to
determine the best date. Table 8.2 presents the candidateatal their implicit preferences
generated by the Proposer agent.

Table 8.2. Example of users’ implicit preferences generate  d by the Proposer agent.
A Ay Az Ay
(Wed, 7)| (Wed, 2)| (Th,6) | (Tu,7)
(Th, 2) (Tu,7) | (Th,2) | (Wed, 7)
(Th,6) | (Th,2) | (Wed, 7)| (Wed, 2)
(Wed, 2)| (Th,6) | (Wed, 2)| (Th, 2)
(Tu,7) | Wed, 7)| (Tu,7) | (Th,6)

RINW|HA~|OT

In this example the local utilitiéof the two candidates (Wed, 7) and (Th, 2) are the same
(Table 8.3). The Proposer agent will choose (Th, 2) to eeftine similarity between the
participants. The maximum difference for (Wed, 7)5sl|=4, while it is|4-2| for (Th, 2).

Table 8.3. Example of LU computation for each candidate.
Candidate dates| Local Utility

(Tu, 7) 1+4+1+5=11
(Wed, 2) 2+5+2+3=12
(Wed, 7) 5+1+3+4=13

(Th, 2) 4+3+4+2=13

(Th, 6) 3+2+5+1=11

It is noteworthy that this pseudo-common scale is dynanmd,raay change according to
the candidate dates for a meeting. Hence, the local utiliyraeeting should be normalized
to compare it to another one with different scale.

SThis idea cannot handle cardinal preferences
8Computed according to Eq.8.2
"According to Eq.8.5
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When there is a conflict between two meetids and ){” for two different User agents
or for the same agentX{ and X") (W = ffj), three issues (deterministic and non-
deterministic) can be applied to solve the conflict. If UsgeratA;, which has a meeting
already scheduled:" in its calendar at the datd,, receives another meeting” with the
same importance to be scheduled at the samedjateen it will choose on of the following

issues:

1. The deterministic issue, defined as always schedulimg Hte meeting that will in-
crease LU, i.e., fLU(X, dt,) > LU(X;" dt,)) then X! will be scheduled att,
and ){” will be scheduled at another date, # dt,. Otherwise inversely.

2. The non-deterministic issue, consists in arbitrarilpasing one of the meetings in
conflict (X or XZAJ') to schedule adl, and rescheduling the other one.

3. The second non-deterministic issue, defined as usingétepolis criterionin order
to choose the meeting to reschedule;‘i X6 accepted to be scheduled at détg by
applying the following acceptance probability (Eq.8.6ptide that this process leads
to the rescheduling ofﬁ' and perhaps to the rescheduling of other meetings (with less
importance) by propagation. The main idea behind usingapetis criterion to solve
the conflict is that trying always to increak®l may not lead to the optimal solution,
while accepting some deterioration in the may increase the fin&U.

1if LU(X[N, dt,) > LU(X[Y, dt,)

A A
LU (X, dty)—LU(X, 7 ditp)

(8.6)

P.{ acceptX}' = dt,} = { ) otherwise

whereTp € R denotes the temperature.

In the sequel, the User agent that proposes the meetingesl ¢k Proposer agent. The
same User agent can be both a Proposer agent and a Partageanat the same time.

It is noteworthy that our focus in this work, as mentioned 42][ was to find a good
compromise between three main features: minimizing pyiMass, maximizing solution
quality, and minimizing the required time to achieve it. Téfere we propose to integrate,
in our protocol, the above mentioned heuristic to chooseb#® solution, according to
the aforementioned optimality criteria, without reveglithe real preference values of the
corresponding participants.

8.3 MSRAC global dynamic

The global objective of our proposed approach is to scheallimeetings for all users,
while maximizing the global utility and ensuring near fuffient of users’ preferences. The
multi-agent meeting scheduling negotiation protocol igd#d into two steps.
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e Step 1. Use the basic idea of the DRAC approach to transfoermitial MS problem
into another equivalent MS’ by enforcing local consiste[@%] (node and arc consis-
tency). MS’ is obtained as a result of the interactions betwiae Proposer agent and
the Participant agents. The primary objective for this $dp benefit from the main
goal of DRAC in order to make the search for a global solutibarty MS problem
easier while saving futile backtracking, i.e., to avoid mfjag the previous chosen
meeting’s date.

e Step 2. To solve the obtained MS problem via interactionsragbtiations between
agents. Each agent that has a meeting to schedule (Promesde) aearches for the
best solution for its meeting that, on the one hand, satifie$wo conditions given
in Section 3, and on the other hand, satisfies all of the Baatit agents’ constraints.
More than one meeting can be processed in parallel (by difteProposer agents).
Thus, the same agent can be, at the same time, a Proposel(tagienits meeting)
and a participant agent (in different meeting proposed hyther Proposer). This
system does not include any central node to process meetings

Before introducing the global dynamic, we present the comoation protocol.
8.3.1 Communication protocol

For the communication protocol, the two basic messageapsimitives used for each
agent are the same as those used in the DRAC approach (sem3gct

e sendMs{Sender, ReceivelMessaggis used to send a message to one or more re-
ceivers.

e getMsd) extracts the first message from the mailbox of the agent.

With respect to exchanging messages, the underlying Mgjignt dynamic involves the
following messages:

e "Start” message, sent by the Interface agent to the correspondapgp$ar agent to
activate it whenever there is a new meeting given by a user.

e "RedMeetCalendar: with:"message, sent by a Proposer agent to each Participant
agent to ask it to adjust the possible dates of the meetingr@iog to both its user’s
non-availability and its calendar.

e "Reply” message, sent by each Participant agent to the Proposdriagader to
propagate its reductions.

e "ReceiveProp: with:” message, sent by the Proposer agent to the Participanttagent
verify the viability of the proposal.
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¢ "MeetNotPossible’message, sent by each agent to the sender agent to inforouit ab
the non-possibility of the meeting.

¢ "MeetingOK” message, sent by each agent to the sender agent to inforouit i
agreement for the date of the meeting.

e "UpdateProp: with:” message, sent by a Participant agent to a Proposer agent, in
the case of conflict between two (or more) meetings, in oroénwite it to relax its
preferences.

8.3.2 Multi-agent interaction protocol for dynamic MS

A user who wants to host a meeting must tailor the Interfaemgigvhich will activate the
corresponding Proposer agent and make it interact withfaheo Participant agents. Note
that more than one Proposer agent can be activated at thetsaeeEach activated Pro-
poser agen®; must first reduce the set of possible dates of the correspgrndéeting)(,fi
according to its hard constraints. This process can be d@saeode consistency reinforce-
ment and aims to reduce the possible candidates for a mdstielgminating those dates on
which this meeting cannot be held. If the set of possiblesiatéhe meeting becomes empty
after reduction then its possible dates must be change@&r@te, the Proposer agent must
delete all the dates that were used for more important ngstire., all meetings%Af, d,)
€ Calendar! for whichWyx, < Wy,. This can be viewed as arc consistency reinforcement.
A copy of the deleted proposals should be saved for otherrusage the meetingf" is
canceled. Finally, the Proposer agent must send the obteedeced set of possible dates of
X‘,;‘i to all of the Participant agents to ask them to first, adapttibéir convenience, and then
rank® the remaining possible dates according to their prefesence

The main objective of this heuristic is to define an ordindhtienship between all the
proposals for each meeting according to users’ intereses c&M thus especially avoid the
classical problem in constructing a common interpersotifityufunction, which is how
to compare preferences not relying on the same preferemmte. sEach Participant agent
that has received the message containing the reduced sessible dates, starts first by
reinforcing node and arc consistency, then by ranking thaiéed slot times according to its
preferences (from the most preferred to the less preferags).dThe higher an agent ranks
a particular date, the more point that date will receive. cBpally, a date is awarded one
point for each rank below it.

Finally this agent must return the obtained set of possihkesito the Proposer agent.
However, if the set of possible dates for a meeting becomexyerthis Participant agent
must send a message to the Proposer agent to inform it almnobtiipossible meeting. We
should emphasize the fact that during this step all the agento look ahead for already

8This is used as a heuristic to decrease the number of BT arskqoantly the amount of exchanged
messages and hopefully speed up the whole solution process.
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Algorithm 8 Start message executed by a User aggribr each meeting Z{
1: Delete from O all non-viable values;
2: if (D; = @) then
3: Change meeting possible dates quﬂ'x

4: else

5: forall each X" such that (X, dt,) € Calendar andWy, > Wy, do
6: Delete(D)", dt,);

7: Add(DReservéi[K], dt,);

8: if (D = @) then

9: Change meeting possible dates XgY;

10: else

11: for all A; € Part(X;") do

12: Sengself A;, RedMeetCalendar: ) with:Wy, );
13: end for

14: end if

15:  end for

16: end if

scheduled meetings while reinforcing arc-consistencig ighin order to avoid maximum
backtracking in the next step. Otherwise, the first step is finished ande¢hersl step can
be started.

The Proposer agent tries first to find the proposal that maestihe utility of the meeting,
and then sends it to the concerned acquaintances. To commguiility of each proposal,
the Proposer agent creates a pseudo common-scale baseslabtaimed ranking and then
computes the utility of each possible meeting time and chdlos proposal according to the
optimality criteria described in Section 4. Each ag&nthat has received a proposal for a
meetingx,fi must check whether it can still accept it or not. In the caseoofflict, i.e., the
agentA; has meanwhile received a proposal for another meed;l“ngat the same time as the
meetingx,fi, the agent should act as follows:

o If Wy, < Wy, it must send a negative answer to the Proposer ayeamid ask it to
relax its proposal.

e Otherwise, in the case ¥y, > Wy,, the agent must proceed in two steps: first, send
a positive answer to the Propogerand second send a message to the Proposer agent
A, of the meeting(ff to invite it to relax its preferences for this meeting.

e Finally, in the case wher#/x, = Wy, (case of conflict between two meetings), the

9To avoid that the proposer choose a date and come back onasaaf non-availability of at least one
participants
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agent will try to apply one of the three proposed issuesi@e®), i.e., choose always
the best, choose one of the meetings at random or applgnétepoliscriterion, to
decide which agent should relax its preferences.

Accordingly, each agent that has proposed a meeting and/e€lcat least one negative
answer must change its proposal. The same process resutiieswagreement is reached
among all of the participants or until testing all of the smos,no agreement has been
reached. In the latter case, the Proposer agent must inferparticipants that the meet-
ing is canceled. Note that this dynamic allows a prematutectien of failure: absence
of solution for a meeting. This in the case when the set ofiptesdates of the concerned
meeting becomes empty.

8.3.3 Process of meetings alterations

In real-world applications MS problems are subject to mamnges, defined on one side
by the arrival of new, more important meetings (especialewall the other meetings have
been already approved) and on the other side by the camret#tone (or more) meeting(s)
which, can lead to the possibility of scheduling other nregsj previously detected as non-
possible. Therefore, we have used an incremental apprbatican handle all forms of
alteration in the system without restarting the solvinggesss from scratch. In the following,
we present the behavior of our protocol in the case of reins and relaxations.

The restrictions

For each new arrival meetinggXwith the priority W, the Proposer agent must first elim-
inate non-viable values from the domain of this meeting bipmmng node and arc consis-
tency and secondly, must send the obtained slot times todtieipants. At the end of this
step, and after receiving all the answers from the partitgahe agent must choose the
date that maximizes the global utility of meetinq*ix If this date is used by another less
significant meeting, X', whereWgi > W)?j , then the latter meeting; " must be changed.
Therefore, the agent Athe Proposer of ﬁf ) should be invited to relax its preferences. The
proposed date must be communicated to all the particip&ash one of them must check
the date and reply to the Proposer, and the same dynamic essumtil the system reaches
its temporary stable equilibrium state (because of the lyogof the system).

We must note that in the worst case, all meetinﬁé With lower priority will be relaxed
and the system will stop temporarily with the schedule of rieeting having the lowest
priority. The revision of all the decisions to fix a new megt{when adding a new meeting
with highest priority) is slightly unrealistic. Then, in pgystem we propose applying a
penalty (a decrement in the priority of the new meeting) adiog to the number of involved
meetings that must be rescheduled at each step. The maiofgbis new process is to speed
up the search for the new optimal solution.
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The relaxations

For each canceled meetin@%the concerned agent must check if it can increase theyutilit
of another already scheduled meeting (one or more by propagaTlo achieve this goal, this
agent must first examine all meetingélj)(called candidate meetings) with A Part(Xf‘f' )
and W;?; > W;?j (starting with the most important candidate meeting). Ilneotwords,
the agent Acan ask the participants iHlA 7 for further negotiation, if it realizes that this
meeting can be held in the date that was taken by the cancedeting. Nevertheless, this
process may increase the utility of some (or all) candidagetmgs. This protocol may also
allow some meetings, which had been checked as non-pagdsitile scheduled (e.g., some
meetings that could not be scheduled before may becomebjpessin addition, we can
assume a certain threshold for the meetings to be rescliedntethis is in order to avoid
the need to reschedule all meetings in the worst case.

8.4 Example of algorithm execution

Figure8.7(a) shows a simple example of a meeting-schegiplioblem formed by three
users {, A, and A;) and two new meetings to schedule;{* andm?). This example is
meant to illustrate the dynamic search process for the epbpal and the required mes-
sages exchanged among all the participants. Assume ttitaealsers should participate to
both new arrival meetings. Each user has its own calendaritsipreferences in which, the
white boxes represent its availability. While, the gray &®xepresent its non-availability.
Each agent has also its calendar for the already scheduletinge with their degree of im-
portance. Both agent; and A, have to schedule their meetings. Therefore, both agents
begin by concurrently enforcing local consistency on thesgine dates of their meetings.
Agent A, will remove {(M, 5); (W, 4); (Th,5) and (Th, ) from the possible dates af"!
and sends the obtained new time-slot with the importanceedeasf the corresponding meet-
ing (W,,,=0.58) toA, and A;. AgentA, will go also through a similar execution.

Next, each agent that received the possible dates fromqtsaatances (see 8.7(b)), will
start by enforcing local consistency. Second it will rank temaining possible dates and
return them to the sender. For examplig, will remove all the times that correspond both
to its non-availability and to each already less importaxedimeetingV,,,, <0.58 (esp
W, <0.78 ) from the received time-slots received froim (resp A,). The agentA; will
obtain form:** {(M, 4); (W, 5); (Tu, 6) (Tu, 7); (W, 6); (F, 1); (F, 2) and (F, 8and for
m {(M, 5); (M, 6) (Tu, 3); (Tu, 4); (W, 5); (W, 6). It will rank each set depending on its
preferences (for example fm;“l {(W, 6); (F, 3); (W, 5); (Tu, 7); (F, 2); (Tu, 6), (M, 4); (F,
1)}) and will return them to the senders.

Let us consider the agent;, it will receive the ranked sets from, and A;. It starts
first by computing their intersection of the three sets , Wakes second, the ordinal local
utility (see 8.4) of each remaining possible tini&(#(:"*, (W, 5))=3+4+3=10U(m:", (M,
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Figure 8.2. Example of the meeting scheduling problems with three users.
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A1

Table 8.4. Different time proposals for meeting m;

ranked according to users’ prefer-

ences.

A A; As
(W, 6) | (W,5) | (W, 6)
W, 5| (F2) | (WD5)
M, 4)| (W,6)| (F2)
(F2) | (M, 4)| (M, 4)

RINW A~

4))=2+1+1=4;U(m? ", (W, 6))=4+2+4=10U(m:"", (F, 2))=1+3+2=6) and finally chooses
the date satisfying the mentioned before criteria (seemse8). In this cased; will choose
d,=(W, 5) to enforce preferences similarity among the pgéinis. The proposer agent
should receive an agreement for this proposer, from all #eqipants to confirm it.

Assume that, in the meanwhilé; has just received same proposal (same time) for another
meetingm‘,fp with the same importancél(,,, =W,,,=0.58). The agentl, will apply the
metropolis criteria (see section 3) to decide which meetiag to be rescheduled:{"' or
m,ff’) and informed the concerned agent by its decision.

8.5 Evaluation
8.5.1 Theoretical evaluation

Termination

The MSRAC process stops temporarily (dynamic system) whersystem reaches a stable
equilibrium state. In this state all the agents are temflgrsatisfied. An agent is satisfied
when it has no meetings to schedule or when it has receiveteattonfirmations from all
the other Proposer agents. We assume that betta®iit’ there is no newrésp.cancelled)
meeting. Thus, at timg the number of meetings to be fixed is limited and finite, so the
proposed approach stops after making at most this manymgsetiVe assume that MSRAC
approach goes into an infinite loop. This may happen in twesas

1. While scheduling a meeting.
2. While rescheduling a meeting.

For the first assumption, to schedule a meetirﬁg Al the participants will cooperate to-
gether to find the best date for this meeting. The system wilhgp an infinite loop while
scheduling )ﬁ if and only if the Participant agents reprocess the checlk#éesdcycle) when
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no solution is found. However, the number of possible dagzsyeeting is discrete and fi-
nite. In addition, every checked date is removed from théesydo avoid a return to it later.
The system will stop when a "good” date if found or when all gibke dates for X' are
processed and no possible solution has been found. The@iolassumption is not true.

For the second assumption, the system goes into an infimfeifdhe rescheduling of ?k
leads to the rescheduling oﬁ?’(and the rescheduling ofgﬁ( leads the same to the reschedul-
ing of X'+ and finally the rescheduling of X leads to the rescheduling of X However
the rescheduling of ﬁ( leads to the rescheduling ofﬁ)’( if and only if Wy, > Wy, and the
same for the other meetin’dsTherefore\le < Wy, means that the reschedule)éfk will
never lead to the reschedule f"'. This contradicts our assumption.

We have to note that the satisfaction state of all the agenésdistributed system can be
detected by taking a snapshot of the system, using the weilik Chandy-Lamport algo-
rithm [19]. The termination occurs when all agents are wgifor a message and there is no
message in the transmission channels. The cost of the taionimprocess can be mitigated
by combining snapshot messages with our protocol messages.

Complexity

Let us consider the complexity of adding a new meeting intee®sting schedule. The
corresponding MS problem involvesfor total number of usergl for the maximal number

of possible dates for each meeting arfdr the total number of preferred dates for each user.
The total number of agents in this system the same as the total number of users. Suppose
that each meeting involvesattendees and each user Imaslready scheduled meetings in
the calendar. Our approach is composed of two steps.

¢ Inthe first step, each agent perform@md+dLog(d) operations to reinforce node
and arc-consistency and to rank the remaining dates. ThmBeo agent then deter-
mines the intersection of the received sets of possiblesdagling to 1f-1)d* opera-
tions, and the utility of each dates withi@f). Thus, the temporal complexity of this
step in the worst case is
O(n(cd+md+dLogd))+(n-1)dt?>+nd).

¢ In the second step, in order to compute the cost of reschrggulie assume that at
each step the chosen date leads to the rescheduling of onimgn@e most?) in the
worst case. This leads tosuccessive iterations. Each agent checks its calendad
sends its answer to the proposer in order to choose a new. Vidligeprocess requires

1The rescheduling of a meeting leads to the reschedulingathenmeeting if and only if the first meeting

is more "important” than the second.
12Because we assume that all the users are participants ireatimgs
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O(m(nm+d)) operations in the worst case. The space complexity, fathalagents, is
O(n(d+m)).

Message passing optimality

In order to show that our approach requires the minimum amolumessages passing to
reach an agreement among all the attendees, let us assumesthaven agents{A, ...,
A}, each has an already scheduled meetifigat the datel, with | € {1, ...,k }. The total
number of scheduled meetings in the whole systekmaisthe dategd,, ds, . .., d;.}.

Suppose that the ageAl proposes a new meetin@)’(involving all the agents of the
system. The possible dates for this meeting{ae d., ..., di, di11}. According to the
mast of the approaches proposed in the literature (inctuffid, 101, 42]), a proposal,

(h e {dy, dq, ..., di, dis1}) is selected by agem; and passed to all the other agents.
Each agent which receives this proposal, replies to thegseponly with a rejection or an
acceptance. The same process resumes with another prgp@saby another agefit In
this caseat leastone agent will reject the proposal. Therefore to reach aeeagent among
all the participants, this process requires at |2agk+1) messages.

With MSRAC, the proposer sends all the possible candidatesdar a meeting to the
participants. Each participant receiving this messagkfinst reinforce arc consistency on
the received possible dates in order to avoid as much fssitbacktracking as possible in the
next steps. It then ranks the obtained set and sends it ottt tBroposer, which determines
the intersection of the received sets and obtains the agmesmong all of them. Thus the
number of required messages in MSRAQIs Note that receiving all the candidate meeting
dates from participants may reveal some information abloeit tocal calendars (loss of
some privacy). However the only information that Proposgerdé A may deduce from a
participant A is its non-availability for some dates. The non-availapiof an attendee is
due to many different reason, such as another meeting, adassirip, a vacation, personal
preference, etc. The proposer cannot reveal the reasoe ogjgrtion of the candidate date
but he may slowly collect more knowledge by asking for thesaatte or nearby dates. This
is also a common problem for the other approaches. In thetwase the same amount of
information will be revealed by all the approaches. Thersfan order to decrease privacy
loss for our approach, we proposeiidethe identity of the sender. The Proposer agent will
then get answers from the attendees without knowing to whexh answer belongs.

8.5.2 Experimental comparative evaluation

To evaluate the proposed MSRAC approach, we have develbpédlti-Agent dynamic
with Actalk, an object-oriented concurrent programminggiaage using the Smalltalk-80
environment. In our experiment, we generated random nggetioblems. The parameters

13we assume that each agent hasossible proposals.
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used are:n agents in the systenm) meetings per agenp participants in each meetind,
global calendard percentage of possible dates per meetimgweights for the soft con-
straints,Wx, weight of the evenk; (the weight of each hard constraint is equal to 1) and
the control parameter.

We carried out three kinds of experiments to test the prapapproach. The main goal
of the first experiment was to evaluate the efficiency of tmedhssues proposed to be used
in case of conflict (Section 3). We used three versions of g@aaches:) MSRAC-1,
the deterministic approach in which each agent always d@wib&e meeting that increases its
local utility (LU); i¢) MSRAC-2, a non-deterministic approach in which each agamdomly
chooses the meeting to schedule on the conflicting date; MSBAa non-deterministic
approach in which each agent apply the metropolis critersotve the conflict.

We generated random instances with different numbers ofingseto schedule, in order
to vary the number of possible conflicts that may occur, wit10,m= {5, 8, 10, 15, p=6,

D =50, i.e., each meeting starts between 8AM and 6PM, from Mgnd Friday and is one
hour long,w. € [0..1], Wy, € [1..201*, d = 50, |C;| = 10 andTp=10. The total number of
meetings per instance is, respectively 50, 80, 100, 150h Emtance is executed 30 times.
For MSRAC-3 the initial temperaturEp is decreased slowly at each run.

Figure8.3 shows that for the most part, MSRAC-3 is closer 8RMC-1. MSRAC-2 os-
cillates more especially when the number of conflicts ineesaFigures 8.3c2 and 8.3d2)
leading to a great deterioration in the result (in Figure®.8he number of scheduled meet-
ings vary from 34 to 44). This difference can be justified by fdfict that MSRAC-3 accepts
a deterioration of th&U (accept a meeting with lowérJ) only when the difference ihU
between the two conflicting meetings is small, with MSRA(32 selection of the meeting
is totally random which may also increase the number of atsfliNotice that the number of
generated conflicts for MSRAC-3 is almost always the samalfahe runs, while there is a
big variation for MSRAC-2 (Figures 8.3a2, 8.3b2, 8.3c2 ar8tig). Hence, using metropo-
lis criterion to solve the conflict might be more appropridi@an random choice and may lead
to a better solution than the deterministic approach MSRAEigures 8.3b1 and 8.3cl).

In the second kind of experiment, we used two approachesW®RAC-3, which we will
call MSRAC: Asynchronous Backtracking [107] (ABT) and Tsta's approach [101].

Recall that, the ABT algorithm is used as a withess approaeppraise the correctness
of the results obtained with our approach. As mentioned ¢ti®e 1, ABT is a generic and
complete algorithm for solving non-dynamic distributechstaint satisfaction problems.
Therefore, for this algorithm all the applied problems aeated as static instances. Each
agent in the system maintains one variable of the instantoe afjents are ordered according
to the degree of importance of the variables, i.e., degrempbrtance {Vx,) of the under-
lying meetingX;. The variables (meetings) sharing the same constrainéést bne same
participant) are linked together. The approach in [L0O1kents some restrictions: on the

o increase the probability of having several meetings séime degree of importance.
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Figure 8.3. Results obtained by the three approaches in mean of number of scheduled
meetings (al, b1, c1 and d1).
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Figure 8.5. Results obtained in mean of number of scheduled m eetings.

one hand, the handle of the hard constraints (i.e., all thetcaints could be relaxed by this
approach) and on other hand, the discrimination betweerimgse This approach indepen-
dently processes all the proposed meetings without regdheir importance to either of the
proposer or the attendees.

However in the real world, meetings are not equivalent. Quor@ach tries then, in its
solving process (second step), to schedule the most immiarteeting maintained by each
agent first (unlike the approach in [101]). For this purpasstances including hard con-
straints are randomly generated witk10,m=5,p=8,D = 40,w, € [0..1], Wy, € [0..1],d
€ {12.5%, 25%, 37.9%, 62.5% and 7%}, |C;,| = 10 andc=50. The total number of meetings
per instance is 50. For eachwe generated 35 instances, then measured the average of the
results.

These results are expressed in terms of five criteria: the @R&(in milliseconds), the
number of scheduled meetings, the importance of the mextthg measurement of real
global utility, and the number of exchanged messages. Bldkiat the first three criteria
allow us to especially measure the efficiency of MSRAC. Tg #nd, we have introduced
some modifications to the approach in [101] to make it wortilevor both hard and soft
constraints. We carried out the three approaches on the gansgated examples using the
same parameters.

To simulate a dynamic environment, at each tireach agent knows only aboaneof its
meetings (an arbitrary one from its meetings) and either schedules it or declares its failure
to find a solution for it. Once finished the agent will receivaeav meeting (another one
chosen arbitrarily from the remaining meetings) with higbielesser importance to process.
Every new meetings may lead to the rescheduling of anotledsded one (depending on
its importance and the candidate date that will be choseeicklat each timg 1 orn new
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Figure 8.6. Results obtained in mean of the importance of the scheduled meetings.
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Figure 8.7. Results obtained in mean of the real global utili ty.

123



—8— Tsuruta et al. App. —&— ABT —¥—MSRAC|

1.40
1.20 /./-
1.00

080 + g—

0.60 +

0.40 +

CPU time (in seconds)

020 +

0.00 1 1 1 1 1 |
12.50% 25% 37.50% 50% 62.50% 75%
% possible dates

Figure 8.8. Results obtained in term of CPU time.

meetings might be added to the system according to the tiquéresl to process the previous
ones.

The obtained results show that the MSRAC approach requirébe majority of cases,
less CPU time than the other approaches (Figure8.8), wideCtPU time needed by the
approach in [101] is about three times more than that neegedibapproach. This is can
be elucidated by the fact that the first step (reinforceméfaaal consistency) is useful in
order to discard the dates that cannot be in any solution ansiegjuently to avoid exploiting
them in the solving process, which leads to CPU time consiomptet us consider the case
of over-constrained instances (possible dates less thequal 2%%)., Figure8.8. shows that
ABT requires less CPU time than MSRAC. The main reason isithatich instances, the
number of conflicts between meetings is high which may leatth¢ocaugmentation of the
number of rescheduled meetings. For ABT on the other harmde tis no conflict between
meetings; the whole problem, the number of all the possildetmgs that may occur in the
system is static and known in advance.

As for the number of scheduled meetings (Figure8.5.), ABI MISRAC schedule almost
the same number of meetings. while the Tsuruta approacldglgsefewer meetings than
the other two approaches. This result shows the efficien®yRRAC. The small difference
noticed in the number of results given by ABT and MSRAC can ustified by the fact
that MSRAC uses thmetropolis criterionin case of conflict. Thus the final result depends
on the decision taken towards conflicting meetings. Neede#is, both approaches provide
the same results for the degree of importance of the schetdubetings (Figure8.6) and the
same real global utility (Figure8.7).

In the case of over-constrained problems2,5%), ABT requires fewer exchanged mes-
sages than our approach (Figure8.9.). This can be justifjeithdo fact that for this kind
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Figure 8.9. Results obtained in term of exchanged messages.

of problem, the agents in ABT can discover merely the absena®lutions due to the
low number of possible dates to check. While this numbereases, the total number of
exchanged messages increases also. With our approachrtiieenaf conflicts increases
for over-constrained problems, leading to more reschedwnd consequently to more ex-
changed messages. It is remarkable that the observecedifiein the number of exchanged
messages between ABT and MSRAC for over-constrained prabie negligible, while the
approach in [101], requires more than three times the nuoflexchanged messages needed
for our approach.

In order to appraise the fairness of the above results, weiszted statistical testing, using
dependent two samples t-test, to determine whether MSRA@aph and ABT approach
could have same mean in terms of CPU time and number of satdutetings. The for-
malization of the null hypothesis and the alternative higpsts is given in Table 8.5.

Table 8.5. Formalization of the null hypothesis and the alte rnative hypothesis for both

CPU time and number of scheduled meetings.

CPU time Number of scheduled meetings

Ho: pepu msrac = tepu apr | Hot inone MSrAC = [NbMt ABT

Hi: nepu msrac < pepu apr | Hit pinoare msrac > [Nvt ABT

The means are measured using Matlab6.1 using significalidev0.05 and 34 as degree
of freedom. For the means in CPU time, Table 8.6 reports themdd results of eaath i.e.,
percentage of possible time slots for each meeting. Acagridi these result$], is accepted
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only for the first cased=12.5%) with significance equal to 0.997 which means that for this
case by chance we would have observed values of T more extin@frtbe one in this samples
in 997 of 1000 similar experiment. The high significance slio&t in most cases the CPU
time required by MSRAC is less than that required by ABT appho A 95% confidence
interval on the mean is [-Inf, 38.3583]. Regarding the ottesesH, is rejected with low
significance, varying from 0.0114 to 6.36E-12, which meduas in all these cases the mean
of MSRAC in term of CPU time is almost always less than the nfakBT approach. The
probability to have grater values of T is very low. A®%onfidence interval on the mean is
becoming more and more small for high percentage of postibées|ots.

Table 8.6. Dependent two samples t-test for the CPU time mean s of both approaches

MSRAC and ABT, for each d.

Decision | Significance| Confidence Interval
12.5% | accept H 0.997 ]-Inf, 38.3583]
25% | rejectHy 0.0114 ]-Inf, -7.4012]
37.5% | rejectH, 9.03E-09 ]-Inf, -73.7447]
50% | rejectH, 5.90E-06 ]-Inf, -77.5420]
62.9% | reject H, 2.72E-10 ]-Inf,-171.7848]
75% | rejectH 6.36E-12 ]-Inf, -231.1478]

For the means in term of the number of scheduled meeting$e 8ab indicates that the
H, is accepted in all cases with high significance for smalleslofd. For example in case
d=25%, the significance- 0.5 which means that for this case the probability to observee
extreme value of T is 5 of 10 similar experiments. A®%onfidence interval on the mean
is ]-0.8593, Inf] for this case.

To highlight the scalability of our approach, we conducteskaond type of experiment
in which we tried to increase the size of the problem. We gaedr6 groups of random
problems. The parameters of the three first groups (grodpand 1) were: n=10; me{5,

8, 10}; D=50; d=60%; p=7 and|C,|=10. While for the three last groups (groups 1V, V and
VI): n=20; m={10, 15, 2¢; D=100;d=60%; p=13 and|C;|=20. We generated 35 instances
for eachm. Each instance was executed 10 times. Tables 8.8 and 8.9tkkaaverage of
the obtained results in term of CPU time and percentage @thdbd meetings for the three
approaches.

From these results, we can conclude that MSRAC is scalaple, 4 times faster than the
Sturuta approach (case (0; 15 and(20; 20) and up to 100 times faster than the ABT ap-
proach (20; 20). For the number of scheduled meetings, MSRAC and ABT pldat@ost
same percentage of meetings, while for Tsuruta approadOit][the number of scheduled
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Table 8.7. Dependent two samples t-test for the number of sch eduled meetings means of

both approaches MSRAC and ABT, for each  d.
Decision | Significance| Confidence Interval
12.5% | accept H 0.3465 ]-0.5498, Inf]
25% | accept H 0.4587 1-0.8593, Inf]
37.5% | accept K 0.2638 ]-0.4646, Inf]
50% | accept H 0.3301 ]-0.5894, Inf]
62.9% | accept H 0.1666 ]-0.3234, Inf]
75% | accept H 0.0872 ]1-0.1480, Inf]

meetings at each instance is aboutsdf that achieved by the two other approaches. Hence,
it is noteworthy that our approach seems to be more apptegoaeal-world applications
by dealing with users’ hard constraints and by bringing fmaconsideration of discrimina-
tion among the proposed meetings. In addition, the first steépe proposed approach can
prematurely detect the impossibility for reaching any agrent among all the participants.

Table 8.8. Results obtained in mean of CPU time.

(10;5 | (10;8 | (10;10 | (20;10 | (20;15 (20; 20
Tsuruta App | 1349.91| 1933.15| 2418.35| 22883.18| 34086.74| 48248.95
ABT App 911.91 | 3729.94| 8845.74| 29713.62| 90353.53| 185200.63
MSRAC 54494 | 777.24 | 936.79 | 5225.35| 7807.74| 9551.53
Table 8.9. Results obtained in mean of percentage of schedul ing meetings.
(10;5) | (10;8) | (10;10 | (20; 10 | (20; 15 | (20; 20
Tsuruta App | 28.91% | 21.91% | 18.44% | 8.3%% 6.84% 5.20%
ABT App 46.91% | 33.86% | 28.12% | 21.63% | 15.94% | 12.36%
MSRAC 50.36% | 35.18% | 29.68% | 22.22% | 16.51% | 12.91%
8.6 Summary

In this chapter, we propose a new scalable and dynamic apipi®@4SRAC) to solve
meeting scheduling problems. In this approach, we triechtiegrate the main features of
the MS problem such as: user preferences, user non-avit§ylamportance of the meeting,
etc. to reflect ideally real-world applications. To this en@é proposed to use two kinds of
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constraints to model the users’ requirements: hard cansgr model the non-availability
of a user and soft constraints to define the user’s prefesendete that the integration of
these features transforms the problem into an optimizatiohlem.

The Multi-Agent underlying model associates an agent wédbheuser and makes the
agents interact by sending point-to point messages camgaonly relevant information.
Basically, this approach consists of two steps. The firatced the initial problem by rein-
forcing some level of local consistency (hode and arc ctersty). The second step solves
the resulting meeting scheduling problem while maintagnamc-consistency. In the pro-
posed protocol, the information shared among all the agsrispt to a minimum without
reflecting on the efficiency of the cooperative decision maig all these agents.

All the meetings can be processed in a parallel and dis&tbutanner, while achieving the
meetings’ higher utilities. This can be obtained as a sitkredf interactions between the
agents of the system, while both minimizing the amount ofsage passing and ensuring the
user’s privacy. We should note that the underlying protdodbids only parallel meetings
with common patrticipants. The MSRAC approach was compairiédtive ABT approach
[107] and Tsuruta’s approach [101]. The obtained resultgvghat our approach is efficient,
scales better and performs less message passing for alraasirhe solutions. This approach
has been published in [8, 11] and under reviewing intibernational Journal of Engineering
Applications of Artificial Intelligencé3].
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Algorithm 9 Main procedures executed by each Proposer agent A
RedMeetCalendarD with:W

1: Delete fromD all non-viable values;

2: if (D=0) then

3: SendselfsendejMeetNotPossible);

4: end if
5: for all X" such thatX;", dt,) € Calendar: andWy, > W do
6: DeleteD, dt,);
7. if (D=0)then
8: Sendself, sendey MeetNotPossible);
9: else
10: RankD);
11: I* According toA; preferenceso */
12: Sendself, sendeyReply: D);
13:  endif
14: end for
Reply: D

=

. if (All rankedD are received from al\; € Part(xg‘i)) then
2. UpdateD;") /* According to receiveds*/
3: end if
4: dt, «— the date ohigher utility; /* The choice of the date should be done according to
the two equations 2 and 3 given in sectidfi 3
if (dt, = nil) then

for all A; € Part(X;") do

Sendself A;, MeetNotPossible);

end for
else
10:  forall A; € Part(X;") do
11: Sendself A;, ReceivePropit, with:Wy, );
12:  end for
13: end if
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Algorithm 10 Main procedures executed by each Proposer agent A

ReceivePropProp with :W
1 if (3 (XlAj, dt,) € Calendar,, such thaProp=d; andWy, > W)) then
2:  Sendself, sendey UpdateProg?rop with:W);
else
if (3 (X", dt,) € Calendar' such thaProp= dt, andWy, < W) then
Sendself A;, UpdateProml, with: Wy, );
Sendself, sendey MeetingOK);
else
apply one of the three proposed issues (section 3.) to dediitsh agent should
relax its preferences;
9: endif
10: end if

© N4 o gk~ w

UpdateProp:Prop with :W
1: Delete (0", Prop);
2: Add(DReservéi[K], Prop);
3: if (D2 # nil) then
4:  dt, — the date of lgher utility;
5. forall A, € Part(X;") do
6 Sendself A;, ReceivePropdt, with: Wy, );
7. end for
8: else
o forall A; € Part(X;") do
10: Sendself A;, MeetNotPossible);
11:  end for
12: end if
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Chapter 9

Asynchronous Constraint-based
Approach: A New-Born in the ABT
Family

In this chapter we present a novel constraint-based compled generic constraint-based
approach to solve a CN with any arity. However, as mentiorefdre most the existing
approaches for solving DisCSP are variable-based appeeaatiow the adding of new links
and especially proceed by recording nogoods in order tarermsumpleteness. The cost of the
search process grows with the number of connections, the@tned nogoods recorded and
with the required constraint checks. Only the work of Siia@AS) in [98] is constraint-
based approach. It is considered as ABT for dual graph. Nesless, this techniques is
based on exchanging aggregating ranges of tuples ratheisthgle values. Nevertheless,
determining ranges of tuples requires a high amount of cainstchecks and consequently
may increase the cost of the solver.

The new approach (that we called DisAS for distributed alymaous search) described
in this chapter, is based in a part oaay version of DRAC protocol, without adding new
links and especially without any nogood recording. In addiin this work we propose a
generic distributed approach to compute a static ordenmghich we save as many links
as possible hopefully to decrease the set of exchanged gessaad to make it practically
useable.

In this chapter, we present first the constraint-based neroaph. Second we give the
proposed protocol. Then we discuss the theoretical reBulally, we illustrate the experi-
mental results followed by a conclusion.
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9.1 Constraint-based asynchronous search approach
9.1.1 Multi-agent architecture

The proposed multi-agent architecture is based on the dpatsentation of a CN. This
model involves two kinds of agents: Constraint agents anthtarface agent. The latter
agent is added to the system in order to inform the user okthdtt Each agent has a simple
structure formed by its acquaintances (the agents thabiwk})y a local memory composed
of its static and dynamic knowledge, a mailbox where the bgfenes the received messages,
and a local behavior.

All the agents communicate by exchanging asynchronoud-pmipoint messages con-
taining only relevant information. An agent can send a ngsda another one only if it
knows it (it belongs to its acquaintances). For transmisbgtween agents, we assume that
messages are received in the order in which they were seatddlivery time for messages
is finite.

9.1.2 Generic parallel new method for static constraint orering

The complexity of the CN and the number of exchanged messagdsghly depending
on the existing connections between the agents of the systethis section we propose a
new distributed method to define an optimal global order,(optimal in term of connec-
tions) between the agents. In our system, each agent walljocompute its position in the
ordering according to its variables. The first variable odgent A, defines its level and will
be used to determine both its set of higher level acquaiegne.,Parents?i, and its set
of lower level acquaintances, i.&€hildren®:. The agent Aresponsible of the constraint
C,; will be the level:. The obtained graph should satisfy Property4 in order taenthe
completeness of the solving approach.

Property 4 For each variable X< X, for all the agents Asuch that X Var(Cf‘j’“), AS’
are related through a single and continuous path.

To illustrate the main principle of this method, we assumgailty that for each agent
A, the set of children is all the constraints with which the dgdrares at least one variable
(basis of the dual graph). Each agentwll reduce the set of its childrert;hildren?:, by
using the following rules:

Rule 1. Remove all A, Var(Cj,‘;)z{Xi, X}, from Children” (Var(Cf‘ji):{Xi, X;}) such
that A <, A;, i.e., A <, A;ifand only ifk < j.

Rule 2. Remove all A, Var(C;?), from Children® (Var(C{y)={X;, X;}) such that
f>i+1 and there is no Ac Children® with Var(C2)={X,,, X;} andm € {i, ..., (f-

J
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Y.

Once the set of the children is reduced, each agenwih inform each agent A€
Children™ that it is the father. Then each agentrAceiving the above message will add A
to its set of parentsParentsi=Parents™ U {A;}.

It is noteworthy that for a full connected graph, usimgariables, the total number of
constraints isi(n-1)/2. For each constraint we will haver2R) links then the total number
of links, for the dual graph is @{). In case of an ordered dual graph, each constraint C
has (2:-(i+j)-1) ordered links. The total number of ordered links.{8-1)/2*(2n-(i+7)-1).

As for our ordering method, each constraint of level {2, ..., (n-1)} will be connected to
2(n-i) other constraints in the next level; only the first leiel needs moren-2) ordered
connections. Thus the remaining ordered connections ®pthposed method is(n-2).
We can easily see that our method saves many more conneatidt®nsequently decreases
the complexity of the exchanged messages in a real distdocwmputer architecture. In
addition, we assume to designate a leader for each variabieh will be responsible of this
variable. Each agent;Ahat has no parent for at least one of its variablgsiXwill be the
leader of this variable.

Figure9.1 illustrates the proposed distributed statieond) proposed method, where in
the upper side a dual constraint graph is represented. Tevactine required order with the
minimum connections, each agent performs the algorithrailéetin Algorithm11. Each
agent possesses the set of its acquaintances. Once thisdhigthxecuted, the constraint
ordering obtained is the one represented in Figure9.1(leyevh

A.: Parents1={}; Children®1={As}.

Ay Parents®2={}; Children>={As, A4, As}.
Az Parents®3={A}; Children®s={As}.

A, Parents®={Ay}; Children®i={As}.

As: Parents®5={A,, As}; Children>={Ag}.
Ag: Parents?o={A4, A5}; Children?s={ }.

The gray circles represent the leaders of the variablesnfdhemal number of leaders is
n. These agents will be used to perform backjumping (secam) & the solving process.
The ordering technique can be performed with a fixed numberasisages and all the agents
are totally independent. All the agents can perform pdredienputations at the same time,
leading to a good parallelization feature.

Furthermore, this method can be used to detect the exist#nogcles in the CN in a
distributed manner. When an agent and its two parents sharsaime variable, then this
agent and its parents form a cycle of three variables. Fanpig in Figure9.1(bJA4, As,
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Figure 9.1. Distributed asynchronous constraint ordering
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Algorithm 11 Distributed constraint ordering main process executeddoh @agent A

begin
1: Children® «— A, € Al Vard N Var®s £ @ ;
2. Parent? «— @& :
3: forall A, € Children® do
4:if (Ap <1 A;) OR ((evel(Ag) > level(A;)) AND (3 A, € Children® such that A
<10 Ay andVar?i N Var = Vard 0 Var4»)) then
5 Children® «— Children® Ayg;
6: endif
7. end for
8: forall A, € Children®: do
9 sharedVar — Vardi N Varts;
10:  sendMsg@Self, Ag, "IamY our Parent:sel f for:sharedVar");
11: end for

Ag} define a cycle, i.e., the two parents and A, of Ag, share the variable X
9.1.3 Solving asynchronous process global dynamic

The main common global objective of all the agents is to salvg constraint problem.
This dynamic is divided into two steps:

e First step, a "partial” enforcement of arc consistency [@8Jnsists in pruning some
non-viable values and propagating them to higher leveltzgarorder to decrease the
amount of backtracking and hence reduce the complexityeogtiver. This step can
be viewed as &azyversion of DRAC approach.

e Second step, the solving process, consists in solving thereal problem via inter-
actions and negotiations among all the agents of the sydiach agent searches for
the suitable tuple that, on the one hand, satisfies its agsdotonstraints and, on the
other hand, satisfies all the agents belonging to its pasgmt€hildren, i.e.y A, such
that A, € Parents® U Children®.

In this protocol, agents are ordered statically and inggmra links are directed from high
priority to low priority agents, for two main reasons, to lduan acyclic graph and to en-
sure a continuous path between agents sharing the sambkleduaing the aforementioned
method).

Each agent has at most two parents and none or many childrach &ent maintains
only a short and current view of the values taken by its parentis view is defined by the
tuplet chosen by its parent(s). Each agent runs a similar procaedsypdates the stored
information received from its parent(s) in the form of anriggew.
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During the first step, each agent Anforces lazy arc consistency on the domain of its
variablesVar(Cj;.l). Each agent seeks thérst support [6] of each value a of its variables.
If a valid tuplet, such that[index(\/ar(C;‘}l)), X;]=a, is found, thent(y) is stored in the set
of first support. Each agent maintains this set in order tadasnemlundant checks. The value
of y=(i-1) is added in order to indicate whethes the first tuple support for Xor not. Each
deleted valuaa in D(X;) should be communicated only to the pareézy enforcement).
The main reason is to minimize the number of exchanged messagl to avoid seeking
solution containing these non-viable values which mayease the number of constraint
checks.

The same process resumes; each agent that received a biewatue has to send it
to its concerned parents. The deletion process continudghare are no more values to
propagate. If a domain of at least one variable becomes atyesap then this agent has to
inform the Interface agent of the inconsistency of the peobin order to stop the system.

The system then moves to the solving process (second stggh &jent Ain A will
choose a tupléefrom its set of first support, i.efirstSupport™i. If the agent is a leader of
at least one variabld,cader(X;), he has to choose the "first possible viable tuple order
to guarantee the completeness of the proposed approacloaiedaape any solution. The
agent has to communicate the chosen tuple t to its childfeitdren?: as a new proposal.
Each agent that received a proposal from its parents upfilstats set of received proposals,
list Prop™ and then tries to adjust its proposBl;oposal”i according to the ones it receives.

If the agent succeeds in finding a new viable proposal coflgatvith its current view,
then this new proposal has to be communicated to its childd&merwise, the agent chooses
the "nearest” leader of its variables and asks it to changevéitiue of the concerned vari-
able. This jump allows us to speed up the solving process land@reduce the number of
exchanged messages.

The leader has to inform the agent whether or not it can chdregealue. In the negative
case, in which there is no possible other value for the ugnhgrivariable, the agent has to
ask a second leader before propagating the request to amagitypagent (the leader of the
leader). If the head of all the agents receives a requesiatagehits value and he cannot find
any more viable tuple, the agent sends an interruption rgedsethe interface to inform it
of the non-existence of a solution.

9.2 lllustrative example

9.3 Theoretical analysis
9.3.1 DisAS soundness and completeness

For the correctness of our approach we have to prove thenoigptwo propositions:
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Algorithm 12 Start Process executed by each agent A

begin
1: forall A; € Ado
2:  propStateti — false;
if | Parents?i| < 1then
Choose the first tuplesuch that satisfy Const(4);
if | Parents?i|=0then
propStatet — true;
else
Choosé such that € firstSupport:;
end if
10. endif
11: end for

12: proposal? «—t;

13: forall A; € children: do

14:  var«— CommonVar(A;, A;);

15:  ind « index(Var?:, var);

16: sendMs¢self, A;, "ProcessProposgbroposafi for: var atind withProp-
StatepropState”);

17: end for

Propostion 1 The combination of all the tuples received by the interfagpena at the stable
state is a non-empty set,A; and A such thatVardi N Vardi # @, t4 andt? have same
value for the shared variable.

Proof. Assume that the interface agent received two instantigtigith different values
for the common variable:i=((Xy, vi) (X, v1)) andtAi=((X,, v,) X, v)). The two agents
are linked, assume that; <;, A;. The agent4; can send its instantiation to the interface
agent only, and only if its state is true, i.e., its instainbia satisfies that of its parents and
all the states of its children are true (see terminationafiete conditions). The state of;
depends on the received instantiation freiy i.e., its instantiation should satisfy the one
received, otherwise the agent should generate a conflictstate set to false. Then the two
received values for the variable,>hould be the same.

Propostion 2 Every found combination of variables is a solution of thelybeon.

Proof. Let considerS as a combination of variables’ values generated by thefader
agent after receiving tuples from all the agents. AssumeSisnot a solution for the prob-
lem, there exists ¢ € C such thatS does not satisfy C. Assume that this constraint is
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Algorithm 13 Main messages exchanged by the agents of the system.

ProcessProposaprop for :shVarat:ind withPropState:myState

1: add(ist Prop™i, prop);

2: add(statePr4i, mySate);

3: if (|parents?i| = 1) then

4: i (proposal? [index(A;, shvar)]= prop[ind])then

5 for all A; € children” do

6 var«— CommonVar(A;, A;);
7: ind — index(V ar?:, var);
8
9

propState? « true;
sendMsg(self, A;, "ProcessProposalroposal®i for:var atind withProp-
StatepropState?);

10: end for

11: else

12: [* value of shared variable not the same*/
13: InconsistentValueFoprop atind

14. endif

15: else

16: /* A; has two parents*/
17:  CycleConflictForprop atind
18: end if

maintained by the agent;. If Sdoes not satisfy § this means that the instantiation gener-
ated byA; is not compatible with its parents. Then the state of the ag@mot be true and
then this agent cannot send its instantiation to the interfevhich contradicts our assump-
tion.

As for the completeness of the proposed approach, the didrerted dual graph has no
cycle. Also, every agent that is a leader of at least one rialies cannot return to a already
chosen tuple; this agent always tries to go ahead in ordeoid arriving at the same conflict.
Therefore, in case of backtracking, i.e., the tuqﬁ‘reis inconsistent with at least one agent of
lower priority, A; will chooset‘;“ >~ t{‘i. The other agents may consider any consistent tuple
because their instantiation depends on that of their twergar

The absence of solution can be detected during the enfordesh&azy arc consistency
(during the first step), or in the case where a agent cannoafomhsistent instantiation even
after performing a local exhaustive search, by asking @dées to provide more values. In
this case, the agent will inform the interface to stop the &lsgstem and communicate the
non-existence of a solution to the human user.
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Algorithm 14 Main procedure to process inconsistent value.

InconsistentValueFor.prop atind

1: tuple«< searchFirstTuplelncludegrop[ind];

2: if (tuple=nil) then

3:  [*noviable tuple is found*/

4:  propStateti «— false;

5. if (myState = true)then

6: /* his parent not in conflict*/

7 progLevel®i[shvar] ++;

8 sendMs¢gelf, Leader“i[shVar], "moreValueForshVarnotprop[ind]”);
9

else
10: [* Ai parent’s did not take his final decision the prop mightdieinged*/
11: endif
12: else

13:  proposal? — tuple
14:  propState? — true;
15:  forall A; € children® do

16: var < CommonVar(A;, A;j);

17: ind — index(Var?:, var);

18: sendM sg(self, A;,"ProcessProposahroposal® forivar atind withPropState
propStateX”);

19: end for

20: end if

9.3.2 Termination

Most of the termination processes of the existing MAS apghaare based on the well-
known algorithm of [19]. This algorithm requires the takiofjsnapshots of the system at
different stages leading to an increase in the number ofaagdd messages. In our work,
we propose that the stable state will be detected progedgdiy the agents of the systems.

The main idea consists of defining a state for each agegnhis state is set to true if A
and all its children, i.e.Y A; / A; € Children®, succeed in instantiating their variables.
The detection process will be detected by the leaves of thphgri.e., all the agents;A
such thatChildren?i=(), and will be progressively propagated to the head(s), alethe
agents Asuch thatParents?i=(), of the graph to be announced to the Interface agent. Each
agent A that has no child and succeeds in instantiating its varsabl# set its state to true,
Statei=true. ThenA; will inform its parents by its state.

The acyclic structure of the graph allows us to avoid engean infinite loop and conse-
quently to gradually detect the final state. To summarizthafhead of the graph receives
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Algorithm 15 Main procedure to process a cycle conflict.

CycleConflictFor:prop atind
1: if [listProp?i| > 1then

2:  if ~consistent(list Prop?) then
3 /* A; has to wait because one of the two parents will change itsgsed/
4: else
5 tuple «— generateTuple(list Prop™);
6 if (tuple+# proposal®’) AND (tuplenotin firstSupport?) AND (tupleNot Satisfy
Const(A)) then
7: [* the nearest Leader to,;A/
propState? — false;
progLevelAi[1] ++;
10: sendMs¢gelf, Leader“i[1], ” moreValueForsharedVanotprop[ind]”);
11: [* message sent to the nearest Leader t&/A
12: else
13: proposal’ « tuple
14: propState? — true;
15: forall A;in children: do
16: var < CommonVar(A;, A;);
17: ind « index(V ar?, var);
18: sendMs¢self, A;,"ProcessProposalroposal®: forivar atind withProp-
StatepropStateA;”);
19: end for
20: end if
21:  endif
22: end if

true for all the states of its children, and its variablesaready well instantiated then it will
set its state to true and inform the Interface agent of theoéfitk solving process.

9.4 Experimental comparative evaluation

We have developed the multi-agent dynamic with Actalk [15],object-oriented, con-
current programming language using the Smalltalk-80 enwrent. In our experiment, we
generated random constraint problems. The parameterdarsadneeting problem aren
variables in the systend, size of the maximal domaim the density of the problem, argd
the tightness of the constraints.

Our goal in this section is to evaluate the performance ohtwe DisAS approach, espe-
cially on the most hard problems. For this purpose, we cordiutwwvo branches of exper-
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iment. In the first branch, we generated random problems thegpeak of difficulty [24]
with n=15,d=5, p=30% andq varied from 25; to 85%. For eachkp, q) we generated 5 in-
stances. Then we measured the average of the obtainedrekudise results are expressed
in terms of three criteria: the number of constraint chetties CPU time, and the number of
exchanged messages. Note that these are our first expesiment

Table 9.1. Results in mean of constraints checks and CPU time

(0.3,0.25 | (0.3,0.35 | (0.3,0.45 | (0.3,0.55
Constraint Checks] 684.8 659.2 542 446
CPU time 112.2 170.4 177.75 198.6
Nber of Messageg 112.4 305.2 322 363.4
(0.3,0.65 | (0.3,0.75 | (0.3,0.85
Constraint Checks 387 402.6 379.6
CPU time 194 241.4 260.6
Nber of Messages 326.6 398.6 438.6

We used the same parameters as those given by most ressavblearsolving distributed
complex problems. Table9.1 shows that this approach red@riow number of constraint
checks and consequently less CPU time and fewer exchangeshges (compared to the
results presented in [54, 98], where for example, in [54]rdguired number of constraint
checks for this same parameters is very high, i.e., in megts;dhis number varies from 2000
and 10000 ccks.). The notices substantial increasing iratheunt of constraint checks,
can be justified by the use of the knowledge collected dutweglazy enforcement of arc
consistency (the set of supports), i.e., many redundarstent checks are avoided.

For the second group of experiments. We focused our goala@nating the performance
and efficiency of DisAS vs. AWC search algorithm [110]. Thigaithm performs better
than ABT due to its dynamic variable ordering, where a badsttattaken by a higher order
agent can be easily revised without conducting any exhauséarch.

We randomly generated a set of hard instances accordingpelse same parameters given
by most researchers=15; d=5; p=30% andq varying from 0.45 to 0.95 with step of 0.1.
We generated about 10 instances for egqghy). We carried our second experiments only
on consistent problems. The results reported in Figuré@i&rates the obtained outcome
in terms of number of constraint checks. We can say that Dig§8ires considerably less
constraint checks than AWC search to prove the consistdregoh instance, e.g., Fpe0.3
andg=0.55, AWC search needs seven times the amount of constiecks performed by
DisAS.

Note that forp € {0.25, 0.35, almost all generated problems are inconsistent. In almost
all the instances, DisAS detects their inconsistency duhie first step.
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Figure 9.2. DisAS approach vs. AWC Search approach resultsi  n mean of the number of
constraint checks for binary random CN.
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As for the results expressed in terms of exchanged messagesig Figure9.3. At first
glance, it seems that AWC search overtake DiSAS. Howeves, evident the number of
exchanged messages grows with the number of entities iry#ters. For AWC search the
number of agent is only 15 agents, which is the same as the eruofilvariable. While for
DisAS, the number of agent is the number of constraints, wisiequal to 3% of n?, ~ 30
agents for each instance. Nevertheless, the use of AWCrstarany non-binary problems
will require the additions of new agents (new variables)iclviis not the case for DisAS, also
for real-life problems, usually the number of involved cwasts in less than the number of
variables. This will be as a part of our perspective.

9.5 Summary

We have presented in this chapter a new distributed asynchsoapproach to solve any
constraints network (DisAS for Distributed Asynchronowsafeh). The proposed multi-
agent model is based on a dual graph representation of CSRi¢h wach agent maintains a
constraint of the problem. These agents cooperate comtiyreand asynchronously without
any central control. However, in addition we proposed a nistviduted method to establish
a total order among agents with the minimum number of conmrext The main reason is
to make it easy to use in a real distributed environment asd @l decrease the required
exchanged messages.

There are two main ideas underlying this approach. First getform lazy enforcement
of arc consistency, in order to avoid basing high order ajelgcisions on arc-inconsistent
values. Second is that in case of a conflict, a backjumpingifpmmed to the leader of the
concerned shared variable and not to the nearest parented$en for this is to avoid all the
useless backtracking that can be done between the agenesafuthe conflict and the first
agent responsible of the concerned variable.

In addition, we d not perform either nogood recordings or ew tinks addition in the
new approach. This approach includes an enhanced detewticimanism.
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Chapter 10

Conclusions and Future Work

Constraint satisfaction problem (CSP) is a potent formalis express and to solve many
ranges of NP-complete real-world problems, such as plannmesource allocation, time
tabling and meeting scheduling. This problem of schedutwegtings (MS) is one the tradi-
tional real world problems that continues to fascinate nrasgarchers. This problem em-
bodies a decision-making process affecting several usevgich it is necessary to decide
when and where one or more meeting(s) should be scheduleddatg to several restric-
tions related to users, meetings, environment, etc. Tloklem can be naturally expressed
using CSP formalism.

A CSP is a triplet (X, D, C) composed of a finite setrofariables X, each of which is
taking values in an associated finite domain D and a setaanstraints C between these
variables. Solving a CSP consists in finding one or all-c&tgassignments of values to
variables satisfying all the constraints. This task is rerd many efforts were devoted to-
wards enhancing it by reducing the complexity of the origprablem. Hence, this paradigm
is marked by the ubiquitous use of local consistency praggesnd their corresponding en-
forcement techniques. The basic of these techniques isuttepralues that cannot belong
to any solution and this in order to reduce the search spate@msequently enhance the
efficiency of the constraint solver. Many levels of local sistency have been proposed in
the literature; among them, reinforcing arc-consistesdyé most preeminent one because
of its low time and space complexities. Many centralizedrapphes for reinforcing arc
consistency have been proposed in the literature.

However, with the advents of both distributed computing artivorking technologies,
and due to the natural distribution of many real CSP apptinaf recently, some efforts were
devoted toward centralized techniques. Furthermore, thenty of constraint programming
techniques are devoted to binary constraints, i.e., pnadlhere all the constraints imply
each at most two variables. Only very few techniques deaktir with n-ary constraints
(non-binary constraints). Note that last years the intdmes-ary constraint network (CN)
has largely increased, but such algorithms have not beeslystldied yet.
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10.1 Conclusions

The most important results and contributions from the waodspnted in this thesis are the
following:

e DRAC and G-DRAC, two new approaches for any CNWe have proposed a hew
distributed approach for reinforcing arc consistency foraby constraints (that we
called DRAC for Distributed Reinforcement of Arc Consistghbased on a Multi-
Agent system. This approach has been implemented with liAGtath Smalltalk-80
environment) and compared with the best existing cenadliapproach (AC-7) on
the basis of randomly generated samples of the phase toanfite most difficult
generated problems). The experimental results show thaamaroach outperforms
the existing one in term of constraint checks [14, 15, 16].er€fore, our second
objective was to focus our research on i). Improving DRACrapph by integrating
some new heuristics [1], ii) Adapting directly DRAC apprbdo general constraint
network (n-ary constraints). The new approach G-DRAC [6y4$ implemented and
compared to the best existing centralized one (no disgthapproach for enforcing
AC on n-ary constraints).

e DRACT, to deal with more complex problemsWe have proposed an improvement
of DRAC approach to perform more than arc-consistency. Taemotivation is that
for some hard constraint network performing only arc-csiesicy is fruitless because
it may not prune any values, or prune only few inconsistehtesa Therefore achiev-
ing more local consistency pruning levels, with reasonablgt, can be worthwhile.
Hence, we should find the best compromise between the cosediitering process
and the amount of deleted values. Our main contribution refioe DRAC approach
to perform restricted path consistency property (RPC) whthminimum amount of
additional constraint checks. The experimental compa&valuation shows that the
new approach, that we called DRAC, is worthwhile especially for over-constrained
problems [10, 11, 8, 4].

e MSS, a novel static agent-based meeting scheduling solV@fe have proposed a
novel, complete, deterministic, and static approach teesahy static meeting schedul-
ing problem. For which we proposed two types of constralmsg constraints, i.e. to
express the non-availability of a user that cannot be relaaed soft constraints, i.e.
to define the preferences of the user that can be relaxed.didusmination allows
us to more closely reflect real applications. In our propasedel, an MS problem is
viewed as a set of distributed reactive agents in commuaitat Each of them acts
on behalf of one user. The final result is obtained as a coeseguof agents’ inter-
actions, each having a local goal. All the agents act in frahd asynchronously
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via sending point-to-point messages. All the agents of {fstesn negotiate by ex-
changing only necessary relevant information in such a matmreduce the amount
of messages and especially to preserve as much as pos®méprssacy. The local
goal for each agent is reach the Higher Utility for each sahestimeeting according
to defined criteria. The global goal of all the agents is tcesicthe all the meetings of
all the users while satisfying all the inter-agent constisaand achieving the Higher
Utility for each scheduled meeting [2, 5, 12].

¢ MSRAC, to deal with any meetings’ alterationsWe have proposed a new approach
to deal with any dynamic MS problem. This new approach is etqueto be incremen-
tal and able to process alterations (the integration of ameeting and/or cancelation
of an already scheduled one). Our main target is to allow tbhegssing of all kind of
conflicts among meetings (especially in the case of meetinigpssame importance).
Therefore, to solve this kind of conflicts, we proposed thssees: accept always the
meeting with higher local utility, choose randomly one niragtor apply the metropo-
lis criterion to solve the conflict, i.e., accepting someederation in the local utility
may increase the global utility [3, 7, 13].

e DisAS, a new asynchronous solver in the ABT familyrinally we proposed a novel,
multi-constraint asynchronous search approach for angtcaint network (n-ary con-
straints). The proposed approach is based in a part on a ¢éagion of the G-DRAC
approach, and without adding any new links and without miogr any nogoods as
for the existing techniques in the literature. The idea behising a lazy version of
G-DRAC is to save as many as possible fruitless backtracaimtjconsequently to
enhance the efficiency of the solving process. We have pegpasiew generic dis-
tributed method to compute a static constraints ordering\weoposed, in which we
save as many links as possible leading hopefully to decréesset of exchanged
messages.

10.2 Future work

Our study on ways of solving combinatorial problems and eisflg meeting scheduling
problems stir up our attention to do more further investayeg on other challenging research
points that have not been address yet. In the following wedigtuss some of them.

e N-ary constraints As first perspective of our research, we propose to improgdbi
the asynchronous constraint-based solver to deal with ahyn@ake an exhaustive
empirical and theoretical study, and address a practicdllem that arises in the real
world. We will try to examine the behavior of our proposed kvdirectly on the n-ary
problem and also on its encoded binary version.
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e More sophisticated personal computer assistar®ur second perspective is to make
our meeting scheduling solver more sophisticated persmraputer assistant while
integrating the three following issues:

— Temporal reasoning For this first issue, the events are handled in our system
independently. To find a good schedule does not requirefegaimn of any re-
lation between two events; and E;. If E; and E; have the same welfare, for
the participants, to be scheduled at déteandd, then choosing randomly one
date for each event is enough. Two possible solutions arglgesn such situa-
tion. However, if the event; can be scheduled only whéf) is already planned,
then this problem can have only one solution. This tempefationship among
events can be expressed using temporal constraints sttigfformalism [29].
Khatib et al. proposed in [60] a framework to define soft temapoonstraints
based on the temporal constraint satisfaction formalism.

An extension of the proposed formulation (callesnporal constraint satisfac-
tion problems with preferencesan be used to express temporal aspect among
preferences of users that can be relaxed. The main reashat it MS prob-
lems, the preferences of the users are naturally dynamiealnworld the prob-
ability of alteration in the calendar of a user differs fromegperson to another
according to his importance in the company. Hence, to famaalynamic prefer-
ence of a user we need to use a dynamic temporal constrasatmieg formalism
with preferences.

— Uncertainty: For the second issue, the integration of the uncertaintsoin-
ing meeting scheduling problem, we noticed that for somesd#ése arrival of
new meetings may lead to a huge perturbation in the alreaugrgted schedule.
However, in the majority of companies, it is practically iogsible to know be-
fore hand all the possible coming meetings, and when a sutéeting occurs
it may lead to the reschedule of other meetings or sometinagslead even to
the cancelation of some of them. This may in most cases tealbthe partici-
pants. Therefore we need to make some assumptions abaet fuéetings (even
a fuzzy view of the coming meetings) to establish some howflesschedule.

The idea consists of integrating in the system some uncegtants, depending
on the current knowledge about the participant and thesstdtilne company, and
trying to include them in the solving process. Luo et al. pspto formulate a
static MS problem using Fuzzy constraints [63]. Their ide@imake the system
more flexible by integrating soft constraints which can beially violated and

this by using fuzzy constraints to express only users’ pegiges and not to rep-
resent possible coming meetings. In a different manner Wéominalize the MS

problem using an extended version of the CSP formalism ahlefdresent real-

148



life scenario especially where the knowledge is not conepfetivailable. One

possible idea is to use in our modeling SCSP [18] (for sempbbased CSP) for-
malism to express the level of consistency of the conssdprbbability that the

event will occur). However, a semiring is associated to taaedard definition

of a CSP, so that different choices of the semiring repreddéfgrent concrete

constraint satisfaction schemes. In addition we will tryrtake our system more
flexible in the sense that a meeting may be planned even if g@rteipants

are not present. This issue depends in a part on the partisighe head of the
meeting and also on the number of absent participants.

Learning process For the third issue, one of the fundamental aspects of a per-
sonal computer assistantis that it is enduring and selfewipg. Itis expected to
persist indefinitely and learn over time to make good deossibat better reflect
user constraints and preferences. Therefore, we will taglttress the problem of
how to make the autonomous agents of the system, that seshaetaon behalf of
the users, learn from the already processed meetings asdhéy become able
to choose optimal actions to achieve their goals. Let'slk¢at these agents
should cooperate and coordinate in the sense to jointlyhreamonsensus over
which actions to perform. For that, we will try to integraéatning process and
consequently to decrease the cost of the communicationramdaise the per-
formance of the system. Agents must learn to coordinate #utions through
other agents’ feedbacks. This learning process requieeadbess to the user’s
calendar, the incoming and outgoing meeting requestsntheex of the user and
especially the confirmed time slots.

However, integrating learning process in our approach reag ko an increase
in the privacy loss because; learning process requiresdiagpsome knowledge
about other agents (other human users) to avoid repeaenggatie task (asking
for the same place or asking same person twice about samaiicietdy rejected).
However, in many settings, users may want to maintain theiapy as much as
possible while still engaging in a collaborative task. Omyrecent years that
this concern has been taken into consideration while degjgmew techniques
for solving real-world problems and evaluating them. Evethwmited com-
munication policy, an agent (acting on behalf of a human)useary collect and
deduce some private information about other agents. Hembaye efficient sys-
tem raises the question of how to integrate learning prosbfise maintaining as
much as possible the privacy of the implied users. Therefweeneed to find
good compromise between the revealed information and timeopained from
the learning process. Thus, the main problem is how to regaeament among
all the agents of the system without revealing private imf@tion. In addition,
the calendars of the participants are dynamic, and a rejeletes by a participant
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may be accepted later. Maintaining the consistency of teesusalendars may
affect the efficiency of the learning process.
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