
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Coordination Model for Coordinating Software

Components

Author(s) Lin, Hsin-Hung

Citation

Issue Date 2008-03-04

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8229

Rights

Description

JAIST 21世紀COEシンポジウム2008「検証進化可能電子

社会」= JAIST 21st Century COE Symposium 2008

Verifiable and Evolvable e-Society, 開催：2008年

3月3日～4日, 開催場所：北陸先端科学技術大学院大学

, GRP研究員発表会　セッションA-3発表資料

A Coordination Model for Coordinating Software Components
Hsin-Hung Lin, h-lin@jaist.ac.jp

Japan Advanced Institute of Science and Technology

1. Introduction
Our research is to introduce a coordination model in

which a coordinator coordinates software components
which can increase the interoperability and reusability of
software components as well as services. The need of
such a coordination model can be depicted with a simple
Fresh Market Update Service problem showed in fig.1. As
the behaviour described in fig.1, in a usual
communication model for software components, the Start
message could never be received by the investor because
the communication is jammed when the research
department wants to send the Data message. In this
example problem, we may understand that the stock
broker provides services of investing stock markets and
the research department provides services of analyzing
market trends and other information but people may argue
that it is so strange to have such incompatible behaviour.
To make it not strange any more, we may further assume a
situation that the broker and the research department
services are possibly provided by different companies so
that these services are not designed as a whole big service.
The two services thus may not cooperate well for an
investor.

!RawData

!EndOfData

!Start

?Ack

!RawData

Online Stock Broker Research Department

?RawData

?RawData

!Data

!Complete

!Data

?EndOfData

?Start

?Data

?Complete

?Data

!Ack

Investor

Online Stock
Broker

Research
Department

Investor

RawData

Ack

EndOfData

Start
Data

Complete

!RawData

!EndOfData

!Start

?Ack

!RawData

Online Stock Broker Research Department

?RawData

?RawData

!Data

!Complete

!Data

?EndOfData

?Start

?Data

?Complete

?Data

!Ack

Investor

!RawData

!EndOfData

!Start

?Ack

!RawData

Online Stock Broker Research Department

?RawData

?RawData

!Data

!Complete

!Data

?EndOfData

?Start

?Data

?Complete

?Data

!Ack

Investor

Online Stock
Broker

Research
Department

Investor

RawData

Ack

EndOfData

Start
Data

Complete

Online Stock
Broker

Research
Department

Investor

RawData

Ack

EndOfData

Start
Data

Complete

Fig. 1 A Fresh Market Service Problem

To give a solution for the above problem, we introduce

our coordination model. The objective of this research is
as follows:

1. A new coordination model in which a coordinator
coordinates software components.

2. A formal model definition for our coordination
model.

3. Simulation and verification of the coordination
model, which includes (a) checking whether the
software system is perform as designated
behaviour and (b) for a given software component
system, find a coordinator to orchestrate the
components.

To perform the work of verification, we apply model
checking technique and use SPIN model checker.

2. The Model
2.1. Overview

The overview of our coordination model is
demonstrated in fig.2. The system has two parts: one part
is processes (software components) of the system and the
other part is the coordinator. Processes of the system
communicate with each other by delivering and receiving
events. Note that in the viewpoint of processes, they are
communicating with each other directly, but actually in
the model, events are not directly delivered to its
destination process but first be accepted by the
coordinator. The coordinator will then store these events
in event pool. When an event is needed, coordinator will
retrieves the event and deliver it to its destination
process.

!e1 !e2?e1 ?e2

?e1 !e1 !e2?e2

coordinator

process A process B process C

!e1 !e2?e1 ?e2

?e1 !e1 !e2?e2

coordinator

?e1 !e1 !e2?e2

coordinator

process Aprocess A process Bprocess B process Cprocess C

Fig. 2 coordination model overview

2.2. Formal Definition
The formal definition of our coordination model is

defined by Buchi automata model. The system is
composed of processes with coordinator:

T ＝｛P1＋．．．＋Pn｝+ coordinator

The process Pi has behaviour as Buchi automaton:

P i = (Q i, q io, A i
in, A i

out, Δ i, F i)
where

Q i, q io : set of states and initial state
A i

in, A i
out : set of input and output alphabets

Δ i: set of transition relations including ε -move

The coordinator could be considered also a process, so

it is a Buchi automaton having the system’s all events its
input and output events:

 Pco = (Qco, q io, Aco, Δ co
in, Δ co

out)
where

Aco : set of alphabets of the system
Δ co

in, Δ co
out : transition relations triggered by

inputs and outputs of coordinator

The system’s total behaviour is the composition of

automata of processes and coordinator where the
transition is restricted that events have to be first received
and then re-send by coordinator. Detailed definition of the
system’s behaviour is skipped. Note that whether a
coordinated system behaves well or not is defined by
acceptance definition of Buchi automaton, which means
that a coordinated system works well when event
sequence can go through each process’s final states
infinitely often.

2.3. PROMELA model
For simulation and verification, we apply model

checking technique and choose SPIN as the model checker.
The coordination model has to be transformed to
PROMELA model which is the input of SPIN. The
transformation includes several parts:

1. Pre-definitions and type definitions.
2. Declarations of global variables: events and

channels.
3. Definition of processes including: declaration of

states, initialization, and transition executions for
sending and receiving events.

4. Definition of coordinator.
5. Definition of init process, including initialization

of variables and processes.

Note that we define channels for every event to store
events the coordinator received but not send yet. This
mechanism makes sure that the coordinator can only send
events that have been received before.

3. Progress of 2007
The complete works are as follows:
1. We have reviewed our model and make some

adjustment to complete the formal definition.
2. Simulation and verification of coordinator with

SPIN model checker. This is performed by
applying the technique to the Fresh Market Update
Service example.

4. Future Direction
Some more work is in progress including:

 Transformation tool construction: to construct
PROMELA model automatically.

 The approach of finding a appropriate coordinator
for a given component software system.

 Applying on component based software system
framework or service oriented architecture.

5. Publication in 2007
H. Lin and T. Katayama. Coordination and Verfication of
Software Components Orchestrated by Coordinator. (in
Japanese) FOSE2007. November 2007.

