
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
The Focus Problem : A Fundamental Issue in

Automatic Verification

Author(s) Slaney, John

Citation

Issue Date 2005-03-11

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8268

Rights

Description

JAIST 21世紀COEシンポジウム2005「検証進化可能電子

社会」 = JAIST 21st Century COE Symposium 2005

“Verifiable and Evolvable e-Society”, 開催

：2005年3月10日～11日, 開催場所：石川ハイテク交流

センター, Technical session 1 <Logic and

Verification>

The Focus Problem: A Fundamental
Issue in Automatic Verification

John Slaney

John.Slaney@nicta.com.au

The Focus Problem – p.1/17

Outline

Background

automatic proof search

the focus problem

an example

The Soft-SCOTT algorithm

the SCOTT project

using soft constraints

Experimental results

some algebraic problems

the set theory example

Conclusion and future work

The Focus Problem – p.2/17

Automated deduction

The Focus Problem – p.3/17

Automated deduction

Show Γ � B. Two fundamental techniques.

The Focus Problem – p.3/17

Automated deduction

Show Γ � B. Two fundamental techniques.

1. Bottom-up methods:

〈A1, A2, B〉

(Γ)

The Focus Problem – p.3/17

Automated deduction

Show Γ � B. Two fundamental techniques.

1. Bottom-up methods:

〈A1, A2, B〉

(Γ)

Search in space of formulae to extend proof fragments.

The Focus Problem – p.3/17

Automated deduction

Show Γ � B. Two fundamental techniques.

1. Bottom-up methods:

〈A1, A2, B〉

(Γ)

Search in space of formulae to extend proof fragments.

2. Top-down methods:

∆1 � A1 . . . ∆k � Ak

Γ � B

The Focus Problem – p.3/17

Automated deduction

Show Γ � B. Two fundamental techniques.

1. Bottom-up methods:

〈A1, A2, B〉

(Γ)

Search in space of formulae to extend proof fragments.

2. Top-down methods:

∆1 � A1 . . . ∆k � Ak

Γ � B

Search in space of sequents for provable subgoals.

The Focus Problem – p.3/17

The Given Clause Loop

The Focus Problem – p.4/17

The Given Clause Loop

set of
support

usable list

The Focus Problem – p.4/17

The Given Clause Loop

set of
support

usable list

�

����
given

clause

� �

The Focus Problem – p.4/17

The Given Clause Loop

set of
support

usable list

�

����
given

clause

� �

��

���

����
����

����
consequences

���

� � �

The Focus Problem – p.4/17

The Given Clause Loop

set of
support

usable list

�

����
given

clause

� �

��

���

����
����

����
consequences

���

� � �

filters

��

The Focus Problem – p.4/17

Application of Automatic Deduction

The Focus Problem – p.5/17

Application of Automatic Deduction

Software certification
First order provers now powerful enough to be used for

software certification in industry

SafeLogic (Sweden)

Escher Technologies (UK) “Perfect Developer”

NASA (USA) using SETHEO and other provers

The Focus Problem – p.5/17

Application of Automatic Deduction

Software certification
First order provers now powerful enough to be used for

software certification in industry

SafeLogic (Sweden)

Escher Technologies (UK) “Perfect Developer”

NASA (USA) using SETHEO and other provers

General technique

Use e.g. Hoare to reduce to small proof obligations

Prove these without human intervention

Require extensions e.g. for numbers

Most are easy, a few are hard

The Focus Problem – p.5/17

The Focus Problem (Wos)

The Focus Problem – p.6/17

The Focus Problem (Wos)

A difficulty
Many proof obligations have:

Short and simple proofs

Hundreds or thousands of (irrelevant) assumptions

The Focus Problem – p.6/17

The Focus Problem (Wos)

A difficulty
Many proof obligations have:

Short and simple proofs

Hundreds or thousands of (irrelevant) assumptions

How to choose the relevant ones?
Fundamental open problem in theorem proving

The Focus Problem – p.6/17

The Focus Problem (Wos)

A difficulty
Many proof obligations have:

Short and simple proofs

Hundreds or thousands of (irrelevant) assumptions

How to choose the relevant ones?
Fundamental open problem in theorem proving

Sources:

John Harrison (INTEL)
David Crocker (Escher)
Bernd Fischer (NASA)

The Focus Problem – p.6/17

Example (not from verification)

The Focus Problem – p.7/17

Example (not from verification)

Virtual set theory

The Focus Problem – p.7/17

Example (not from verification)

Virtual set theory

Simple language (4 predicates, 7 function symbols)

33 axioms

Formulated without equality

The Focus Problem – p.7/17

Example (not from verification)

Virtual set theory

Simple language (4 predicates, 7 function symbols)

33 axioms

Formulated without equality

Require many trivial theorems

∩ and ∪ idempotent, commutative, associative

set equality is transitive

∅ ∪ x = x

etc.

The Focus Problem – p.7/17

Example (not from verification)

Virtual set theory

Simple language (4 predicates, 7 function symbols)

33 axioms

Formulated without equality

Require many trivial theorems

∩ and ∪ idempotent, commutative, associative

set equality is transitive

∅ ∪ x = x

etc.

Exhibits focus problem
Simple examples e.g. x ∩ y = y ∩ x too hard for OTTER

The Focus Problem – p.7/17

Results

plain OTTER without any guidance

topic focus OTTER with term weighting to make it prefer clauses

about ∩ to clauses about ∪ or ∅ etc

formula focus OTTER with topic focus plus a weighting scheme to

make it prefer clauses containing actual subterms of the goal

x ∩ y = y ∩ x x ∩ y ⊆ y ∩ x

plain topic formula plain topic formula

iterations — — 128 766 350 66

clauses generated — — 1729 12742 6593 1018

time (seconds) — — 0.2 4.4 1.3 0.1

The Focus Problem – p.8/17

False Preference Strategy

The Focus Problem – p.9/17

False Preference Strategy

1. Suppose S is a set of clauses all true in a model M .

The Focus Problem – p.9/17

False Preference Strategy

1. Suppose S is a set of clauses all true in a model M .

2. Suppose c is a clause inconsistent with S.

The Focus Problem – p.9/17

False Preference Strategy

1. Suppose S is a set of clauses all true in a model M .

2. Suppose c is a clause inconsistent with S.

3. Then there are proofs of a contradiction from S and c together,

and c occurs in all of them.

The Focus Problem – p.9/17

False Preference Strategy

1. Suppose S is a set of clauses all true in a model M .

2. Suppose c is a clause inconsistent with S.

3. Then there are proofs of a contradiction from S and c together,

and c occurs in all of them.

4. So if M makes most of the usable list true, and c is in the set of

support, it is good to take c as the next given clause.

The Focus Problem – p.9/17

False Preference Strategy

1. Suppose S is a set of clauses all true in a model M .

2. Suppose c is a clause inconsistent with S.

3. Then there are proofs of a contradiction from S and c together,

and c occurs in all of them.

4. So if M makes most of the usable list true, and c is in the set of

support, it is good to take c as the next given clause.

In fact we don’t know whether c is inconsistent with S, but

if we choose a clause that is false in M we have a better
chance than if we choose arbitrarily.

The Focus Problem – p.9/17

SCOTT Architecture

PROVER

problem

�

�

proof

The Focus Problem – p.10/17

SCOTT Architecture

PROVER

problem

�

�

proof

TESTER

�

�

clause

label

�
�

�
�theory

�
��

�
�

�
�model

�
��

The Focus Problem – p.10/17

SCOTT Architecture

PROVER

problem

�

�

proof

TESTER

�

�

clause

label

�
�

�
�theory

�
��

�
�

�
�model

�
��

MODELLER
�

�
theory′

model′

The Focus Problem – p.10/17

History of SCOTT

The Focus Problem – p.11/17

History of SCOTT

First phase 1991–3
Single model used to constrain the logical inferences

Incomplete: many proofs missed

Fragile: sensitive to the order of clauses

The Focus Problem – p.11/17

History of SCOTT

First phase 1991–3
Single model used to constrain the logical inferences

Incomplete: many proofs missed

Fragile: sensitive to the order of clauses

Second phase 1997–2001
Multiple models used for false preference strategy

Complete and relatively robust

Very slow: often minutes for a few clauses

The Focus Problem – p.11/17

History of SCOTT

First phase 1991–3
Single model used to constrain the logical inferences

Incomplete: many proofs missed

Fragile: sensitive to the order of clauses

Second phase 1997–2001
Multiple models used for false preference strategy

Complete and relatively robust

Very slow: often minutes for a few clauses

Third phase 2003–2004
Single approximate model instead of many exact ones.

The Focus Problem – p.11/17

Soft Constraints

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

Soft constraints may fail: define what is a good solution

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

Soft constraints may fail: define what is a good solution

MAX-CSP: maximise the number of soft constraints satisfied

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

Soft constraints may fail: define what is a good solution

MAX-CSP: maximise the number of soft constraints satisfied

For SCOTT, treat any initially usable clauses as hard and all
later activated clauses as soft

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

Soft constraints may fail: define what is a good solution

MAX-CSP: maximise the number of soft constraints satisfied

For SCOTT, treat any initially usable clauses as hard and all
later activated clauses as soft

Gives an approximate model of all of the usable list rather than
an exact model of just part of it

The Focus Problem – p.12/17

Soft Constraints

Hard constraints must hold: define what counts as a solution

Soft constraints may fail: define what is a good solution

MAX-CSP: maximise the number of soft constraints satisfied

For SCOTT, treat any initially usable clauses as hard and all
later activated clauses as soft

Gives an approximate model of all of the usable list rather than
an exact model of just part of it

Gains speed because only one model, and robustness
because all usable clauses modelled together regardless of
activation order

The Focus Problem – p.12/17

Implementation

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

Depth-first branch and bound for soft constraints

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

Depth-first branch and bound for soft constraints

Cutoff to force termination (and speed)

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

Depth-first branch and bound for soft constraints

Cutoff to force termination (and speed)

Big issue: tradeoff

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

Depth-first branch and bound for soft constraints

Cutoff to force termination (and speed)

Big issue: tradeoff

Model search versus proof search

The Focus Problem – p.13/17

Implementation

Underlying theorem prover OTTER (McCune)

Existing high-performance prover

Changed as little as possible

Constraint solver FINDER

Reasonably fast for finding small models

Depth-first branch and bound for soft constraints

Cutoff to force termination (and speed)

Big issue: tradeoff

Model search versus proof search

Time in model generator versus quality of guidance

The Focus Problem – p.13/17

Example 1: GRP200-4

The Focus Problem – p.14/17

Example 1: GRP200-4

Problem
In a loop, ∀xyz[(x(yz))x = (xy)(zx)] implies ((ab)c)b = a(b(cb))

The Focus Problem – p.14/17

Example 1: GRP200-4

Problem
In a loop, ∀xyz[(x(yz))x = (xy)(zx)] implies ((ab)c)b = a(b(cb))

Statistics
with models without

Input clauses 20 20

Clauses generated 3149 397803

Clauses kept 1649 30179

Clauses given 57 587

Clauses in proof 36 —

Models generated 13 0

Time 4.28 sec 600.65 sec

The Focus Problem – p.14/17

Example 2: FLD049-4

The Focus Problem – p.15/17

Example 2: FLD049-4

Problem
In a field, for nonzero b and d, if ab−1 = cd−1 then ad = bc

The Focus Problem – p.15/17

Example 2: FLD049-4

Problem
In a field, for nonzero b and d, if ab−1 = cd−1 then ad = bc

Statistics
with models without models

Input clauses 38 (61) 38 (61)

Clauses generated 56831 129125

Clauses kept 27071 21709

Clauses given 184 249

Clauses in proof 25 25

Models generated 142 0

Time 417.44 sec 3.01 sec

The Focus Problem – p.15/17

Results on set theory problem

x ∩ y = y ∩ x x ∩ y ⊆ y ∩ x

without guidance plain topic formula plain topic formula

iterations — — 128 766 350 66

clauses generated — — 1729 12742 6593 1018

time (seconds) — — 0.2 4.4 1.3 0.1

x ∩ y = y ∩ x x ∩ y ⊆ y ∩ x

with guidance plain topic formula plain topic formula

iterations — 3009 169 496 241 85

clauses generated — 80239 2430 9576 3520 1426

time (seconds) — 90.0 3.2 6.7 2.4 0.6

The Focus Problem – p.16/17

Conclusions and Future Work

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

Improvement not yet dramatic

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

Improvement not yet dramatic

To Do:

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

Improvement not yet dramatic

To Do:

Large cardinality soft constraints (local search?)

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

Improvement not yet dramatic

To Do:

Large cardinality soft constraints (local search?)

Better underlying prover (Vampire?)

The Focus Problem – p.17/17

Conclusions and Future Work

Achieved:

New theorem prover guided by soft models
More robust than SCOTT-1
Faster than SCOTT-2 – SCOTT-5

Reasonable performance in CASC 2004

But:

Syntax/semantics tradeoff still a big issue

Improvement not yet dramatic

To Do:

Large cardinality soft constraints (local search?)

Better underlying prover (Vampire?)

Applications (software certification?)

The Focus Problem – p.17/17

