
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Modeling, Specification, and Verification of

QLOCK in CafeOBJ

Author(s) FUTATSUGI, Kokichi

Citation

Issue Date 2009-03-12

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8279

Rights

Description

6th VERITE : JAIST/TRUST-AIST/CVS joint workshop

on VERIfication Technologyでの発表資料, 開催：3月

12日～13日, 開催場所：JAIST 田町サテライトキャン

パス2階多目的室2

1

Modeling, Specification, and
Verification of QLOCK in CafeOBJ

FUTATSUGI, Kokichi
JAIST

AIST/JAISTworkshop090312
 2

Introduction

  Give an overview of modeling, specification, and
verification in CafeOBJ.

  Describe an attempt of combining search and
inference in proof scores of CafeOBJ by using a
QLOCK example.

  This can be seen as an example of combining
behavioral specs and rewriting specs.

  Methodology sketched seems to have a potential
of becoming a powerful verification technique

2

Modeling, Specifying, and Verifying (MSV) 
in CafeOBJ with Proof Scores

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2.  Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3.  Write proof scores for properties to be verified

 3
AIST/JAISTworkshop090312

MSV with proof scores in CafeOBJ

Understand problem
and construct model

Write system spec SPsys and
Write property spec SPprop

Construct proof score of
SPprop w.r.t. SPsys

 4
AIST/JAISTworkshop090312

3

An example: mutual exclusion protocol

Assume that many agents (or processes) are
competing for a common equipment, but at
any moment of time only one agent can use
the equipment. That is, the agents are
mutually excluded in using the equipment. A
protocol (mechanism or algorithm) which can
achieve the mutual exclusion is called “mutual
exclusion protocol”.

 5
AIST/JAISTworkshop090312

QLOCK (locking with queue):  
a mutual exclusion protocol

Remainder Section

Critical Section

Is i at the top
of the queue?

cs

Put its name i into the
bottom of the queue

Remove/get the
top of the queue

wt

rm
true

false

Each agent i is executing: : atomic action

 6
AIST/JAISTworkshop090312

4

QLOCK: basic assumptions/characteristics

  There is only one queue and all agents/processes
share the queue.

  Any basic action on the queue is inseparable (or
atomic). That is, when any action is executed on the
queue, no other action can be executed until the
current action is finished.

  There may be unbounded number of agents.
  In the initial state, every agents are in the remainder

section (or at the label rm), and the queue is empty.

The property to be shown is that at most one agent
is in the critical section (or at the label cs) at any
moment.

 7
AIST/JAISTworkshop090312

Global (or macro) view of QLOCK

… k j i

i

k

j

is i?

is j?
put

get

get

…

 : queue

 : agents
put

 8
AIST/JAISTworkshop090312

5

Modeling QLOCK (via Signature Diagram)  
with OTS (Observational Transition System)

…
k j i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init
 9

AIST/JAISTworkshop090312

Signature for QLOCKwithOTS

  Sys is the sort for representing the state space of the
system.

  Pid is the sort for the set of agent/process names.
  Label is the sort for the set of labels; i.e. {rm, wt, cs}.
  Queue is the sort for the queues of Pid
  pc (program counter) is an observer returning a label where

each agent resides.
  queue is an observer returning the current value of the

waiting queue of Pid.
  want is an action for agent i of putting its name/id into the

queue.
  try is an action for agent i of checking whether its name/id

is at the top of the queue.
  exit is an action for agent i of removing/getting its name/id

from the top of the queue.
 10

AIST/JAISTworkshop090312

6

Observation declaration

action declaration

visible sort declaration

Hiden sort declaration

CafeOBJ signature for QLOCKwithOTS

-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue

-- actions
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

 11
AIST/JAISTworkshop090312

Schematic signature diagram for OTS

Hidden Sort

(State Space)

Visible Sort

(Data)

．．．

．．．

Action

(method)

Action

(method)

Observation

(attribute)

Observation

(attribute)

Visible Sorts

(Data)

Visible Sorts

(Data)

Visible Sort

(Data)

．．．

VSs

HSs
Coherent

 12
AIST/JAISTworkshop090312

init

7

QLOCK using operators  
in the CafeOBJ module QUEUE

Remainder Section

Critical Section

top(queue)=i

cs

put(queue,i)

get(queue)

wt

rm
true

false

Each agent i is executing: : atomic action

want

try

exit

 13
AIST/JAISTworkshop090312

CafeOBJ Codes

 14
AIST/JAISTworkshop090312

qlock.mod

8

(_ =*= _) is congruent for OTS

The binary relation (S1:Sys =*= S2:Sys) is defined to
be true iff S1 and S2 have the same observation values.

OTS style of defining the possible changes of the values of
obervations is characterized by the equations of the form:
 o(a(s,d),d’)
= ...o1(s,d1)...o2(s,d2)...on(s,dn)...
for appropriate data values of d,d’,d1,d2,...,dn .

It can be shown that OTS style guarantees
that (_ =*= _) is congruent with respect
to all actions.

 15
AIST/JAISTworkshop090312

RQLOCK (set of reachable states) of
OTSQLOCK (OTS defined by the module QLOCK)

-- any initial state
 op init : -> Sys
-- actions
 bop want : Sys Pid -> Sys
 bop try : Sys Pid -> Sys
 bop exit : Sys Pid -> Sys

Signature determining RQLOCK

RQLOCK = {init} ∪
 {want(s,i)|s∈RQLOCK,i∈Pid} ∪
 {try(s,i) |s∈RQLOCK,i∈Pid} ∪
 {exit(s,i)|s∈RQLOCK,i∈Pid}

Recursive definition of RQLOCK

 16
AIST/JAISTworkshop090312

9

Mutual exclusion property  
as an invariant

mod INV1 {
 pr(QLOCK)
-- declare a predicate to verify to be an invariant
 pred inv1 : Sys Pid Pid
-- CafeOBJ variables
 var S : Sys .
 vars I J : Pid .
-- define inv1 to be the mutual exclusion property
 eq inv1(S,I,J)
 = (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .
}

INV1 |= ∀s∈RQLOCK∀i,j∈Pid.inv1(s,i,j)
Formulation of proof goal for mutual exclusion property

invariants-0.mod

 17
AIST/JAISTworkshop090312

AIST/JAISTworkshop090312
 18

qlockTrans.mod

mexStarve.mod

CafeOBJ Codes

10

Search command of CafeOBJ

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:
 - ANY is any sort (that is, the command is available for any sort)
 - NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or
rewritten), via more than 0 times transitions, to some term which
matches to t2. Otherwise, it returns false . Possible
transitions/rewritings are searched in breadth first fashion. n is
upper bound of the depth of the search, and m is upper bound of
the number of terms which match to t2. If either of the depth of
the search or the number of the matched terms reaches to the
upper bound, the search stops.

 19
AIST/JAISTworkshop090312

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2

…
 …

 20
AIST/JAISTworkshop090312

11

suchThat condition

pred1(t2) is a predicate about t2 and can
refer to the variables which appear in t2.
pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

searchCommand.mod

 21
AIST/JAISTworkshop090312

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2 and
satisfy pred(t2)

…
 …

 22
AIST/JAISTworkshop090312

12

AIST/JAISTworkshop090312
 23

proofBySearchWithStateRed.mod

stateRedRulePS.mod

CafeOBJ Codes

withStateEq predicate

t1 =(m,n)=>* t2
 withStateEq pred2(S1:Sort,S2:Sort)

searchCommand.mod

pred2(S1:Sort,S2:Sort) is a predicate of two arguments
with the same (or greater) sort of t2.
pred2(S1:Sort,S2:Sort) is used to determine a newly
searched term (a state configuration) is already searched one.
If this withStateEq predicate is not given, the term identity
binary predicate is used for the purpose.

t1 =(m,n)=>* t2 suchThat pred1(t2)
 withStateEq pred2(S1:Sort,S2:Sort)

Using both of suchTant and withStateEq is also possible

 24
AIST/JAISTworkshop090312

13

t1 =(m,n)=>* t2
withStateEq pred2(S1:Sort,S2:Sort)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

…
 …

m : the number of
 the searched terms

which match to t2

: pred2 = true

 25
AIST/JAISTworkshop090312

AIST/JAISTworkshop090312
 26

qlockObEq.mod

proofBySearchWithObEq.mod

CafeOBJ Codes

14

Induction scheme  
induced by the structure of RQLOCK

mx(s) =def ∀i,j∈Pid.inv1(s,i,j)

{ INV1 |= mx(init),
 INV1∪{mx(s)=true} |= ∀k . mx(want(s,k)),
 INV1∪{mx(s)=true} |= ∀k . mx(try(s,k)),
 INV1∪{mx(s)=true} |= ∀k . mx(exit(s,k)) }
 implies
 INV1 |= ∀s∈RQLOCK.mx(s)

 27
AIST/JAISTworkshop090312

CafeOBJ Codes

 28
AIST/JAISTworkshop090312

inv.mod

proofScore.mod

proofByPS.mod

15

AIST/JAISTworkshop090312
 29

Tentative Remarks

  OTS style definition of transitions directly
corresponds to rewriting style definition.

  Search is sometimes quite effective and easy to use
not only in falsification but also in verification.

  OTS style of equations support fast and sound
executions/reductions of proof scores. They are
sufficiently fast; usually much faster than search.

  Developing proof scores requires and gives deep
understanding of problems.

  Proper combination of search and inference (with
proof score) can consist transparent and effective
verification.

AIST/JAISTworkshop090312
 30

Enjoy writing specs and proof scores!

Agitation

