## **JAIST Repository**

https://dspace.jaist.ac.jp/

| Title        | KBO Orientability                                                                                                                        |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Author(s)    | Zankl, Harald; Hirokawa, Nao; Middeldorp, Aart                                                                                           |  |
| Citation     |                                                                                                                                          |  |
| Issue Date   | 2009-03-12                                                                                                                               |  |
| Туре         | Presentation                                                                                                                             |  |
| Text version | publisher                                                                                                                                |  |
| URL          | http://hdl.handle.net/10119/8283                                                                                                         |  |
| Rights       |                                                                                                                                          |  |
| Description  | 6th VERITE : JAIST/TRUST-AIST/CVS joint workshop<br>on VERIfication Technologyでの発表資料,開催:3月<br>12日~13日,開催場所:JAIST 田町サテライトキャン<br>パス2階多目的室2 |  |



Japan Advanced Institute of Science and Technology

## **KBO** Orientability

Harald Zankl<sup>‡</sup> <u>Nao Hirokawa</u><sup>†</sup> Aart Middeldorp<sup>‡</sup>

† Japan Advanced Institute of Science and Technology
 ‡ University of Innsbruck

## **Term Rewriting**

#### DEFINITION

- pair of terms  $l \to r$  is rewrite rule if  $l \notin \mathcal{V} \land \mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation)  $s \to_{\mathcal{R}} t$  if  $\exists l \to r \in \mathcal{R}$ , context C, substitution  $\sigma$ .  $s = C[l\sigma] \land t = C[r\sigma]$

EXAMPLE

TRS  $\mathcal{R}$ 

| $x + 0 \rightarrow x$               | $x + s(y) \to s(x + y)$                 |
|-------------------------------------|-----------------------------------------|
| x 	imes <b>0</b> ightarrow <b>0</b> | $x\times \mathbf{s}(y) \to x\times y+x$ |

rewriting

$$\begin{split} \mathsf{s}(0) \times \mathsf{s}(0) &\to_{\mathcal{R}} \mathsf{s}(0) \times \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{0} + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{s}(0 + \mathsf{0}) \\ &\to_{\mathcal{R}} \mathsf{s}(0) \quad \text{terminated} \end{split}$$

## Termination

DEFINITION

TRS  $\mathcal{R}$  is terminating if there is no infinite rewrite sequence  $t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$ 

QUESTION

how to prove termination?

- Knuth-Bendix order (KBO) RP.
  - introduced by Knuth and Bendix, 1970
  - best studied termination methods
  - great success in theorem provers (Waldmeister, Vampire, ...)

## **Knuth-Bendix Orders**

#### DEFINITION

- $\bullet~{\rm precedence}>{\rm is~proper}~{\rm order}~{\rm on}~{\rm function}~{\rm symbols}~{\cal F}$
- weight function  $(w, w_0)$  is pair in  $\mathbb{R}_{\geq 0}^{\mathcal{F}} \times \mathbb{R}_{\geq 0}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \in \mathcal{V} \\ w(f) + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• weight function  $(w, w_0)$  is admissible for precedence > if

$$w(f) > 0$$
 or  $f \geqslant g$ 

for all unary functions f and all functions g

#### DEFINITION

Knuth-Bendix order  $>_{\text{kbo}}$  on terms  $\mathcal{T}(\mathcal{F}, \mathcal{V})$ :  $s >_{\text{kbo}} t$  if  $|s|_x \ge |t|_x$  for all  $x \in \mathcal{V}$  and either

- w(s) > w(t), or
- $\bullet \ w(s) = w(t) \text{ and }$ 
  - $s = f^n(t)$  and  $t \in \mathcal{V}$  for some unary f and  $n \ge 1$ ; or
  - $s = f(s_1, ..., s_{i-1}, s_i, ..., s_n)$ ,  $t = f(s_1, ..., s_{i-1}, t_i, ..., t_n)$ , and  $s_i >_{\text{kbo}} t_i$ ; or
  - $s = f(s_1, \ldots, s_n)$ ,  $t = g(t_1, \ldots, t_m)$ , and f > g

#### DEFINITION

let  $X \subseteq \mathbb{R}_{\geq 0}$ . TRS  $\mathcal{R}$  is KBO<sub>X</sub> terminating if

•  $\exists$  precedence >

•  $\exists$  admissible weight function  $(w, w_0) \in X^{\mathcal{F}} \times X$ 

such that  $l >_{\text{kbo}} r$  for all  $l \to r \in \mathcal{R}$ 

# $\frac{\text{THEOREM}}{\text{TRS is terminating if it is KBO_N terminating}}$

### <u>**THEOREM</u>** Knuth and Bendix, 1970 TRS is terminating if it is $KBO_{\mathbb{N}}$ terminating</u>

<u>THEOREM</u> Dershowitz, 1979 TRS is terminating if it is  $KBO_{\mathbb{R}_{\geq 0}}$  terminating

<u>THEOREM</u> Dick, Kalmus, and Martin, 1990  $KBO_{\mathbb{R}_{\geq 0}}$  termination is decidable

THEOREM Korovin and Voronkov, 2001, 2003

- TRS is  $KBO_{\mathbb{N}}$  terminating  $\iff$  it is  $KBO_{\mathbb{R}_{\geq 0}}$  terminating
- $KBO_{\mathbb{R}_{\geq 0}}$  termination is decidable within polynomial time

 $\frac{\text{THEOREM}}{\text{KBO}_{\{0,1,\ldots,B\}}} \text{ termination } (B \in \mathbb{N}) \text{ can reduce to SAT and PBC}$ 

## Main Result

Theorem

 $\mathcal{R}$  is  $KBO_{\mathbb{N}}$  terminating  $\iff \mathcal{R}$  is  $KBO_{\{0,1,...,B\}}$  terminating where,  $B = n^{2^{n+1}}$ 

COROLLARY

Zankl and Middeldorp's SAT and PBC encodings are complete for this B

## Summary

let  $\mathcal R$  be TRS of size  $n = \sum_{l \to r \in \mathcal R} (|l| + |r|)$  and  $\pmb B = n^{2^{n+1}}$ 

• theoretical interest of decidability issue is more or less closed

FUTURE WORK

find optimal B