JAIST Repository

https://dspace.jaist.ac.jp/

Title	Simulation Theorems in Multi-valued Modalµ– Calculus
Author(s)	Nishizawa, Koki; Kameyama, Yukiyoshi; Kinoshita, Yoshiki
Citation	
Issue Date	2007-03-06
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8292
Rights	
Description	4th VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication TEchnologyでの発表資料,開催 : 2007年3月6日~3月7日,開催場所:北陸先端科学技 術大学院大学・知識講義棟2階中講義室

Japan Advanced Institute of Science and Technology

Simulation Theorems in Multi-valued Modal μ -Calculus

<u>Koki Nishizawa</u> (AIST/CVS) Yukiyoshi Kameyama (Univ. of Tsukuba) Yoshiki Kinoshita (AIST/CVS)

4th VERITE March 6, 2007

Motivation

"Refinement of Models" in Model Checking

- Model Checking = Modeling + Checking
- Tatsumi and Kameyama tried to get minimal one among models checked successfully.
- They needed a number of model checking.

They wanted to perform a number of model checking all at once.

Superposition of Models

From 2={T,F} to general L

- Transition System, Kripke Model, Simulation
- State semantics of Modal μ -Calculus, Simulation Theorem
 - De Morgan algebra [Tatsumi-Kameyama 2006]
 - Complete Heyting algebra [This talk]
- Path semantics of Linear Modal μ -calculus, Simulation Theorem
 - Complete Heyting algebra + condition [This talk]

Why complete Heyting algebra ?

- Sets and binary relations form a category.
- L must be a complete Heyting algebra for sets and binary L-valued relations to form a category [Johnstone 2002].

Complete Heyting algebra

- is $(L, \leq, \vee, \wedge, \Rightarrow)$ satisfying the following.
- 1. (L, \leq) is a partially ordered set.
- 2. An arbitrary subset of L has the join (so, also the meet).
- 3. a∧b≦c ⇔ b≦a⇒c

Example:

2, 2×2 , ..., 2^n , ...

The open sets of a topological space

Category of L-valued relations

- Objects are sets
- Arrows from A to B are functions from $A \times B$ to L

Composition: L=2 and L= 2×2

L-valued Transition System

L-valued Kripke model

consists of the following L-relations.

Transition

L-valued State Semantics

Modal μ -Calculus $\psi ::= p |\perp| \top | \psi \lor \psi | \psi \land \psi | \psi \Rightarrow \psi$ $| x | \mu x. \psi | \nu x. \psi | \diamondsuit \psi | \Box \psi$

K,s,V
$$\vDash \psi$$
 is an element of L

- Natural definition (no details in this talk)
- Intuitionistic version

 $\mathsf{K},\mathsf{s},\mathsf{V}\vDash\psi\quad\neq\quad\mathsf{K},\mathsf{s},\mathsf{V}\vDash(\psi\!\Rightarrow\!\bot)\!\Rightarrow\!\bot$

Simulation Theorem

- For any simulation,
- if the abstract model satisfies ψ ,
- then the concrete model satisfies ψ .
 - When ψ has no \Box in the negative positions and no \diamondsuit in the positive positions
 - Example: $\nu X.P \land \Box X$
 - "P always globally holds".

This theorem holds in L-valued context.

L-valued Path Semantics

Linear Modal μ -Calculus (generalization of LTL) $\psi ::= p |\perp| T | \psi \lor \psi | \psi \land \psi | \psi \Rightarrow \psi$ $| x | \mu x. \psi | \nu x. \psi | Next \psi$

K, π , V $\vDash \psi$ is defined for a path π .

2-valued Path Semantics

Path Semantics = Path Construction + State Semantics

L-valued Path Semantics

L-valued Path Semantics

Is simulation lifted ?

Is simulation lifted ?

- No. We found a counterexample.
- We gave a sufficient condition:
 - A simulation is lifted if L is the open sets of a topological space and closed for countable intersections.
 - Examples: power sets, Nat $\cup \{\omega\}$
- Under the condition, the simulation theorem for path semantics holds.

Conclusion

- Complete Heyting algebra valued
 - Transition System, Kripke Model, Simulation
 - State Semantics for Modal μ -Calculus, Simulation Theorem
- Under our new condition
 - Path Semantics for Linear Modal μ -Calculus, Simulation Theorem

Future Work

• To relate this work to fuzzy relations or probabilistic relations