Title	法令文の中の不整合の検出
Author（s）	東条，敏
Citation	
Issue Date	2007－03－07
Type	Present at i on
Text version	publ i sher
URL	ht t p：／／hdl ．handl e．net／10119／8295
Rights	4t h VERI TE ：JAI ST／TRUST－AI ST／CVS j oi nt wor kshop on VERI fi cat i on TEchnol ogy での発表資料，開催 ：2007年3月6日～3月7日，開催場所 ：北陸先端科学技 術大学院大学•知識講義棟 2 階中講義室
Description	

法令文の中の不整合の検出

東条 敏

1．否定（ᄀ）の不整合
2． $\operatorname{or}(\vee)$ の不整合
3．含意 (\rightarrow) の不整合

Conceptual conflict

cf. Hagiwara (JURIX ‘06)

$$
\begin{aligned}
& \text { guilty } \wedge \neg \text { guilty } \vdash \perp \\
& \text { guilty } \wedge \text { innocent } \vdash \perp \\
& \text { possible } \wedge \text { impossible } \vdash \perp \\
& \text { human } \wedge \text { car } \vdash \perp
\end{aligned}
$$

Assumptive facts

$$
\begin{aligned}
& P_{1} \leftarrow Q_{1}, Q_{2}, Q_{3} . \\
& \neg P_{1} \leftarrow Q_{2}, Q_{3}, Q_{4} . \\
& \\
& P_{2} \leftarrow Q_{1}, Q_{2}, Q_{3} . \\
& \neg P_{2} \leftarrow Q_{1}, Q_{2} . \\
& \\
& P_{3} \leftarrow Q_{1}, Q_{2}, \neg Q_{3} . \\
& \neg P_{3} \leftarrow Q_{1}, Q_{2}, Q_{3} . \\
& \\
& \forall x P_{4} \leftarrow Q_{1}, Q_{2}, Q_{3}(x) . \\
& \neg P_{4} \leftarrow Q_{1}, Q_{2}, Q_{3}(a) .
\end{aligned}
$$

Condito Sine Qua Non

"A caused B" if "if A had not happened, B would not have happened." (J. Glaser, 1858)
1 . Lethal dose is 100 mg .
2. A put 60 mg .
3. B put 60 mg .
4. If A had not put $60 \mathrm{mg}, C$ would not have died. 5. A is culpable for the death of C.

Condito Sine Qua Non - cont'd

1. Lethal dose is 100 mg .
2. A put 120 mg .
3. B put 120 mg .
4. Even though A had not put $120 \mathrm{mg}, C$ would have died.
5. A is not culpable for the death of C ??

Occam's razor

The more reasons are employed, the less plausible the result becomes.
\Downarrow
We need to find the minimal explanation. (Economy of reasoning)

Which is the minimal explation?

- $A_{120 \mathrm{mg}}$
- $B_{120 \mathrm{mg}}$
- $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$
- $A_{120 \mathrm{mg}}$ or $B_{120 \mathrm{mg}}$

Minimal explanation

- $A_{120 \mathrm{mg}}$ implies $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$.

Minimal explanation

- $A_{120 \mathrm{mg}}$ implies $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$.
- If $A_{120 \mathrm{mg}}$ caused $C_{d i e d}$, then $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$ caused $C_{\text {died }}$?

Minimal explanation

- $A_{120 \mathrm{mg}}$ implies $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$.
- If $A_{120 \mathrm{mg}}$ caused $C_{d i e d}$, then $A_{120 \mathrm{mg}} \vee B_{120 \mathrm{mg}}$ caused $C_{\text {died }}$?
- If yes, then $A_{120 m g} \vee B_{120 m g} \vee D_{120 m g} \vee E_{120 m g}$ caused $C_{d i e d}$. The cause is obviously too weakened.

Formalization in Abduction
B Background theory
C Set of facts
O Observation

$$
B \cup C \models O
$$

In our case,
B Known rules
C Possible causes
O Result

$$
\left\{A_{120 m g} \supset C_{\text {died }}\right\} \cup\left\{A_{120 m g}\right\} \models\left\{C_{\text {died }}\right\}
$$

(i) C.S.Q.N. by Belief Revision

$T * P$: revision of T by P, is the set of maximal consistent subsets of $T \cup P$ including P.

Ex.
$\{\alpha \supset \beta, \alpha\} *\{\neg \beta\}$ is either $\{\alpha \supset \beta, \neg \beta\}$ or $\{\alpha, \neg \beta\}$

First approximation: for any S in $B \cup\{C *\{\neg A\}\}, S \not \vDash O$ (unless A, not O), then A is a cause of O.
\Downarrow
In order to entrench B, we revise the above as: for any S in $C *\{B \cup\{\neg A\}\}, S \notin O$, then A is a cause of O. A is a critical cause if there is no A^{\prime} such that $A^{\prime} \models A$.

Example 1

$$
\left\{\begin{array}{l}
B=\left\{A_{120} \supset C_{d i e d}, B_{120} \supset C_{d i e d}\right\} \\
C_{1}=\left\{A_{120}, B_{120}\right\} \\
O=C_{\text {died }}
\end{array}\right.
$$

A_{120} is not a cause.

$$
\left\{\begin{array}{l}
B \cup \overline{C_{1}} \models C_{d i e d} \text { and } \\
C_{1} *\left(B \cup\left\{\neg A_{120}\right\}\right) \ni B \cup\left\{\neg A_{120}, B_{120}\right\} \\
\text { entails } C_{\text {died }} .
\end{array}\right.
$$

$A_{120} \vee B_{120}$ is a cause.

$$
\beta B \cup C_{1} \models C_{\text {died }} \text { and }
$$

$$
C_{1} *\left(B \cup\left\{\neg\left(\boldsymbol{A}_{120} \vee B_{120}\right)\right\}\right) \ni
$$

$$
B \cup\left\{\neg A_{120} \wedge \neg B_{120}\right\}
$$

$$
\text { does not entail } C_{\text {died }}
$$

Furthermore, $A_{120} \vee B_{120}$ is a critical cause.

Example 2

$$
\left\{\begin{array}{l}
B=\left\{A_{120} \supset C_{d i e d}, B_{120} \supset C_{d i e d}\right\} \\
C_{2}=\left\{A_{120} \vee B_{120}\right\} \\
O=C_{d i e d}
\end{array}\right.
$$

A_{120} is not a cause.

$$
\left\{\begin{array}{l}
B \cup \overline{C_{2}} \models C_{\text {died }} \text { and } \\
C_{2} *\left(B \cup\left\{\neg A_{120}\right\}\right) \ni B \cup\left\{\neg A_{120}, A_{120} \vee B_{120}\right\} \\
\text { entails } C_{\text {died }} .
\end{array}\right.
$$

$A_{120} \vee B_{120}$ is a cause.
$\int B \cup C_{2} \models C_{\text {died }}$ and $C_{2} *\left(B \cup\left\{\neg\left(A_{120} \vee B_{120}\right)\right\}\right) \ni$ $B \cup\left\{\neg A_{120} \wedge \neg B_{120}\right\}$ does not entail $C_{\text {died }}$.
Furthermore, $A_{120} \vee B_{120}$ is a critical cause.

Problems of C.S.Q.N.

Example 1 shows:

- A_{120} is not a cause though A should be blamed.
- $A_{120} \vee B_{120}$ is a cause.
- $A_{120} \vee B_{120}$ is a critical cause.

Exmaple 2 shows:

- A_{120} is not a cause.
- $A_{120} \vee B_{120}$ is a cause.
- $A_{120} \vee B_{120}$ is a critical cause.
\bullet But if A_{120} is a cause, $A_{120} \vee B_{120}$ is also a cause.
C.S.Q.N. does not satisfy Occam's razor.
(ii) Solution by Minimal Abduction
$\{B$ Background theory
H Abducibles (a set of propositional formulae)
O A propositional formula
$\boldsymbol{E}(\subseteq \boldsymbol{H})$ is an explanation iff
- $B \cup E \models O$ and $B \cup E \notin \perp$.
- E is minimal if for any $E^{\prime} \subset E, B \cup E^{\prime} \not \models O$.

Example 1 - revisited -
When $H=\left\{A_{120}, B_{120}\right\}$, the minimal explanations of O becomes $\left\{\left\{A_{120}\right\},\left\{B_{120}\right\}\right\}$. That is, either A_{120} or B_{120} is the minimal cause.
In other words, there are two minimal explanations.

Example 2 - revisited -
When $H=\left\{A_{120} \vee B_{120}\right\}$, the minimal explanations of O becomes $\left\{\left\{A_{120} \vee B_{120}\right\}\right\}$. That is, $A_{120} \vee B_{120}$ is the minimal cause.

Issue 1: Logical Implication and Causation

$$
\left.\begin{array}{cc}
A_{120} \wedge B_{120} \xrightarrow{\text { implies }} A_{120} \xrightarrow{\text { implies }} & \begin{array}{c}
A_{120} \vee B_{120} \\
\text { causes } \downarrow \\
\text { causes }
\end{array} \\
\stackrel{C}{C}
\end{array} \right\rvert\, \begin{gathered}
C^{*}
\end{gathered}
$$

In our case,

$$
A_{120} \supset_{\text {implies }}\left(A_{120} \vee B_{120}\right) \supset_{\text {causes }} C_{\text {died }}
$$

But

$$
A_{120} \not \supset C_{\text {died }}
$$

cf. Deduction theorem: $\alpha \vdash \beta \Longleftrightarrow \vdash(\alpha \supset \beta)$.

Issue 2: Scope of a predicate
(A or B) put 120 mg
VS.
(A put 120 mg) or (B put 120 mg)

Issue 2: Scope of a predicate
(A or B) put 120 mg
VS.
(A put 120 mg) or (B put 120 mg)
$K_{A}(\alpha \vee \beta) \not \supset K_{A} \alpha \vee K_{B} \boldsymbol{\beta}$

22

Issue 2: Scope of a predicate
(A or B) put 120 mg
vs.
(A put 120 mg) or (B put 120 mg)
$A \not \supset A \vee B \quad$ (substructural logic)

Summary

- Formalization of C.S.Q.N. to clarify its paradox.
- Minimal explanation, to distinguish between disjunction of causes and a disjunctive cause.

International Workshop on Juris-informatics Miyazaki, Japan
 June 2007

Satoshi Tojo
Ken Satoh
Katsumi Nitta

