
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Verification of Multi-Task Software

Author(s) Aoki, Toshiaki

Citation

Issue Date 2007-03-07

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8301

Rights

Description

4th VERITE : JAIST/TRUST-AIST/CVS joint workshop

on VERIfication TEchnologyでの発表資料, 開催

：2007年3月6日～3月7日, 開催場所：北陸先端科学技

術大学院大学・知識講義棟２階中講義室

Verification of MultiVerification of Multi--Task Task
SoftwareSoftware

Toshiaki AokiToshiaki Aoki
Research Center for Trustworthy eResearch Center for Trustworthy e--SocietySociety

Japan Advanced Institute of Science and TechnologyJapan Advanced Institute of Science and Technology

IntroductionIntroduction
Many formal verification techniques have been Many formal verification techniques have been
studies for a long time.studies for a long time.

Some of them are becoming matured so that it can be Some of them are becoming matured so that it can be
applied to practical software.applied to practical software.

We focus on the following formal verification We focus on the following formal verification
techniques.techniques.

Theorem ProvingTheorem Proving
interactively proving facts using inference rules based on
higher order logic.

Model CheckingModel Checking
automatically check behavior represented as finite states and
their transitions.

IntroductionIntroduction
We can not directly apply those techniques to
practical software development.

There are gaps between documents/products made
in the development and what they deal with.

We are working on bridging them.
Formalizing the document and products.
Customizing the verification techniques.

We are proposing verification methods in the
following two fields.

UML design models.UML design models.
MultiMulti--task software on RTOS.task software on RTOS.

MultiMulti--Task Software on RTOSTask Software on RTOS
RTOS is usually used for embedded software.RTOS is usually used for embedded software.
Embedded software on RTOS.Embedded software on RTOS.

multimulti--taskstasks
scheduling primitivesscheduling primitives

priorities, task communications, resource managements, interruptpriorities, task communications, resource managements, interrupt
handlers, etc.handlers, etc.

periodic executionperiodic execution
Analysis of such software behavior is very hard. Analysis of such software behavior is very hard.
Verifying behavior of software on RTOS by model Verifying behavior of software on RTOS by model
checking.checking.

We need deal with the scheduling primitives.We need deal with the scheduling primitives.
Precise analysis.Precise analysis.
Many false negatives cause if we do not take them into account.Many false negatives cause if we do not take them into account.

We need deal with periods to execute tasks.We need deal with periods to execute tasks.
realreal--time is complex.time is complex.
We do not need We do not need ‘‘realreal’’ time if we focus only periodic execution. time if we focus only periodic execution.

RTOS LibraryRTOS Library
We have proposed a method to verify behavior of tasks We have proposed a method to verify behavior of tasks
executed on RTOS which conforms to executed on RTOS which conforms to μμITRON ITRON
specification.specification.

We use Spin model checker.We use Spin model checker.
concurrent processesconcurrent processes

We have implemented a library for software on RTOS.We have implemented a library for software on RTOS.
The library emulates behavior of RTOS based on The library emulates behavior of RTOS based on μμITRON.ITRON.
Counter examples become long because they contain Counter examples become long because they contain
execution sequences of the library.execution sequences of the library.

We have Implemented a filter for removing those sequences We have Implemented a filter for removing those sequences
from the counter examples.from the counter examples.

Using the libraries, we can describe and verify task Using the libraries, we can describe and verify task
behavior with scheduling primitives of behavior with scheduling primitives of μμITRON.ITRON.

RTOS LibraryRTOS Library

while(1){
wai_sem(0,P1);
/* critical section */

printf("P1¥n");
sig_sem(0)}

while(1){
printf("P2¥n");}

while(1){
wai_sem(0,P3);
printf("P3¥n");

progress: sig_sem(0);
yield(P1)}

priority:1(high)priority:3(low) priority:2(mid)

RTOS library (μITRON RTOS emulator)

Model Checking target

Model Checker(Spin)
4: high(3):[wai_sem(0 ,2);now.turn=top();]
P3 high(3):[printf('P3¥n')]
28 high(3):[sig_sem(0);now.turn=top();]
30 high(3):[yield(0)]
32 low(2):[wai_sem(0,0);now.turn=top();]
34 high(3):[wai_sem(0,2);now.turn=top();]
<<<<<START OF CYCLE>>>>>
P2
36: mid(4):[printf('P2¥n')]

Priority Inversion Problem
is detected.

Counter Example

Counter Example Filter

RTOS LibraryRTOS Library
We do not have the overhead of the state space inserted We do not have the overhead of the state space inserted
by the library.by the library.

The calculation for scheduling tasks is done atomically.The calculation for scheduling tasks is done atomically.
The state space to check tasks depends on that of the tasks The state space to check tasks depends on that of the tasks
themselves.themselves.

We experimented our approach by typical examples We experimented our approach by typical examples
such as producersuch as producer--consumer and priority inversion consumer and priority inversion
problem.problem.

We are applying our approach to middleWe are applying our approach to middle--scale embedded scale embedded
software.software.

We are applying it to a car audio system.We are applying it to a car audio system.
Prizes.Prizes.

優秀論文賞優秀論文賞, Embedded System Symposium 2005., Embedded System Symposium 2005.
山下記念研究賞山下記念研究賞, 2006., 2006.

Periodic ExecutionPeriodic Execution

Tasks on RTOS are often executed Tasks on RTOS are often executed
periodically.periodically.

managing devices.managing devices.
guaranteeing their deadlines.guaranteeing their deadlines.

To guarantee the deadlines, many approaches To guarantee the deadlines, many approaches
such as scheduling theories are proposed.such as scheduling theories are proposed.

Resource managements are also important.Resource managements are also important.
We focus on state (We focus on state (in)consistencyin)consistency among modules.among modules.

State InconsistencyState Inconsistency
We constructed a design model of a CD/DVD player in a We constructed a design model of a CD/DVD player in a
joint research project with IPA/SEC.joint research project with IPA/SEC.

It is a typical design model constructed by an engineer who has It is a typical design model constructed by an engineer who has
been developing CD/DVD players.been developing CD/DVD players.

Inconsistency problems among states of modules.Inconsistency problems among states of modules.
It is important that the application and driver correctly grasp It is important that the application and driver correctly grasp the the
state of the drive.state of the drive.
The states are inconsistent if they are not equal to each other The states are inconsistent if they are not equal to each other in in
some senses.some senses.

Drive Driver Application
state state state

getState()return state

State InconsistencyState Inconsistency
Many definitions of inconsistencies among states can be Many definitions of inconsistencies among states can be
considered based on equalities of those states.considered based on equalities of those states.

Skip of a state: The application and driver can not refer to a Skip of a state: The application and driver can not refer to a
particular state of the drive.particular state of the drive.
Continuity of difference of states: The state of the applicationContinuity of difference of states: The state of the application and and
driver are always different from that of the drive from some poidriver are always different from that of the drive from some point.nt.
...We need to identify state inconsistencies....We need to identify state inconsistencies.

Reasons for state inconsistencies:Reasons for state inconsistencies:
Mismatch of periods in which the application and driver observe Mismatch of periods in which the application and driver observe
the state of the drive.the state of the drive.
The timing to update the states of the driver and application isThe timing to update the states of the driver and application is
wrong.wrong.

Period/Timing Design ModelPeriod/Timing Design Model
Rigorously modeling the timing and periods is Rigorously modeling the timing and periods is
needed to detect state inconsistencies.needed to detect state inconsistencies.
Design model for timing and periods.Design model for timing and periods.

We model timing and periods of tasks with state We model timing and periods of tasks with state
transition diagram which has the following semantics.transition diagram which has the following semantics.

transitions: impossible to be interleaved with the other transitions: impossible to be interleaved with the other
transitions.transitions.
states: possible to be interleaved with transitions. states: possible to be interleaved with transitions.
InterInter--task communication: reference to shared variables, task communication: reference to shared variables,
synchronous function calls and asynchronous message synchronous function calls and asynchronous message
passing.passing.

Objective: Modeling tasks so that state Objective: Modeling tasks so that state
inconsistencies can not be happened.inconsistencies can not be happened.

Period/Timing Design ModelPeriod/Timing Design Model

f()

S1 S2

f()

S1 S2

f1()

S1 S2

f2()

f()=f1(); f2()

synchronous and asynchronous function calls

synchronous and asynchronous transitions triggered by an event
e

S1 S2

e

S1 S2

Period/Timing Design ModelPeriod/Timing Design Model

S2S1S1 S2

e1

e1

e2[Drive.state==S2]

e2[Drive.state==S1]

e1 <<RTevent>>
{RTat=(‘periodic’, T1)}

e2 <<RTevent>>
{RTat=(‘periodic’, T2)}

S2S1

e3[Driver.getState()==S2]

e3[Driver.getState()==S1]

e3 <<RTevent>>
{RTat=(‘periodic’, T3)}

Periodic reference to the state of the driver and its synchronous update

Periodic reference to the state of the driver and its asynchronous update

S1 S2

e1

e1

e1 <<RTevent>>
{RTat=(‘periodic’, T1)}

e2 <<RTevent>>
{RTat=(‘periodic’, T2)}

S2S1

e3[Driver.getState()==S2]

e3[Driver.getState()==S1]

e3 <<RTevent>>
{RTat=(‘periodic’, T3)}

S2
S1

S12

S21

e2[Drive.state==S2]

e2[Drive.state==S1]

Verification of Design ModelVerification of Design Model
We detect state inconsistencies by a model We detect state inconsistencies by a model
checking tool Spin.checking tool Spin.
Periodic events.Periodic events.

Periodic events are characterized by event Periodic events are characterized by event
sequences.sequences.

EX)eEX)e11:2, e:2, e22:3:3、、(e(e11ee22ee11(e(e11||e||e22))+))+
(e(e11||e||e22))≡≡(e(e11ee22) | (e) | (e22ee11))

Event sequences which characterize periodic events Event sequences which characterize periodic events
ee11 and eand e22 whose periods are Twhose periods are T11 and Tand T22 such that such that
TT11≤≤TT22 respectively are defined as follows.respectively are defined as follows.
(e(e11

k1k1ee22ee11
k2k2ee22....e....e11

knkn(e(e11||e||e22))+))+
kkii=floor(((T=floor(((T22*(i*(i--1) mod T1) mod T11)+T)+T22)/T)/T11))
(k(k11+...+k+...+knn+1)T+1)T11 = nT= nT22

Verification of Design ModelVerification of Design Model

Verifying the design model by Spin.Verifying the design model by Spin.
Each state transition model Each state transition model →→ a process of a process of
Spin.Spin.
Event sequences Event sequences →→ a process which sends a process which sends
events to the processes of the state transition events to the processes of the state transition
models based on the event sequences.models based on the event sequences.

The events are like clocks.The events are like clocks.
The whole system behave based on the clocks.The whole system behave based on the clocks.

Verification of Design ModelVerification of Design Model
Periodic reference and synchronous update

TT11=2T=2T22 =4T=4T33: (e: (e33(e(e22||e||e33)e)e33(e(e11||e||e22||e||e33))+))+→→ＯＫＯＫ
2T2T11=3T=3T22=4T=4T33：： (e(e33ee22(e(e11||e||e33)e)e22ee33(e(e11||e||e22||e||e33))+))+→→ＯＫＯＫ
TT11=2T=2T22=2T=2T33：：((e((e22||e||e33)(e)(e11||e||e22||e||e33))+))+ →ＮＧ→ＮＧ(e(e11ee33ee22ee11だと読み飛ばされるだと読み飛ばされる))
TT11=3T=3T22=3T=3T33：： ((e((e22||e||e33)(e)(e22||e||e33)(e)(e11||e||e22||e||e33))+))+ →→ OKOK

S2S1S1 S2

e1

e1

e2[Drive.state==S2]

e1 <<RTevent>>
{RTat=(‘periodic’, T1)}

e2 <<RTevent>>
{RTat=(‘periodic’, T2)}

S2S1

e3[Driver.getState()==S2]

e3[Driver.getState()==S1]

e3 <<RTevent>>
{RTat=(‘periodic’, T3)}

e2[Drive.state==S1]

Drive Driver Application

state state state

getState()return state

Verification of Design ModelVerification of Design Model
Periodic reference and asynchronous update

TT11=2T=2T22 =4T=4T33: (e: (e33(e(e22||e||e33)e)e33(e(e11||e||e22||e||e33))+))+→→NGNG
TT11=3T=3T22=3T=3T33：： ((e((e22||e||e33)(e)(e22||e||e33)(e)(e11||e||e22||e||e33))+))+ →→ NGNG
TT11 = 4T= 4T22 = 2T= 2T33：： (e(e22(e(e22||e||e33)e)e22(e(e11||e||e22||e||e33))+))+ →→ＮＧＮＧ

TT11 = 6T= 6T22 = 2T= 2T33 : (e: (e22(e(e22||e||e33)e)e22(e(e22||e||e33)e)e22(e(e11||e||e22||e||e33))+))+ →→ ＯＫＯＫ

S1 S2

e1

e1

e1 <<RTevent>>
{RTat=(‘periodic’, T1)}

e2 <<RTevent>>
{RTat=(‘periodic’, T2)}

S2S1

e3[Driver.getState()==S2]

e3[Driver.getState()==S1]

e3 <<RTevent>>
{RTat=(‘periodic’, T3)}

S2
S1

S12

S21

e2[Drive.state==S2]

e2[Drive.state==S1]

Detailed Analysis of Design ModelDetailed Analysis of Design Model

Periodic reference and synchronous updater
The sequence eThe sequence e22*e*e33 should exist between eshould exist between e11 and eand e11 to to
prevent that the application skips to refer to the state prevent that the application skips to refer to the state
of the drive.of the drive.

Periodic reference and asynchronous update
The sequence eThe sequence e22**ee22*e*e33 should exist between eshould exist between e11 and and
ee11 to prevent that the application skips to refer to the to prevent that the application skips to refer to the
state of the drive.state of the drive.

The first eThe first e22 detects the state change of the driver, then it is detects the state change of the driver, then it is
reflected to the state of the deriver by the second ereflected to the state of the deriver by the second e22..

Detailed Analysis of Design ModelDetailed Analysis of Design Model
The general form of the event sequences allows us to obtain evenThe general form of the event sequences allows us to obtain event t
periods from event sequences.periods from event sequences.

EX) (eEX) (e11ee22ee11
22ee22 ee11(e(e11||e||e22))+))+

TT11<T<T22, 5T, 5T11 =3T=3T22

For more than three events, we can obtain event periods by makinFor more than three events, we can obtain event periods by making g
and solving equations representing relations between any pair ofand solving equations representing relations between any pair of
them. them.

(e(e33ee22(e(e11||e||e33)e)e22ee33(e(e11||e||e22||e||e33))+))+
(e(e33ee22ee33ee22ee33(e(e22||e||e33))+))+ →→ 4T4T33 = 3T2= 3T2
(e(e22ee11ee22(e(e11||e||e22))+))+→→3T3T22 = 2T= 2T11
(e(e33(e(e11||e||e33)e)e33(e(e11||e||e33))+ =(e))+ =(e33(e(e11||e||e33))+))+→→TT11=2T=2T33
Hence, 2THence, 2T11=3T=3T22=4T=4T33

(e(e11
k1k1ee22ee11

k2k2ee22....e....e11
knkn(e(e11||e||e22))+))+

where where kkii=floor(((T=floor(((T22*(i*(i--1) mod T1) mod T11)+T)+T22)/T)/T11))
(k(k11++......+k+knn+1)T+1)T11 = nT= nT22

General Form

Detailed Analysis of Design ModelDetailed Analysis of Design Model

Periodic reference and synchronous update
The sequence eThe sequence e22*e*e33 should exist between eshould exist between e11 and eand e11 to prevent to prevent
that the application skips to refer to the state of the drive.that the application skips to refer to the state of the drive.
Event sequence 1: (e3e2e3(e1||e2||e3))+ → T1=2T2=3T3
Event sequence 2: (e2e3e2(e1||e2||e3))+ → T1=3T2=2T3

Periodic reference and asynchronous update
The sequence eThe sequence e22**ee22*e*e33 should exist between eshould exist between e11 and eand e11 to to
prevent that the application skips to refer to the state of the prevent that the application skips to refer to the state of the drive.drive.
Event sequence: (e2

2e3e2
2(e1||e2||e3))+ → T1=5T2=2T3

Verification of CD PlayerVerification of CD Player

We construct of a design model which We construct of a design model which
represents timing and periods of the CD Player.represents timing and periods of the CD Player.

Focusing on a mechanism to grasp the state of the Focusing on a mechanism to grasp the state of the
drive.drive.

Verification results.Verification results.
We detected state inconsistencies.We detected state inconsistencies.

The application may skip to refer to the state of the drive.The application may skip to refer to the state of the drive.
The state of the application may always be different from the The state of the application may always be different from the
state of the drive from some point.state of the drive from some point.

Verification of CD PlayerVerification of CD Player

<<process>>Driver<<process>>Drive <<process>>Display

<<process>>User

trayOpen()
trayClose()
getStatus()

driveStatus ms
status

getMS()

disp

e1 <<RTevent>>{RTat=(‘periodic’, T1)}

e2 <<RTevent>>{RTat=(‘periodic’, T2)}

e1/status=Drive.getStatus()

e2/changeDisplay()

changeDisplay()

クローズ

初期値：MS:=UNKNOWN

オープン

クローズ待ち

取得中

初期状態

/ status:=getStatus()

[status==OPEN]/

[status==CLOSE]
MS:=M_CLOSE

待ち

取得中

e1/ status:=getStatus()

[status==OPEN]

[status==CLOSE]

B_CLOSE/trayClose()

待ち

取得中

e1/ status:=getStatus()

[!(status==CLOSE)]

[status==CLOSE]

待ち

取得中

e1/ status:=getStatus()

[status==OPEN]
[status==CLOSE]

B_OPEN/trayOPEN()

オープン待ち

待ち

取得中

e1/ status:=getStatus()

[!(status==OPEN)]

[status==OPEN]

entry/MS:=UNKOWN

entry/MS:=M_OPEN
entry/MS:=M_CLOSE

entry/MS:=UNKNOWN

トレー状態表示

e2/
switch(getMS()){

M_OPEN: DISP:=MES_OPEN;
break;

M_CLOSE: DISP:=MES_CLOSE;
break;

default: DISP:=MES_UNKNOWN;
}

Analysis of Periodic ExecutionAnalysis of Periodic Execution
The proposed approach allows us to verify timing The proposed approach allows us to verify timing
properties based on periodic execution of tasks. properties based on periodic execution of tasks.
We have applied it to the practical design model of CD We have applied it to the practical design model of CD
player.player.

We succeeded in finding inconsistencies among the modules.We succeeded in finding inconsistencies among the modules.
We have to provide formal semantics with the proposed We have to provide formal semantics with the proposed
design model.design model.

What do events and function calls mean in terms of time? What do events and function calls mean in terms of time?
We will extend the analysis method so that we can use We will extend the analysis method so that we can use
the RTOS library.the RTOS library.

ConclusionConclusion
We are studying how we verify multiWe are studying how we verify multi--task software.task software.

We have proposed two methods so far.We have proposed two methods so far.
Timing problems of multiTiming problems of multi--tasks executed on RTOS.tasks executed on RTOS.
State inconsistency of multiState inconsistency of multi--tasks based on their periodic execution.tasks based on their periodic execution.

There is no single solution, that is, There is no single solution, that is, ‘‘silver bulletsilver bullet’’ for solving for solving
problems of multiproblems of multi--task software.task software.

We need identify typical problems, and propose solutions for theWe need identify typical problems, and propose solutions for them.m.

Future Works:Future Works:
Proposing a set of verification methods for embedded software.Proposing a set of verification methods for embedded software.
Proposing a computer environment in which the proposed Proposing a computer environment in which the proposed
methods are integrated.methods are integrated.

The proposed method can be flexibly plugThe proposed method can be flexibly plug--inedined to the computer to the computer
environment.environment.

