JAIST Repository

https://dspace.jaist.ac.jp/

Title	Theorem-proving Privacy and Anonymity
Author(s)	KAWABE, Yoshinobu
Citation	
Issue Date	2006-11-29
	Presentation
Text version	publisher
	http://hdl_bandle_net/10119/8305
Rights	
	Theorem Proving and Provers Meeting(2nd TPP)での
Description	先表資科, 開催:2006年11月29日~30日, 開催場所 · MIST 信報科学研究科博U. Collaboration Room 7
	.JAIST 旧前和小子师九行行来II · COTTADOTATION ROOM 7 (5F)

Japan Advanced Institute of Science and Technology

Theorem-proving Privacy and Anonymity

Yoshinobu KAWABE NTT Communication Science Laboratories NTT Corporation

References

- Simulation-based proof method of privacy/anonymity
 - Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada
 Theorem-proving anonymity of infinite state systems
 Information Processing Letters, vol. 101, No.1, 2007
 - Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada
 Backward simulations for anonymity
 WITS '06 (Full version: submitted for journal publication)
 - I. Hasuo and Y. Kawabe
 Probabilistic anonymity via coalgebraic simulations
 Submitted for publication

Online privacy Online anonymity

is attracting growing

- Threats
 - ISPs in EU are forced to keep logs of your web access
- Public concerns
 - You don't care?
- Research interest
 - See Anonymity Bibliography http://freehaven.net/anonbib/
 - No decisive definition for "privacy", "anonymity", etc.

Overview of this talk

A formal definition of anonymity which is based on **traces**

[ESORICS '96, Schneider & Sidiropoulos]

Proving trace inclusion by simulation [Lynch & Vaandrager]

• Simulation-based proof method for trace anonymity

Theorem-proving anonymity

Contents

- A method to prove anonymity (=privacy)
 - Formalization of anonymity
 - & anonymous simulation technique
 - Theorem-proving anonymity/privacy
 - Crowds protocol

What is anonymity?

- Nobody can know "who it is".
- Key notion: <u>Principle of confusion</u>

Who?

What is anon <u>Adversary's viewpoint</u>

Nobody can know "who

This person looks like Kawabe ... but his face is hidden. This person might not be Kawabe.

• Key notion: <u>Principle of confusion</u>

Who?

What is anon Adversary's viewpoint

The guys on this photo are too small ! I cannot recognize Kawabe! "who

This person looks like Kawabe ... but his face is hidden. This person might not be Kawabe.

e of <u>confusion</u>

Who?

Can you find me?

• Anonymous donation as an example

• Anonymous donation as an example

Are these protocols anonymous?

• Anonymous donation as an example

Anonymous donation as an example

How to prove anonymity? --- Find an anonymous simulation!

- Binary relation as over states(X)
 - 1. Initial state condition: as(s, s) for any $s \in start(X)$
 - 2. Step correspondence condition:

Soundness of the technique

• An anonymous simulation is a simulation from anonym(X) to X.

[Thm] \exists simulation from X to $Y \Rightarrow traces(X) \subseteq traces(Y)$. [Lynch and Vaandrager, Inform.&Comput. 1995]

Soundness of the technique

 An anonymous simulation is a simulation from anonym(X) to X. "anonymized" version [Thm] \exists simulation from X to of X*Y*). (trivially anonymous) [Lynch and Vaandrager X anonym(X \$5 \$5 Alice Alice Bob <mark>→lice</mark> \$<u>5</u> \$5 Bob Bob

Soundness of the technique

 An anonymous simulation is a simulation from anonym(X) to X. "anonymized" version [Thm] \exists simulation from X to of X*Y*). (trivially anonymous) [Lynch and Vaandrager Χ anonym() \$5 \$5 Alice Alice Bob vlice \$5 \$5 Bob Bob

> $traces(X) \subseteq traces(anonym(X))$ is trivial. $\Rightarrow traces(X) = traces(anonym(X))$ holds!

Contents

- A method to prove anonymity (=privacy)
 - Formalization of anonymity
 - & anonymous simulation technique
 - Theorem-proving anonymity/privacy
 - Crowds protocol

An example: Crowds [Reiter & Rubin, ACM Trans. 1998]

• Comm. system for anonymous web access

An example: Crowds [Reiter & Rubin, ACM Trans. 1998]

• Comm. system for anonymous web access

Anonymous = the adversary cannot know the initiator.

Theorem-proving anonymity of the Crowds example

- Steps
 - Specify the system in IOA language which is a formal specification language based I/Oautomaton
 - Translate the specification into LP's language --first-order logic formulae --- with IOA-Toolkit
 - Prove anonymity with Larch Prover by proving there is an anonymous simulation

IOA language

- Formal specification language based on I/Oautomaton
 - I/O-automaton (N. Lynch): formal system to describe and analyze distributed algorithms
- Formalization of distributed algorithms in IOA
 - Actions: precondition-effect style (i.e. if \sim then \sim)
 - Data: (many-sorted) equational theory
 - LSL (Larch Specification Language)

Specification of Crowds

IOA-Toolkit

• Collection of formal verification tools for distributed systems

Compiling .ioa into .lp with IOA-Toolkit

Theorem-proving anonymity

```
    Introducing a candidate relation
```

```
assert
as(s, s')
<=> (s.pc = s'.pc
/\ (s.corrp[s.mesIsAt] <=> s'.corrp[s'.mesIsAt]))
```

• Proving that *as* is an anonymous simulation

```
% --- start state condition
prove start(s:States[crowds]) => as(s, s)
qed
```

Initial state condition

```
% --- step correspondence
prove
                                                       Step correspondence
  (reachable(s1)
  /∖ reachable(s1')
                                                       condition
  /\ as(s1, s1')
  /∖ enabled(s1, a)
  /\ effect(s1, a) = s2
                                                       (for actor actions)
  /\ a = start(i)
  /\ s1.corrp[i])
  => (\A i':ID (\E s':States[crowds] (\E i'':ID (\E s2':States[crowds]
         ( enabled(s1', start(i'))
          /\ effect(s1', start(i')) = s'
          ∧ enabled(s', pass(i', i''))
          /\ effect(s', pass(i', i'')) = s2'
          /\ as(s2, s2'))))))
```

Conclusion

- A technique to theorem-prove anonymity of security protocols
 - Simulation technique for trace-based anonymity
- Example
 - Crowds

Coming soon with theorem provers

Ongoing work

- Simulation-based proof techniques for probabilistic anonymity
 - Conditional anonymity (with Ichiro Hasuo)
 - With coalgebras, our method is extended.
 - Probable innocence (with Hideki Sakurada and Ichiro Hasuo)
- Verifying anonymity for protocols in the presence of intruders

Questions?