JAIST Repository

https://dspace.jaist.ac.jp/

Title	A sequent calculus for Limit Computable Mathematics
Author(s)	Berardi, Stefano; Yamagata, Yoriyuki
Citation	
Issue Date	2006-11-27
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8310
Rights	
Description	3rd VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication TEchnologyでの発表資料,開催 :2006年11月27日~28日,開催場所:JAIST 知識科学 研究科講義棟・中講義室

Japan Advanced Institute of Science and Technology

A sequent calculus for Limit Computable Mathematics

Stefano Berardi and Yoriyuki Yamagata

Background : LCM

Susumu Hayashi and N. Nakata (2001)

• Mathematics realized by Δ_2^0 -functions.

Background : LCM

Susumu Hayashi and N. Nakata (2001)

Mathematics realized by ∆₂⁰-functions.
 c.f. Constructive Mathematics
 (realized by ∆₁⁰-functions)

Background : LCM

Susumu Hayashi and N. Nakata (2001)

- Mathematics realized by Δ_2^0 -functions. c.f. Constructive Mathematics (realized by Δ_1^0 -functions)
- Part of Hayashi's "Proof Animation Project"

LCM and classical logic

$EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$

P: decidable, is valid in LCM,

LCM and classical logic

 $EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$

P: decidable, is valid in LCM, while

 $EM_2(Q) \equiv \forall x (\exists y \forall z Q x y z \lor \forall y \exists z \neg Q x y z)$

Q: decidable, is not valid.

Strength of LCM

Akama, Berardi, Hayashi, Kohlenbach (2004)

 Known : Implies WKL₀ in higher order setting (with a weak form of Axiom Choice)

Strength of LCM

Akama, Berardi, Hayashi, Kohlenbach (2004)

- Known : Implies WKL₀ in higher order setting (with a weak form of Axiom Choice)
- Conjecture : Intuitionism + EM_1

Game semantics of LCM

1-bck. game : Simple extension of Lorenzen/Hintikka game

Theorem. (Berardi, Coquand, Hayashi 2005) A is valid in LCM \Leftrightarrow Prover (\mathcal{E}) is winning in 1-bck. game of A.

Our contribution

Give an infinitary logic \mathbf{PA}_1 for LCM.

Our contribution

Give an infinitary logic PA_1 for LCM. (Previously, LCM is defined by semantic means through realizers or games)

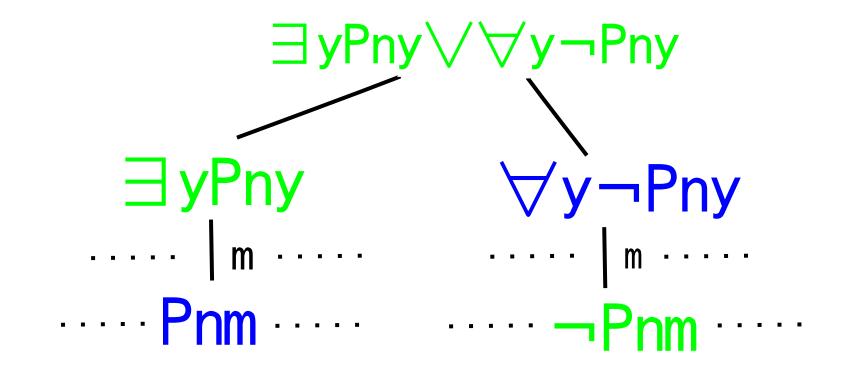
Our contribution

Give an infinitary logic PA_1 for LCM. (Previously, LCM is defined by semantic means through realizers or games)

Isomorphism Theorem. A proof π of formula A in PA_1 $\leftrightarrow_{1:1,\text{tree-iso.}}$ a winning strategy of 1-bck. game of A.

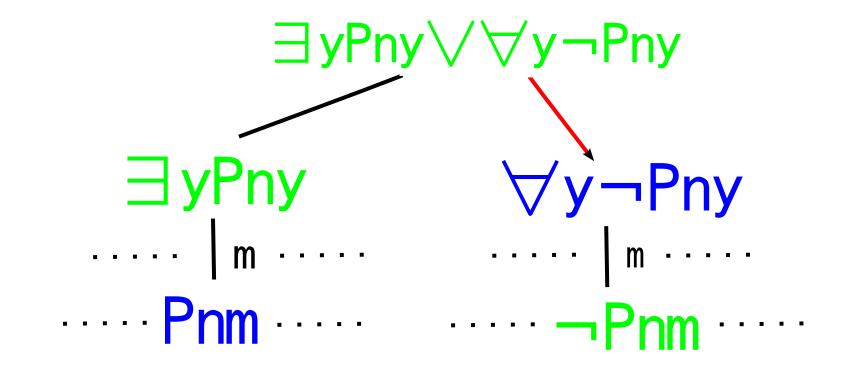
Lorenzen/Hintikka game

2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . *Pnm* below is true.



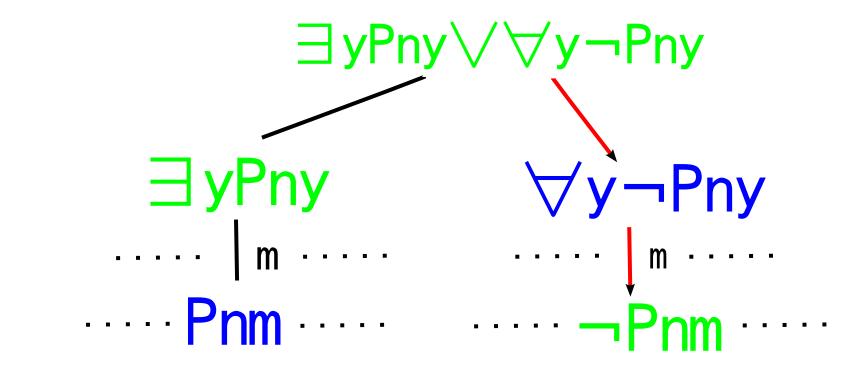
Lorenzen/Hintikka game

2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . *Pnm* below is true.

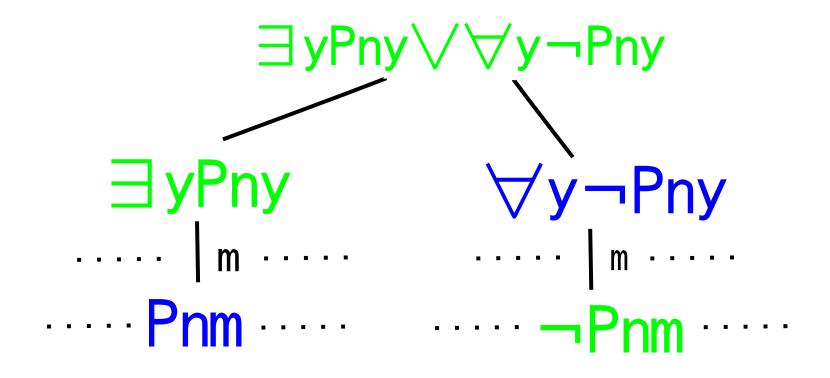


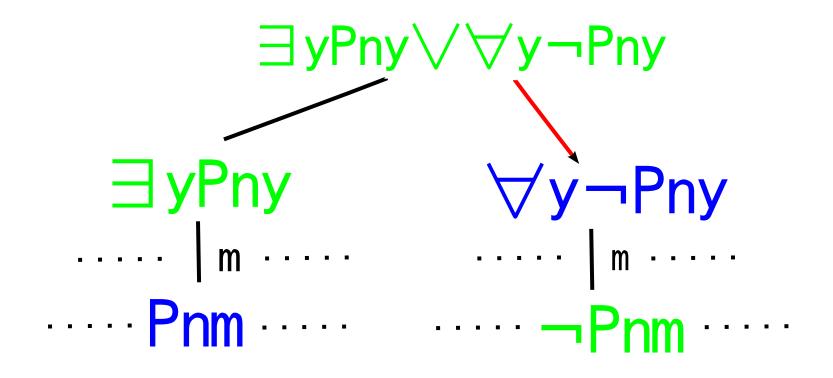
Lorenzen/Hintikka game

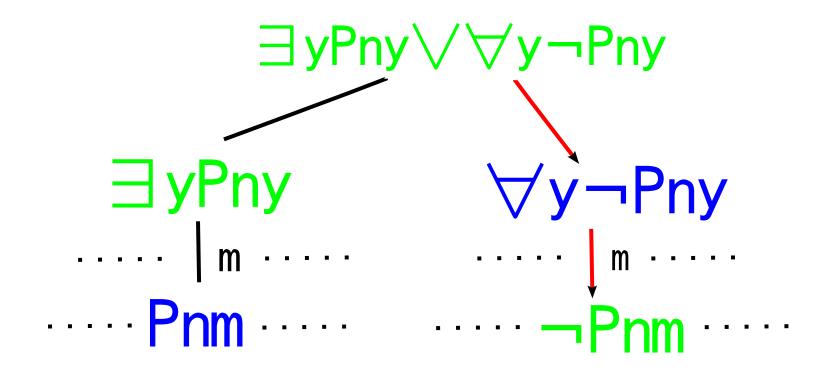
2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . *Pnm* below is true.

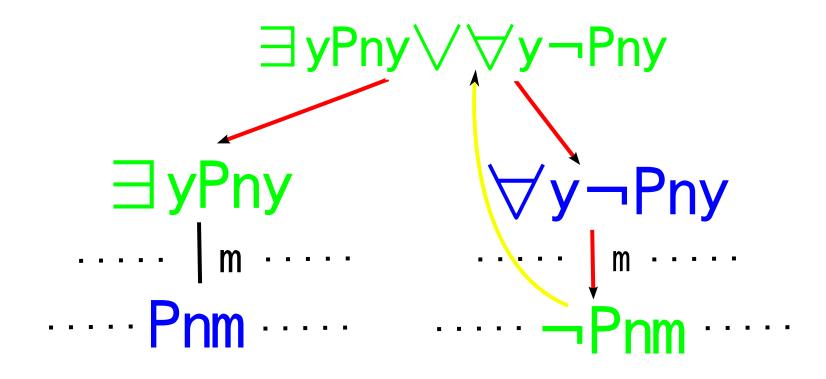


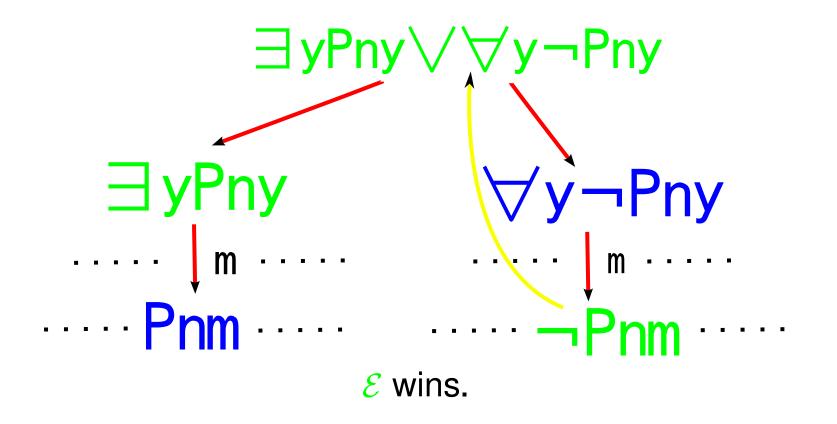
E looses here.











PA_1 : Formulas

P_1, P_2, \ldots : Decidable predicates on natural numbers

PA_1 : Formulas

P_1, P_2, \ldots : Decidable predicates on natural numbers

 x_1, x_2, \ldots : Variables over natural numbers

PA_1 : Formulas

 P_1, P_2, \ldots : Decidable predicates on natural numbers

 x_1, x_2, \ldots : Variables over natural numbers f_1, f_2, \ldots : Recursive functions from natural numbers to natural numbers

PA_1 : Formulas

- P_1, P_2, \ldots : Decidable predicates on natural numbers
- x_1, x_2, \ldots : Variables over natural numbers f_1, f_2, \ldots : Recursive functions from natural numbers to natural numbers Formulas $F ::= Px \mid F \land F \mid F \lor F \mid \forall xF \mid$ $\exists xF$

Sequents : Ordered list (not multiset) of formulas.

Sequents : Ordered list (not multiset) of formulas.

A game position is identified to a sequent.

Sequents : Ordered list (not multiset) of formulas.

A game position is identified to a sequent. $\vdash B_1, \ldots, B_n, C$

Sequents : Ordered list (not multiset) of formulas.

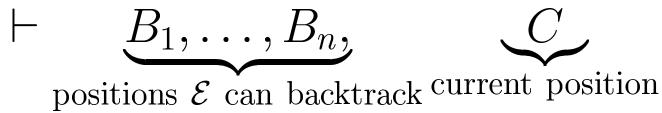
A game position is identified to a sequent.

 $\vdash B_1,\ldots,B_n,$

current position

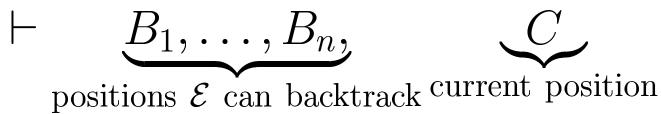
Sequents : Ordered list (not multiset) of formulas.

A game position is identified to a sequent.



Sequents : Ordered list (not multiset) of formulas.

A game position is identified to a sequent.



This interpretation naturally leads to inference rules.

PA_1 : Axioms

 $\vdash B_1, \ldots, B_n, p$

where p is a true atomic.

PA_1 : Axioms

 $\vdash B_1,\ldots,B_n,p$

where p is a true atomic.

Since \mathcal{E} is going to win in this position, no more need of strategies.

*PA*₁ : Conjunctions

 $\ensuremath{\mathcal{A}}$ moves at conjunctions

$$\frac{\vdash \Gamma, A_1 \vdash \Gamma, A_2}{\vdash \Gamma, A_1 \land A_2} \land$$

$$\frac{\vdash \Gamma, A(0) \quad \dots \quad \vdash \Gamma, A(n) \quad \dots}{\vdash \Gamma, \forall x A(x)} \forall$$

 \mathcal{E} prepares all possible moves of \mathcal{A} .

PA_1 : **Disjunction**

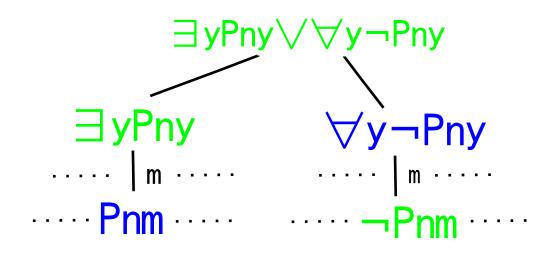
$$\frac{\vdash \Gamma, A_1 \lor A_2, A_i}{\vdash \Gamma, A_1 \lor A_2, \Delta} \lor$$

 \mathcal{E} retracts all moves in Δ and backtracks to $A_1 \vee A_2$, then chooses a node A_i .

PA_1 : Disjunction

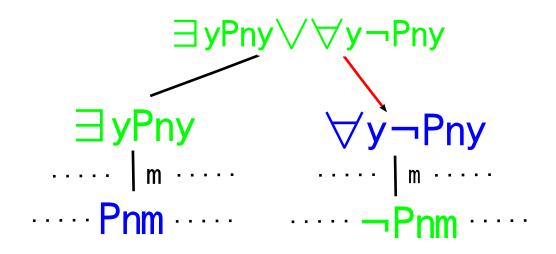
$$\frac{\vdash \Gamma, \exists x A(x), A(n)}{\vdash \Gamma, \exists x A(x), \Delta} \exists$$

 \mathcal{E} retracts all moves in Δ and backtracks to $\exists x A(x)$, then chooses a node A(n).

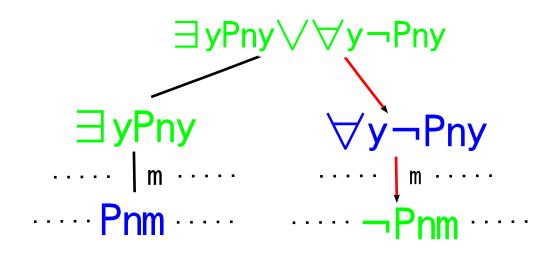


 $\vdash \exists y Pny \lor \forall y \neg Pny$

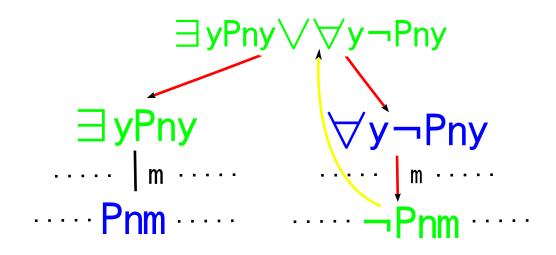
A sequent calculus for Limit Computable Mathematics - p.14/17



$$\frac{\vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny}{\vdash \exists y Pny \lor \forall y \neg Pny} \lor$$

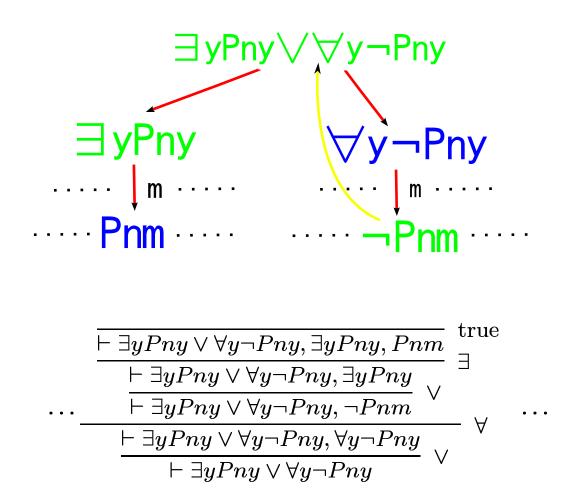


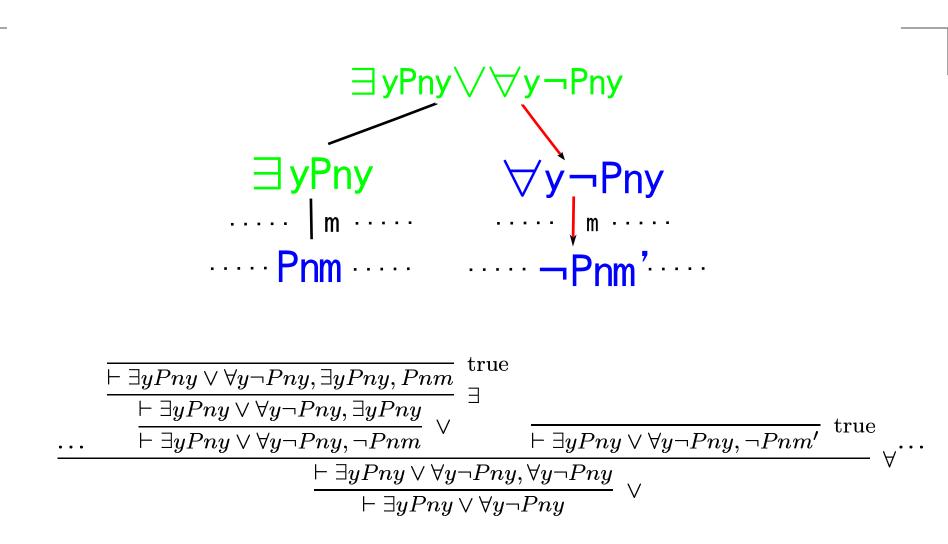
$$\frac{\dots \quad \vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm \quad \dots}{\vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny} \quad \lor \quad \forall$$



$$\frac{ \begin{array}{c} & \vdash \exists y Pny \lor \forall y \neg Pny, \exists y Pny \\ & \vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm \end{array}}{ \begin{array}{c} & \downarrow \\ & \vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny \\ & \downarrow \\ & \vdash \exists y Pny \lor \forall y \neg Pny \end{array}} \lor$$

A sequent calculus for Limit Computable Mathematics - p.14/17





Conclusion

- We introduce a proof system PA_1 , an ω -logic without Exchange
- We show proofs of formula A in PA₁
 and winning strategies of 1-bck. games
 over A has a tree-isomorphism

Future work

- Interpretation of Cut-rule.
- Interpretation of implication and Modus ponens
- Relation to cut-elimination

The End