Title	Parameterized Points-to Analysis for Java based on Weighted Pushdown Model Checking
Author(s)	Li, Xin; Ogawa, Mizuhito
Citation	
Issue Date	2006-11-27
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8311
Rights	
Description	3rd VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication Technologyでの発表資料,開催:2006年11月27日~28日,開催場所:JAIST 知識科学研究科講義棟・中講義室

Parameterized Points-to Analysis for Java based on Weighted Pushdown Model Checking

Li Xin, Ogawa Mizuhito

Japan Advanced Institute of Science and Technology

November 27, 2006

Points-to Analysis for Java

- Purpose
 - Approximate the set of heap objects pointed to by reference variables at runtime
- Why points-to analysis?
 - Essential to many other program analyses and compiler optimizations
 - Headachy issue in program verifications
- Precision and scalability is dominated by Context-sensitivity calling contexts are distinguished Flow-sensitivity execution orders are concerned Field-sensitivity how instance fields are abstracted

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object()}; ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
        }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
  class A
 m(B a): { return a; }
  class B inherits class A
 m(B b): { return b.f; }
```

- Declared type strategy
- Virtual method invocation (dynamic binding) at line 5 and 7
- Call-by-value
- Abstract heap objects are associated with codes in blue

Figure: An Example of Java Code Fragment

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
     y.f = \text{new Object()}; ...o_3
4:
       x = y;
        if(...){
5:
        z = x.m(y):
        }else{
6:
       x.f = \text{new Object}(); ...o_4
7:
        v = y.m(x);
  class A
  m(B a): { return a; }
  class B inherits class A
  m(B b): { return b.f; }
```

Figure: (a) Example Code Fragment

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object()}; ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
       }else{
6:
    x.f = \text{new Object}(); ...o_4
7:
      v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
   B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object()}; ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
       }else{
6:
    x.f = \text{new Object}(); ...o_4
7:
      v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
   B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object()}; ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
       }else{
6:
    x.f = \text{new Object()}; ...o_4
7:
      v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
   B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object()}; ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
       }else{
6:
    x.f = \text{new Object}(); ...o_4
7:
      v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
       }else{
6:
    x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
       }else{
6:
    x.f = \text{new Object}(); ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
     y.f = \text{new Object()}; ...o_3
4:
       x = y;
        if(...){
5:
        z = x.m(y);
        }else{
6:
       x.f = \text{new Object}(); ...o_4
7:
       v = y.m(x);
  class A
  m(B a): { return a; }
  class B inherits class A
  m(B b): { return b.f; }
```

Figure: (a) Example Code Fragment

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
   y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
       }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
    y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
       }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

Figure: (a) Example Code Fragment

```
1:
       A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
    y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
       }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

Figure: (a) Example Code Fragment

```
A x = \text{new A}(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
    y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y):
       }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```

Figure: (a) Example Code Fragment

```
1:
       A x = \text{new } A(); ...o_1
2:
       B y = \text{new B}(); ...o_2
3:
    y.f = \text{new Object}(); ...o_3
4:
       x = y;
       if(...){
5:
       z = x.m(y);
        }else{
6:
       x.f = \text{new Object()}; ...o_4
7:
       v = y.m(x);
 class A
 m(B a): { return a; }
 class B inherits class A
 m(B b): { return b.f; }
```


What does the example tell?

- Points-to analysis and call graph construction are mutually dependent
- Call graph construction
 - On-the-fly: constructed during points-to analysis
 - Ahead-of-time: a pre-computed approximated call graph is explored for points-to analysis
- Two occasions need points-to information:
 - Call graph construction
 - Instance field abstraction

Definition

Let $\mathcal V$ and $\mathcal O$ be a set of abstract reference variables and a set of abstract heap objects respectively. A transitive and reflexive points-to relation is defined as $\mapsto: \mathcal V \times \mathcal H$, where $\mathcal H = \mathcal V \cup \mathcal O$. Its inverse is defined as a flows-to relation \leadsto .

Definition

A pointer assignment graph is defined as $G_a = (N_a, E_a)$, where $N_a = \mathcal{V} \cup \mathcal{O}$ is a set of nodes, and $E_a = \leadsto$ is a set of edges.

Definition

Let \mathcal{F} be a set of fields and \mathcal{L} be a set of local variables. A field sensitive analysis abstracts an instance field $l.f(l \in \mathcal{L}, f \in \mathcal{F})$ as pairs of $\{(o,f) \mid f \mapsto o\}$.

Work Summary

- Program Analysis = Abstract Interpretation + Model Checking
- Context-sensitive points-to analysis algorithms based on weighted pushdown model checking
- Parameterized flow-sensitivity so that the abstraction design is easily tuned
- Variations of points-to analysis algorithms based on the following dimensions:
 - On-the-fly vs. Ahead-of-time call graph construction
 - Lightweight semiring operations vs. Smaller pushdown transitions in the abstraction design
- Evaluation within the SOOT framework

Pushdown Model Checking

- Model: Pushdown System (PDS)
- A PDS + (e.g. Simple) Valuation
 ≅ A Pushdown Automaton
 ≅ Context-free Language
- The intersection of context-free language and regular language is closed (context-free)
- The automata-theoretic approach works

$$\mathcal{M} \models \mathcal{S} \Leftrightarrow \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathcal{S})^{\mathcal{C}} = \emptyset$$

Efficient algorithms are developed due to the fact that:
 "Regular sets of configurations are closed under forward and backward reachability"

Weighted Pushdown Model Checking

- Associate a weight from a bounded idempotent semiring to each pushdown transition rule
- Solve the Generalized Pushdown Reachability (GPR) problem:
 "Compute weights over paths in a pushdown graph leading from a pushdown configuration to a regular set of pushdown configurations"

Definition

A bounded idempotent semiring S is a semiring $(D, \oplus, \otimes, 0, 1)$, s.t.

- \oplus is idempotent, i.e. $a \oplus a = a$.
- A partial order \sqsubseteq is defined: $\forall a, b \in D, a \sqsubseteq b$ iff $a \oplus b = a$.

That is, no infinite descending chain on weight space is required.

Application of Pushdown Systems to Program Analyses

- Suitable for modeling interprocedural program analyses
 - Calls and returns are correctly paired (context-sensitivity)
 - No limitation on recursion steps (vs. K-CFA)
- Pushdown model checking
 - Model program's data domain
 - Demand finite domain abstraction (by automata-theoretic approach)
- Weighted pushdown model checking
 - Model program's flow function space
 - Demand infinite descending chains on the weight space, but infinite domain abstraction is possible
 - Regular pushdown configurations as an abstraction of calling contexts (context-sensitivity)

Intention Behind the Semiring Design

- Weight space ⇒ Flow function space
- A weight intends a function to represent how a property is carried at each step of program execution.
- 1 ⇒ Properties keep unchanged by this transition step
- 0 ⇒ The program execution is interrupted by some error
- $f \otimes g \Rightarrow$ Function composition of $g \circ f$
- f ⊕ g ⇒ Conservative approximation over two control flows at their meet
- The optional commutativity of ⊗ facilitates modeling a flow-sensitive analysis

Abstraction of Heap Memory

Definition

Let $\mathscr O$ be a set of run-time objects allocated in the heap memory. Functions $\eta_{\mathcal T}:\mathscr O\to\mathcal T$ and $\eta_{\iota}:\mathscr O\to\mathcal L$ are defined respectively, where $\mathcal T$ is a set of types (class names) of heap objects, and $\mathcal L$ is a set of memory allocation sites in the program.

Definition

Let $\mathcal{O} \subseteq \mathcal{T} \times \mathcal{L} \cup \{\diamond\}$ be a set of abstract heap objects, where \diamond represents null reference. An abstraction on \mathscr{O} is defined as $\tilde{\alpha}: \mathscr{O} \to \mathcal{O}$, s.t. $\forall o \in \mathscr{O}, \ \tilde{\alpha}(o) = (\tau, \iota)$, where $\tau = \eta_{\tau}(o) \in \mathcal{T}, \ \iota = \eta_{\iota}(o) \in \mathcal{L}$.

Remarks:

- $\forall (\tau_i, \iota_i), (\tau_j, \iota_j) \in \mathcal{O}, \ \iota_i = \iota_j \Rightarrow \tau_i = \tau_j$
- $\forall o_i, o_j \in \mathcal{O}$, $\tilde{\alpha}(o_i) = \tilde{\alpha}(o_j)$ iff the allocation sites for them are the same.
- An array is approximated with a single element with its base type.

An Algorithm with Lightweight Semiring Operations

Approaches:

- Reachability analysis on the product of G_a and G_f.
- For efficiency, a variation of "exploded supergraph" is explored

Definition

A weighted pointer assignment graph is defined as $G_l = (N_l, E_l, L_l)$ from G_a , where $N_l = \{\Lambda\} \cup \mathcal{V}$ is a set of nodes, $E_l \subseteq N_l \times L_l \times N_l$ is a set of edges, and $L_l = \{\lambda x.x\} \cup \{\lambda x.o \mid o \in \mathcal{O}\}$ is a set of labels, such that

- $(v_1, \lambda x. x, v_2) \in E_l$ if $(v_1, v_2) \in E_a, v_1, v_2 \in V$
- $(\Lambda, \lambda x.o, v) \in E_l$ if $(o, v) \in E_a$, $o \in \mathcal{O}$, $v \in \mathcal{V}$

Remarks:

- Λ: an environment that allocates new heap objects
- · Heap objects are labeled on the edges

The Underlined Model for Model Checking

Definition

A weighted flows-to graph $G_p = (N_p, E_p, L_p)$ is the product of G_l and G_f , where $N_p = N_l \times N_f$ is a set of nodes, $E_p \subseteq N_p \times L_p \times N_p$ is a set of edges, and $L_p = L_l$ is a set of labels.

Algorithm

Let $\mathcal{A}[\![\cdot]\!]: S \to \mathcal{P}(\leadsto)$, and $N_l = \{\Lambda\} \cup V_g \cup V_l \ (V_g \subseteq \mathcal{V} \ represents \ global \ variables \ and \ V_l \subseteq \mathcal{V} \ represents \ local \ variables)$, s.t. $\forall e_f = (n_1, n_2) \in E_f$

```
\begin{array}{ll} \textbf{e}_{f} \in E_{i} & \{((v,n_{1}),\lambda x.x,(v,n_{2})) \mid v \in V\} \cup \\ & \{((v_{1},n_{1}),\lambda x.x,(v_{2},n_{2})) \mid (v_{1},\lambda x.x,v_{2}) \in E_{l},(v_{1},v_{2}) \in F,v_{1} \in \mathcal{V}\} \cup \\ & \{((\Lambda,n_{1}),\lambda x.o,(v,n_{2})) \mid (\Lambda,\lambda x.o,v) \in E_{l},(c,v) \in F,o \in \mathcal{O}\} \subseteq E_{p} \\ & where F = \mathcal{A} \llbracket StmtOf(n_{2}) \rrbracket, V = N_{l} - \{v \mid (h,v) \in F\} \\ \textbf{e}_{f} \in E_{t} & \{((v,n_{1}),\lambda x.x,(v,n_{2})) \mid v \in V_{l}\} \subseteq E_{p} \\ & e_{f} \in E_{c} & \{((v,n_{1}),\lambda x.x,(v,n_{2})) \mid v \in V_{g} \cup \{\Lambda\}\} \cup \\ & \{((h,n_{1}),\lambda x.x,(v,n_{2})) \mid (h,v) \in F\} \subseteq E_{p} \\ & where F = \mathcal{A} \llbracket StmtOf(n_{1}) \rrbracket \\ \textbf{e}_{f} \in E_{r} & \{((v,n_{1}),\lambda x.x,(v,n_{2})) \mid v \in V_{g} \cup \{\Lambda\}\} \subseteq E_{p} \end{array}
```

Part of G_p for the Running Example

Part of G_p for the Running Example

A Semiring Design

Let
$$S = \mathcal{P}(\mathcal{O})$$
, $D_1 = \{\lambda x.s \mid s \in \mathcal{S}\}$ and $D_2 = \{\lambda x.x \cup s \mid s \in \mathcal{S}\}$

Definition

A bounded idempotent semiring $S = (D, \oplus, \otimes, 0, 1)$ is defined as

- The weight space $D = D_1 \cup D_2$
- 1 is defined as λx.x and 0 is defined as λx.Ø
- The ⊗ operator is defined as

$$\forall d_i, d_j \in D \setminus \{\mathbf{0},\mathbf{1}\}, d_i \otimes d_j = d_j$$

• The \oplus operator equals set union \cup , defined as

$$\forall d_i = \lambda x. s_i, \ d_j = \lambda x. s_j \in \tilde{D}, \ d_i \oplus d_j = d_j \oplus d_i = \lambda x. s_i \cup s_j$$

$$\forall d_i = \lambda x. s_i \in \tilde{D}, \ d_j = \lambda x. x \cup s_j \in \bar{D}, \ d_i \oplus d_j = d_j \oplus d_i = \lambda x. x \cup s_i \cup s_j$$

$$\forall d_i = \lambda x. x \cup s_i, \ d_i = \lambda x. x \cup s_i \in \bar{D}, \ d_i \oplus d_i = d_i \oplus d_i = \lambda x. x \cup s_i \cup s_j$$

Distributivity of \otimes over \oplus is easily checked.

Parameterized Flow-sensitivity

- Problems: G_p will explode for large-scale programs
- Solutions: G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - · Each node has an unique entry after shrinking
- · Parameterized flow-sensitivity by shrinking
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node (flow-insensitive)

Parameterized Flow-sensitivity

- Problems: G_p will explode for large-scale programs
- Solutions: G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - · Each node has an unique entry after shrinking
- · Parameterized flow-sensitivity by shrinking
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node (flow-insensitive)

Parameterized Flow-sensitivity

- Problems: G_p will explode for large-scale programs
- Solutions: G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - Each node has an unique entry after shrinking
- · Parameterized flow-sensitivity by shrinking
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node (flow-insensitive)

Encoding to Weighted PDS

Given a weighted flows-to graph $G_p = (N_p, E_p, L_p)$, with $N_p = \{\Lambda\} \cup \mathcal{V} \times N_f$

- $\{\Lambda\} \cup \mathcal{V} \Rightarrow$ control states
- N_f ⇒ stack alphabets
- E_p ⇒ pushdown transition rules

Evaluation within the SOOT Framework (On-the-fly + Lightweight Semiring Operation)

- Obstacle: restriction from the interaction of soot and weighted PDS library
- Bottleneck: weighted PDS constructed from scratch for each model checking request
- An incremental model construction is promising when possible

Points-to Analysis with Ahead-of-time Call Graph Construction

- Target: reduce frequent model checking demands
- Approaches
 - A pre-computed approximated call graph is explored
 - Invalid pathes are "removed" during model checking
 - Extra relations to model instance field accesses
- A semiring design with smaller pushdown transitions
 - $\hat{S} \subseteq \mathcal{P}(\mathcal{V} \times \mathcal{H}) = \mathcal{P}(\mapsto)$, s.t. $\forall s \in \hat{S}$

$$\forall (v_1, h_1), (v_2, h_2) \in s, h_1 = h_2 \text{ if } v_1 = v_2$$

- "x = y; y = z" $\Rightarrow \{x \mapsto y, y \mapsto z\}$ instead of $\{x \mapsto z, y \mapsto z\}$ $v_1 \mapsto v_2 \Longrightarrow v_1 \mapsto v_2'$ (flow-sensitive)
- e.g. $\{x \mapsto y, y \mapsto o, z \mapsto x\} \Longrightarrow \{x \mapsto y', y \mapsto o, z \mapsto x'\}$ (i.e. A transitive closure on $s \in \hat{S}$ does not make sense)

A Semiring Design with Smaller Pushdown Transitions

Definition

A bounded idempotent semiring $S = (D, \oplus, \otimes, 0, 1)$ is defined as

- The weight space $D = \mathcal{P}(\mathcal{D})$, where $\mathcal{D} = \hat{\mathcal{S}} \cup \{\mathsf{ID}\} \setminus \emptyset$
- $0 = \emptyset$ and $1 = \{ID\}$
- $\forall w_1, w_2 \in D, w_1 \otimes w_2 = \{d_1 \odot d_2 \mid d_1 \in w_1, d_2 \in w_2\}$, where

$$d_1 \odot d_2 = \begin{cases} d_1 \text{ (resp. } d_2) & \text{if } d_2 = \text{ID (resp. } d_1 = \text{ID)} \\ f_0(d_1, d_2) \cup f_1(d_1, d_2) & \text{o.w.} \end{cases}$$

$$f_0(d_1, d_2) = d_1 \setminus \{ (v, h_1) \in d_1 \mid \exists h_2 \text{ s.t. } (v, h_2) \in d_2 \}$$

$$f_1(d_1,d_2) = \{ (v_2,h_2') \mid \forall (v_2,h_2) \in d_2, h_2' = \begin{cases} h_1 & \text{if } \exists h_1 \text{ s.t. } (v_1,h_1) \in d_1, v_1 = h_2 \\ h_2 & \text{o.w.} \end{cases}$$

• $\forall w_1, w_2 \in D, w_1 \oplus w_2 = w_1 \cup w_2$

Remarks on $w_1 \otimes w_2$: ① f_0 : Relations in w_1 are changed by subsequent operations in w_2 (flow-sensitive); ② f_1 : The second components of relations in w_2 are substituted w.r.t w_1 .

Path Elimination

- $\mathscr{C} \subseteq \mathcal{P}(\mathcal{V} \times \mathcal{T})$: represent expected types of method receivers
- type: O → T: get types of abstract heap objects
 loc: O → L: get allocation sites of abstract heap objects
- α : $\mathscr{C} \times \mathscr{D} \to \{ \text{TRUE}, \text{FALSE} \}$ is introduced as an judgement relation. That is, $\forall d \in \mathscr{D}, c \in \mathscr{C}, \ c \propto d \text{ iff } \exists (v, t) \in c, \text{ and } (v, o) \in d, \text{ such that } t' \times t, \text{ where } t' = \text{type}(o).$
- $\ltimes : \mathcal{T} \times \mathcal{T} \to \{ \text{TRUE}, \text{FALSE} \}$ defines a relation among classes. $\forall t, t' \in \mathcal{T}, \ t' \ltimes t \text{ iff}$
 - r1. $t' \neq t$
 - r2. a) t' does not inherit from t; or
 - b) t' inherits from t, but t' redefines the method to be invoked.
- × is defined as the reverse of ⋉. That is,

$$\forall t, t' \in \mathcal{T}, t' \times t \text{ iff } t' \ltimes t = \text{FALSE}$$

A Semiring Design with Path Elimination

Definition

The previous semiring S is extended to be $S_e = (D_e, \oplus_e, \otimes_e, 0_e, 1_e)$, where

- $D_e = \mathcal{P}(\mathbb{D})$, where $\mathbb{D} = \{(d, c) \mid d \in \mathcal{D}, c \in \mathscr{C}\}$
- $1_e = \{(ID, \emptyset)\}$ and $0_e = \emptyset$
- $\forall w_1, w_2 \in D_e$, $w_1 \otimes_e w_2 = \{d_1 \odot_e d_2 \mid d_1 \in w_1, d_2 \in w_2\}$, such that $\forall d_1 = (d_1, c_1), d_2 = (d_2, c_2) \in \mathbb{D}$,

$$\mathbf{d}_1 \odot_{\mathbf{e}} \mathbf{d}_2 = \begin{cases} \mathbf{0}_{\mathbf{e}} & \text{if } \mathbf{c}_2 \propto \mathbf{d}_1 \\ (\mathbf{d}_1 \odot \mathbf{d}_2, \mathbf{c}_1 \uplus \mathbf{c}_2) & \text{o.w.} \end{cases}$$

where
$$c_1 \uplus c_2 = c_1 \cup f_8(c_2 \setminus c, d_1)$$
, and $c = f_7(c_2, d_1)$. $\forall c \in \mathscr{C}, d \in \mathscr{D}$,

$$f_7(c,d) = \{(v,t) \in c \mid \exists o \in C, \text{ s.t. } (v,o) \in d, \ t' = type(o), \ t' \times t\}$$

$$f_8(c,d) = \{(\tilde{v},t) \mid \forall (v,t) \in c, \tilde{v} = \begin{cases} v' & \text{if } \exists (v,v') \in d, v' \in \mathcal{V} \\ v & \text{o.w.} \end{cases}$$

• $\forall w_1, w_2 \in D_e, w_1 \oplus_e w_2 = w_1 \cup w_2$

Remarks on Path Elimination

- $(v,t) \in c \Longrightarrow (v',t)$, where $c \in \mathscr{C}$
- *c*₁ ⊎ *c*₂
 - f₇: remove constraints of c₂ satisfied by d₁
 - f₈: substitute variables of relations in c₂ w.r.t d₁
- Examples
 - $\{(x, o), \emptyset\} \odot_e \{ID, (x, A)\} = 0_e$ if $(x, A) \propto (x, o)$
 - $\{(x, o)(y, x), \emptyset\} \odot_e \{ID, (x, A)\} = \{(x, o)(y, x), \emptyset\}$ if **type** $(o) \bowtie A$
 - $\{(y, x), \emptyset\} \odot_{e} \{ID, (y, A)\} = \{(y, x), (x, A)\}$
- Associativity of ⊗_e(⊙_e) is not obvious but proved

Model Field Accesses

Definition

Let $\mathcal L$ be a set of local variables of reference type, and $\mathcal F$ be a set of field names. let $\hat{\mathcal H}=\mathcal L\cup\mathcal O$. A field read relation is defined as $\mathbb R:\hat{\mathcal H}\times\mathcal F\times\hat{\mathcal H}$. A field write relation is defined as $\mathbb W:\hat{\mathcal H}\times\mathcal F\times\hat{\mathcal H}$. The points-to relation is redefined as $\mathbb P:\mathcal L\times\hat{\mathcal H}$.

Remarks:

- $(h_1, f, h_2) \in \mathbb{R}$ models the field read access " $h_2 = h_1.f$ " $(h_2 \rightarrow h_1.f)$
- $(h_1, f, h_2) \in \mathbb{W}$ models the field write access " $h_1.f = h_2$ " $(h_1.f \mapsto h_2)$
- $(h_1, f, h_2) \in \mathbb{R} \Longrightarrow (h'_1, f, h_2)$
- $(h_1, f, h_2) \in \mathbb{W} \Longrightarrow (h'_1, f, h'_2)$
- A flow-sensitive analysis concerning field accesses seems intractable in this setting
 - $\{h_2 \rightarrowtail h_1.f\} \otimes \{h_3.f \rightarrowtail h_2\} \Rightarrow \{h_3.f " \rightarrowtail" h_1.f\}$
 - $\{h_2 \rightarrowtail h_1.f\} \otimes \{h_3 \rightarrowtail h_2.f\}$?

Conclusions

- Weighted pushdown model checking enables a fast design of interprocedural context-sensitive program analyses
- Pushdown systems provides us with handy context-sensitivity for program analyses
- Promising for developing a scalable analysis when the implementation allows
- Some future work
 - Evaluation on the ahead-of-time construction
 - Efficient data structures (like BDD) or other decision procedures could be explored

Thanks! li-xin@jaist.ac.jp