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Points-to Analysis for Java

e Purpose

o Approximate the set of heap objects pointed to by reference
variables at runtime

e Why points-to analysis?
e Essential to many other program analyses and compiler
optimizations
e Headachy issue in program verifications
e Precision and scalability is dominated by

Context-sensitivity calling contexts are distinguished
Flow-sensitivity execution orders are concerned

Field-sensitivity how instance fields are abstracted



A Running Example

LN

A x = new A(); ...01

By =new B(); ...0z

y.f = new Object(); ...03

X =Y,

if(...){ e Declared type strategy

z =x.m(y); . . , :
Jelse{ e Virtual method invocation (dynamic
x.f = new Object(); ...04 binding) at line 5 and 7

) Call-by-value

Abstract heap objects are
class A associated with codes in blue
m(B a): { returna; }

class B inherits class A

m(B b): { returnb.f; }

Figure: An Example of Java Code Fragment
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By =new B(); ...0z
y.f = new Object(); ...03 2 j 1 J
X =Y, _— X
if(...){ y 4 PN
5: z =x.m(y); -~ 7 N
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telse{ TN ¥ s RN
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class A N
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Figure: (a) Example Code Fragment  (b) Pointer Assignment Graph of (a)
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A Running Example

1: A x = new A(); ...01 0,
2: By =new B(); ...02
3: y.f = new Object(); ...03 2 l 4
4. X =Y,
if(..){ y 5 7 X
5: z =x.m(y); PR
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Figure: (a) Example Code Fragment  (b) Pointer Assignment Graph of (a)
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A Running Example

A x =newA(); ...01
By =newB(); ...02 02
y.f = new Object(); ...03 J

y

LN

X =Y; 2

if(..){

z =x.m(y); 5 -~
telse{ -~ 7
x.f = new Object(); ...04

|

|

’ |

} |
ol

class A :b-f|_ e z

m(B a): { returna; } -/

class B inherits class A 6

m(B b): { returnb.f; } 0,.f =——o04

Figure: (a) Example Code Fragment  (b) Pointer Assignment Graph of (a)



A Running Example

A x =newA(); ...01
By =new B(); ...02
y.f = new Object(); ...03
X =y;
if(..){
5: z =x.m(y);
telse{
6: x.f = new Object(); ...04

}

class A
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Figure: (a) Example Code Fragment  (b) Pointer Assignment Graph of (a)



A Running Example

@

Ax =new A(); ...01
By =new B(); ...0
y.f = new Object(); ...0s
X=y;
if(...)]
z =x.m(y);
telse{
x.f = new Object(); ...04
}
class A

m(Ba): { returna; }
class B inherits class A
m(B b): { returnb.f; }
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What does the example tell?

e Points-to analysis and call graph construction are mutually
dependent

e Call graph construction

° . constructed during points-to analysis
° . a pre-computed approximated call graph is
explored for points-to analysis

e Two occasions need points-to information:

e Call graph construction
¢ Instance field abstraction



Definition
Let V and O be a set of abstract reference variables and a set of abstract

heap objects respectively. A transitive and reflexive is
defined as —: V x H, where H =V U O. lts inverse is defined as a
~
Definition
A is defined as Ga = (Na, Ea), where Ng =V U O is

a set of nodes, and E, =~~ is a set of edges.

Definition
Let F be a set of fields and £ be a set of local variables. A

analysis abstracts an instance field I.f(I € £,f € F) as pairs of
{(o,f) | f — 0}.




Work Summary

Program Analysis = Abstract Interpretation + Model Checking

Context-sensitive points-to analysis algorithms based on
weighted pushdown model checking

Parameterized flow-sensitivity so that the abstraction design is
easily tuned

Variations of points-to analysis algorithms based on the following
dimensions:

° VS. call graph construction
° VS.
in the abstraction design

Evaluation within the sooT framework



Pushdown Model Checking

Model: Pushdown System (PDS)

A PDS + (e.g. Simple) Valuation
=~ A Pushdown Automaton
= Context-free Language

The intersection of context-free language and regular language
is closed (context-free)

The automata-theoretic approach works
MES S LM)NLS) =0

Efficient algorithms are developed due to the fact that:
“Regular sets of configurations are closed under forward and
backward reachability”



Weighted Pushdown Model Checking

e Associate a weight from a bounded idempotent semiring to each
pushdown transition rule

e Solve the (GPR) problem:
“Compute weights over paths in a pushdown graph leading from a
pushdown configuration to a regular set of pushdown configurations”

Definition
A Sis a semiring (D, ®, ®,0,1), s.t.
e @ isidempotent, i.e. ad® a=a.

e A partial order C is defined: Va,b ¢ D,aC biffadb = a.

That is, no infinite descending chain on weight space is required.



Application of Pushdown Systems to Program Analyses

e Suitable for modeling interprocedural program analyses

e Calls and returns are correctly paired ( )
¢ No limitation on recursion steps (vs. K-CFA)

e Pushdown model checking

e Model program’s data domain
e Demand finite domain abstraction (by automata-theoretic
approach )

e Weighted pushdown model checking

e Model program’s flow function space

e Demand infinite descending chains on the weight space,
but infinite domain abstraction is possible

¢ Regular pushdown configurations as an abstraction of
calling contexts ( )



Intention Behind the Semiring Design

=- Flow function space

A intends a function to represent how a property is
carried at each step of program execution.

= Properties keep unchanged by this transition step
= The program execution is interrupted by some error
= Function composition of g o f

= Conservative approximation over two control flows at
their meet

The optional commutativity of & facilitates modeling a
flow-sensitive analysis



Abstraction of Heap Memory

Definition

Let & be a set of run-time objects allocated in the heap memory. Functions
n-: 0 — T andn, : ¢ — L are defined respectively, where 7 is a set of
types (class names) of heap objects, and L is a set of memory allocation
sites in the program.

Definition
Let O C T x LU {o} be a set of abstract heap objects, where ¢ represents
null reference. An on disdefinedaséa: 0 — O, sit.

Yo € 0, &(0) = (r,¢), where 1 =n,(0) € T, =n,(0) € L.
Remarks:
® Y(7,u),(7,4) €O, ti =1t =7 =1
® Yo;,0; € 0, &(0;) = &(0;) iff the allocation sites for them are the same.

e An array is approximated with a single element with its base type.




An Algorithm with Lightweight Semiring Operations

Approaches:
e Reachability analysis on the product of G, and G;.

e For efficiency, a variation of “exploded supergraph” is explored

Definition

A is defined as G, = (N, E;, L)) from Ga,
where N} = {A} UV is a set of nodes, E; C N, x L; x N, is a set of edges, and
L = {XAx.x} U{Xx.0 | 0 € O} is a set of labels, such that

e (Vi, \X.X,V2) € By if (v1,V2) € Ea, Vi,V2 €V
e (A,Xx.o,v)€eE if(o,v)€Es, 0€0,veY

Remarks:
e A: an environment that allocates new heap objects

e Heap objects are labeled on the edges



The Underlined Model for Model Checking

Definition

A

where N, = N; x N; is a set of nodes, E, C Np X Lp x Np is a set of edges,
and L, = L, is a set of labels.

Algorithm

Let A[-] : S — P(~),and N; = {A} UVq UV, (V4 C V represents global
variables and V|, C V represents local variables), s.t. Ver = (n1,n.) € E¢

Gp = (Np, Ep, Lp) is the product of G, and Gy,

e; € Ej

efeEt
efeEc

efEEr

{((v,n1), XXX, (v,nz2)) | v eV} U
{((v1,N1), AX.X, (V2,n2)) | (V1, AX.X,V2) € By, (V1,V2) € F,v1 € V} U
{((A,n1), xx.0,(v,n2)) | (A, Ax.0,v) € Ej,(c,v) e F,0 e O} CEp
where F = A[StmtOf(nz)],V =N, —{v | (h,v) € F}
{((v,n1), Ax.x, (v,nz)) |[v eV} CEp

{((v,n1), XXX, (v,n2)) | v € Vg U{A}} U

{((h,n1), Ax.x, (v,nz)) | (h,v) e F} CEp

where F = A[StmtOf(n1)]

{((v,n1), XXX, (v,n2)) | v e VgU{A}} CE,




Part of G, for the Running Example

No {/l\}\,\x.ol No 1}
mo(A X J
l\AX'Qi ng {1}
INTRON ’
N3 {/\ 02.f Yy X} l
N ng {3}
ng {A oxf y x}___ nl
I PP o R T, + W
ns {A o,f y~ x} mo {A 0,.f a x} l
| || AN \ \ ns {x.m(y)}
ng {A 02.f Yy X r}\rrll {A ozf/r a x} 0
I SRR e s
nz {A of y x r z}



Part of G, for the Running Example

{A} AX.01 Mo @
I\ 1
A %) ng {1}
NS l
{l/\\)&({(}\ nlz {2}
{A oxf y x} ng {3}
oo\ |

Na {1/\ ozl.f 1 X} L ng {4}
{A oz.f/y/x}// Mo {\/\xngf‘\a\x} ns {x.m(y)}
oo IINAN
{A ozl.f R 1( rym {A opfor a xj} Ng 0
I N
{N 0o.f )1; X ‘i z} nz {z=r}



A Semiring Design
Let S =P(0),D1={Xx.s |[seS}and D, = {Mx.xUs |s €S}

Definition

A bounded idempotent semiring S = (D, ®, ®, 0, 1) is defined as
e The weight space D = D, U D>
e 1is defined as Ax.x and 0 is defined as A\x.{)

e The ® operator is defined as
vdi, dj € D\ {0,1}, di ® dj = d|
e The @ operator equals set union U, defined as
vdi = Ax.si, dy = x5, €D, di@d =d @ di = A\x.s Us;

Vdi = AX.s; Elj, dj = AX.X us;j GD, di@dj :dj@di :AX.XUSiUSj
Vd; = Ax.X usi, dj :)\X.XUSJ' 65, di@dj:dj@di Z)\X.XUSiUSj

Distributivity of @ over & is easily checked.




Parameterized Flow-sensitivity

e Problems: G, will explode for large-scale programs

e Solutions: Gs is firstly shrunk by grouping nodes into blocks

e One node possibly associated with a set of program statements
e Each node has an unique entry after shrinking

e Parameterized flow-sensitivity by shrinking

e Shrinking is NOT arbitrary to keep soundness (loops, branches)
e An extreme shrinking collapses each method into a single node

( )

N xsy o2f} _______ n; {1234}
1‘ P /’/ /// ’:/ \:-:::\\\ \\\x
(N xTy T 0f) my {ATa o2f=>r “x} oy {x.m(y)}
| ;o

/ 7
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Parameterized Flow-sensitivity

e Problems: G, will explode for large-scale programs

e Solutions: Gs is firstly shrunk by grouping nodes into blocks

e One node possibly associated with a set of program statements
e Each node has an unique entry after shrinking

e Parameterized flow-sensitivity by shrinking

e Shrinking is NOT arbitrary to keep soundness (loops, branches)
e An extreme shrinking collapses each method into a single node

( )

N xsy o2f} _______ n; {1234}
l _- /’/ /// ‘:-/ \:-:::\\\ \\\*
(N xTy ot my {ATa o2f=>r x} o {x.m(y)}
| ;o

Vi Ve



Encoding to Weighted PDS

Given a weighted flows-to graph G, = (N,, Ep, Lp), with

Np = {A} UV x N;
e {A} UV = control states
e N; = stack alphabets

e E, = pushdown transition rules

¢ { }
e ——
— = ~
——=== I ~
l -=—= v T~ ~

N - P - ;N - X EN
1 AN xZy o0f} my {A a oxf-r x}
/

T

n, {A x y o2f  r—z} -

~—_ -

(A, ng) — (x,n)

{y,ny) — (a,mgn3)



Evaluation within the sooT Framework
(On-the-fly + Lightweight Semiring Operation)

\771‘77777; 77777 (sfocﬁ‘
3|l : Pontoto ! e Obstacle: restriction from
s \‘ Jimple ‘ ‘ Call Graph ﬁ Analysis ‘ ! the interaction of soot
B = = === = - and weighted PDS library
/ Abstraction Abstraction * Bottleneck: Weighted
o on Variables on Statements PDS constructed from
5 \ scratch for each model

Pushdown checking request

Control States

‘ Weights ‘

‘ Transitions

e An incremental model

******** ¥ Weahted PDS construction is promising

o| I'| Bounded : .
g | | Idempotent — W?::gDhSted | when pOSSIbIe
& Semiring

software LOC MCR time (s) TMCR(s) TMC(s)
jetty ~3000 1173 632.23 619.57(97.99%) 468 (75.5%)



Points-to Analysis with Ahead-of-time Call Graph Construction

e Target: reduce frequent model checking demands
e Approaches

o A pre-computed approximated call graph is explored
¢ Invalid pathes are “removed” during model checking
o Extra relations to model instance field accesses

e A semiring design with
e SCP(VxH)=P()stVsecS

V(V;L7 hl)7 (Vz7 hz) €s,hy =hyifvy =v,

e ‘X =y;y=2"= {Xx+—y,y— z}instead of {x — z,y — z}
Vi — Vo == Vi — V, (flow-sensitive)

e eg {X—y,y—0,z2—Xx}={Xx—y,y—o0,z—x'}(ie. A
transitive closure on s € § does not make sense )



A Semiring Design with Smaller Pushdown Transitions

Definition

A bounded idempotent semiring S = (D, ®, ®,0,1) is defined as
e The weight space D = P(2), where 2 = S U {ID} \ 0
e 0=0and1={iD}
® Ywi, Wy € D,w; @w, = {d; ®dy | di € wy,d> € wo}, where

d1 (resp. d2) if d, = 1D (resp. d1 = ID)
diod2 =
fo(dl,dz)Ufl(dl,dz) o.w.
fo(dl,dz) =d; \ { (V7 hl) cd; | Jh, s.t. (V7 hz) € d, }

hy if 3hy s.t. (Vl7 h1) S dl,V

fl(dl7d2) = { (V27 hé) |V(V27 h2) S d27 hé = {hz oW,

e Ywi, W, € D, w; ®wy, =W UWws

Remarks on w1 @ w: O fo: Relations in w; are changed by subsequent
operations in w; ( ); O f1: The second components of relations in
w; are substituted w.r.t wi.

hz



Path Elimination

¢ C P(V x T): represent expected types of method receivers

type : O — 7: get types of abstract heap objects
loc : O — L: get allocation sites of abstract heap objects

o € x 9 — {TRUE, FALSE} is introduced as an judgement
relation. Thatis, Vd € 2,¢c € ¢, ¢ o d iff 3(v,t) € ¢, and
(v,0) € d, suchthatt’ x t, where t’ = type(o).

x : T x T — {TRUE, FALSE} defines a relation among classes.
Vit e T, t x tiff

rl. t' #t
r2. a) t’ does notinherit fromt; or
b) t’inherits fromt, but t’ redefines the method to be invoked.

x is defined as the reverse of x. That is,

Vi, t' e T, t/ xtifft’ x t = FALSE



A Semiring Design with Path Elimination

Definition
The previous semiring S is extended to be Se = (De, @e, Qe, Oe, 1e), Where
e D, = P(D), whereD = {(d,c) |d € 2, c € €}
e 1. ={(1D,0)} and 0 = @
® YWy, Wy € De, W1 ®e Wy = {di @e d2 | d1 € Wy, ds € Wo}, such that
Vd; = (d1,¢1),d2 = (d2,C2) € D,
if
di @e d2 =
et {(dl ® da, ) ow.
where ¢; W ¢, =c1 Ufg(co \ €,d1), and ¢ = f7(cz,d1). Ve € ©,d € 2,
fz(c,d) = {(v,t) €c|Jo €C, st (v,0) €d, t' =type(o), t’ x t}

v if3(v,v)ed,v eV
vVoow.

fg(c,d){(\7,t)|V(v,t)€c,\7{ }

® VWi, Wy € De, W1 De W2 = W1 UW>




Remarks on Path Elimination

(v,t) ec = (V/,t), wherec € €
CityCo
o f;: remove constraints of ¢, satisfied by d;
o fg: substitute variables of relations in ¢, w.r.t d;
Examples
o {(x,0),0} ®e {ID, (x,A)} = 0¢ if (x,A) x (X,0)
e {(x,0)(y,x),0} @e {ID, (x,A)} = {(x,0)(y,x),0} iftype(o) x A
e {(y,x),0} ®e {ID, (y, A)} = {(y,x), (x,A)}
Associativity of ®e(®e) is not obvious but proved



Model Field Accesses

Definition
Let Lbea set of local variables of reference type, and F be a set of fielg
names. letH=LUO. A isdefinedasR: H x F x H. A

is defined as W : 7 x F x H. The points-to relation is
redefinedas P : £ x H.

Remarks:
e (hy,f, hy) € R models the field read access “h, = h;.f”
e (hy,f,hy) € W models the field write access “h;.f = hy”
e (hy,f,hy) €e R = (hi,f, hy)
e (hy,f,hy) € W= (hi,f, h5)

o A flow-sensitive analysis concerning field accesses seems intractable in
this setting

° {hz — hlf} (024] {h3f — hz} = {hgf = hlf}
o {hz — hlf} ® {hg — hzf} ?



Conclusions

Weighted pushdown model checking enables a fast design of
interprocedural context-sensitive program analyses

Pushdown systems provides us with handy context-sensitivity for
program analyses

Promising for developing a scalable analysis when the
implementation allows

Some future work

e Evaluation on the ahead-of-time construction
o Efficient data structures (like BDD) or other decision
procedures could be explored
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li-xin@jaist.ac.jp



