JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

mati on Syst
chnol ogi es

19/ 8316

Title HEN Devel opment of I nfor
Soci ety with Component Te
Author(s) oo, OO0
Citation
Issue Date 2006-11-28
Type Presentation
Text version publ i sher
URL http:/7 /7 hdl handle.net/ 101
Rights
3rd VERITE JAI ST/ TRUST -
. on VERIfication TEchnol og
Description

g2006011027002800,
oobooobooon

gogoggd A

Al ST/ CVS |
y Doogoo, Ul
ST 0OO0OODO

AIST

JAPAN

ADVANCED

INSTITUTE OF

SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

RIMER AT LEEICEITS
aAVR—aR MDA

Development of Information
Systems for e-Society
with Component Technologies

AR IEA

JLBE SR R KRR
EHRA R R

06/11/28 Verite 3rd

Contents

* Requirements of Information systems for
e-society (accountability)

* Our goal

* Component technologies
(Flexibility, Specification&Verification)

e Qur approach
* Restructuring current system w/components.
* Current Status/Summary

e-Society

Katayama used the term “Verifiable and
Evolvable e-Society” in our COE21 projects.

Features of e-Society

Correctness: all functions must be correctly

realized according to its specifications

Accountability: systems must explain its
functions and structures for all questions by
all stakeholders

Security: systems must prohibit leak of

information and unauthorized accesses

etc.

Outline of Info. Sys.

with accountability
Credit/Score management system in our Institute

Research
% proposal

>

Student A < "Eected

-

-«

Your sub-theme
IS not finished yet.

Committee for
regulation

Laws (rules) ’A)dates

G

4 credits from basic course
8 credits from major course
sub-theme must be finished

credits

w

Basic: 4 Major:10 Sub: No

Features for Info. Sys.

with accountability

System must provide not only the result
but a cause or a history of reasoning.

Research
proposal

R33: acceptance conditions of research proposal
R33-1: 4 credits from basic course
R33-2: 8 credits from major course
R33-3: sub-theme must be finished

Traditional system only gives answer “rejected”
System with accountability must give answer such that

R33-1: You have 4, requires 4 PASS

R33-2: You have 10, requires 8 PASS
R33-3: You don't finish sub-theme FAILED = | Cause of failure

R33 is AND(R33-1, R33-2, R33-3) FAILED

Result : Rejected

AND-OR tree is used

Our goal

One of our goal is to provide a technical basis for
realizing info. sys. with accountabillity.
(Efficiency in development/evolution, verification, reuse)

Stake holders (actors)

;

End-user (students, citizens)

Ul

Rep. of
Laws

Reasoning

Laws

X

Manager or clerks of government

System
Developer

X

Committee
for define
Laws

Software architecture/component based
technologies may give a proper solution.

Component Technologies

Originally aimed to improve cost/efficiency in reuse.

I Collection of architectures
Requirements ™
Specification Decide
architecture /
l Collection of components
Build/compose a N

components Q
Implementation .

‘ v S /

Features of components

Originally it was any unit of program (modules etc)

Recently it is based on Object-Oriented, and have
the following features [Ning 96]

How to use (interfaces) are open to public,
but internal structures are hidden.

Works on a particular environment only.
Unit of plug-in (replacement)

Consists of multiple (binary/text) files

Component features for

accountability

1. Flexible connection

A component communicate to another one / its
environment through some indirect mechanisms.

Traditional:
Foo(int id, String name)

Foo

Caller must know the address of function “Fo00.”
We have to re-compile all if we change behavior.

With component: m ~ » Foo
Interface | = c.getlnterface();
Method m = i.getMethod (“Foo”); - Foo w/acc

m.invoke(args(id, name)) ;

Component features for
accountability

2. Specification / Verification

Interfaces and their usage must be verified
at compiled time (static) or runtime (dynamic).

required - - ;rovided

Arg1 is int
Arg2 is String

Arg1 must be int, positive
Arg2 must be String

Traditional: spec. must be described separately and
Independent verifier is required at runtime.

Component technologies already have/easy to extend
specification/ semi-automatic verification.

Our approach

Overview of development process

Workflows

¢

Requirement

Analysis

i

Use-cases

.

Detection of
Classes

Logical
Expression of
Law

A

X

System Developer

C mapiing

N

Class
Diagrams

Architecture
and Component F» Codes

Design

(1) we have to extract candidates of classes from
expression of laws.

4 credits from basic course
8 credits from major course ‘
sub-theme must be finished

Research proposal

Credit Sub-theme

Our approach(cont.)

(2) Design classes from use-cases and (1) —

0 &

Use-case name:accept research proposal

actors: student, manager

normal sequences: _
1: student gives proposal Query history
2: system checks conditions by reasoning

Condition

Reasoning history

(3) Implement using component models

Comp. for query manager Comp. for reasoning manager

© Comp. for checking
(3 layers in actual) each rules

Restructuring on Design level

Besides to build system/w acc. from the scratch,
we try to restructure current systems using
component technologies.

Restructuring on code level is called refactoring,
widely applied in many development processes.
Note: it only changes structure, never change its function/malfunction

Ex: extract method
Aim : specify calculation clearly / improve possibility for enhancement

foo() { foo() { int foosub(int x,int y) {
. (pre-action) a complex calculation
(a complex calculation) ‘ r = foosub(x,y); I(’eturn 1?.;)
(post-action))
} }

Restructuring on Design level

We need to reconstruct info. sys. in design level
In order to provide accountability because

* legacy systems might not be properly layered
* legacy systems might not have clear interfaces

24 W) :%:

Style / amount / frequency of communication
might be clues to decide layers / interfaces.

Communication Category

Communication styles are categorized as
follows:

(a) One-to-one, synchronous :
Request/response pair -

DB query/resultset pair

(b) One-to-many,synchronous: >

shared data (blackboard)
access

(c) One-to-many, asynchronous:)

logging

A Case Study

Small library systems in our laboratory

Before : stand-alone, fixed GUI, integrated DB
After: accessible through WEB, distributed DB

(final goal)
UlIManager LibraryServlet
(imcompleted)
Rentals

UserRecord PropertyRecord

request/response
with HTTP

Abstraction of
transaction

Communications in Example

Number of one-to-many sync. comm. is large.

Before restructure: >30

UserDB

RentJob
/ BookDB

> RentRecDB

\

Improper assignment of responsibility might be a cause of
increase of comm. So we restructure them as follows:

After restructure: 10
| |

Some request are not necessary to access lower layer, but can make responses in middle.

Mechanisms for Accountability

* Reasoning might be introduced in middle layer.

* Implemented by replacing some components
with those have accountability-related features.

I UserDB
GUl| RentJob Eﬁﬁtizglmpl | checking user
' is faculty
normal ™ | BookDB
function checking items
I A | | is available
Extention _ — | ~ RentRecDB
for acc. reasoning m I 4 ~ holds history
L Addition of Rx-3
Rx-1: Student can borrow no more than 5 books. requires access
Rx-2: Faculty can borrow no more than 10 books. to RentRecDB

Rx-3: Person who already borrow some books cannot exceed
the limit incl. # of books he/she has not yet returned.

Current Status/Summary

We are engaged to establish a development
process for info. sys. with accountability using
component technologies.

Top-down approach :
extract classes from expression of laws(rules)
and use-cases, realize them with components

Prototype of a mapping from query to rule 1s built and
evaluation 1s 1n progress.

Bottom-up approach :

extract interfaces from style/amount of interaction,
restructure systems into layers, build with comp.

Rules for extracting interfaces are defined and polished
through some small systems (incl. mini-library.)

Appendix : Class Diagram for mini library system

E&» A7 h:h52H /

TextRent.Job

+ TextRentJob O
+ getSoreenMessage O
+ run O

Rent.Job

UserDatabasze

+ Rentdob O
+ proceszRentJob O

IS

I

+ UzerDatabaze O
+ gxiztlUzer O
+ gethllUzersData O

+ getllzerData O
+ rmain O

Book Database

ReadOnlyDatabaze

+ BookDatabase O
+ exiztBook O
+ getallD O

&

+ getBook Data 0
+ gearch O

+ ReadOnlyDatabaze O

+ getDataPath O

+ getzelectedModelter ator
+ getDataPath O

RentalDatabase

+ RentalDatabaze O

+ addPentalFecord

+ check BookStatus O

+ check UserPent O

+ getOnellzer RentalRecard O
+ getRentalFecord 2

+ getRentedBookIDList

+ remaveRentalRecard ©

+ rentFilelnit 0

DOMDatabase

+ document

+ DOMDatabaze
+ buildDOMTree

B o O

+ getDocument O

+ getSelectedModelizt O

+ getSelectedModelteratar O

