
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 量子計算の複雑さに関する研究

Author(s) 三原, 孝志

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/832

Rights

Description Supervisor:國藤 進, 情報科学研究科, 博士

The Complexity of Quantum Computation

By Takashi Mihara

A thesis submitted to

School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial ful�llment of the requirements

for the degree of

Doctor of Information Science

Graduate Program in Information Science

Written under the direction of

Professor Susumu Kunifuji

January 1997

Copyright c
 1997 by Takashi Mihara

Abstract

Nowadays, there are many problems that are intractable to be solved on ordinary
computers. Therefore, in order to invent more powerful computers, we need a computing
model that is based on quantum physics, i.e., a quantum computer, because the com-
putational principles of ordinary computers are based on classical physics, whereas the
principles of the real world can be explained by quantum physics. In 1985, for the �rst
time, Deutsch proposed a computing model involving a superposition of physical states,
which is one of inherent properties of quantum physics, as a quantum Turing machine
(QTM) and in 1993, Bernstein and Vazirani mathematically formalized the QTM. After
that, some results have indicated that the QTM may be more powerful than ordinary
computers. In 1994, in fact, Shor showed that the QTM can �nd discrete logarithms
and factor integers in polynomial time with bounded error probability. We do not know
whether ordinary computers can e�ciently solve these problems or not. In this thesis,
we present an overview on quantum computers and quantum complexity classes and
then, we show some results on the complexity and algorithms based on the QTM.

Some techniques for solving problems e�ciently on QTMs have been proposed. Es-
pecially, the most well-known techniques, a quantum Fourier transform and a quantum
iterating method, have been used. A quantum Fourier transform is a quantum ver-
sion of discrete Fourier transforms and can e�ciently obtain some properties of func-
tions. By this technique, we show that the periods in some kinds of periodic functions,
f(x) = f (x + r) and x = f r(x) for a period r, can be found in polynomial time with
bounded error probability on QTMs. Some of the functions proposed as pseudo-random
generators are also included in these functions.

A quantum iterating method is a method to increase the probability of accepting states
by using an algorithm repeatedly. By this technique, we show that for an unsorted table
T of n items and a query item q, there is a quantum search algorithm that �nds a pair
of indices (j; k) corresponding to two successive items, T [j] and T [k], which satisfy that
T [j] � q � T [k], in expected time O(n1=2) with bounded error probability. As a special
case, this algorithm can �nd the minimum or the maximum value of T in expected time
O(n1=2) with bounded error probability. Moreover, we also show that QTMs can solve
some problems in computational geometry more e�ciently than ordinary computers.

Finally, we investigate the relationships between the computational complexity and
quantum physics. Although NP-complete problems appear in many situations, nobody
knows whether ordinary computers can e�ciently solve these problems or not. On the
other hand, the problem of measurement is one of the most interesting problems in
physics and nobody can explain su�ciently what happens when we measure yet. Here,
we propose the following two assumptions on measurement: (i) Assumption �1 : a
superposition of physical states is preserved after measurements and all of the states in
the superposition can be measured in time proportional to the number of the states in
the superposition, and (ii) Assumption �2 : we can measure the existence of a speci�c
physical state C in a given superposition with certainty in polynomial time if the state
C exists in the superposition. Then, we show that there is a QTM that solves the

i

satis�ability problem (SAT) in O(2n=4) time under Assumption �1 and there is a QTM
that solves SAT in nO(1) time under Assumption �2, where n is the length of an instance
of SAT. SAT is a typical NP-complete problem.

ii

Acknowledgments

In the course of conducting this research, the author was fortunate to receive guid-
ances and encouragements from a large number of people. Without them, this research
would have never been accomplished. To begin with, the �rst and most important
person to whom the author would like to express his sincere gratitude is his principal
advisor Professor Susumu Kunifuji of Japan Advanced Institute of Science and Tech-
nology (JAIST). He gave the author his constant encouragements and kind guidances
during this research.

The author would like to thank his advisor Associate Professor Satoshi Tojo of JAIST
for his helpful discussions and suggestions. The author also would like to thank to
Professor Hiroakira Ono and Professor Eiji Okamoto of JAIST for their kind comments
and suggestions.

The author is grateful to all who have a�ected or suggested his areas of research. As-
sociate Professor Tetsuro Nishino of the University of Electro-Communications inspired
the author through his constant activities on quantum computer, and gave the author
valuable comments and continuous encouragements.

The author is grateful to all who have read the manuscript and o�ered useful com-
ments: Dr. Thanaruk Theeramunkong, Dr. Masahiro Mambo, Dr. Ratana Rujiravanit,
Keisuke Tanaka, Shao-Chin Sung, and Hiroyuki Shirasu.

The author devotes his sincere thanks and appreciation to all of them, and his col-
leagues.

iii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Notations : 5
2.2 Turing Machines : 5
2.3 Reversible Computation : 7

3 Quantum Computers 12

3.1 Quantum Computers before Deutsch's : : : : : : : : : : : : : : : : : : : 12
3.1.1 Simulating TMs by Quantum Physics : : : : : : : : : : : : : : : : 12
3.1.2 Feynman's Universal Quantum Simulator : : : : : : : : : : : : : : 13

3.2 Quantum Turing Machine : 13
3.2.1 De�nition of Quantum Turing Machine : : : : : : : : : : : : : : : 13
3.2.2 Physical Representation of QTM : : : : : : : : : : : : : : : : : : 15

3.3 Other Quantum Computing Models : 17
3.3.1 Quantum Circuits : 17
3.3.2 Quantum Cellular Automata : 18

3.4 Realizabilities of Quantum Computers : : : : : : : : : : : : : : : : : : : 20

4 Quantum Complexity Classes 22

4.1 Ordinary Complexity Classes : 22
4.1.1 Complexity Classes Based on TMs : : : : : : : : : : : : : : : : : 22
4.1.2 Complexity Classes Based on PTMs : : : : : : : : : : : : : : : : : 22
4.1.3 Reducibility and Completeness : : : : : : : : : : : : : : : : : : : 24

4.2 Quantum Complexity Classes and Relationships Between Classes : : : : 24
4.2.1 BQP : 25
4.2.2 Other Quantum Complexity Classes : : : : : : : : : : : : : : : : : 28
4.2.3 Relationships Between Complexity Classes : : : : : : : : : : : : : 29

5 Periodic Functions 32

5.1 Introduction : 32
5.2 Quantum Fourier Transforms : 32

5.2.1 Shor's Quantum Algorithm for Factoring Integers : : : : : : : : : 32
5.2.2 Various Transforms : 34

iv

5.3 Finding the Periods of Periodic Functions : : : : : : : : : : : : : : : : : 39
5.3.1 Type f(x) = f(x+ r) : 39
5.3.2 Type x = f r(x) : 41

6 Quantum Search Algorithms 44

6.1 Introduction : 44
6.2 Search Algorithms on QTMs : 44

6.2.1 Grover's Quantum Search Algorithm : : : : : : : : : : : : : : : : 44
6.2.2 Extended Quantum Search Algorithm : : : : : : : : : : : : : : : : 46

6.3 Applications : 49

7 The Complexity of NP-complete Problems 52

7.1 Introduction : 52
7.2 Solving SAT under the First Assumption : : : : : : : : : : : : : : : : : : 53
7.3 Solving SAT under the Second Assumption : : : : : : : : : : : : : : : : : 58

8 Conclusions 63

A Quantum Theory 65

A.1 Hilbert Spaces : 65
A.2 Tensor Products : 67
A.3 Unitary Operators : 68
A.4 Quantum Physics : 70

Bibliography 71

Publications 80

v

List of Figures

2.1 A Turing machine. : 6

3.1 A To�oli gate. : 17

4.1 Relationships between complexity classes. : : : : : : : : : : : : : : : : : : 31

7.1 The QTM U . : 54
7.2 The program that the QTM U executes under Assumption �1. : : : : : : 55
7.3 The computation executed by the QTM U . : : : : : : : : : : : : : : : : : 57
7.4 The program that the QTM U executes under Assumption �2. : : : : : : 58
7.5 The changes of the superposition of con�gurations of the QTM U . : : : : 62

vi

List of Tables

2.1 A reversible computing process. : 11

vii

Chapter 1

Introduction

A standard theoretical model of computing devices is a Turing machine that was pro-
posed by Turing in 1930's. For some speci�c problems, the abilities of ordinary computers
are more powerful than those of human beings. On the other hand, many problems that
are intractable to be solved on ordinary computers are already known. Furthermore, the
computational principles of ordinary computers are based on classical physics, whereas
it is thought that the principles of the real world can be explained by quantum physics.
Namely, it is well-known that classical physics is su�cient to explain macroscopic phe-
nomena but is not su�cient to explain microscopic phenomena like the interference of
electrons. In these days, the speed-up and down-sizing of computing devices have been
carried out by using quantum physical e�ects, however, the computational principles of
these devices are based on classical physics.

In this situation, from 1980's, physicists have seen the limitations of ordinary com-
puters when they simulated physical phenomena on those computers. They thought
that, since the current computational principles are based on classical physics, they
might be able to make a more powerful computer if they could use the computational
principles based on quantum physics, which can explain the real world more precise than
classical physics. Thus, they proposed a computer that involves inherent properties of
quantum physics as the computational principles and called it a quantum computer.

In early models of quantum computers, researchers placed a great importance on
�nding precise representations of Turing machines based on quantum physics (e.g., see
[9, 11, 14, 93]). Thus, inherent properties of quantum physics were not involved in those
models. In other words, their purpose was to design good simulators of Turing machines
by using quantum physics.

On the other hand, Feynman and Deutsch proposed the models of quantum com-
puters in which inherent properties of quantum physics are involved. In 1982, Feyn-
man asked whether ordinary computers can e�ciently simulate physical phenomena
and pointed out that they may not be able to e�ciently simulate physical phenomena
[54]. Moreover, he suggested that a new computer based on quantum physics, a quan-
tum computer, may be more powerful than ordinary computers. However, he did not
formalize his quantum computer.

1

In 1985, for the �rst time, a quantum computer in which inherent properties of
quantum physics are involved was proposed as a quantum Turing machine (QTM) by
Deutsch [39]. However, Deutsch's quantum computer was not su�ciently formalized.
So, he did not precisely evaluate the computing power of his quantum computer and did
not mention anything about the computational complexity of his quantum computation.

In 1993, Bernstein and Vazirani mathematically formalized the QTM [23] and some
results have indicated that the QTM seems to be more powerful than ordinary computers
(e.g., see [22, 24, 25, 41, 68, 113]). In 1994, in fact, Shor showed that discrete logarithms
and factoring integers are included in BQP, which is a language that can be accepted in
polynomial time with bounded error probability on QTMs [108, 110]. These problems
are generally considered hard on ordinary computers and have been used as the bases
of several proposed cryptosystems.

Many physicists are also studying physical realizabilities of the QTM, and Lloyd
reported that the QTM is potentially realizable [77, 78]. On the other hand, from com-
puter scienti�c points of view, it is almost impossible to construct a new simulator for a
QTM whenever its �nite control is changed. Thus, it is important to answer the question
whether a universal QTM exists. Deutsch showed that there is a universal QTM [39].
However, if we use his construction, the simulating overhead can be exponential in the
running time of the simulated QTM in the worst case. After that, Bernstein and Vazi-
rani showed that there is a universal QTM whose simulating overhead is polynomially
bounded [23].

The remainder of this thesis is divided into six major chapters. In Chapter 2, we
describe elementary de�nitions and notations. We de�ne Turing machines that are
standard theoretical models of computing devices. There are a lot of computing models
that are known as Turing machines. Here, we de�ne only two typical Turing machines,
a deterministic Turing machine and a nondeterministic Turing machine. A QTM is
de�ned based on these models. Since the execution of the QTM is evolved by unitary
matrices, it is also a model of reversible computation. Therefore, in this chapter, we
also describe the de�nition of a reversible Turing machine that was proposed by Bennett
[15].

In Chapter 3, we review several models of quantum computers. A quantum computer
was �rstly proposed as a QTM by Deutsch [39]. His quantum computer, for the �rst
time, involves inherent properties of quantum physics as the computational principles.
Nowadays, many computer scientists study the complexity and algorithms based on his
model. However, since there are other quantum computing models such as quantum
circuits and quantum cellular automata, we also describe these models brie
y. Finally,
we summarize the realizabilities of quantum computers.

In Chapter 4, we de�ne typical complexity classes based on ordinary Turing machines
and complexity classes based on QTMs. QTMs can be regard as a kind of probabilistic
Turing machines, because in quantum physics we can obtain results only probabilisti-
cally. Therefore, we de�ne complexity classes based on QTMs as classes corresponding
to the probabilistic complexity classes and call the complexity classes based on QTMs
quantum complexity classes [23, 83]. Moreover, we also show the relationships between

2

complexity classes.
In Chapter 5, we discuss methods to �nd the periods of functions e�ciently. Shor

showed that a QTM can �nd discrete logarithms and factor integers e�ciently [108, 110].
No polynomial time algorithm to �nd these problems on ordinary computers is known.
In order to solve these problems e�ciently, he reduced them to the problems of �nding
the periods of some functions and used the most famous technique for solving problems
e�ciently on QTMs, a quantum Fourier transform.

We show that the periods in some kinds of periodic functions, f (x) = f(x+ r) and
x = f r(x) for a period r, can be found in polynomial time with bounded error probability
on QTMs by using the quantum Fourier transform [84]. For instance, we can e�ciently
solve a cycle problem on a QTM. Given a �nite domain D, let us consider a function
f : D ! D such that it has s+ r distinct values x0 = f 0(x0); f

1(x0); . . . ; f
s+r�1(x0), but

f s(x0) = f s+r(x0). This means that f j(x0) = f j+r(x0) for all j � s. A cycle problem

for f and x0 is to �nd the pair (s; r). Sedgewick et al. showed that ordinary computers
need O(n) time in order to solve the problem, where n = s + r [106]. We show that a
QTM can solve it in (log2 n)

O(1) time. Some of the functions proposed as pseudo-random
generators are also included in these functions.

In Chapter 6, we discuss quantum search algorithms for a table search (e.g., a
database search). In order to e�ciently search items in a table on a QTM, we use an-
other well-known technique, a quantum iterating method. A quantum iterating method
was proposed by Grover and is a method to increase the probability of accepting states
by using an algorithm repeatedly. He showed that for an unsorted table T of n distinct
items, T [0]; T [1]; . . . ; T [n� 1], there is a quantum search algorithm that �nds the index
m of a query item q(= T [m]) in expected time O(n1=2) with bounded error probability
[60]. Ordinary computers need O(n) time to �nd the index.

We show that for an unsorted table T of n items and a query item q (where q may
not necessarily exist in T), there is a quantum search algorithm that �nds a pair of
indices (j; k) corresponding to two successive items, T [j] and T [k], which satisfy that
T [j] � q � T [k], in expected time O(n1=2) with bounded error probability. Our algorithm
uses Grover's search algorithm as a subroutine, and as a special case, we can �nd the
minimum or the maximum value of T by using this algorithm in expected time O(n1=2)
with bounded error probability. Moreover, we also show that QTMs can solve some
problems in computational geometry more e�ciently than ordinary computers.

In Chapter 7, we discuss methods to solve NP-complete problems on QTMs. Al-
though NP-complete problems appear in many situations, nobody knows whether or-
dinary computers can e�ciently solve these problems or not. It is one of the most
important issues in theoretical computer science to �nd a method to solve NP-complete
problems e�ciently.

Even if a QTM can compute all the values of a function by using quantum parallel
computation, we cannot, in general, obtain all the values of the function simultaneously.
Moreover, according to current quantum physics, it is not certain whether we can e�-
ciently read each value in the obtained superposition. These are because the following
measurement problem has not been completely solved.

3

Measurement Problem in Quantum Physics :

What will happen when we measure a quantum physical object ?
Explain it in terms of quantum physics.

Therefore, we study the relationships between the assumptions on measurement and
the e�ciency of quantum computation. Especially, we study the satis�ability problem
(SAT), because SAT is a typical NP-complete problem [56]. Here, we propose the
following two assumptions on measurement: (i) Assumption �1 : a superposition of
physical states is preserved after measurements and all of the states in the superposition
can be measured in time proportional to the number of the states in the superposition,
and (ii) Assumption �2 : we can measure the existence of a speci�c physical state C
in a given superposition with certainty in polynomial time if the state C exists in the
superposition. Consequently, we show that a QTM can solve SAT in O(2n=4) time under
Assumption �1 and a QTM can solve SAT in nO(1) time under Assumption �2, where
n is the length of an instance of SAT [81, 82].

The assumptions above are not widely supported in current quantum physics, how-
ever, nobody knows whether these assumptions are valid or not. This is because inter-
pretations of measurement have not been �xed yet among physicists. The measurement
problem is one of the central issues in quantum physics and several interpretations of
measurement exist. In this situation, it is important to �nd various relationships between
the restrictions on measurement and the e�ciency of quantum computation.

4

Chapter 2

Preliminaries

2.1 Notations

In this section, we describe some notations that are used in this thesis.

1. The Sets

� C : the set of complex numbers.

� R : the set of real numbers.

� Z : the set of integers.

� Z+ : the set of positive integers.

� Zn : f0; 1; . . . ; n� 1g.
� N : the set of natural numbers

2. O-notation

� O(f) is the set of functions g such that for some constant c > 0 and for all
but �nitely many n, g(n) < cf(n).

�
(f) is the set of functions g such that for some constant c > 0 and for
in�nitely many n, g(n) > cf(n).

� �(f) is the set of functions g such that for some constants c1; c2 > 0 and for
all but �nitely many n, c1f(n) < g(n) < c2f(n).

2.2 Turing Machines

A Turing machine is a kind of mathematical computing machine model. The de�nition
of a Turing machine is described in this section. For a more complete overview, the
reader is referred to [3, 61, 91]. There are a lot of computing models that are known
as Turing machines. Here, we denote only two typical Turing machines, a deterministic
Turing machine and a nondeterministic Turing machine.

5

.
i21

. . . A tape

A finite
control

A tape head

a a a

Figure 2.1: A Turing machine.

As shown in Fig. 2.1, a deterministic Turing machine consists of a �nite control,
an in�nite tape, and a tape head. In one move, the Turing machine, depending on the
symbol scanned by the tape head and the state of the �nite control,

1. changes state,

2. writes a symbol on the tape cell scanned, replacing what was written there, and

3. moves its head left one cell, right one cell, or keep it stationary.

De�nition 2.1. A deterministic Turing machine(DTM) is a 7-tuple
M = (Q;�;�; �; q0; b; F), where

Q is the �nite set of states,
� is the �nite set of tape symbols,
b 2 � is a blank symbol,

� � � is the set of input symbols,

� is the state transition function that is a mapping from Q � � to Q � � �
f�; 0;+g,
q0 2 Q is the initial state,

F � Q is the set of �nal states.

Here, f�; 0;+g in the state transition function � decides the movement of its head, i.e.,

�(resp. 0, +) means the movement of its head left one cell (resp. stationary, right one

cell).

A nondeterministic Turing Machine (NDTM) consists of a 7-tupleM = (Q;�;�; �; q0; B; F)
where all components have the same de�nition as the DTM, except that the state tran-
sition function � is a mapping from Q � � to subsets of Q � � � f�; 0;+g. Here, we
de�ned only one-tape Turing machines, however, we can also de�ne many-tape Turing
machines. Furthermore, a universal Turing machine is de�ned as a Turing machine that
can simulate any Turing machine with any input.

6

Nowadays, a Turing machine has become a typical computing model. Nobody can
prove that a Turing machine is equivalent to our intuitive notion of computation, how-
ever, there are many arguments for this equivalence, which has become known as Church-
Turing thesis.

Church-Turing Thesis:

The intuitive notion of computable function can be identi�ed with
the class of computation with a Turing machine.

Therefore, a Turing machine is equivalent to all of the most general mathematical notions
of computation. Furthermore, Deutsch reinterpreted the Church-Turing thesis physically
from a viewpoint of constructing a real computer and called it Church-Turing principle.
That is, a quantum computer is a computing model proposed under this interpretation
(cf. Chapter 3).

2.3 Reversible Computation

For a long time, a computation was thought as an irreversible process. However, Bennett
constructed a logical reversible Turing machine and showed that the reversible Turing
machine can simulate an irreversible computation with constant slowdown [15, 16, 17,
18, 76].

As shown in Section 2.2, the state transition function � of a one-tape Turing machine
can be represented by the following quintuple.

At! A0t0�; (2.1)

where

A and A0 are the states before and after the transition, respectively,

t is the tape symbol that is read at the head position,

t0 is the tape symbol that will be written at the head position, and

� is the movement of the head (i.e., � 2 f�; 0;+g).
A Turing machine is deterministic if and only if its quintuples have non-overlapping

domains, and is reversible if and only if they have non-overlapping ranges. It was thought
that a computation can be executed only irreversibly because the ranges of quintuples
overlap. Therefore, a usual Turing machine is not reversible. However, Bennett showed
that a reversible computation can be executed with splitting the state transition function
into a read-write operation and a head movement operation, and a reversible Turing
machine can simulate an irreversible computation with constant slowdown. Here, we
denote Bennett's construction of a reversible Turing machine (reversible TM) [15].

First, we de�ne the following quadruple for a reversible TM that corresponds to the
usual state transition function.

7

De�nition 2.2. A quadruple for an n-tape Turing machine having one head per tape is

de�ned by

A[t1; t2; . . . ; tn]! A0[t01; t
0
2; . . . ; t

0
n]; (2.2)

where

A and A0 are the states before and after the transition, respectively,

tk is the tape symbol that is read on the kth tape or = (indicating that the kth

tape is not read during the transition), and

t0k is the tape symbol that will be written on the kth tape or the movement of

the kth head (i.e., �k 2 f�; 0;+g).
Note that a usual Turing machine executes the read-write operation and the head move-
ment operation at the same time, on the other hand, the reversible TM writes on the
tape if and only if it has just read it, and moves the tape head if and only if it has not
just read it. Thus, the following quadruples de�ne the mappings of the whole-machine
states that are one-to-one. Any read-write-movement quintuple can be split into a read-
write operation and a head movement operation. Therefore, the quintuple of Eq. (2.1)
is equivalent to a pair of quadruples.

A[t1; t2; . . . ; tn] ! A"[t01; t
0
2; . . . ; t

0
n]; and

A"[=; =; . . . ; =] ! A0[�1; �2; . . . ; �n];

where A" is a new state di�erent from A and A0. When several quintuples are so split, a
di�erent connecting state A" must be used for each to avoid introducing indeterminacy.

Now, let us consider the following two n-tape quadruples of Eq. (2.2).

A[t1; � � � ; tn]! A0[t01; � � � ; t0n]; (2.3)

and

B[u1; � � � ; un]! B0[u01; � � � ; u0n]: (2.4)

They have the following additional important properties:

1. Eqs. (2.3) and (2.4) are mutually inverse if and only if

(A = B0) ^ (B = A0)

^(8k((tk = uk = =) ^ (t0k = �u0k) _ (tk 6= =) ^ (t0k = uk) ^ (tk = u0k))):

2. The domains of Eqs. (2.3) and (2.4) overlap if and only if

(A = B) ^ (8k((tk = =) _ (uk = =) _ (tk = uk))):

3. The range of Eqs. (2.3) and (2.4) overlap if and only if

8

(A0 = B0) ^ (8k((tk = =) _ (uk = =) _ (t0k = u0k))):

Thus, an n-tape reversible deterministic Turing machine is de�ned as a �nite set of
n-tape quadruples of Eq. (2.2), no two of which overlap either in domain or in range.

Next, we de�ne a standard Turing machine.

De�nition 2.3. An input or output is said to be standard when it is on otherwise

blank tape and contains no embedded blanks, when the tape head scans the blank cell

immediately to the left of it, and when it includes only symbols belonging to the tape

alphabet of the machine scanning it.

De�nition 2.4. A standard one-tape Turing machine is a �nite set of one-tape quintu-
ples

At! A0t0�;

which satis�es the following properties:

1. Determinism

No two quintuples agrees in both A and t.

2. Format

If the Turing machine starts in control state A1 on any standard input, it will halt
in control state Af , leaving its output in standard format.

3. Special quintuples

The machine includes the following two special quintuples: the initial quintuple

A1b! A2b+;

and the �nal quintuple

Af�1b! Afb0;

and the states A1 and Af appear in no other quintuple.

Moreover, we denote that a one-tape Turing machine M is given a standard input
string I and computes a standard output string O by

M : I ! O:

For an n-tape machine, we denote that M is given standard input strings, I1; I2; � � � ; In,
and computes standard output strings O1; O2; � � � ; On by

M : (I1; I2; � � � ; In)! (O1;O2; � � � ;On):

9

Then, Bennett showed the following relationships between a usual Turing machine and
a reversible Turing machine.

Theorem 2.1 [15].

1. For every standard one-tape deterministic Turing machine M , there is a three-tape
reversible deterministic Turing machine R such that if I and O are strings on the

alphabet ofM , then, M halts on I if and only if R halts on (I ; b; b), andM : I ! O

if and only if R : (I; b; b)! (I; b;O).

2. If M has f control states, N quintuples, and a tape alphabet of z symbols, including

the blank, R will have 2f + 2N + 4 states, 4N + 2z + 3 quadruples, and a tape

alphabet of z, N + 1, and z symbols, respectively.

3. In a particular computation, if M requires t steps and uses s tape cells, producing
an output of length l, then, R will require 4t + 4l + 5 steps and use s, t + 1, and
l + 2 cells on its three tapes, respectively. 2

We do not provide the proof of this theorem. In Table 2.1, we only denote how the
reversible TM R can simulate the usual Turing machine. Thus, the reversible TM R

is constructed in such a way that R will record the history of its state transitions on
the second tape. That is, each state transition rule (i.e., quadruple) of R has its own
number and when R changes its state by using the kth rule, R will write the number
k on the second tape. Nobody knows whether there is a reversible TM that does not
make histories (i.e., working data) or not.

10

Table 2.1: A reversible computing process.
Stage Quadruples Work Tape History Tape Output Tape

　INPUT 　 　
1) A1[b; =; b]! A0

1[b;+; b]
A0

1[=; b; =]! A2[+; 1; 0]
...

Compute m) Aj[t; =; b]! A0
m[t

0;+; b]
A0
m[=; b; =]! Ak[�;m; 0]

...
N) Af�1[b; =; b]! A0

N [b;+; b]
A0
N [=; b; =]! Af [0; N; 0]

　OUTPUT HISTORY 　
Af [b;N; b]! B0

1[b; N; b]
B0

1[=; =; =]! B1[+; 0;+]
x 6= b:f B1[x;N; b]! B0

1[x;N; x] g
Copy Output1 B1[b;N; b]! B0

2[b;N; b]
B0

2[=; =; =]! B2[�; 0;�]
x 6= b:f B2[x;N; x]! B 0

2[x;N; x] g
B2[b;N; b]! Cf [b;N; b]

　OUTPUT HISTORY 　OUTPUT
N) Cf [=;N; =]! C 0

N [0; b; 0]
C 0
N [b; =; b]! Cf�1[b;�; b]

...
Retrace m) Ck[=;m; =]! C 0

m[��; b; 0]
C 0
m[t

0; =; b]! Cj[t;�; b]
...

1) C2[=; 1; =]! C 0
1[�; b; 0]

C 0
1[b; =; b]! C1[b;�; b]

　INPUT 　 　OUTPUT
1In the second stage, the small braces indicate sets of quadruples with one quadruple
for each non-blank tape symbol x.

11

Chapter 3

Quantum Computers

3.1 Quantum Computers before Deutsch's

A quantum computer was proposed as a quantum Turing machine by Deutsch [39]. His
computing model, for the �rst time, involves inherent properties of quantum physics as
the computational principles. Nowadays, many computer scientists study the complexity
and algorithms based on his model. Many researches are also done in order to realize his
computing model. However, there were also some quantum computers proposed before
Deutsch's.

3.1.1 Simulating TMs by Quantum Physics

In early models of quantum computers such as those of Benio�, researchers placed a great
importance on �nding precise representations of Turing machines based on quantum
physics. Therefore, inherent properties of quantum physics were not involved in those
models. In other words, their purpose was to design good simulators of Turing machines
by using quantum physics. Thus, they did not proposed a new type of computing model
based on quantum physics.

In early 1980's, Benio� had studied whether a Turing machine can be simulated by
computing models based on quantum physics or not. His research was to construct a
physical system that simulates a Turing machine, i.e., it was to construct a Hamilto-
nian operator in Schr�odinger's wave equation (see Eq. (A.1)). Therefore, his computing
model was called a quantum mechanical Hamiltonian model. His early quantum com-
puters were models to simulate irreversible Turing machines [9, 10]. After that, he also
proposed quantum computers simulating Bennett's reversible Turing machine because
closed physical systems act reversibly [11, 12, 13, 14].

Furthermore, Peres and Zurek had proposed Benio� type of quantum computers
recovering errors of hardware [93, 128, 129, 130]. However, since none of these quantum
computers used inherent properties of quantum physics (e.g., quantum superposition,
interference, uncertainty), the powers of these computers were equivalent to those of
ordinary Turing machines.

12

3.1.2 Feynman's Universal Quantum Simulator

Feynman took a di�erent approach from Benio�, i.e., he asked,

\What type of computers can e�ciently simulate physical phenomena?".

Consequently, he concluded that a new type of computer based on quantum physics
must be proposed to e�ciently simulate physical phenomena, because the computational
principles of ordinary computers are based on classical physics, whereas it is thought that
the principles of the real world can be explained based on quantum physics. He called it
a universal quantum simulator [54]. In order to realize computers that simulate physical
phenomena e�ciently, we naturally require a computer based on quantum physics, i.e.,
a quantum computer. Thus, for the �rst time, he suggested that the quantum computer
will become more powerful than ordinary computers [54]. Furthermore, some researchers
have mentioned that we should study the relationships between computation and physics
(e.g., see [19, 20, 71, 72, 73, 74]).

3.2 Quantum Turing Machine

3.2.1 De�nition of Quantum Turing Machine

We de�ne a quantum computer as a quantum Turing machine. A quantum Turing
machine was proposed by Deutsch [39] and was mathematically formalized by Bernstein
and Vazirani [23]. In [39], Deutsch proposed a physical version of Church-Turing thesis
as Church-Turing principle,

Church-Turing Principle:

Every �nitely realizable physical system can be perfectly simulated
by a universal model computing machine operating by �nite means,

and he de�ned a quantum Turing machine under this principle. Like an ordinary Turing
machine, a quantum Turing machine M also consists of a �nite control, an in�nite tape,
and a tape head.

De�nition 3.1. A quantum Turing machine (QTM) is a 7-tuple
M = (Q;�;�; �; q0; b; F), where

Q is the �nite set of states,
� is the �nite set of tape symbols,

b 2 � is a blank symbol,

� � � is the set of input symbols,

� is the state transition function that is a mapping from Q�����Q�f�;+g
to C,
q0 2 Q is the initial state,

F � Q is the set of �nal states.

13

A con�guration of the QTM M is de�ned by a triple (p; h; a), where p 2 Q denotes
a current state, h 2 Z denotes an index of the tape cell over which the tape head is
currently located, and a 2 � denotes a tape symbol in the tape cell over which the tape
head is currently located. A state transition function �(p; a; b; q; d) = Am (we call Am an
(probability) amplitude) denotes that, if M reads a symbol a in a state p (let C1 be this
con�guration of M), M writes a symbol b on the cell under the tape head, changes the
state into q, and moves the head one cell in the direction of d 2 f�;+g(let C2 be this
con�guration of M). Then, we de�ne the probability that M changes its con�guration
from C1 to C2 by jAmj2.

Furthermore, this state transition function � corresponds to a time evolution matrix

U� ofM as follows: each row and column of U� corresponds to a con�guration of M . Let
C1 and C2 be two con�gurations ofM , then the element corresponding to C2 row and C1

column of U� is the value of � evaluated at the tuple that transforms C1 into C2 in one
step. If no such tuple exists, the corresponding element is zero. Moreover, from physical
restrictions, the time evolution matrix U� must be a unitary matrix. Namely, relations
U

y

�U� = U�U
y

� = I must be satis�ed by U�, where U
y

� is the transposed conjugate of U�

and I is the unit matrix.
Since any time evolution matrix U� is regular, the QTM is a kind of reversible com-

puting machine. Namely, the QTM directly simulates a reversible deterministic Turing
machine (reversible DTM) in the operations of ordinary Turing machines. The existence
of a reversible DTM was shown by Bennett [15] (see also Sec. 2.3). Thus, the QTM can
execute all operations of the reversible DTM and eight types of unitary transforms for
two-state space [39].

V0 =

cos� sin�
� sin� cos�

!
; V1 =

cos� i sin�
i sin� cos�

!
;

V2 =

ei� 0
0 1

!
; V3 =

1 0
0 ei�

!
;

V4 = V �1
0 ; V5 = V �1

1 ; V6 = V �1
2 ; and V7 = V �1

3 ;

9>>>>>>>>>>>=
>>>>>>>>>>>;

(3.1)

where � is an arbitrary irrational multiple of �. Here, we take the following convention:

The QTM executes one step of the reversible DTM in one step and also
executes each one of the eight types of transforms above in one step.

When the QTM simulates an execution of the reversible DTM, it will move as follows.
Let q be a state of the DTM written on the (work) tape and a be a symbol scanned
by the head of the DTM. Then, the QTM will scan the set PM of the state transition
rules of the DTM written on the tape from the leftmost square of PM to right and will
�nd only one state transition rule of the form �(q; a) = � � � (we assume that PM always
has one such a rule). When the QTM �nds such a rule, it memorizes the rule by its
�nite control and moves the tape head to the right until the rightmost square of PM is

14

reached. If the tape head reaches to the rightmost square of PM , the QTM moves the
tape to the leftmost square of PM . After that, the QTM will change the con�guration
of the DTM written on the tape according to the found state transition rule. From this,
in all con�gurations in a superposition, the QTM can simulate a single step of the DTM
in the same number of steps.

In general, since a QTM simulates the movement of a reversible DTM, the QTM must
also leave histories. However, it is known that we can compute the value of a function
without histories with constant slowdown as long as we keep the input[17]. Furthermore,
Bernstein and Vazirani showed that there is a universal QTM whose simulating overhead
for any QTM is polynomially bounded [23].

3.2.2 Physical Representation of QTM

Next, let us consider a physical representation of QTM. We can construct one-bit, a
minimum unit of information, by using a two-state physical system (e.g., a spin-1

2
system,

etc.) and call it a qubit [104]. A qubit has a chosen computational basis fj0i; j1ig
corresponding to ordinary bit values 0 and 1, and we de�ne by

j0i =

1
0

!
and j1i =

0
1

!
:

For n qubits (n � 2), we can construct as a composed system jx1; x2; . . . ; xni of simul-
taneous observable two-state physical systems. Namely, it is represented as the tensor
products of two-state physical systems as follows:

jx1; x2; . . . ; xni = jx1i
 jx2i
 � � �
 jxni;
where xi 2 f0; 1g for i = 1; 2; . . . ; n. A collection of n qubits jx1; x2; . . . ; xni is called a
register of size n.

Since the QTM consists of a �nite control, an in�nite tape, and a tape head, it will
be constructed as a composed system of physical systems corresponding to these three
components. Let jCi be a physical system corresponding to the �nite control, jT i be a
physical system to the tape, and jHi be a physical system to the tape head. Each of
these physical systems is also constructed as a composed system of two-state physical
systems (e.g., jCi = jc01i
 jc02i
 . . .
 jc0ui, where c0i 2 f0; 1g for i = 1; 2; . . . ; u). Then,
a physical system jMi corresponding to the QTM is represented as a composed system
of these physical systems as follows:

jMi = jCi
 jHi
 jT i:
In general, a physical state of the QTM corresponds to a superposition of con�gurations

of the QTM. Namely, when jCi =
lX

i=1

jcii, jHi =
mX
j=1

jhji, and jT i =
nX

k=1

jtki, then,

jMi =
lX

i=1

mX
j=1

nX
k=1

jcii
 jhji
 jtki:

15

If a physical state of the QTM is not a superposed one, the state of the QTM is equal
to a con�guration of the QTM.

Furthermore, when the QTM has r tapes T1; . . . ; Tr, the physical state of the QTM
will be represented as follows:

jMi = jCi
 jH1i
 � � �
 jHri
 jT1i
 � � �
 jTri;
where H1; . . . ; Hr are heads on T1; . . . ; Tr, respectively.

Finally, we denote the movements of the QTM. A computation on the QTM is an
evolving process of the physical system de�ned by the unitary matrix U�. Let j (0)i be
an initial state (a state at time zero) of the QTM that is represented as follows:

j (0)i = jq0i
 j1i
 jT0i;
where T0 denotes a tape content before the execution. When we denote the state at
time s by j (s)i,

j (�t)i = U t
� j (0)i;

where � is the time required by the QTM to execute one step. The tape content will
be obtained with physical measurements (i.e., with observations of the physical systems
constructing the QTM) as follows:

When a superposition of con�gurations j i =
X
i

�ijcii is written on the tape,
we can measure ' component of with probability jh'j ij2. Especially, we
can measure ci component of with probability j�ij2.

For instance, let us consider an n-variable Boolean function f(x1; x2; . . . ; xn). First,
for the initial con�guration j 0; 0; . . . ; 0| {z }

n

; 0i, a QTM makes all the input assignments of

f . This is performed by applying

V4 =
1

21=2

1 �1
1 1

!

to each qubit corresponding to n variables in order, where let � = �=4.

j0; 0; . . . ; 0; 0i

! 1

2n=2

1X
x1=0

1X
x2=0

� � �
1X

xn=0

jx1; x2; . . . ; xn; 0i:

Next, the QTM computes the values of f .

1

2n=2

1X
x1=0

1X
x2=0

� � �
1X

xn=0

jx1; x2; . . . ; xn; 0i

! 1

2n=2

1X
x1=0

1X
x2=0

� � �
1X

xn=0

jx1; x2; . . . ; xn; f(x1; x2; . . . ; xn)i:

All the computations of f are executed in parallel and this type of computation is called
a quantum parallel computation [39, 66].

16

T

a

b
c

a
b
c ab

Figure 3.1: A To�oli gate.

3.3 Other Quantum Computing Models

The most popular computing model of quantum computers is the QTM. However, there
are also other quantum computing models. In this section, we brie
y review quantum
circuits and quantum cellular automata.

3.3.1 Quantum Circuits

Quantum circuits were �rst proposed by Feynman [55] and Deutsch showed that there is
a universal quantum gate [40]. A gate is universal if we can construct any gate by using
the gate. Although quantum gates and quantum circuits are important for constructing
QTMs, here, we only denote some results on the complexity of quantum circuits. For
the realizabilities of QTMs, see Sec. 3.4.

A quantum gate is a kind of reversible gates because QTMs are reversible computers,
and quantum circuits consist of quantum gates, which are a generalization of ordinary
(or classical) logic gates. For ordinary gates, To�oli showed that a three-bit To�oli gate
(one of reversible gates) is universal [119] (see Fig. 3.1), whereas it is not known whether
there are universal two-bit ordinary reversible gates.

For quantum gates, for the �rst time, Deutsch showed that the following three-bit
quantum gate is universal [40].

U
(3)
� =

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 cos� i sin�
0 0 0 0 0 0 i sin� cos�

1
CCCCCCCCCCCCCA
: (3.2)

Since we know that a physical evolution can be represented by a unitary matrix (oper-
ator) from Eq. (A.2), we can also represent quantum gates by the same way. In this case,
the computational basis is fj0; 0; 0i; j0; 0; 1i; j0; 1; 0i; j0; 1; 1ij1; 0; 0i; j1; 0; 1i; j1; 1; 0i; j1; 1; 1ig
and � is an irrational multiple of �. He also showed the following results.

17

Theorem 3.1 [39]. Let U be any d-dimensional unitary matrix. Then, U can be written

as a product of 2d2�d unitary matrices, each of which acts only within a two-dimensional
subspace spanned by a pair of computational basis states (i.e., Eq. (3.1)). 2

Theorem 3.2 [40]. Let n � 1. Any unitary transform in C2n (as induced by n Boolean

variables) can be computed by a quantum Boolean circuit by using 2O(n) elementary gates
from �3 and with O(n) auxiliary wires, where �3 is the set of all three-bit quantum gates.

2

After that, DiVincenzo showed that there is a universal two-bit quantum gate [44,
45, 115]:

U
(2)
� =

0
BBB@

1 0 0 0
0 1 0 0
0 0 cos� i sin�
0 0 i sin� cos�

1
CCCA ; (3.3)

where the computational basis is fj0; 0i; j0; 1i; j1; 0i; j1; 1ig and � is an irrational multiple
of �. This will be a feature on quantum gates because nobody knows whether there is a
universal two-bit ordinary reversible gate or not. Moreover, it is also shown that almost
any two-bit quantum gate is universal [6, 42, 79].

Finally, Yao studied the quantum circuit complexity and showed the relationships
between QTMs and quantum circuits [127]. For any language L � f0; 1gn, let CQ(L)
be the minimum circuit size for any quantum circuit computing L. A quantum Boolean
circuit K with n input variables is said to (n; t)-simulate a QTM M , if the family of
probability distributions p~x, ~x 2 f0; 1gn generated by K is identical to the distribution
of the con�guration of M after t steps with ~x as input.

Theorem 3.3 [127]. Let M be a QTM and n, t be positive integers. Then, there is a

quantum Boolean circuit K of size poly(n; t) that (n; t)-simulates M . 2

Corollary 3.1 [127]. If L 2P, then, CQ(Ln) = O(nk) for some �xed k, where Ln is the

set of strings in L of length n. 2

3.3.2 Quantum Cellular Automata

Watrous de�ned one-dimensional quantum cellular automata and studied the relation-
ships between QTMs and quantum cellular automata [125]. Moreover, D�urr et al. also
de�ned them independently and called them linear quantum cellular automata [48].
Here, we denote linear quantum cellular automata in [48].

The cells of an automaton are organized in a line and are indexed by Z.

De�nition 3.2 [48]. A linear quantum cellular automaton(LQCA) is a quadruple
M = (�; q; N; �), where

18

� is the �nite set of (cell-)states,

N is the neighborhood,

� is the local transition function that is a mapping from �r � � to C,

which satis�es that for every (p1; . . . ; pr) 2 �r, there is p 2 � such that

�(p1; . . . ; pr; p) 6= 0, where r = jN j, and
q 2 � is the distinguished quiescent state, which satis�es

�(q; . . . ; q; p) =

(
1 if p = q;

0 otherwise:

The states of the cells are changing simultaneously at every step according to the local
transition function �. If at some step the neighbors of a cell are in p1; . . . ; pr, then,
at the next step the cell will change into state p with amplitude �(p1; . . . ; pr; p). The
neighborhood N = (a1; . . . ; ar) is a strictly increasing sequence of integers for some
r � 1, giving the addresses of the neighbors relative to each cell. This means that the
neighbors of cell i are indexed by i+ a1; . . . ; i+ ar. The set of con�gurations is de�ned
by �Z, where for every con�guration c and every integer i, the state of the cell indexed
by i is c(i). Moreover, the local transition function � of the LQCA M induces the time
evolution operator

U� : CM � CM ! C;

where CM is the set of �nite con�gurations and UM (d; c) is the transition amplitude of
changing con�guration c to con�guration d in one step. It is de�ned by

UM(d; c) =
Y
i2Z

�(c(i+ a1); . . . ; c(i+ ar); d(i)):

Thus, the LQCA di�ers from an ordinary one in the sense that the automaton evolves
on a superposition of con�gurations like QTMs.

Furthermore, a linear partitioned quantum cellular automaton (LPQCA) is a LQCA
in which each cell is partitioned into three subcells: a left subcell, a middle subcell, and
a right subcell (and the set � of states is decomposed accordingly). The LPQCA, which
is a generalization of (deterministic) partitioned cellular automata discussed by Morita
and Harao [89], is a restricted class of the LQCA.

Watrous showed that any QTM can be e�ciently simulated by a LPQCA with con-
stant slowdown and any LPQCA can be simulated by a QTM with linear slowdown.

Theorem 3.4 [125]. Given any QTM Mqtm, there is an LPQCA Mpqca that simulates
Mqtm with constant slowdown. 2

Theorem 3.5 [125]. Given any LPQCA Mpqca, there is a QTM Mqtm that simulates

Mpqca with linear slowdown. 2

19

It is an open problem whether there is a QTM that simulates any LQCA e�ciently or
not.

A LQCA M is well-formed if the time evolution operator U� preserves the norm, and
it is unitary if U� is a unitary transform. Moreover, we call an interval a �nite subset
of consecutive integers fj; j + 1; . . . ; kg of Z for any j and k (if j > k, this de�nes the
empty interval ;), and call simple if the integers in the neighborhood N form an interval.
In [48, 49], it is shown that there is an e�cient algorithm to decide whether a LQCA
is well-formed and unitary. Here, we de�ne the size of the automaton by n = j�jr+1.
Further, let N = (a1; . . . ; ar), s = ar � a1 + 1, and e = (s+ 1)=(r + 1).

Theorem 3.6 [48]. There is an algorithm that takes a simple LQCA as input and

decides in O(n2) time whether it is well-formed. 2

Corollary 3.2 [48]. There is an algorithm that takes a LQCA as input and decides in

O(n2e) time whether it is well-formed. 2

Theorem 3.7 [49]. There is an algorithm that takes a simple LQCA as input and
decides in O(n4) time whether it is unitary. 2

Corollary 3.3 [49]. There is an algorithm that takes a simple LQCA as input and

decides in O(n4e) time whether it is unitary. 2

3.4 Realizabilities of Quantum Computers

Quantum computers do not exist yet and nobody knows whether we can realize quantum
computers or not. In this section, we denote some situations on the realizabilities of
quantum computers. In order to realize quantum computers, we will have to realize
quantum gates and quantum networks (or circuits). Therefore, many researchers have
been studying methods and techniques to realize quantum gates.

As mentioned in Sec. 3.3, �rst, quantum gates and quantum networks were proposed
by Feynman [55] and Deutsch [40]. Their gates extended a classical reversible logic gate
(i.e., To�oli gate [119]) to quantum gates. Deutsch also showed the existence of a
three-bit universal quantum gate [40] and DiVincenzo showed the existence of a two-bit
universal quantum gate [44, 45, 115] (see Eqs. (3.2) and (3.3)). It is not known whether
there are universal two-bit ordinary reversible gates or not. Moreover, Barenco showed
that the following two-bit quantum gate A(�; �; �) is universal [6].

A(�; �; �) =

0
BBB@

1 0 0 0
0 1 0 0
0 0 ei� cos � �iei(�+�) sin �
0 0 �iei(�+�) sin � ei� cos �

1
CCCA ;

where the computational basis is fj0; 0i; j0; 1i; j1; 0i; j1; 1ig, and �, �, and � are �xed
irrational multiples of �. Deutsch et al. [42] and Lloyd [79] independently showed that

20

almost any two-bit quantum gate is universal and Barenco et al. systematically studied
elementary gates for quantum computers [4].

Moreover, some networks that realize algorithms for solving problems (e.g., Shor's
factoring algorithm) are also proposed. In [33, 34], Chuang et al. propose networks to
solve Deutsch & Jozsa's problem in [41]. For Shor's factoring algorithm and the quantum
Fourier transform used in the algorithm, some networks are proposed (e.g., [7, 8, 86]).
Networks for more primitive operators such as arithmetic operators are also proposed
[123].

Physical systems to realize the quantum gates (and quantum networks) above are
also proposed. Mainly, physicists have proposed methods of how to physically realize a
quantum (two-bit) controlled-NOT gate. A quantum controlled-NOT gate is

j�1; �2i ! ei�j�1 � �1; �2i;
where �1; �2 2 f0; 1g and � is an irrational multiple of �. This gate is one of two-bit
quantum universal gates.

Barenco et al. proposed two physical systems to realize the quantum controlled-NOT
gate [5]. One is based on ramsey atomic interferometry and the other is on the selective
driving of optical resonances of two subsystems undergoing a dipole-dipole interaction.
Sleator and Weinfurter also proposed the quantum controlled-NOT gate that is based
on cavity QED (quantum electrodynamics) [114].

The two proposals above are only methods of how to construct one quantum gate.
Cirac and Zoller proposed that a set of n cold ions interacting with laser light and
moving in a linear trap provides a realistic physical system to implement a quantum
computer [36]. The distinctive features of this system are that (i) the system allows the
implementation on n-bit quantum gates between any set of (not necessarily neighboring)
ions, (ii) decoherences can be negligible during the whole computation, and (iii) the �nal
readout can be performed with unit e�ciency. Pellizzari et al. also proposed a physical
system for a set of n atoms based on cavity QED [92]. Furthermore, for example, Monroe
et al. and Turchette et al. demonstrated the quantum gate in the laboratory [88, 120].

Finally, we describe about a decoherence problem. A decoherence problem is as fol-
lows: the central obstacle to realize quantum computers is the fragility of macroscopic
atomic superpositions with respect to decoherence by coupling to an environment. Ac-
cording to this problem, some physicists insist that we will not be able to realize the
quantum computers if we can not control coherent states [74, 75, 121]. Therefore, some
researchers estimate the in
uences of decoherences for solving problems on the quan-
tum computers [26, 32, 57, 62, 90, 95, 97]. Furthermore, many methods to compen-
sate for and suppress quantum noises in realistic systems are also developed (e.g., see
[21, 31, 35, 46, 52, 59, 70, 96, 105, 109, 111, 112, 116, 117, 122]).

21

Chapter 4

Quantum Complexity Classes

4.1 Ordinary Complexity Classes

4.1.1 Complexity Classes Based on TMs

We de�ne typical complexity classes based on ordinary Turing machines. For a more
complete overview, the reader is referred to [3, 61, 65, 91].

First, we de�ne a complexity class based on DTMs. We say that the problems in
this class can be e�ciently solved because on ordinary computers we can solve them in
polynomial time of the input size.

De�nition 4.1. Let P be the set of all languages that can be recognized by DTMs in

polynomial time of the input size.

The following classes are classes of the problems that are believed not to be e�ciently
solved on ordinary computers.

De�nition 4.2. Let NP be the set of all languages that can be recognized by NDTMs in
polynomial time of the input size and PSPACE be the set of all languages that can be

recognized by DTMs in polynomial space of the input size.

It is well-known that the set of all languages that can be recognized by NDTMs in
polynomial space of the input size is also PSPACE.

4.1.2 Complexity Classes Based on PTMs

Next, we de�ne a probabilistic Turing machine and complexity classes based on proba-
bilistic Turing machines [3, 58].

De�nition 4.3. A probabilistic Turing machine(PTM) is an NDTM whose ratio of

accepting computations is greater than 1/2.

De�nition 4.4. Let PP be the set of all languages that can be recognized by PTMs in

polynomial time of the input size.

22

Moreover, we de�ne complexity classes with bounded error probability.

De�nition 4.5. The error probability is the ratio of computations giving the wrong
answers to the total number of computations on input x and is de�ned by the real-valued

function e(x).

The error probability is the ratio of accepting computations on probabilistically rejected
inputs, and the ratio of rejecting computations on probabilistically accepted inputs.

De�nition 4.6. Let BPP be the set of all languages that can be recognized by PTMs

in polynomial time of the input size with error probability e(x) < 1=3. Let R be the set

of all languages that can be recognized by PTMs in polynomial time of the input size
with error probability e(x) < 1=3 for inputs in the language and with error probability

e(x) = 0 for inputs not in the language.

Furthermore, we de�ne a 3-output probabilistic Turing machine and a complexity
class based on 3-output probabilistic Turing machines.

De�nition 4.7. A 3-output probabilistic Turing machine (3-output PTM) is a PTM that

has three �nal states, ACCEPT, REJECT, and UNKNOWN. For the 3-output PTM,
the acceptance is de�ned by the same as that for the PTM, i.e., more than half of the

computations halt in the ACCEPT �nal state. The error probability e3(x) of the 3-output
PTM is the probability of halting in the REJECT �nal state on an accepted input, and

the probability of halting in the ACCEPT �nal state on a rejected input.

De�nition 4.8. Let ZPP be the set of all languages that can be recognized by 3-output

PTMs in polynomial time of the input size with error probability e3(x) = 0.

Given a class C, the complexity class co-C is de�ned by the class of sets L � ��

whose complements �L = ���L are in C. For the classes mentioned above, every class C
satis�es that C = co-C except for R and NP, e.g., P = co-P and BPP = co-BPP, however,
it is not known whether NP = co-NP or not. Then, the following relationships between
complexity classes are shown, however, nobody knows whether P is a proper subset of
PSPACE or not.

Theorem 4.1 [58].

1. P � ZPP � R � NP � PP � PSPACE.

2. R � BPP � PP.

3. ZPP = R \ co-R. 2

23

4.1.3 Reducibility and Completeness

Finally, we introduce the concepts of reducibility and completeness. These provide a
way of evaluating the di�culty of solving two di�erent problems and we can formalize
the concept of the most di�cult elements of a given class.

De�nition 4.9. Given two sets L1 and L2, L1 is polynomial time many-one reducible

to L2 if and only if there is a polynomial time computable function f : �� ! �� such

that x 2 L1 if and only if f(x) 2 L2 holds for all x 2 ��.

We denote that L1 is reducible to L2 by L1 �m L2 and call this reduction m-reducible.

De�nition 4.10. Given a class C, a set L1 is C-hard(or m-hard for C) if and only if

for any set L2 in C, L2 �m L1, and a set L1 is C-complete(or m-complete for C) if and
only if L1 is C-hard and L1 2 C.
Then, the following theorems are immediately obtained from the de�nitions (e.g., see
[3]).

Theorem 4.2.

1. L1 �m L2 i� �L1 �m
�L2.

2. L is NP-hard (or NP-complete) i� �L is co-NP hard (or co-NP-complete).

3. if L is NP-complete, L 2 co-NP i� NP=co-NP. 2

It is well-known that the satis�ability problem of propositional logics (SAT) is NP-
complete. SAT is to determine whether a given Boolean formula is satis�able. Here,
a Boolean formula is a formula composed of variables, parentheses, and operators ^
(AND), _ (OR) and : (NOT). A Boolean formula is said to be satis�able if there is an
assignment of 0's and 1's to the variables that gives the formula the value 1. Moreover,
a lot of problems are known as NP-complete problems [56].

Theorem 4.3. If L1 �m L2 and L2 has a polynomial time algorithm, then so does L1.

2

By this theorem, if one of NP-complete problems has a polynomial time algorithm,
then P=NP, however, nobody knows whether NP-complete problems are included in P.
Many computer scientists believe that NP 6= P. The P=NP? problem is one of the most
important problems in theoretical computer science.

4.2 QuantumComplexity Classes and Relationships

Between Classes

We can regard QTMs as a kind of PTMs because in quantum physics we can obtain
results only probabilistically. Therefore, we can also de�ne complexity classes based on
QTMs as classes corresponding to the probabilistic complexity classes PP, BPP, R, and
ZPP. We call the complexity classes based on QTMs quantum complexity classes [23].

24

4.2.1 BQP

First, we rede�ne the most familiar quantum complexity class BQP introduced in [23],
which corresponds to the class BPP based on PTMs, as a more speci�c form including
the number of measurements during computation. In order to solve some problems
e�ciently, measurements (i.e., observations of the physical systems constructing QTMs)
were e�ectively used on QTMs. Thus, the measurements seem to be e�ective in several
cases on quantum computation.

De�nition 4.11. Let BQP(k) (Bounded-error Quantum Polynomial time) be the set

of all languages that can be recognized by QTMs, whose number of interruptions for

measurements during computation is at most k times (k is a non-negative integer), in

polynomial time of the size of input x with error probability e(x) < 1=3.

Here, we make the following counting rules for the number k of interruptions in
measurements:

1. The last measurements executed to obtain results are not added in k because we
must obtain the last results on ordinary Turing machines also.

2. The number of measurements must be added in time complexity (i.e., if the number
of measurements is exponential, the problem is not in BQP).

In quantum physics it is widely supported that when the state measured during com-
putation is a superposition of several basic states(con�gurations), we cannot preserve the
superposition because of uncertainty principle. Namely, after we executed measurements
during computation, we cannot control the computation by using the measured values.
On the other hand, measurements on quantum computation have been e�ectively used
to solve problems [41]. Moreover, we may use measurements during computation to de-
crease the number of con�gurations superposed and it seems to make faster algorithms
by this procedure. In the following theorem, however, we show that the number of
measurements during computation do not extend the complexity class [83].

Theorem 4.4 [83]. BQP(k+1) = BQP(k), where k is a non-negative integer.

Proof. Obviously, BQP(k) � BQP(k+1). Then, we prove that BQP(k+1) � BQP(k).
Let the set fja; b; cig for registers jai,jbi, and jci be a normalized computational basis,
i.e., ha1; b1; c1ja2; b2; c2i = �a1;a2�b1;b2�c1;c2, where �i;j = 1 if i = j, otherwise �i;j = 0.
Moreover, we call jai(resp. jbi, jci) Reg1(resp. Reg2, Reg3).

First, without loss of generality, let us consider the following superposition during
computation.

 1 =
mX
k=1

lkX
i=1

a
(0)
ik jcik; dk; 0i;

25

where
mX
k=1

lkX
i=1

���a(0)ik

���2 = 1. Now, we measure Reg2. When a value dK for Reg2 is measured,

 1 becomes as follows (even if other one is measured, we can take the same procedure).

 1 ! 2 =
lKX
i=1

a
(1)
iK jciK ; dK ; 0i;

where a
(0)
iK is renormalized to

a
(1)
iK =

a
(0)
iK0

@ lKX
i=1

���a(0)iK

���2
1
A

1=2

and
lKX
i=1

���a(1)iK

���2 = 1. The probability to measure the value dK , Pr
(1)
2 (Reg2=dK), is

Pr
(1)
2 (Reg2=dK) =

lKX
i=1

���a(0)iK

���2 :
After the next computation, in general, 2 will become 3.

 2 ! 3 =
l0
KX
i=1

nX
j=1

a
(2)
ijK jc0iK ; d0jK ; 0i;

where

l0
KX
i=1

nX
j=1

���a(2)ijK

���2 = lKX
i=1

���a(1)iK

���2 = 1

because of unitary transforms. Here, let us consider measuring Reg1 and Reg2 to obtain
the results. When we measure the values c0IK and d0JK for Reg1 and Reg2, respectively,

the probability to obtain them, Pr
(1)
1;2(Reg1=c

0
IK ,Reg2=d

0
JK), is

Pr
(1)
1;2(Reg1=c

0
IK ,Reg2=d

0
JK) =

���a(2)IJK

���2
and 3 becomes 4.

 3 ! 4 = jc0IK ; d0JK ; 0i:
Instead of the �rst measurement, let us consider copying Reg2 to Reg3. Here, we

must copy the qubits needed to measure Reg2 of the �rst measurement and to avoid
interferences among con�gurations occurring because of no execution of the measure-
ments. Obviously, this copy can be executed in polynomial time because of executing
the measurements in polynomial time. Then, 1 becomes

0
2.

26

 1 ! 0
2 =

mX
k=1

lkX
i=1

a
(0)
ik jcik; dk; d�ki:

The value d�k has more information than dk. After that, in order to obtain the same
results above, this computation will become as follows, where the computation must be
executed to preserve Reg3.

 0
2 ! 0

3 =
mX
k=1

l0
kX

i=1

nX
j=1

a
(20)
ijk jc0ik; d0jk; d�ki:

Note that

lkX
i=1

���a(0)ik

���2 =
l0
kX

i=1

nX
j=1

���a(20)ijk

���2

and

a
(2)
ijk =

a
(20)
ijk0

@ l0
kX

i=1

nX
j=1

���a(20)ijk

���2
1
A

1=2

for k = 1; 2; . . . ;m. When we need to obtain the values of Reg1 and Reg2, we must
measure Reg3 �rst. The probability to measure the value d�K for Reg3 (the value d�K
corresponds to the value dK of the �rst case), Pr

(2)
3 (Reg3=d�K), is

Pr
(2)
3 (Reg3=d�K) =

l0
KX
i=1

nX
j=1

���a(20)ijK

���2 = lKX
i=1

���a(0)iK

���2 :

This is the same probability as dK of the �rst case, i.e., Pr
(2)
3 (Reg3=d�K) = Pr

(1)
2 (Reg2=dK).

Moreover, when we measure the values c0IK and d0JK for Reg1 and Reg2, respectively,
in order to obtain the results, the probability to obtain them after measuring Reg3,
Pr

(2)
1;2(Reg1=c

0
IK,Reg2=d

0
JK), is

Pr
(2)
1;2(Reg1=c

0
IK ,Reg2=d

0
JK) =

���a(20)IJK

���2
l0
KX
i=1

nX
j=1

���a(20)IJK

���2
=
���a(2)IJK

���2

and 0
3 will become 0

4 with the same probability as 4 of the �rst case above, i.e.,

Pr
(2)
1;2(Reg1=c

0
IK,Reg2=d

0
JK) =Pr

(1)
1;2(Reg1=c

0
IK ,Reg2=d

0
JK),

 0
3 ! 0

4 = jc0IK ; d0JK ; d�Ki:

27

Further, from 0
4, we can obtain the same results with the same probability as 4 except

for the value d�K of Reg3. The executing time of the second case (i.e., the time obtaining
 0
4) is the sum of the executing time of the �rst case (i.e., the time obtaining 4) and

the time copying Reg2 to Reg3, and the copying time can be executed in polynomial
time. Thus, we can reduce one interruption for measurements during computation. 2

In [23], Bernstein and Vazirani de�ned a quantum complexity class BQP with bounded
error probability.

De�nition 4.12. Let BQP be the set of all languages that can be recognized by QTMs
in polynomial time of the size of input x with error probability e(x) < 1=3.

From Theorem 4.4, the following result is immediately obtained.

Corollary 4.1 [83]. BQP = BQP(0). 2

4.2.2 Other Quantum Complexity Classes

Furthermore, we can also de�ne other quantum complexity classes PQP, QR, ZQP, and
EQP corresponding to PP, R, ZPP, and P, respectively.

De�nition 4.13. Let PQP (Probabilistic Quantum Polynomial time) be the set of all
languages that can be recognized by QTMs in polynomial time of the input size with error

probability e(x) < 1=2.

The following quantum complexity classes are classes with bounded error probability.

De�nition 4.14. Let QR (Quantum Random polynomial time) be the set of all lan-
guages that can be recognized by QTMs in polynomial time of the input size with error

probability e(x) < 1=3 for inputs in the language and with error probability e(x) = 0 for

inputs not in the language.

De�nition 4.15. Let EQP (Exact or Error-free Quantum Polynomial time) be the set

of all languages that can be recognized by QTMs in polynomial time of the input size

with error probability e(x) = 0.

Finally, we de�ne a 3-output quantum Turing machine and a complexity class based
on 3-output quantum Turing machines.

De�nition 4.16. A 3-output quantum Turing machine(3-output QTM) is a QTM that

has three �nal states, ACCEPT, REJECT, and UNKNOWN. For the 3-output QTM, the
acceptance is that more than half the computations halt in the ACCEPT �nal state. The
error probability e3(x) of the 3-output QTM is the probability of halting in the REJECT

�nal state on an accepted input, and the probability of halting in the ACCEPT �nal state

on a rejected input.

De�nition 4.17. Let ZQP (Zero-error Quantum Polynomial time) be the set of all

languages that can be recognized by 3-output QTMs in polynomial time of the input size

with error probability e3(x) = 0.

28

4.2.3 Relationships Between Complexity Classes

Bernstein and Vazirani showed that BQP � PSPACE [23]. Since we can show that PQP
� PSPACE by the same way, there are the following relationships between complexity
classes.

Theorem 4.5.

1. P � EQP � ZQP � QR � BQP � PQP � PSPACE.

2. PP � PQP.

3. BPP � BQP.

4. R � QR.

5. ZPP � ZQP.

Proof. We prove only that PQP � PSPACE, because other relations are trivial from
the de�nitions.

Let us consider any problem x 2 PQP, where the size of x is n. First, we show that
the number of con�gurations needed to solve x on a QTM is at most 2n

O(1)

. In one
step on the QTM, any con�guration can be evolved into a superposition of at most two
con�gurations by Eq. (3.1). Therefore, the total number of con�gurations needed to

solve x is at most 2n
O(1)

even if all the con�gurations di�er during the computation (i.e.,
even if there is no interference between con�gurations during the computation), because
x can be solved in polynomial time on the QTM.

Next, let us consider an in
uence that occurs for neglecting interferences on the
QTM. Without loss of generality, let

j i =
X
i

�ijaii

be a superposition of con�gurations during the computation, where jaii 6= jaji if and
only if i 6= j. In general, each con�guration jaii evolves as follows:

jaii !
X
j

�ijjbji: (4.1)

Therefore,

j i !
X
j

(
X
i

�i�ij)jbji:

Then, the probability Pr1(bj) to obtain a con�guration jbji is

Pr1(bj) =

�����
X
i

�i�ij

�����
2

:

29

Instead of Eq. (4.1), let us consider an evolution in which all con�gurations di�er in
every step (and this corresponds to the neglect of interferences), i.e.,

jaii !
X
j

�ijjb(i)j i;

where jb(i)j i 6= jb(k)l i if and only if i 6= k or j 6= l. Then,

j i !
X
j

X
i

�i�ijjb(i)j i:

The probability Pr(b
(i)
j) to obtain a con�guration jb(i)j i is

Pr(b
(i)
j) = j�i�ijj2

and the probability Pr2(bj) to obtain either of con�gurations jb(i)j i for all i is

Pr2(bj) =
X
i

Pr(b
(i)
j) =

X
i

j�i�ij j2 :

In general, Pr1(bj) 6= Pr2(bj). However, since the sum Amp(bj) of the amplitudes corre-

sponding to the con�gurations jb(i)j i for all i is Amp(bj) =
X
i

�i�ij,

jAmp(bj)j2 =
�����
X
i

�i�ij

�����
2

= Pr1(bj):

Finally, we show that in order to solve the x 2 PQP, a DTM can simulate the
superposition of the con�gurations made by the QTM in polynomial space. First, let a
triple (�; a; i) correspond to a con�guration �jai, where let i be an identity corresponding
to the con�guration a(and an integer). In order to solve x, the DTM constructs two sets,
V and E, in the following way. Initially, V = ;, E = ;, and i = 0. When a con�guration
�jai is made during the computation on the QTM and i is the maximum number of the
identity corresponding to a in V ,

V V [f(�; a; i+ 1)g:
Moreover, when a con�guration �jai evolves into �1jb1i+�2jb2i in one step on the QTM,

E E [f((�; a; i); (�1; b1; j)); ((�; a; i); (�2; b2; k))g:
For V and E that are �nally constructed when the computation halts, let us consider
a rooted direct tree G = (V;E). The width of G is 2n

O(1)

and the depth of G is nO(1).

Namely, the total number of paths from the root needed to solve x is 2n
O(1)

. Therefore,
the DTM needs exponential time and exponential space to construct the tree G, however,
it merely needs to compute the sum of the amplitudes corresponding to accepting(or
rejecting) con�gurations in order to solve x. This can be done in polynomial space on
the DTM. Thus, the DTM can compute the accepting(or the rejecting) probability of x
in polynomial space. Then, x 2 PSPACE. 2

30

P

ZPP BPP

BQP

PP

PQP PSPACEQRZQP

R

NP

EQP

Figure 4.1: Relationships between complexity classes.

In Fig. 4.1, we show the relationships between complexity classes (e.g., BPP! BQP
means that BPP � BQP). None of the inclusions in Theorem 4.5 is known to be proper.

31

Chapter 5

Periodic Functions

5.1 Introduction

Many public key cryptosystems such as RSA public key cryptosystem have been pro-
posed and some of them are based on the di�culties of �nding discrete logarithms and
factoring integers. No polynomial time algorithm to �nd them on ordinary computers
is known. Moreover, some of provably secure pseudo-random bit sequence generators
introduced by Blum and Micali [27] are also based on them. In 1994, however, Shor
showed that a QTM can �nd discrete logarithms and factor integers in polynomial time
with bounded error probability [108, 110](also see [53]). It means that if we can realize
the QTM, today's many public key cryptosystems will not be secure.

In this chapter, we show that the periods in some kinds of periodic functions (e.g., a
cycle problem below) can be found in polynomial time with bounded error probability on
a QTM. Some of the functions proposed as pseudo-random generators are also included
in these functions.

A cycle problem is as follows: let us consider a function f : D ! D such that it
has s+ r(= n) distinct values x0 = f 0(x0); f

1(x0); . . . ; f
s+r�1(x0), but f

s(x0) = f s+r(x0)
(throughout this chapter, let D be a �nite domain). This means that f j(x0) = f j+r(x0)
for all j � s. A cycle problem for f and x0 is to �nd the pair (s; r). In [106], Sedgewick

et al. showed that n
�
1 + �

�
1=M1=2

��
time is both necessary and su�cient to solve the

problem on ordinary computers ifM memory cells are available to store the values of the
function. It takes O(n) time, however, we show that a QTM can solve it in (log2 n)

O(1)

time.

5.2 Quantum Fourier Transforms

5.2.1 Shor's Quantum Algorithm for Factoring Integers

First, we brie
y summarize Shor's quantum algorithm for factoring integers [108, 110].
Let us consider the factorization of an integer N . In essential, his algorithm is to �nd
the least integer r in polynomial time of the input size (i.e., in (log2N)O(1) time) with

32

bounded error probability such that xr � 1(mod N), choosing a random x. When r is
even and xr=2 6� �1(mod N), we will succeed in factoring N if 1 < gcd(xr=2 � 1; N) <
N , where gcd(m,n) is the greatest common divisor of m and n. In the following, we
show the algorithm to �nd r.

We �nd q, the power of 2 with N2 � q < 2N 2 (in general, q may be a smooth number
instead of the power of 2, where q is called smooth if all prime factors of q are bounded
by (log2 q)

O(1)). First, a QTM makes the following con�guration.

j0; 0i ! 1

q1=2

q�1X
a=0

ja; 0i:

We call s1(resp. s2) for a con�guration js1; s2i the �rst (resp. second) register. Next,
given a random x(0 < x � N � 1), the QTM computes xa(mod N) for a = 0; . . . ; q � 1
in quantum parallel computation and puts the value in the second register.

1

q1=2

q�1X
a=0

ja; xa(mod N)i:

Here, the QTM performs a quantum Fourier transform Aq,

jai Aq! 1

q1=2

q�1X
c=0

e2�iac=qjci:

When the QTM applies this transform on the �rst register,

1

q1=2

q�1X
a=0

ja; xa(mod N)i Aq! 1

q

q�1X
a=0

q�1X
c=0

e2�iac=qjc; xa(mod N)i:

Finally, we measure the �rst and second registers. The probability Pr(c) obtaining a
con�guration jc; xk(mod N)i is

Pr(c) =

�������
1

q

b q�k�1

r cX
b=0

e2�i(br+k)c=q

�������
2

;

because the sum is over all a satisfying a � k(mod r), where r is the order of x.

Pr(c) =

�������
1

q

b q�k�1

r cX
b=0

e2�i(br+k)c=q

�������
2

=
1

q2

�������
b q�k�1

r cX
b=0

e2�ibfrcgq=q

�������
2

;

where frcgq is the residue that is congruent to rc(mod q) and is in the range �q=2 <
frcgq � q=2. Shor showed that for �r=2 � frcgq � r=2,

33

Pr(c) =

�
1

r2

�
:

When �r=2 � frcgq � r=2, there is a d such that �r=2 � rc� dq � r=2, i.e.,�����cq �
d

r

����� � 1

2q
:

Since we know c and q, we can e�ciently �nd r that satis�es the inequality above if d
is relatively prime to r. The number of con�gurations jc; xk(mod N)i that enable us to
compute r in this way is r�(r), where �(r) is Euler's totient function. Then, we obtain
r with probability
(�(r)=r) =
(1= log2 log2 r), because each of these con�gurations
occurs with probability
(1=r2). Therefore, we will succeed in factoring N if r is even
and 1 < gcd(xr=2 � 1; N) < N .

5.2.2 Various Transforms

Shor's quantum algorithm mentioned above e�ciently uses the quantum Fourier trans-
form, i.e., e2�iab=q is used as the amplitude of con�gurations. Instead of e2�iab=q, we
show that functions satisfying some properties may be used as the amplitude. First, we
consider a function C(a; b; q) : Z� Z� Z+ ! C that satis�es the following conditions:

C(a; b; q) = C(b; a; q);
C(a � c; b; q) = C(a; b; q)C(c; b; q);
C(0; b; q) = 1;

9>=
>; (5.1)

and

q�1X
b=0

C�(a; b; q)C(b; c; q) =

(
q if a = c;

0 otherwise;
(5.2)

where � is an operator and C�(a; b; q) is the complex conjugate of C(a; b; q). Furthermore,
we de�ne a transform Cq by

jai Cq! 1

q1=2

q�1X
b=0

C(a; b; q)jbi: (5.3)

QTMs can execute this transform because the matrix UCq constructed with
1

q1=2
C(a; b; q),

the ath row and bth column element, is a unitary matrix from Eq. (5.2) combining with
the �rst condition of Eq. (5.1), where the rows and columns will be indexed by beginning
with 0 unless otherwise speci�ed. Now, we suppose that this transform can be executed
in (log2 q)

O(1) time.
In the following, we consider two operators, � and +, as the operator �.
1. Let the operator � be �(bitwise exclusive-or). Then, the second condition of Eq.

(5.1) is

34

C(a� c; b; q) = C(a; b; q)C(c; b; q):

Now, let us consider Simon's problem in [113]: suppose that we are given a function
f : f0; 1gn ! f0; 1gm with m � n, and that we are promised that either f is one-
to-one or there is a non-trivial s such that 8x 6= x0(f(x) = f (x0) , x0 = x � s).
We wish to determine which of these conditions holds for f .

In order to solve this problem, �rst, a QTM executes the following procedure
(where q = 2n).

j0; 0i ! 1

q1=2

q�1X
a=0

ja; 0i

! 1

q1=2

q�1X
a=0

ja; f(a)i:

Here, the QTM performs the transform Cq on the �rst register.

1

q1=2

q�1X
a=0

ja; f(a)i Cq! 1

q

q�1X
a=0

q�1X
c=0

C(a; c; q)jc; f(a)i:

If f is not one-to-one, con�gurations jc; f(a)i and jc; f(a � s)i are identical for
each c and a, and the amplitude �(a; c) is

�(a; c) =
1

q
(C(a; c; q) + C(a� s; c; q)) = 1

q
C(a; c; q)(1 + C(s; c; q)):

For instance, let C(a; b; q) = (�1)ab and q be the power of 2. Obviously, (�1)ab sat-
is�es Eqs. (5.1) and (5.2). Then, the algorithm above becomes Simon's algorithm
in [113], and �(a; c) = �2

q
if sc � 0(mod 2), otherwise �(a; c) = 0.

Moreover, let C(a; b; q) be a discrete Walsh function (e.g., the Walsh-Paley func-
tion) [102]. Then, we can obtain the same result as using Simon's algorithm.

First, we de�ne a function r(x) : R! f�1; 1g by

r(x) =

(
1 if 0 � x < 1=2;
�1 if 1=2 � x < 1;

and

r(x+ 1) = r(x):

Moreover, let

rl(x) = r(2lx);

35

where x 2 R and l 2 N. Given l 2 N, we denote l as

l =
1X
k=0

lk2
k;

where lk = f0; 1g. The Walsh-Paley function Wl(x) is de�ned by

Wl(x) =
1Y
k=0

rk(x)
lk :

Note that this product is always �nite because lk = 0 for k that is su�ciently large
and the values of the Walsh-Paley function are only 1 and -1. Furthermore, the
discrete Walsh-Paley function is de�ned by Wa

�
b
q

�
for a 2 N, b 2 N and q 2 Z+.

Now, let q be the power of 2, i.e., q = 2n for n 2 N. Then, the following properties
are known (therefore, this function satis�es Eqs. (5.1) and (5.2)).

Wa

b

q

!
= Wb

a

q

!
;

Wa�c

b

q

!
= Wa

b

q

!
Wc

b

q

!
;

W0

b

q

!
= 1;

and

q�1X
b=0

Wa

b

q

!
Wc

b

q

!
=

(
q if a = c;

0 otherwise:

Namely, the matrix UWq constructed with 1
q1=2

Wa

�
b
q

�
, the ath row and bth column

element, is a unitary matrix. Therefore, we only need to show that the matrix UWq

can be computed in nO(1) time to solve Simon's problem.

We show that the following transform can be computed in O(n) time on the QTM.

jai UWq! 1

q1=2

q�1X
c=0

Wa

c

q

!
jci:

Let Hq be the q-dimensional Hadamard matrix, i.e., let

H2 =

1 1
1 �1

!
;

36

then,

Hq = H2
Hq=2 =

Hq=2 Hq=2

Hq=2 �Hq=2

!
:

The matrix Hq can be computed in O(n) time. Next, let Hkj be the kth row and
jth column element of Hq, then,

Hkj =Wb(k)

j

q

!
;

where b(k) =
n�1X
i=0

kn�i�12
i when k =

n�1X
i=0

ki2
i for ki 2 f0; 1g. The map k ! b(k)

is called a bit-reversal map. We de�ne Bq as a q-dimensional bit-reversal matrix
such that

jkn�1; kn�2; . . . ; k1; k0i Bq! jk0; k1; . . . ; kn�2; kn�1i:

Obviously Bq is a unitary matrix and can be computed in O(n) time. Then,

UWq =
1

q1=2
HqBq:

Thus, UWq
can be computed in O(n) time on the QTM.

2. Let the operator � be +. Then, the second condition of Eq. (5.1) is

C(a+ c; b; q) = C(a; b; q)C(c; b; q):

Moreover, let

C(a; b+ q; q) = C(a; b; q);
C(ac; b; q) = C(a; cb; q):

)
(5.4)

When C(a; b; q) = e2�iab=q, it satis�es Eqs. (5.1), (5.2), and (5.4), and the transform
of Eq. (5.3) is the quantum Fourier transform.

Now, let us consider factoring a number N by using C(a; b; q). We �nd q, the
power of 2 with N 2 � q < 2N 2. First, a QTM makes the following con�guration.

j0; 0i ! 1

q1=2

q�1X
a=0

ja; 0i:

37

Next, given a random x(0 < x � N � 1), the QTM computes xa(mod N) for
a = 0; . . . ; q� 1 in quantum parallel computation and puts the value in the second
register.

1

q1=2

q�1X
a=0

ja; xa(mod N)i:

Here, the QTM performs the transform Cq on the �rst register.

1

q1=2

q�1X
a=0

ja; xa(mod N)i Cq! 1

q

q�1X
a=0

q�1X
c=0

C(a; c; q)jc; xa(mod N)i:

Finally, we measure the �rst and second registers. The probability Pr(c) obtaining
a con�guration jc; xk(mod N)i is

Pr(c) =

�������
1

q

b q�k�1

r cX
b=0

C(br + k; c; q)

�������
2

;

because the sum is over all a satisfying a � k(mod r).

Pr(c) =

�������
1

q

b q�k�1

r cX
b=0

C(br + k; c; q)

�������
2

=

�������
1

q

b q�k�1

r cX
b=0

C(br; c; q)C(k; c; q)

�������
2

=

�����1qC(k; c; q)
�����
2
�������
b q�k�1

r cX
b=0

C(br; c; q)

�������
2

=

�����1qC(k; c; q)
�����
2
�������
b q�k�1

r cX
b=0

C(b; rc; q)

�������
2

=

�����1qC(k; c; q)
�����
2
�������
b q�k�1

r cX
b=0

C(b; frcgq; q)
�������
2

;

where frcgq is in the range �q=2 < frcgq � q=2. If

Pr(c) =

�
1

r2

�
for �d1 � frcgq � d2; (5.5)

where 0 � d1; d2 � r=2 and d2 + d1 =
(r). Then, we can obtain the order r in
(log2 q)

O(1) time with bounded error probability on the QTM.

38

5.3 Finding the Periods of Periodic Functions

5.3.1 Type f(x) = f(x+ r)

As shown in the previous section, Shor's algorithm is to �nd the least r such that xr �
1(mod N). Let f(a) = xa(mod N). Since this function has a property f(k) = f (k+ r),
his algorithm means �nding the period r of a function f such that f(k) = f(k+r). This
observation immediately leads to the following theorem [84].

Theorem 5.1 [84]. Let f : N ! D be a polynomial computable function such that

f(k) = f(k + r), where the function f is one-to-one per one period. Then, a QTM can

�nd r in polynomial time of the input size with bounded error probability.

Proof. We modify xa(mod N) in Shor's algorithm into the given f and execute the
algorithm. First, a QTM executes Shor's algorithm with q := 2 for the function f ,
where q is the number of con�guration of the superposition in Shor's algorithm. If the
QTM can �nd r, halt. Otherwise, let q := 2q, and the QTM executes Shor's algorithm
again. This procedure is iterated until we �nd r. Since the number of iterations is at
most O(log2 r) times and f can be executed in polynomial time, the QTM can �nd r in
polynomial time. 2

Furthermore, the function f in Theorem 5.1 may be a combined one with some operators
(e.g., a composite of functions).

Corollary 5.1 [84]. Let fi for i = 1; . . . ; n be computable functions and F be a polyno-

mial computable function such that

F (f1(k); f2(k); . . . ; fn(k)) = F (f1(k + r); f2(k + r); . . . ; fn(k + r)):

Then, a QTM can �nd r in polynomial time of the input size with bounded error proba-
bility. 2

Note that each fi may not be executed in polynomial time and nmay not be a polynomial
size of the input.

For instance, given a and N , let

fk(x) =
(loge a)

k

k!
xk(mod N)

for k = 0; 1; 2; . . . ;1. A QTM cannot compute all values of fk(x) for every k in poly-
nomial time. However, let us consider a function

F (x) =
1X
k=0

fk(x):

39

Then, the QTM can compute the function F (x) in polynomial time, because

F (x) =
1X
k=0

fk(x)

=
1X
k=0

(loge a)
k

k!
xk(mod N)

= ax(mod N):

Since the function F (x) is a periodic function, the QTM can �nd the period of F (x)
in polynomial time. Moreover, suppose that data that have a period are given and the
number of the data is n. Then, a QTM can �nd the period in (log2 n)

O(1) time.
Boneh and Lipton showed that the periods of periodic functions, which are not one-

to-one per one period, can be found in polynomial time on a QTM [29]. Here, we de�ne
that a function f has order at most m if f does not map more than m elements of Zr

to one, i.e., all z 2 D satisfy jf�1(z)(mod r)j � m.

Theorem 5.2 [29]. Suppose that f : N ! D is a periodic function. Let r be the least

period of f and the order of f be at most m. We impose two conditions:

1. Let n = log2 r, then m is at most nO(1).

2. Let p be the least prime divisor of q, then m < p.

Then, a QTM can �nd the period r of the function f in polynomial time with bounded

error probability. 2

It is not known whether a QTM can �nd the periods of any periodic function in
polynomial time or not, even if the QTM can compute any one value of the function in
polynomial time. If a QTM can e�ciently �nd the period of a function, we can show
that NP � BQP.

Theorem 5.3. Let f : N! D be a periodic function that can be computed in polynomial

time. Then, the problem that determines whether the least period of the function f is

one or not is NP-hard. Therefore, the problem that �nds the least period of f is also

NP-hard.

Proof. If there is a polynomial time reduction from an NP-complete problem to this
problem, we can prove this. Here, we show that there is a polynomial time reduction
from SAT to this problem. First, let F (x1; x2; . . . ; xn) be an n-variable Boolean formula,
where xi 2 f0; 1g for i = 1; 2; . . . ; n, and a binary digit x1x2 � � �xn corresponds to each
input of F , x1; x2; . . . ; xn. For instance, if an input of 4-variable formula F is 0; 1; 0; 1,
the corresponding value is (0101)binary = 5. Moreover, let g : f0; 1; . . . ; 2n�1g ! f0; 1g
and f : N! f0; 1g be functions such that

g(x1x2 � � �xn) = F (x1; x2; . . . ; xn);

40

and

f(x) = g(x(mod 2n)):

Obviously, the function f is a periodic function of period 2n and can be computed in
polynomial time for each input. Moreover, the least period of f is one if and only if the
formula F is tautology or unsatis�able. When the least period is one, we can verify in
polynomial time whether F is either tautology or unsatis�able. Therefore, if we can �nd
the least period of f , we can verify whether F is satis�able. 2

From this theorem, we obtain the following result immediately.

Corollary 5.2. Let f be a periodic function that can be computed in polynomial time.

If the problem that determines whether the least period of the function f is one or not

is included in BQP, NP � BQP. 2

Moreover, we can show that the following restricted problem of Theorem 5.3 is NP-
complete.

Corollary 5.3. Let f be a function that can be computed in polynomial time. Given a
positive integer r, the problem veri�ed that r is not the least period of the function f is
NP-complete.

Proof. First, we show that the problem is in NP, i.e., we �nd an instance that can
be veri�ed that r is not the least period of f in polynomial time. If r is not the least
period of f , there is a k such that k 2 fk0; k0 + 1; . . . ; k0 + r � 1g for some k0 and
f(k) 6= f(k+r). Since we compute f only twice, this can be veri�ed in polynomial time.
Next, we show that the problem is NP-hard. From Theorem 5.3, there is a polynomial
time reduction from SAT to this problem. Let r = 1, and a given Boolean formula of
SAT is not tautology (if a formula is tautology, we can verify that it is satis�able in
polynomial time). Then, the formula is satis�able if and only if r(= 1) is not the least
period of f . 2

Namely, the conditions in Theorem 5.2 mean that we can verify whether the obtained
r is the least period in polynomial time. Then, from this corollary, getting rid of the
conditions will be as hard as to solve NP-complete problems.

5.3.2 Type x = f r(x)

Next, given a �nite domain D, a function f : D ! D, and a seed x0 2 D, let us
consider a generation of an in�nite sequence x0 = f 0(x0); f

1(x0); f
2(x0); Obviously,

this sequence becomes cyclic because D is �nite. Therefore, for some s and r, we have
s + r distinct values f 0(x0); f

1(x0); . . . ; f
s+r�1(x0), but f

s(x0) = f s+r(x0). This means
that f j(x0) = f j+r(x0) for all j � s. Then, a cycle problem for f and x0 is to �nd the
pair (s; r). Note that the pair (s; r) depends on x0. From this pair, we can e�ciently
determine the value of fm(x0) for each m � 0. Let n = s+ r and the input size of this

41

problem be jnj, i.e., O(log2 n). Obviously, the size of D is greater than or equal to n,
however, it need not be a polynomial size of n (i.e., it may be an exponential size of

n). In [106], Sedgewick et al. showed that n
�
1 + �

�
1=M1=2

��
time is both necessary

and su�cient to solve the cycle problem on ordinary computers if M memory cells are
available to store the values of the function. Their algorithm takes exponential time of
the input size. On the other hand, we show that for some kinds of functions, a QTM
can solve it in polynomial time with bounded error probability [84].

Given x0 and N , let f(x) = x0 � x(mod N). Shor's algorithm is also to �nd the least
r such that x0 = f r(x0) � xr+1

0 (mod N). Then, from this observation, we obtain the
following lemma.

Lemma 5.4 [84]. Given x0, let f be a function such that fm(x0) can be computed in

polynomial time, where m is at most nO(1). Then, a QTM can �nd r of the cycle problem
for f and x0 in polynomial time with bounded error probability.

Proof. First, a QTM executes Shor's algorithm with q := 2 for the function f , where
q is the number of con�gurations of the superposition in Shor's algorithm. If the QTM
can �nd r, halt. Otherwise, let q := 2q, and the QTM executes Shor's algorithm again.
This procedure is iterated until the QTM �nds r. Since the number of iterations is at
most O(log2 n) times, the QTM can �nd r in polynomial time. 2

If we know that the size of D is a polynomial size of n, we can �nd r more e�ciently.
Next, given r, we show that a DTM can �nd s in polynomial time.

Lemma 5.5 [84]. Given x0, let f be a function such that fm(x0) can be computed in
polynomial time, where m is at most nO(1) and the period r is given. Then, a DTM can

�nd s of the cycle problem for f and x0 in polynomial time.

Proof. First, let s0 := 0. If f s
0
(x0) = f s

0+r(x0), halt. Otherwise, let s0 := 2s0, and
the DTM checks again whether f s

0
(x0) = f s

0+r(x0). This procedure is iterated until
the DTM obtains s0 such that f s

0
(x0) = f s

0+r(x0). The number of iterations is at most
O(log2 n) times. Since 0 � s � s0 and f has the following conditions:

f s�1(x0) 6= f s+r�1(x0);

and

f s(x0) = f s+r(x0);

The DTM can �nd s by using binary search in polynomial time. 2

Finally, from Lemma 5.4 and Lemma 5.5, a QTM can obtain the following theorem
to solve the cycle problem in polynomial time.

Theorem 5.6 [84]. Given x0, let f be a function such that fm(x0) can be computed in

polynomial time, where m is at most nO(1). Then, we can �nd (s; r) of the cycle problem
for f and x0 in polynomial time with bounded error probability on a QTM. 2

42

Amethod for designing provably secure pseudo-random bit sequence generators based
on the use of one-way predicates is presented by Blum and Micali [27, 99] as follows.
Let f : D ! D, and B : D ! f0; 1g such that

1. given x = f�1(y), it is easy to compute B(y), and

2. given only y, it is di�cult to compute B(y).

Given a seed x0 2 D, we can create a sequence x0; x1; . . . ; xn by using xi+1 = f(xi).
Moreover, we de�ne bi = B(xn�i) to produce a binary sequence b0; b1; . . . ; bn�1 of length
n. Note that, in general, we must compute x0; x1; . . . ; xn �rst, and then compute b0 from
xn�1, b1 from xn�2, and so on.

The generators based on this have been proposed by many researchers (e.g., [2, 27,
28]). However, since we know that a QTM can �nd discrete logarithms and factor
integers in polynomial time, they are not appropriate for pseudo-random bit sequence
generators. Moreover, a QTM can also e�ciently �nd the period of some kinds of
functions shown in Theorem 5.6. For instance, given a and N , let f(x) = xa(mod N):
A QTM can compute fm(x) = xa

m

(mod N) for each m in polynomial time even if
m = O(N), because the QTM can factor N in polynomial time. Then, the QTM can
�nd the period of f(x) = xa(mod N) in polynomial time from Theorem 5.6. It means
that there may be generators that are not secure on QTMs even if they are secure on
ordinary computers.

Finally, from Theorem 5.6, we can obtain the following corollary, if the generating
function of the recurrence xk+1 = f (xk) is given or it is obtained in polynomial time.

Corollary 5.4 [84]. Given x0, let f be a function such that G(z) is the generating

function of the recurrence xk+1 = f(xk) for k = 0; 1; 2; . . ., i.e.,

G(z) =
1X
k=0

xkz
k =

1X
k=0

G(k)(0)

k!
zk;

where G(k)(0) =
dkG(z)

dzk

�����
z=0

. Moreover, let
G(k)(0)

k!
be able to computed in polynomial

time for k � nO(1). Then, a QTM can �nd (s; r) of the cycle problem for f and x0 in

polynomial time with bounded error probability.

Proof. Since fm(x0) =
G(m)(0)

m!
, a QTM can compute fm(x0) for m � nO(1) in polyno-

mial time. Then, from Theorem 5.6, the QTM can �nd (s; r) of the cycle problem for f
and x0 in polynomial time with bounded error probability. 2

43

Chapter 6

Quantum Search Algorithms

6.1 Introduction

Some techniques to solve problems e�ciently on QTMs have been proposed. Especially,
the most famous technique is a quantum Fourier transform. This is used in Chapter 5
and Shor showed that by this technique, a QTM can factor integers and �nd discrete
logarithms in polynomial time [108, 110].

Another well-known technique is a quantum iterating method. A quantum iterating

method was proposed by Grover and is a method to increase the probability of accepting
states by using an algorithm repeatedly. He showed that for an unsorted table T of n
distinct items, T [0]; T [1]; . . . ; T [n � 1], there is a quantum search algorithm that �nds
the index m of a query item q(= T [m]) in expected time O(n1=2) with bounded error
probability [60]. Ordinary computers need O(n) time to solve it. Moreover, D�urr and
H�yer showed that for an unsorted table T of n items, there is a quantum search algo-
rithm that �nds the minimum value of T in expected time O(n1=2) with bounded error
probability [50]. Their algorithm uses Grover's search algorithm as a subroutine.

In this chapter, we show that for an unsorted table T of n items and a query item
q (where q may not necessarily exist in T), there is a quantum search algorithm that
�nds a pair of indices (j; k) corresponding to two successive items, T [j] and T [k], which
satisfy that T [j] � q � T [k], in expected time O(n1=2) with bounded error probability.
Our algorithm also uses Grover's search algorithm as a subroutine and extends D�urr &
H�yer's minimum search algorithm. Moreover, we also show that QTMs can solve some
problems in computational geometry more e�ciently than ordinary computers.

6.2 Search Algorithms on QTMs

6.2.1 Grover's Quantum Search Algorithm

An unsorted table T contains n distinct items, T [0]; T [1]; . . . ; T [n� 1], of which just one
item satis�es a particular property. A problem is to identify that item. Once an item
is examined, it is possible to tell whether it satis�es the condition in O(1) time or not.

44

Ordinary computers need O(n) time to solve the search problem [60], on the other hand,
Grover showed that it can be solved in O(n1=2) time on a QTM.

Theorem 6.1 [60]. For an unsorted table T of n distinct items, T [0]; T [1]; . . . ; T [n�1],
there is a quantum search algorithm that �nds the index m of a query item q(= T [m])
in expected time O(n1=2) with bounded error probability. 2

Let q be a query item in the table T and m be the index corresponding to q, i.e.,
q = T [m]. Then, in order to prove Theorem 6.1, he constructed the following algorithm.
Here, for any item p, we de�ne C(p) by

C(p) =

(
1 if p = q,
0 otherwise:

GROVER'S QUANTUM SEARCH ALGORITHM:

1. Initialize the system to

1

n1=2

n�1X
i=0

ji; 0i:

2. Repeat the following procedures O(n1=2) times.

(a) Compute C(i) in quantum parallel, i.e., for each con�guration ji; 0i,
ji; 0i ! ji; C(T [i])i:

(b) Rotate the phase by � radians if C(T [m]) = 1, otherwise leave the con�gura-
tion unaltered.

(c) Apply the following transforms FRF , where F is a Fourier transform and R
is a rotation matrix:

Rij =

8><
>:

0 if i 6= j;

1 if i = j = 0;
�1 if i = j 6= 0;

and

Fij =
1

2n=2
(�1)�i��j ;

where �i is the binary representation of i and �i � �j denotes the bitwise dot
product of two n bit strings, �i and �j.

3. Measure the second qubit. Then, the second qubit of the �nal con�guration is
C(T [m]) = 1(i.e., T [m] = q) with a probability of at least 1=2.

45

In [30], Boyer et al. analyzed Grover's search algorithm and provided a simple closed-
form formula for the probability of accepting states after any given number of iterations
of the algorithm. Moreover, they extended Grover's algorithm to multiple solutions, i.e.,
some of items may be the same.

Theorem 6.2 [30]. For an unsorted table T of n items, T [0]; T [1]; . . . ; T [n�1], there is
a quantum search algorithm that �nds an index corresponding to a query item in expected

time O

 �
n

t

�1=2!
with bounded error probability, where t is the number of items in the

table T corresponding to the query item. 2

We call this algorithm an extended Grover's search algorithm.
Furthermore, D�urr and H�yer used the extended Grover's search algorithm as a

subroutine and showed that for an unsorted table T of n items, there is a quantum
search algorithm that �nds the minimum value of T in O(n1=2) time.

Theorem 6.3 [50]. For an unsorted table T of n items, there is a quantum search

algorithm that �nds the minimum value of T in expected time O(n1=2) with bounded

error probability. 2

6.2.2 Extended Quantum Search Algorithm

In this subsection, let us consider the following problem:

PROBLEM:

Given an unsorted table T of n items, T [0]; T [1]; . . . ; T [n � 1], and a query
item q, �nd a pair of indices (j; k) corresponding to two successive items,
T [j] and T [k], which satisfy that T [j] � q � T [k].

The query item q may not necessarily exist in the table T . If q exists in the table T ,
an algorithm returns an index m corresponding to q(= T [m]), i.e., j = k = m. Note
that the items in the table and the query item may not necessarily be numbers like the
problems in the next section (e.g., they may be coordinates). In the following, we show
that a QTM can solve this problem in O(n1=2) time.

First, we provide a quantum search algorithm for solving this problem. In this
algorithm, we also use the extended Grover's search algorithm as a subroutine. We
assume that we can examine whether the query item q is equal to an item in the table
for in�nite-precision in O(1) time or not. For simplicity, we also assume that all the
items in the table T are distinct. The algorithm will execute in O(n1=2) time, even if all
the items in the table T are not distinct.

EXTENDED QUANTUM SEARCH ALGORITHM:

1. Choose an index m for 0 � m � n� 1 at random.

46

2. If T [m] > q, j �j and k m, where �j means that T [�j] = �1.

3. If T [m] < q, j m and k �k, where �k means that T [�k] =1.

4. If T [m] = q, return (m;m).

5. Repeat the following procedures O(log2 n) times and interrupt it when the total
executing time becomes in O(n1=2) time.

(a) Initialize the system to

1

n1=2

n�1X
i=0

ji; j; ki:

(b) Apply the extended Grover's search algorithm in order to search the index
of an item between T [j] and T [k] and obtain the index m satisfying T [j] <
T [m] < T [k].

(c) If T [m] > q, k m.

(d) If T [m] < q, j m.

(e) If T [m] = q, return (m;m).

6. Return (j; k).

Obviously, if q = �1 (resp. q = 1), we can obtain the minimum value (resp.
the maximum value) of the table. Moreover, we can easily make a modi�ed algorithm
executing in O(n1=2) time to �nd the (k � 1)th smallest item or the (k + 1)th smallest
item when the kth smallest item is given.

Next, we prove that the algorithm mentioned above can execute in O(n1=2) time to
solve the problem. The following two lemmas determine the upper bound of the number
of iterations for solving the problem.

Lemma 6.4 [85]. For an unsorted table of n distinct items, we choose one item t at

random. The item t separates the table into three parts (i.e., the set of items that are

greater than t, the set of items that are equal to t, and the set of items that are less than
t). Then, the expected number of items in the set that includes the kth smallest item is

at most
n

2
+
k(n� k)

n
. Therefore, for any k(1 � k � n), the expected number of items

in the set is at most 3
4
n.

Proof. The expected number of items is

1

n
(
k�1X
t=1

(n� t) + 1 +
nX

t=k+1

(t� 1)):

47

Then,

1

n
(
k�1X
t=1

(n� t) + 1 +
nX

t=k+1

(t� 1))

=
1

n
(
k�1X
t=1

(n� t) + 1 +
nX
t=1

(t� 1)�
kX
t=1

(t� 1))

=
1

n
(n(k � 1)� (k � 1)k

2
+ 1 +

n(n+ 1)

2
� n

�k(k + 1)

2
+ k)

=
n

2
+

1

n
(nk � k2 � 3

2
n+ k + 1)

<
n

2
+
k(n� k)

n

� 3

4
n:

2

Lemma 6.5 [85]. For a table of n items, there is an algorithm to output a table of size

�n, where 0 < � < 1. Then, in order to make a table of a constant size (i.e., at most

size c), the minimum value of iterations of the algorithm is at most

&
� log2n� log2c

log2 �

'
.

Proof. Let r be the minimum value of iterations to make a table of constant size. Since
�rn � c,

r =

&
� log2n� log2c

log2 �

'
:

2

From these two lemmas, we can prove that our search algorithm mentioned above
can solve the given problem in O(n1=2) time.

Theorem 6.6 [85]. For an unsorted table T of n items, T [0]; T [1]; . . . ; T [n � 1], and
a query item q, there is a quantum search algorithm that �nds a pair of indices (j; k)
corresponding to two successive items, T [j] and T [k], which satisfy that T [j] � q � T [k],
in expected time O(n1=2) with bounded error probability.

Proof. The main procedure of this algorithm is LINE 5, especially LINE 5-b. From

Theorem 6.2, LINE 5-b can be executed in c
�
n

t

�1=2

time for some constant c, where t

is the number of items between T [j] and T [k]. Then, by using Lemma 6.4, the expected
time E(n) of LINE 5 is

48

E(n) <
rX

i=1

c

0
B@ n�

3
4

�i
n

1
CA

1=2

;

where r is the value determined from Lemma 6.5, i.e., the minimum value satisfying that
(3=4)rn � 1. Then,

E(n) <
c
�
4
3

�1=2 ��
4
3
n
�1=2 � 1

�
�
4
3

�1=2 � 1
= O(n1=2):

2

Our quantum search algorithm can search a pair of indices (j, k) satisfying that
T [j] � q � T [k], even if the query item does not necessarily exist in the table. Moreover,
if we can �nd or make a suitable query item to search an item, this algorithm can search
the particular item such as the maximum value of the table that is smaller than a given
item.

6.3 Applications

By using this quantum search algorithm, we can e�ciently solve some problems in
computational geometry on QTMs (e.g., see [51, 98]). In this section, for example, let
us consider the following fundamental problems.

1. Problem(CLOSEST PAIR)

Given n points in the plane, �nd two points whose mutual distance is the smallest.

2. Problem(SET DIAMETER)

Given n points in the plane, �nd two points that are the farthest apart.

3. Problem(LINE-SEGMENT INTERSECTION TEST)

Given n line segment in the plane, decide whether any two intersect.

4. Problem(ELEMENT UNIQUENESS)

Given n numbers, decide whether any two are equal.

Throughout this section, we assume that one examination of each problem (e.g., For EL-
EMENT UNIQUENESS, checking whether two items are equal or not) can be executed
for in�nite-precision in O(1) time.

It is known that ordinary computers can solve each of the problems above in O(n log2 n)
time (e.g., see [98, 37, 107]), on the other hand, we can show that a QTM solves it in
O(n) time.

49

Theorem 6.7 [85]. There is a quantum algorithm that solves each of the problems above

in expected time O(n) with bounded error probability.

Proof. For n points, the number of examinations to solve the problem is
n

2

!
= O(n2):

Then, since a QTM can check all the examinations in parallel, from Theorem 6.6, the
QTM can solve it in expected time

O
�
(n2)1=2

�
= O(n):

2

Next, we generalize the problems above to d(> 2)-dimensional space.

1. Problem(d-DIMENSIONAL CLOSEST PAIR)

Given n points in d-dimensional space, �nd two points whose mutual distance is
the smallest.

2. Problem(d-DIMENSIONAL SET DIAMETER)

Given n points in d-dimensional space, �nd two points that are the farthest apart.

3. Problem(d-DIMENSIONAL LINE-SEGMENT INTERSECTION TEST)

Given n line segment in d-dimensional space, decide whether any two intersect.

For d(> 2)-dimensional space, in some cases, the complexity of the problems increases
on ordinary computers. For instance, ordinary computers can solve SET DIAMETER
in the plane in O(n log2 n) time, on the other hand, in order to solve it in d(> 2)-
dimensional space, they need O(n2�") time for 0 < " < 1 [126]. For d > 3, there is a
randomized algorithm with O(nbd=2c) expected time [37, 107]. However, the complexity
for solving them does not increase on the QTMs. Note that we use the assumption that
one examination of each problem can be executed in O(1) time.

Corollary 6.1 [85]. There is a quantum algorithm that solves each of the problems

above in expected time O(n) with bounded error probability. 2

If one examination of each problem spends P (d) time for d-dimensional space, our search
algorithm needs O(P (d)n) time to solve the problem.

Finally, let us consider the following search problem.

1. Problem(NEAREST NEIGHBOR SEARCH)

Given N points in d(� 1)-dimensional space, how quickly can the nearest neighbor
of a new given query point q be found?

50

This problem is known as the post-o�ce problem: given a set of n points in the plane
(called post-o�ces or sites), determine for an arbitrary point (x; y) which post-o�ce is
the closest to (x; y). Ordinary computers can solve it in O(n) time [69]. On the other
hand, it can be solved in O(n1=2) time on a QTM because there is a minimum search
algorithm executing in O(n1=2) time on the QTM. Moreover, for one dimensional space,
our search algorithm can solve it directly in O(n1=2) time.

Theorem 6.8 [85]. There is a quantum algorithm that solves NEAREST NEIGHBOR

SEARCH in expected time O(n1=2) with bounded error probability.

Proof. For n points, the number of checking the distance from each point to the query
point is n. Then, since a QTM can check all the points in parallel, from Theorem 6.6,
the QTM can solve it in expected time O(n1=2). 2

51

Chapter 7

The Complexity of NP-complete

Problems

7.1 Introduction

Although NP-complete problems appear in many situations (e.g., scheduling, arti�cial
intelligence, and pattern recognition, etc.), nobody knows whether DTMs and PTMs
can solve them e�ciently or not. It is one of the most important issues in theoretical
computer science to �nd a method for solving NP-complete problems e�ciently. In this
chapter, we investigate methods to solve NP-complete problems on QTMs.

Even if a QTM can compute all the values of a function by using quantum parallel
computation, we cannot, in general, obtain all the values of the function simultaneously.
Moreover, according to current quantum physics, it is not certain whether we can e�-
ciently read each value in the obtained superposition. These are because the following
measurement problem has not been completely solved.

Measurement Problem in Quantum Physics :

What will happen when we measure a quantum physical object ?
Explain it in terms of quantum physics.

Therefore, we study the relationships between the assumptions on measurement and the
e�ciency of quantum computation. Especially, we study the satis�ability problem.

The satis�ability problem (SAT) is to determine whether a given Boolean formula
is satis�able. A Boolean formula is a formula composed of variables, parentheses, and
operators ^ (AND), _ (OR) and : (NOT). A Boolean formula is said to be satis�able
if there is an assignment of 0's and 1's to the variables that gives the formula the value
1. SAT is a typical NP-complete problem [56].

In this chapter, we propose the following two assumptions on measurement.

1. Assumption �1 :

52

A superposition of physical states is preserved after measurements, and all of the
states in the superposition can be measured in time proportional to the number
of the states in the superposition.

2. Assumption �2 :

We can measure the existence of a speci�c physical state C in a given superposition
with certainty in polynomial time, if the state C exists in the superposition.

Consequently, we show that there is a QTM that solves SAT in O(2n=4) time under
Assumption �1 and there is a QTM that solves SAT in nO(1) time under Assumption
�2, where n is the length of an instance of SAT.

The assumptions mentioned above are not widely supported in current quantum
physics, however, nobody knows whether these assumptions are valid or not. This
is because interpretations of measurement have not been �xed yet among physicists.
The measurement problem is one of the central issues in quantum physics and several
interpretations of measurement exist. In fact, Aharonov et al. [1] have proposed a
new interpretation of measurement, i.e., they conjectured that a physical state actually
exists as a superposition and can be measured without collapsing the superposition for
a special case. In this situation, it is important to �nd various relationships between the
restrictions on measurement and the e�ciency of quantum computation.

7.2 Solving SAT under the First Assumption

In this section, �rst, we propose the following assumption.

Assumption �1 : A superposition of con�gurations is preserved after measurements
and all of the con�gurations in the superposition can be measured in time proportional
to the number of the con�gurations in the superposition.

Then, we show a method to solve SAT in O(2n=4) time on a QTM under Assumption �1,
where n is the length of an instance of SAT, i.e., n is the total length of a description of
a logical formula f whose satis�ability should be decided and a description of m that is
the number of variables in f [82].

Let a QTM U have an input tape T1, a work tape T2, and a history tape T3, and
H1; H2, and H3 be the heads on the tapes T1; T2, and T3, respectively (see Fig. 7.1). All
of the heads H1, H2, and H3 can read and write. As shown in Fig. 7.1, a program P that
U executes is written on the input tape T1. On the right-hand side of P , in�nitely many
blank symbols are written. Note that the length of the description of P is a constant
that is independent of the length of an input given on T2.

The program P consists of state transition rules of a one-tape standard DTM and
sentences corresponding to the unitary transforms of Eq.(3.1). Let

V (n; i)

53

QTM U

f

P

H

H

H

2

1

3

. . .

. . .

. . .

H1

T1 : Input tape of U

T3 : History tape of U

H2 : Read & Write

T2 : Work tape of U

H3 : Read & Write

m

: Read & Write

Figure 7.1: The QTM U .

be the sentence that represents that

\apply the transform Vn of Eq.(3.1) on the ith qubit of the work tape",

where 0 � n � 7 and � = �=4 in Eq.(3.1).
The QTM U starts the execution given a logical formula f and the number m of

variables in f on the work tape T2, and the program P on the input tape T1. In fact,
the number m of variables in f need not be supplied as an input because U can initially
scan the description of f on T2 from left to right and can count the number of variables
appearing in that description. However, in order to simplify the presentations, we assume
that m is also supplied as input.

The time complexity of the QTM U is the sum of the number of steps executed by U
until it �nally halts and the number of steps needed to measure the output. The time
complexity of U is represented as a function of the length of the input, n, (in this case,
the total length of the descriptions of f and m) given on T2.

Theorem 7.1 [82]. Under Assumption �1, the QTM U can solve SAT in O(2n=4) time,
where n is the length of an instance of SAT.

Proof. We show a program P that U executes in order to solve SAT in O(2n=4) time.
Let us consider the satis�ability of anm-variable logical formula f(x1; x2; . . . ; xm), where
xi, i = 1; 2; . . . ;m are Boolean variables. Without loss of generality, we can assume that
f is in conjunctive normal form. A formula f is in conjunctive normal form (CNF) if it
is of the form f = F1^F2^� � �^Fq. Each Fi is a clause of the form (xi1_xi2_� � �_xini),
where each xij is a literal (i.e., either a variable or the negation of a variable) and ni
is the number of literals in clause Fi. We also assume that the variables x1; . . . ; xm are

54

begin

%%% Preparation of partial assignments

1 for i = 1 to
l
m
4

m
do

2 V (4; i)
od ;

%%% Computation of the values of f

3 Reduce an instance of SAT on
j
3
4
m
k
-variable formula

to the corresponding maximum independent set problem.
4 Solve the obtained maximum independent set problem

by using the algorithm of Tarjan & Trojanowski.
end.

Figure 7.2: The program that the QTM U executes under Assumption �1.

named in such a way that if i < j the number of occurrences of xj in f is not larger
than that of xi.

The QTM U writes an assignments to the variables in f together with the corre-
sponding value of f on the tape T2. We show the program executed by U in Fig. 7.2.
We explain the behavior of U according to this program.

An Execution

1. The initial con�guration

The descriptions of the logical formula f and the number m of the variables are
given as input on the work tape T2, and the program P that U executes is given
on the input tape T1. We identify a con�guration of U with a description of
an assignment to the variables in f and the corresponding value of f , which are
written on the tape T2 (this description is written on the right-hand side of the
descriptions of f and m on T2). Let jx1; . . . ; xm; xm+1i be a register corresponding
to x1; . . . ; xm and the value of f under the assignment in this con�guration. Now,
let

j 0; 0; . . . ; 0| {z }
m

; 0i

be the initial con�guration of U . In order to simplify the presentation, we separate
the assignments for the variables from the value of f by semicolon.

2. Making a superposition of partial assignments

There are 2m di�erent assignments for the m variables in f . Initially, U makes
a superposition of all the con�gurations in which

l
m
4

m
variables x1; . . . ; xdm

4
e are

�xed. U will perform this by applying

55

V4 =
1

21=2

1 �1
1 1

!

to each qubit corresponding to
l
m
4

m
variables in order. U can execute a transform

by V4 in a single step. By the execution of the for loop, the initial con�guration
is transformed as follows (see Fig. 7.3):

j0; 0; . . . ; 0; 0i
Ux1 ;...;Uxdm

4
e�! 1p

2d
m
4
e

1X
x1=0

1X
x2=0

� � �
1X

xdm
4
e=0

jx1; x2; . . . ; xdm
4
e; 0 . . . ; 0; 0i;

where Uxi is a unitary transform represented by a matrix

Mxi = I
 � � �
 I| {z }
i� 1

V4
 I
 � � �
 I| {z }
m� i

:

Since U can execute each transform Uxi in a single step, it can execute all the

transforms Ux1 ; . . . ; Uxdm
4
e
in
l
m
4

m
steps.

3. Computation of the values of f

Now, in the logical formula f , the variables x1; . . . ; xdm
4
e are �xed and the otherj

3
4
m
k
variables are free. By the assumption on the names of the variables, the

length of the description of f will be less than or equal to 3
4
n if we evaluate f as

much as possible.

In the third line in Fig. 7.2, U transforms this logical formula in quantum parallel
to the corresponding instance of the maximum independent set problem. The
maximum independent set problem is to �nd a maximum-size independent set in a
given graph G = (V;E). A set S of vertices is independent if the edge (u; v) 62 E for
all u; v 2 S. The maximum independent set problem is known to be NP-complete.

The transformation will be performed in the following way. Let f = F1^F2^� � �^Fq
be an expression in CNF. Each Fi is a clause of the form (xi1_xi2_� � �_xini), where
each xij is a literal and ni is the number of literals in clause Fi. U constructs an
undirected graph G = (V;E) whose vertices are pairs of integers (i; j) for 1 � i � q

and 1 � j � ni. The vertex (i; j) represents the jth literal of the ith clause. The
edges of the graph are ((i; j); (k; l)) if i = k or xij = :xkl. This construction has
the property that G has a maximum independent set of size q if and only if f
is satis�able. This transformation can be executed in polynomial time (e.g., see
[61]). Note that the number of the vertices in the instance is less than or equal to
3
4
n, because the length of the description of f is less than or equal to 3

4
n.

Next, in the fourth line in Fig. 7.2, U solves those instances of the maximum
independent set problem in quantum parallel by using the algorithm of Tarjan
and Trojanowski [118]. This process can be performed in O

�
2
1
3
3n
4

�
= O(2n=4)

time. In Fig. 7.3, we illustrate the whole computation executed by U .

56

...

The initial configuration

Level m/4

Level m

Reduction from SAT

An Execution of
the algorithm of
Tarjan & Trojanowski

...

Quantum parallel
computation

... ...

Figure 7.3: The computation executed by the QTM U .

A Measurement

For some positive constant c depending on the input f , U completes all the computation
above within c � 2n=4 time. Then, we will measure all of the superposed 2d

m
4
e con�gura-

tions. If all the output qubits of these con�gurations are zeros, f will be unsatis�able.
On the other hand, if at least one output qubit is one, f will be satis�able. We can mea-
sure each of these con�gurations, because the superposed con�gurations are preserved
after each measurement by Assumption �1. Furthermore, these measurements can be
executed in O(2n=4) time by Assumption �1.

The Time Complexity of the QTM U

In Fig. 7.2, the for loop is executed
l
m
4

m
times in total, thus U executes it within O(n)

time. As mentioned above, U can execute the third line in polynomial time and the
fourth line in O(2n=4) time. Finally, U can measure all the con�gurations in O(2n=4)
time. Therefore, U can execute the procedure in Fig. 7.2 in O(2n=4) time in total. This
completes the proof of Theorem 7.1. 2

Corollary 7.1 [82]. If there is a deterministic algorithm to solve the maximum inde-
pendent set problem in O(2"n) time (0 < " < 1), the QTM U can solve SAT in O(2

"
"+1

n)
time under Assumption �1.

Proof. The QTM U executes a quite similar procedure as shown in Fig. 7.2. In this
case, U makes a superposition of 2d

"
"+1

me di�erent partial assignments for x1; . . . ; xd "
"+1

me

variables. Then, U executes the same procedure shown in Fig. 7.2. Solving the instances

57

begin

%%% Preparation of all the assignments
1 for i = 1 to m do

2 V (4; i)
od ;

%%% Computation of the values of f
3 xm+1 := f(x1; . . . ; xm) ;
%%% Preparations for a measurement
4 for j = m to 1 do
5 V (0; j)

od

end.

Figure 7.4: The program that the QTM U executes under Assumption �2.

of the maximum independent set problem and the measurement can be executed in
O(2

"
"+1

n) time in this case. 2

7.3 Solving SAT under the Second Assumption

In this section, we show a method to solve SAT in polynomial time on a QTM under
the following stronger assumption �2 [81].

Assumption �2 : Let C be a speci�c con�guration. We can measure the existence
of C in a superposition with certainty in polynomial time in the input size of C, if C
exists in the superposition.

Theorem 7.2 [81]. Under Assumption �2, the QTM U can solve SAT in nO(1) time,
where n is the length of an instance of SAT.

Proof. We show a program P that U executes in order to solve SAT in polynomial
time. We consider the satis�ability of an m-variable logical formula f(x1; x2; . . . ; xm),
where xi, i = 1; 2; . . . ;m are Boolean variables.

The QTM U writes an assignments to the variables in f together with the corre-
sponding value of f on the tape T2. We show the program executed by U in Fig. 7.4.
We explain the behavior of U according to this program.

An Execution

1. The initial con�guration

The initial con�guration is the same as in the proof of Theorem 7.1, i.e.,

58

j 0; 0; . . . ; 0| {z }
m

; 0i:

2. Making a superposition of all the assignments

There are 2m di�erent assignments for m variables in f . Initially, U makes a
superposition of con�gurations corresponding to all of these assignments. U will
perform this by applying

V4 =
1

21=2

1 �1
1 1

!

to each qubit corresponding to m variables in order. U can execute the transform
by V4 in a single step. By the execution of the �rst for loop, the initial con�guration
is transformed as follows:

j0; 0; . . . ; 0; 0i Ux1 ;...;Uxm�! 1

2m=2

1X
x1=0

1X
x2=0

� � �
1X

xm=0

jx1; x2; . . . ; xm; 0i:

Since U can execute each transform Uxi in a single step, it can execute all the
transforms Ux1 ; . . . ; Uxm in m steps.

3. Computation of the values of f

Let Uf be a transform corresponding to the computation of the value of the logical
formula f , then,

1

2m=2

1X
x1=0

1X
x2=0

� � �
1X

xm=0

jx1; x2; . . . ; xm; 0i

Uf�! 1

2m=2

1X
x1=0

1X
x2=0

� � �
1X

xm=0

jx1; x2; . . . ; xm; f(x1; x2; . . . ; xm)i � :

In order to execute the third line of the program, U simulates a program of a one-
tape standard DTM Mf computing the values of f . U simulates Mf , regarding
T2 as the tape of Mf . Recall that f and m are written on T2, followed by an
assignment ja1; . . . ; ami (ai 2 f0; 1g, 1 � i � m) for x1; . . . ; xm.

First, Mf returns the head to the leftmost square of the tape and then executes
the following procedure: (1) it �nds the leftmost variable xa appearing in f , (2)
it �nds the value for xa (0 or 1) in ja1; . . . ; ami, and (3) it rewrites xa of (1) to
the value found in (2). Next, Mf executes the same procedure for the variable
appearing next to xa, and so on. By repeating the same procedure, Mf rewrites
all the variables appearing in f to the corresponding values in ja1; . . . ; ami. After
that, Mf returns the head to the leftmost square of the tape and then evaluates
the value of f (i.e., am+1) under the assignment ja1; . . . ; ami.
Obviously, U can execute the whole computation above in O(n2) time.

59

4. Preparations for a measurement

The QTM U performs the reverse transform of the procedure performed in Step 2
by applying

V0 =
1

21=2

1 1
�1 1

!

to the qubits corresponding to the m variables from jxmi to jx1i in order. Since U
can perform a transform corresponding to V0 in a single step, it can execute the for
loop of the fourth line in Fig. 7.4 in m steps. In this transform, the superposition
 of U 's con�gurations will be transformed as follows:

(a) if the values of f for 2m di�erent assignments are all 0's, will be transformed
to the single con�guration j0; 0; . . . ; 0; 0i,

(b) if the values of f for 2m di�erent assignments are all 1's, will be transformed
to the single con�guration j0; 0; . . . ; 0; 1i,

(c) otherwise, will be transformed to a superposition of several con�gurations.

A Measurement

When U completes all the computations mentioned above, we will measure whether
there is a con�guration c1 = j0; 0; . . . ; 0; 1i in the �nally obtained superposition of U 's
con�gurations. If c1 exists in the superposition, we conclude that f is satis�able, and if
not, f is unsatis�able. The correctness of this decision is shown by the claim below.

Claim 1. f is satis�able if and only if there is the con�guration j0; 0; . . . ; 0; 1i in the

�nally obtained superposition of the con�gurations.

Proof. (() It is obvious, because if f is unsatis�able, only j0; 0; . . . ; 0; 0i will exist in
the �nally obtained superposition.

()) We will show that if f is satis�able, there is j0; 0; . . . ; 0; 1i in the �nally obtained
superposition.

First, let us consider an application of the transform corresponding to V0 to each
con�guration. Let 1 � i � m. If for a con�guration jx1; . . . ; xi�1; 0; xi+1; . . . ; xm; 1i,
where x1; . . . ; xi�1; xi+1; . . . ; xm 2 f0; 1g, U executes V (0; i), the con�guration will be
transformed as follows:

jx1; . . . ; xi�1; 0; xi+1; . . . ; xm; 1i

! 1

21=2
(jx1; . . . ; xi�1; 0; xi+1; . . . ; xm; 1i � jx1; . . . ; xi�1; 1; xi+1; . . . ; xm; 1i):

On the other hand, if U executes V (0; i) for a con�guration jx1; . . . ; xi�1; 1; xi+1; . . . ; xm; 1i,
the con�guration will be transformed as follows:

60

jx1; . . . ; xi�1; 1; xi+1; . . . ; xm; 1i

! 1

21=2
(jx1; . . . ; xi�1; 0; xi+1; . . . ; xm; 1i+ jx1; . . . ; xi�1; 1; xi+1; . . . ; xm; 1i):

Note that in both cases, there are always two con�gurations in which xi = 0 and
xi = 1 after the execution of V (0; i). Furthermore, the amplitude for the con�guration
in which xi = 0 is always positive. Therefore, after the U 's computation of f , if there
is at least one con�guration of the form jx1; x2; . . . ; xm; 1i in the obtained superposition
of con�gurations (i.e., above) and U applies V0 to jxmi; . . . ; jx1i in order, the con�g-
uration j0; 0; . . . ; 0; 1i will always appear in the end. Moreover, since an amplitude of a
con�guration in which xi = 0 is always positive for any i, the con�guration j0; 0; . . . ; 0; 1i
will not be cancelled during the transforms even if we have more than one con�gurations
in which the value of f is 1 before the transforms. (end of claim)

The Time Complexity of the QTM U

Since the second line in Fig. 7.4 is executed m times in total, U can execute the �rst
for loop within O(m) steps. As mentioned above, U can execute the third line within
O(n2) time. Moreover, U can also execute the for loop of the fourth line within O(m)
steps. Therefore, U can execute the procedure in Fig. 7.4 within polynomial time in
total. Finally, by Assumption �2, we can measure whether there is a con�guration
c1 = j0; 0; . . . ; 0; 1i in the �nally obtained superposition of U 's con�gurations in polyno-
mial time. This completes the proof of Theorem 7.2. 2

Corollary 7.2 [81]. Under Assumption �2, NP � EQP.

Proof. First, the QTM U transforms an instance of any NP-complete problem given on
T2 as input to an equivalent instance of SAT in polynomial time. U executes this process
by simulating an appropriate one-tape standard DTM. After U writes the obtained
logical formula f on T2, it executes the same procedure shown in Fig. 7.4. 2

This means that

NP 6� EQP) :Assumption �2:

Namely, if NP 6� EQP is shown, it follows that Assumption �2 is not valid in quantum
physics. In this sense, our results establish an interesting relationship between quantum
physics and computational complexity theory.

Example : In Fig. 7.5, we show the changes of the superpositions of con�gurations
of the QTM U in the case of a function f such that f(0; 0) = f (1; 1) = 0 and f(0; 1) =
f(1; 0) = 1.

61

(| 0,0;0 > + | 0,1;0 > + | 1,0;0 > + | 1,1;0 >)

(| 0,0;0 > + |1,0;0 >)

| 0,0;0 >

1

2

2

1

2

3

1

2

(| 0,0;0 > + | 0,1;1 > + | 1,0;1 > + | 1,1;0 >)

(| 0,0;0 > - | 0,1;0 > + | 0,0;1 > + | 0,1;1 > + | 1,0;1 > - | 1,1;1 > + | 1,0;0 > + | 1,1;0 >)

(| 0,0;1 > + | 0,0;0 > + | 1,1;0 > - | 1,1;1 >)
2

1

2

2

1

2

Computation of the values of f

} O(n) time

} O(n) time

} O(n) time2

Figure 7.5: The changes of the superposition of con�gurations of the QTM U .

62

Chapter 8

Conclusions

In this thesis, we showed some results on the complexity and algorithms based on QTMs.
As main results, �rst, we showed that the periods of periodic functions that have some
input properties, f(x) = f(x + r) and x = f r(x), can be found in polynomial time
on a QTM, even if ordinary computers cannot �nd it in polynomial time. Therefore,
some kinds of functions shown in Chapter 5 are not appropriate for pseudo-random
generators on the QTM, because the period of a recurrence xi+1 = f(xi) can be e�ciently
found on the QTM. Moreover, in some case, we will be able to extend in a recurrence
xi+1 = f(xi; xi�1; . . . ; xi�j) for i � j.

Next, we showed an e�cient quantum search algorithm. Given an unsorted table T
of n items, T [0]; . . . ; T [n � 1] and a query item q, we showed that there is a quantum
search algorithm that �nds a pair of indices (j; k) corresponding to two successive items,
T [j] and T [k], which satisfy that T [j] � q � T [k], in O(n1=2) time. This search algorithm
extends D�urr & H�yer's minimum search algorithm, and can obtain the indices corre-
sponding to the successor and the predecessor of q even if q does not necessarily exist
in the table. Furthermore, we also applied our search algorithm to some problems in
computational geometry. However, there are many problems that need to search items
e�ciently in several �elds. We will be able to apply our algorithm to these problems.
Moreover, if a table has a particular structure, we will be able to make a more e�cient
improved search algorithm.

When we solve these problems above, we applied the quantum Fourier transform and
the quantum iterating method. However, there are other methods to solve problems on
QTMs faster than ordinary computers (e.g., [41]). Combining these methods, QTMs
may be able to e�ciently solve problems that cannot be e�ciently solved on ordinary
computers.

Finally, we studied the relationships between the assumptions on measurement and
the e�ciency of quantum computation. We showed that, if the maximum independent
set problem can be solved in O(2"n) (0 < " < 1) time, a QTM can solve SAT in O(2

"
"+1

n)
time under Assumption �1. However, we cannot expect that the QTM solves SAT faster
than O(2"

0n) time by the same method, because it is known that Tarjan & Trojanowski
type algorithms for �nding the maximum independent set must require 2"n time in the

63

worst case for some small positive " [64, 87, 103, 118, 124]. We also showed that a QTM
can solve SAT in polynomial time under Assumption �2,

These two assumptions are not widely supported in current quantum physics. Since
NP-complete problems are one of the most familiar problems in theoretical computer
science, it is the most important open question to show whether NP-complete problems
can be solved in polynomial time on a QTM under only assumptions supported in current
quantum physics (i.e., deciding whether NP � BQP). It will be also important for
constructing quantum computers to �nd an e�cient algorithm for solving NP-complete
problems on a QTM. However, there are also some weak indications that QTMs may
not e�ciently solve NP-complete problems. In fact, it is shown that there is an oracle
R such that NPR 6� BQPR[22].

Quantum computers does not exist yet. At the present time, they are only one of
mathematical computing models, computing models based on quantum physics. Namely,
many results of the complexity and algorithms on quantum computers are also theoreti-
cal results. Moreover, some physicists insist that we will not be abel to realize quantum
computers if we can not control coherent states (e.g., [74, 75, 121]). On the other hand,
there are also many physicists and computer scientists that study methods for realizing
quantum computers. Some researchers propose physical systems for realizing quantum
gates [4, 6, 36, 92, 114] and some demonstrate the quantum gates proposed above in the
laboratory [88, 120].

The studies of quantum computers have been initiated only �fteen years ago. There-
fore, the computing powers, properties, and de�nitions of quantum computers should
be studied in detail in the future. Moreover, other quantum computing models such as
quantum circuits and quantum cellular automata should be studied [48, 49, 125, 127]. If
we can establish good results in this kind of �eld, we will be able to claim that quantum
computers are e�ective not only as theoretical models of computers but also as practical
models of computers.

64

Appendix A

Quantum Theory

In order to understand the formalizations of quantum computers, we should understand
the fundamentals of quantum physics. However, since it is not a purpose of this thesis to
denote completely quantum physics, we describe only the fundamental parts of quantum
physics needed to understand quantum computers. For a more complete overview on
quantum physics, the reader is referred to [43, 63, 80, 94, 100, 101].

A.1 Hilbert Spaces

A Hilbert space is de�ned as a non-empty set H with the following three properties (e.g.,
see [38, 47, 63]).

1. A Hilbert space H is a complex vector space.

Let V be a non-empty set, x;y; z 2 V , and a; b 2 C. Then, a complex vector space
is the set V with ax;x+ y 2 V , and the following properties:

(a) x+ y = y + x.

(b) x+ (y + z) = (x+ y) + z.

(c) For any x, there is 0 2 V such that x+ 0 = x.

(d) For any x, there is �x 2 V such that x+ (�x) = 0.

(e) a(x+ y) = ax+ ay.

(f) (a+ b)x = ax+ bx.

(g) a(bx) = (ab)x.

(h) 1x = x.

2. An inner product is de�ned on H.
Let x;y 2 H. Then, an inner product of x and y is de�ned as

65

(x;y) =
1X
i=1

xi
�yi;

where xi is the ith element of x and xi
� is the complex conjugate of xi. Moreover,

let x;y; z 2 H and a; b 2 C. Then, the inner product satis�es the following
properties:

(a) (y;x) = (x;y)�.

(b) (x; ay + bz) = a(x; y) + b(x; z).

(c) (x;x) � 0, and (x; x) = 0 implies x = 0.

We call (x;x)1=2 a norm of x and denote it by k x k. Moreover, a vector space
with the inner product is called an inner product space or a pre-Hilbert space.

3. A Hilbert space H is complete with respect to the norm.

A Cauchy sequence, x1;x2; . . . ; in an inner product space V is as follows:

A sequence of vectors, x1;x2; . . . ; in V is called a Cauchy sequence if for
any " > 0, there is a positive integer N such that

k xn � xm k< "

for all m;n > N .

Then, an inner product space V is called complete if every Cauchy sequence in V
converges to an element of V .

A Hilbert space whose amplitudes are limited to real numbers is called a real Hilbert
space. The well-known three-dimensional Euclid space is one of real Hilbert spaces.

In quantum physics, we often denote a vector x 2 H by jxi and denote the inner
product of jxi and jyi by hxjyi, which are called Dirac notation [43]. For instance, let

jxi =

0
BBBB@
x1
x2
...
xn

1
CCCCA and jyi =

0
BBBB@
y1
y2
...
yn

1
CCCCA :

Then, since hxj is the transposed conjugate of jxi, i.e.,
hxj = (x1

�; x2
�; . . . ; xn

�);

the inner product of jxi and jyi is

hxjyi = (x1
�; x2

�; . . . ; xn
�)

0
BBBB@
y1
y2
...
yn

1
CCCCA =

nX
i=1

xi
�yi:

66

A.2 Tensor Products

Let a and b be vectors in Hilbert spaces Hm
1 and Hn

2 , respectively, where Hm
1 (resp.

Hn
2) is an m-dimensional space (resp. an n-dimensional space). Then, a vector a
 b

in a new mn-dimensional Hilbert space Hm
1
 Hn

2 is called a tensor product of Hm
1

and Hn
2 (e.g., see [63, 80]). In quantum physics, the tensor product is used when we

construct a composite system of some physical systems. In the following, let �; � 2 C,
a1; a2; a2 2 Hm

1 , b1;b2;b3 2 Hn
2 , and x;y 2 Hm

1
Hn
2 . Here, we only denote principal

properties.

1. A tensor product is linear.

(a) (�a1 + �a2)
 b1 = (�a1)
 b1 + (�a2)
 b1.

(b) a1
 (�b1 + �b2) = a1
 (�b1) + a1
 (�b2).

(c) �(a1
 b1) = (�a1)
 b1 = a1
 (�b1).

2. Let fe1; e2; . . . ; emg and ff1; f2; . . . ; fng be sets of basis vectors for Hm
1 and Hn

2 ,
respectively. Then, the basis for Hm

1
 Hn
2 is the set of vectors ei
 fj for i =

1; 2; . . . ;m and j = 1; 2; . . . ; n, and every vector x 2 Hm
1
Hn

2 can be written as

x =
mX
i=1

nX
j=1

xijei
 fj:

3. An inner product is de�ned as follows:

(a) (a1
 b1; a2
 b2) = (a1; a2)(b1;b2).

(b) (a1
 b1; (�a2
 b2 + �a3
 b3)) = �(a1; a2)(b1;b2) + �(a1; a3)(b1;b3).

4. A tensor product of operators can also be de�ned.

Let Â1 and Â2 be operators on Hm
1 and Hn

2 , respectively. Then, a tensor product
Â1
 Â2 is de�ned as follows:

(a) (Â1
 Â2)a1
 b1 = (Â1a1)
 (Â2b1).

(b) (Â1
 Â2)(�x+ �y) = �(Â1
 Â2)x+ �(Â1
 Â2)y.

For instance, let us consider a case where m = 3 and n = 2. Let8><
>:e1 =

0
B@

1
0
0

1
CA ; e2 =

0
B@

0
1
0

1
CA ; e3 =

0
B@

0
0
1

1
CA
9>=
>;

be a basis on H3
1 and

67

(
f1 =

1
0

!
; f2 =

0
1

!)

be a basis on H2
2, respectively. Then, fe1
 f1, e1
 f2, e2
 f1, e2
 f2, e3
 f1, e3
 f2g

is a basis on the six-dimensional Hilbert space H3
1
H2

2. When two vectors a 2 H3
1 and

b 2 H2
2 are

a =

0
B@
a1
a2
a3

1
CA and b =

b1
b2

!
;

respectively, the tensor product of these two vectors is as follows:

a
 b =

0
B@
a1
a2
a3

1
CA

b1
b2

!
=

0
BBBBBBBB@

a1b1
a1b2
a2b1
a2b2
a3b1
a3b2

1
CCCCCCCCA
:

Moreover, the tensor product of two matrices is as follows: when

A =

0
B@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1
CA and B =

b11 b12
b21 b22

!
;

then,

A
 B =

0
B@
a11B a12B a13B

a21B a22B a23B

a31B a32B a33B

1
CA =

0
BBBBBBBB@

a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12
a21b21 a21b22 a22b21 a22b22 a23b21 a23b22
a31b11 a31b12 a32b11 a32b12 a33b11 a33b12
a31b21 a31b22 a32b21 a32b22 a33b21 a33b22

1
CCCCCCCCA
:

A.3 Unitary Operators

First, we denote a linear operator. A linear operator has the following properties (e.g.,
see [47, 63]).

1. A linear operator Â on a Hilbert space H associates a vector, denoted by Âa, with
any vector a 2 H such that

Â(�a+ �b) = �Âa+ �Âb for any �; � 2 C and a;b 2 H:

2. The sum of a pair of operators, Â and B̂, is the operator Â+ B̂ de�ned by

68

(Â+ B̂)a = Âa+ B̂a for any a 2 H:

3. The product of Â and B̂ is the operator ÂB̂ de�ned by

(ÂB̂)a = Â(B̂a) for any a 2 H:

The product of an operator Â with a complex number � is the operator �Â de�ned
by

(�Â)a = �(Âa) for any a 2 H:

4. A non-zero vector a 2 H is an eigenvector of Â with eigenvalue a if

Âa = aa:

5. The set of matrix elements of an operator Â on H is the collection of all numbers
(a; Âb).

6. The adjoint of an Â is the operator Ây de�ned by the condition on its matrix
elements as follows:

(a; Âyb) = (Âa;b) for any a;b 2 H:

An operator Â is self-adjoint if

Ây = Â:

A unitary operator is a kind of linear operators. That is, a linear operator Û on H
is unitary if it satis�es the following properties:

1. It is invertible.

ÛyÛ = ÛyÛ = I;

where I is the unit operator.

2. It preserves all inner products.

(Ûa; Ûb) = (a;b) for any a;b 2 H:

Therefore, the norm of a vector is preserved since

k Ûa k=
�
Ûa; Ûa

�1=2
= (a; a)1=2 =k a k :

69

A.4 Quantum Physics

The following four rules deal with the general mathematical framework of quantum
physics [63].

Rule 1. The predictions of results of measurements made in an isolated system are prob-
abilistic in nature. In situations where the maximum amount of information is
available, this probabilistic information is mathematically represented by a vector
in a Hilbert space H that forms a state space.

Rule 2. The observables (i.e., the physical quantities) of the system are mathematically
represented by self-adjoint operators that act on the Hilbert space H.

Rule 3. (i) The only possible result of measuring an observable A is one of the eigenvalues of
the self-adjoint operator Â that represents it. The probability that a measurement
ofA will yield a particular eigenvalue ak corresponding the eigenvector jaki, Pr(A =
ak), is

Pr(A = ak) = jhakj ij2 = jckj2 ;

where j i =
1X
i=1

cijaii.

(ii) If an observable A and a quantum state are represented by the self-adjoint
operator Â and the normalized vector jai, respectively, then, the expected results
hAia of measuring A is

hAia = hajÂjai:
Rule 4. In an isolated system (i.e., in the absence of any external in
uence), the state

vector j ti changes in time t according to the time-dependent Schr�odinger wave

equation

i�h
dj ti
dt

= Ĥj ti; (A.1)

where Ĥ is called a Hamiltonian operator (and also a self-adjoint operator).

The fourth rule describes how a quantum state evolves in time. Since the Schr�odinger
wave equation is linear, �j t0i + �j't0i evolves into �j ti + �j'ti during time t � t0.
Further, since the equation is also a �rst-order di�erential equation in time, the state
at any given time t0 determines the state at any later time t uniquely. When j t0i and
j ti are the state in time t0 and t, respectively. then,

j ti = Û(t; t0)j t0i; (A.2)

where

Û(t; t0) = e�
i
�h
Ĥ(t�t0);

and this operator is a unitary operator called a time evolution operator.

70

Bibliography

[1] Y. Aharonov, J. Anandan, and L. Vaidman, \Meaning of the wave function", Phys.
Rev., A 47, pp. 4616-4626, 1993.

[2] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, \RSA and Rabin functions:
certain parts are as hard as the whole", SIAM J. Comput., 17, pp. 194-209, 1988.

[3] J. L. Balc�azar, J. D�laz, and J. Gabarr�o, Structural complexity I, 2nd ed., Springer-
Verlag, Berlin, 1995.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. W. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, \Elementary gates for quantum com-
putation", Phys. Rev., A 52, pp. 3457-3467, 1995.

[5] A. Barenco, D. Deutsch, A. Ekert, and Jozsa, \Conditional quantum dynamics and
logic gates", Phys. Rev. Lett., 74, pp. 4083-4086, 1995.

[6] A. Barenco, \A universal two-bit gate for quantum computation", Proc. R. Soc.
London, A 449, pp. 679-683, 1995.

[7] A. Barenco, A. Ekert, K.-A. Suominen, and P. T�orm�a, \Approximate quantum
Fourier transform and decoherence", Phys. Rev., A 54, pp. 139-146, 1996.

[8] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, \ E�cient networks
for quantum factoring", Phys. Rev., A 54, pp. 1034-1063, 1996.

[9] P. A. Benio�, \The computer as a physical system: a microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines", J.
Stat. Phys., 22, pp. 563-591, 1980.

[10] P. A. Benio�, \Quantum mechanical Hamiltonian models of discrete processes", J.
Math. Phys., 22, pp. 495-507, 1981.

[11] P. A. Benio�, \Quantum mechanical Hamiltonian models of discrete processes that
erase their own histories: application to Turing machines", Int. J. Theor. Phys.,
21, pp. 177-201, 1982.

[12] P. A. Benio�, \Quantum mechanical Hamiltonian models of Turing machines", J.
Stat. Phys., 29, pp. 515-546, 1982.

71

[13] P. A. Benio�, \Quantum mechanical models of Turing machines that dissipate no
energy", Phys. Rev. Lett., 48, pp. 1581-1585, 1982.

[14] P. A. Benio�, \Quantum mechanical Hamiltonian models of computers", in: New
Techniques and Ideas in Quantum Measurement Theory, D. M. Greenberger(ed.),
Annals New York Academy of Sciences, 480, pp. 475-486, 1986.

[15] C. H. Bennett, \Logical reversibility of computation", IBM J. Res. Dev., 17, pp.
525-532, 1973.

[16] C. H. Bennett, \The thermodynamics of computation{a review", Int. J. Theor.
Phys., 21, pp. 905-940, 1982.

[17] C. H. Bennett, \Notes on the history of reversible computation", IBM J. Res. Dev.,
32, pp. 16-23, 1988.

[18] C. H. Bennett, \Time/space trade-o�s for reversible computation", SIAM J. Com-
put., 18, pp. 766-776, 1989.

[19] C. H. Bennett, \How to de�ne complexity in physics, and why", in: Complex-
ity, Entropy and The Physics of Information, W. H. Zurek(ed.), Addison-Wesley,
Redwood City, pp. 137-148, 1990.

[20] C. H. Bennett, P. G�acs, M. Li, P. M. B. Vit�anyi, and W. H. Zurek, \Thermodynam-
ics of computation and information distance", in: Proc. of the 25th ACM Symp. on
Theory of Computing, pp. 21-30, 1993.

[21] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, \Mixed state
entanglement and quantum error correction", submitted to Phys. Rev. A (available
at lanl e-print quant-ph/9604024).

[22] C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani, \Strength and weak-
nesses of quantum computing", SIAM J. Comput., to appear (available at lanl
e-print quant-ph/9701001).

[23] E. Bernstein and U. V. Vazirani, \Quantum complexity theory", in: Proc. of the

25th ACM Symp. on Theory of Computing, pp. 11-20, 1993.

[24] A. Berthaume and G. Brassard, \Oracle quantum computing", in: Proc. of the

Second Workshop on Physics and Computation, pp. 195-199, 1992.

[25] A. Berthaume and G. Brassard, \The quantum challenge to structural complexity
theory", in: Proc. of the seventh Annual IEEE Conf. on Structure in Complexity,
pp. 132-137, 1992.

[26] A. Berthaume, D. Deutsch, and R. Jozsa, \The stabilisation of quantum computa-
tions", in: Proc. of the Third Workshop on Physics and Computation, pp. 60-62,
1994.

72

[27] M. Blum and S. Micali, \How to generate cryptographically strong sequences of
pseudo-random bits", SIAM J. Comput., 13, pp. 850-864, 1984.

[28] L. Blum, M. Blum, and M. Shub, \A simple unpredictable pseudo-random number
generator", SIAM J. Comput., 15, pp. 364-383, 1986.

[29] D. Boneh and R. J. Lipton, \Quantum cryptanalysis of hidden linear functions",
Lecture Notes in Computer Science, 963, Springer-Verlag, Berlin, pp. 424-437, 1995.

[30] M. Boyer, G. Brassard, P. H�yer, and A. Tapp, \Tight bounds on quantum search-
ing", at the Fourth Workshop on Physics and Computation, Boston, USA, Nov.,
1996, to appear (available at lanl e-print quant-ph/9605034).

[31] A. R. Calderbank and P. W. Shor, \ Good quantum error-correcting codes exist",
Phys. Rev., A 54, pp. 1098-1105, 1996.

[32] I. L. Chuang, R. La
amme, P. W. Shor, and W. H. Zurek, \Quantum computers,
factoring, and decoherence", Science, 270, pp. 1633-1635, 1995.

[33] I. L. Chuang and Y. Yamamoto, \Simple quantum computer", Phys. Rev., A 52,
pp. 3489-3496, 1995.

[34] I. L. Chuang, R. La
amme, J.-P. Paz, and Y. Yamamoto, \E�ects of loss and
decoherence on a simple quantum computer", manuscript, 1996 (available at lanl
e-print quant-ph/9602018).

[35] I. L. Chuang and Y. Yamamoto, \Quantum bit regeneration", Phys. Rev. Lett., 76,
pp. 4281-4284, 1996.

[36] J. I. Cirac and P. Zoller, \Quantum computations with cold trapped ions", Phys.
Rev. Lett., 74, pp. 4091-4094, 1995.

[37] K. L. Clarkson and P. W. Shor, \Applications of random sampling in computational
geometry, II", Discrete and Computational Geometry, 4, pp. 387-421, 1989.

[38] L. Debnath and P. Mikusi�nski, Introduction to Hilbert spaces with applications,
Academic Press, San Diego, 1990.

[39] D. Deutsch, \Quantum theory, the Church-Turing principle and the universal quan-
tum computer", Proc. R. Soc. London, A 400, pp. 97-117, 1985.

[40] D. Deutsch, \Quantum computational networks", Proc. R. Soc. London, A 425,
pp. 73-90, 1989.

[41] D. Deutsch and R. Jozsa, \Rapid solution of problems by quantum computation",
Proc. R. Soc. London, A 439, pp. 553-558, 1992.

[42] D. Deutsch, A. Barenco, and A. Ekert, \Universality in quantum computation",
Proc. R. Soc. London, A 449, pp. 669-677, 1995.

73

[43] P. A. M. Dirac, The principles of quantum mechanics, 4th ed., Oxford Univ. Press,
Glasgow, 1958.

[44] D. P. DiVincenzo and J. A. Smolin, \Results on two-bit gate design for quantum
computers", in: Proc. of the Third Workshop on Physics and Computation, pp.
14-19, 1994.

[45] D. P. DiVincenzo, \Tow-bit gates are universal for quantum computation", Phys.
Rev., A 51, PP. 1015-1022, 1995.

[46] D. P. DiVincenzo and P. W. Shor, \Fault tolerant error correction with e�cient
quantum codes", Phys. Rev. Lett., 77, PP. 3260-3263, 1996.

[47] N. Dunford and J. T. Schwartz, Linear operators, I, II, and III, John Wiley & Sons,
New York, 1957, 1963, and 1971.

[48] C. D�urr and M. Santha, \A decision procedure for well-formed linear quantum
cellular automata", in: Proc. of the 37th Ann. Symp. on Theoretical Aspects of

Computer Science, pp. 281-292, 1996.

[49] C. D�urr and M. Santha, \A decision procedure for unitary linear quantum cellular
automata", in: Proc. of the 37th Ann. Symp. on Foundations of Computer Science,
1996, to appear.

[50] C. D�urr and P. H�yer, \A quantum algorithm for �nding the minimum",
manuscript, 1996(lanl e-print quant-ph/9607014).

[51] H. Edelsbrunner, Algorithms in combinatorial geometry, Springer-Verlag, Berlin,
1987.

[52] A. Ekert and C. Macchiavello, \Quantum error correction for communication",
Phys. Rev. Lett., 77, pp. 2585-2588, 1996.

[53] A. Ekert and R. Jozsa, \Quantum computation and Shor's factoring algorithm",
Rev. Mod. Phys., 68, pp. 733-753 , 1996.

[54] R. P. Feynman, \ Simulating physics with computers", Int. J. Theor. Phys., 21,
pp. 467-488, 1982.

[55] R. P. Feynman, \ Quantum mechanical computers", Foundation of Physics, 16, pp.
507-531, 1986.

[56] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory
of NP-completeness, Freeman, New York, 1979.

[57] A. Garg, \Decoherence in ion trap quantum computers", Phys. Rev. Lett. 77, pp.
964-967, 1996.

74

[58] J. Gill, \Computational complexity of probabilistic Turing machines", SIAM J.

Comput., 6, pp. 675-695, 1977.

[59] D. Gottesman, \Class of quantum error-correcting codes saturating the quantum
Hamming bound", Phys. Rev., A 54, pp. 1862-1868, 1996.

[60] L. K. Grover, \A fast quantum mechanical algorithm for database search", in: Proc.
of the 28th ACM Symp. on Theory of Computing, pp. 212-219, 1996.

[61] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and

computation, Addison-Wesley, Reading, 1979.

[62] R. J. Hughes, D. F. V. James, E. H. Knill, R. La
amme, and A. G. Petschek,
\Decoherence bounds on quantum computation with trapped ions", Phys. Rev.
Lett. 77, pp. 3240-3243, 1996.

[63] C. J. Isham, Lectures on quantum theory, Imperial College Press, London, 1995.

[64] T. Jian, \An O(20:304n) algorithm for solving maximum independent set problem",
IEEE Trans. on Computers, C-35, pp. 847-851, 1986.

[65] D. S. Johnson, \A catalog of complexity classes", in: Handbook of Theoretical Com-
puter Science Vol. A: Algorithms and Complexity, J. van Leeuwen(ed.), MIT Press,
Cambridge, pp. 67-161, 1990.

[66] R. Jozsa, \Characterizing classes of functions computable by quantum parallelism",
Proc. R. Soc. London, A 435, pp. 563-574, 1991.

[67] R. Jozsa and B. Schumacher, \A New proof of the quantum noiseless coding theo-
rem", J. Mod. Opt., 41, pp. 2343-2349, 1994.

[68] A. Y. Kitaev, \Quantum measurement and the Abelian stabilizer", manuscript,
1995 (available at lanl e-print quant-ph/9511026).

[69] D. E. Knuth, The art of computer programming. Vol. III: Sorting and searching,
Addison-Wesley, Reading, 1973.

[70] R. La
amme, C. Miquel, J. P. Paz, and W. H. Zurek, \Perfect quantum error
correction code", Phys. Rev. Lett., 77, pp. 198-201, 1996.

[71] R. Landauer, \ Computation and physics: Wheeler's meaning circuits?", Founda-
tion of Physics, 16, pp. 551-564, 1986.

[72] R. Landauer, \ Dissipation and noise immunity in computation and communica-
tion", Nature, 335, pp. 779-784, 1988.

[73] R. Landauer, \ Reversible computation: implications for measurement, Communi-
cation, and Physical Law", in: Proc. of the 3rd Int. Symp. Foundation of Quantum
Mechanics, pp. 407-411, 1989.

75

[74] R. Landauer, \ Information is physics", Physics Today, pp. 23-29, May 1991.

[75] R. Landauer, \ Is quantum mechanics useful?", Phil. Trans. R. Soc. London, A
353, pp. 367-376, 1995.

[76] R. Y. Levine and A. T. Sherman, \A note on Bennett's time/space trade-o�s for
reversible computation", SIAM J. Comput., 19, pp. 673-677, 1990.

[77] S. Lloyd, \A potentially realizable quantum computer", Science, 261, pp. 1569-
1571, 1993.

[78] S. Lloyd, \Envisioning a quantum supercomputer", Science, 263, p. 695, 1994.

[79] S. Lloyd, \Almost any quantum logic gate is universal", Phys. Rev. Lett., 75, pp.
346-349, 1995.

[80] A. Messiah, M�ecanique Quantique, Dunod, Paris, 1959.

[81] T. Mihara and T. Nishino, \Quantum computation and NP-complete problems",
Lecture Notes in Computer Science, 834, Springer-Verlag, Berlin, pp. 387-395, 1994.

[82] T. Mihara and T. Nishino, \On a method of solving SAT e�ciently using the
quantum Turing machine", in: Proc. of the Third Workshop on Physics and Com-

putation, pp. 177-185, 1994.

[83] T. Mihara, \Are measurements e�ective on quantum computation?", IEICE Trans.
Inf. & Sys., E79-D, pp. 382-384, 1996.

[84] T. Mihara, \On the complexity of �nding cycles in periodic functions using the
quantum Turing machine", IEICE Trans. Inf. & Sys., E79-D, pp. 579-583, 1996.

[85] T. Mihara, \An extended quantum search algorithm", submitted to IEICE Trans.

Inf. & Sys..

[86] C. Miquel, J. P. Paz, and R. Perazzo, \Factoring in a dissipative quantum com-
puter", manuscript, 1996 (available at lanl e-print quant-ph/9601021).

[87] B. Monien and E. Speckenmeyer, \Solving satis�ability in less than 2n steps", Dis-
crete App. Math., 10, pp. 287-295, 1985.

[88] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, \Demon-
stration of a fundamental quantum logic gate", Phys. Rev. Lett., 75, pp. 4714-4717,
1995.

[89] K. Morita and M. Harao, \Computation universality of one-dimensional reversible
(injective) cellular automata", Trans. of IEICE, E72, pp. 758-762, 1989.

[90] G. M. Palma, K.-A. Suominen, and A. Ekert, \Quantum computers and dissipa-
tion", Proc. R. Soc. London, A 452, pp. 567-584, 1996.

76

[91] C. H. Papadimitriou, Computational complexity, Addison-Wesley, Reading, 1994.

[92] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, \Decoherence, continuous
observation, and quantum computing: A cavity QED model", Phys. Rev. Lett., 75,
pp. 3788-3791, 1995.

[93] A. Peres, \Reversible logic and quantum computers", Phys. Rev., A 32, pp. 3266-
3276, 1985.

[94] A. Peres, Quantum theory: concept and methods, Kluwer Academic, Dordrecht,
1993.

[95] M. B. Plenio and P. L. Knight, \Realistic lower bounds for the factorization time
of large numbers on a quantum computer", Phys. Rev., A 53, pp. 2986-2990, 1996.

[96] M. B. Plenio, V. Vedral, and P. L. Knight, \Optimal realistic quantum error cor-
rection code", manuscript, 1996 (available at lanl e-print quant-ph/9603022).

[97] M. B. Plenio and P. L. Knight, \Decoherence limits to quantum computation using
trapped ions", manuscript, 1996 (available at lanl e-print quant-ph/9610015).

[98] F. P. Preparata and M. I. Shamos, Computational geometry, Springer-Verlag,
Berlin, 1985.

[99] R. L. Rivest, \Cryptography", in Handbook of Theoretical Computer Science Vol.
A: Algorithms and Complexity, J. van Leeuwen(ed.), MIT Press, Cambridge, pp.
717-755, 1990.

[100] J. J. Sakurai, Modern quantum mechanics, Benjamin/Cummings, Reading, 1985.

[101] L. I. Schi�, Quantum mechanics, 3rd ed., McGraw-Hill, New York, 1968.

[102] F. Schipp, W. R. Wade, and P. Simon, Walsh series: an introduction to dyadic

harmonic analysis, Adam Hilger, Bristol, 1990.

[103] R. Schroeppel and A. Shamir, \A T=O(2n=2), S=O(2n=4) algorithm for certain
NP-complete problems", SIAM J. Comput., 10, pp. 456-464, 1981.

[104] B. Schumacher, \Quantum coding", Phys. Rev., A 51, pp. 2738-2747, 1995.

[105] B. Schumacher and M. A. Nielsen, \Quantum data processing and error correc-
tion", manuscript, 1996 (available at lanl e-print quant-ph/9604022).

[106] R. Sedgewick, T. G. Szymanski, and A. C. Yao, \The complexity of �nding cycles
in periodic functions", SIAM J. Comput., 11, pp. 376-390, 1982.

[107] R. Seidel, \Backwards analysis of randomized geometric algorithms", in: New

trends in discrete and computational geometry, J. Pach(ed.), Springer-Verlag,
Berlin, pp. 37-67, 1993.

77

[108] P. W. Shor, \Algorithms for quantum computation: discrete logarithms and fac-
toring", in: Proc. of the 35th Ann. Symp. on Foundations of Computer Science, pp.
124-134, 1994.

[109] P. W. Shor, \Scheme for reducing decoherence in quantum computer memory",
Phys. Rev., A 52, pp. R2493-R2496, 1995.

[110] P. W. Shor, \Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer", SIAM J. Comput., to appear (available at lanl
e-print quant-ph/9508027).

[111] P. W. Shor and J. A. Smolin, \Quantum error-correcting codes need not completely
reveal the error syndrome", submitted to Phys. Rev. Lett. (available at lanl e-print
quant-ph/9604006).

[112] P. W. Shor, \Fault-tolerant quantum computation", in: Proc. of the 37th Ann.

Symp. on Foundations of Computer Science, Nov., 1996, to appear (available at
lanl e-print quant-ph/9605011).

[113] D. R. Simon, \On the power of quantum computation", in: Proc. of the 35th Ann.
Symp. on Foundations of Computer Science, pp. 116-123, 1994.

[114] T. Sleator and H. Weinfurter, \Realizable universal quantum logic gates", Phys.
Rev. Lett., 74, pp. 4087-4090, 1995.

[115] J. A. Smolin and D. P. DiVincenzo, \Five two-bit quantum gates are su�cient to
implement the quantum Fredkin gate", Phys. Rev., A 53, pp. 2855-2856, 1996.

[116] A. Steane, \Multiple particle interference and quantum error correction", Proc. R.
Soc. Lond., to appear (available at lanl e-print quant-ph/9601029).

[117] A. Steane, \Simple quantum error correcting codes", manuscript, 1996 (available
at lanl e-print quant-ph/9605021).

[118] R. E. Tarjan and A. E. Trojanowski, \Finding a maximum independent set", SIAM
J. Comput., 6, pp. 537-546, 1977.

[119] T. To�oli, \Bicontinuous extensions of invertible combinatorial functions", Math.

Syst. Theor., 14, pp. 13-23, 1981.

[120] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimber, \Mea-
surement of conditional phase shifts for quantum logic", Phys. Rev. Lett., 75, pp.
4710-4713, 1995.

[121] W. G. Unruh, \Maintaining coherence in quantum computers", Phys. Rev., A 51,
pp. 992-997, 1995.

78

[122] L. Vaidman, L. Goldenberg, and S. Wiesner, \Error prevention scheme with four
particles", manuscript, 1996 (available at lanl e-print quant-ph/9603031).

[123] V. Vedral, A. Barenco, and A. Ekert, \Quantum networks for elementary arith-
metic operations", Phys. Rev., A 54, pp. 147-153, 1996.

[124] J. Vysko�c, \An O(nlg k � 2n=2) time and O(k � 2n=4) space algorithm for certain
NP-complete problems", Theor. Comput. Sci., 51, pp. 221-274, 1987.

[125] J. Watrous, \On one-dimensional quantum cellular automata", in: Proc. of the

36th Ann. Symp. on Foundations of Computer Science, pp. 528-537, 1995.

[126] A. C. Yao, \On constructing minimum spanning trees in k-dimensional spaces and
related problems", SIAM J. Comput., 11, pp. 721-736, 1982.

[127] A. C. Yao, \Quantum circuit complexity", in: Proc. of the 34th Ann. Symp. on

Foundations of Computer Science, pp. 352-361, 1993.

[128] W. H. Zurek, \Reversibility and stability of information processing systems", Phys.
Rev. Lett., 53, pp. 391-394, 1984.

[129] W. H. Zurek, \Thermodynamic cost of computation, algorithmic complexity and
the information metric", Nature, 341, pp. 119-124, 1989.

[130] W. H. Zurek, \Algorithmic information content, Church-Turing thesis, physical
entropy, and Maxwell's demon", in: Complexity, Entropy and The Physics of In-

formation, W. H. Zurek(ed.), Addison-Wesley, Redwood City, pp. 73-89, 1990.

79

Publications

[1] 三原孝志,西野哲朗, \量子コンピュータについて (A brief survey)", 93年夏のLAシ
ンポジウム,宮城県, 1993年 7月 (情報基礎理論ワークショップ論文集, pp. 106-111,
1993).

[2] 三原孝志, 西野哲朗, \量子コンピュータを用いた NP 完全問題の多項式時間解法",
JAIST Research Report IS-RR-93-0012F, JAIST, 1993.

[3] 三原孝志, 西野哲朗, \量子 Turing機械による NP 完全問題の多項式時間解法につ
いて", 94年冬の LAシンポジウム, 京都大学数理解析研究所, 1994年 2月 (京都大
学数理解析研究所講究録 871 計算量理論, pp. 30-36, 1994).

[4] 三原孝志, 西野哲朗, \万能量子 Turing機械を用いた NP 完全問題の多項式時間解
法について", 電子情報通信学会コンピュテーション研究会資料 COMP-94-5, pp.
41-50, 1994.

[5] 三原孝志, 西野哲朗, \量子 Turing機械による SAT の効率的解法について", 94年
夏の LAシンポジウム, 長野県, 1994年 7月 (情報基礎理論ワークショップ論文集,
pp. 57-60, 1994).

[6] T. Mihara and T. Nishino, \Quantum computation and NP-complete problems",
at the Fifth Ann. Int. Symp. on Algorithms and Computation, Aug. 1994 (Lecture
Notes in Computer Science, 834, Springer-Verlag, Berlin, pp. 387-395, 1994).

[7] T. Mihara and T. Nishino, \Interpretations of the Quantum Theory and NP-
Complete Problems", JAIST Research Report IS-RR-94-0025F, JAIST, 1994.

[8] T. Mihara and T. Nishino, \On a method of solving SAT e�ciently using the
quantum Turing machine", in: Proc. of the Third Workshop on Physics and
Computation, pp. 177-185, Nov. 1994.

[9] T. Mihara, \On the Computational Power of Quantum Turing Machine", 96年冬
の LAシンポジウム, 京都大学数理解析研究所, 1996年 1月 (京都大学数理解析研
究所講究録 950 計算モデルと計算の複雑さに関する研究, pp. 33-38, 1996).

[10] T. Mihara, \Are measurements e�ective on quantum computation?", IEICE Trans.
Inf. & Sys., E79-D, pp. 382-384, 1996.

80

[11] T. Mihara, \On the complexity of �nding cycles in periodic functions using the
quantum Turing machine", IEICE Trans. Inf. & Sys., E79-D, pp. 579-583, 1996.

81

