#### **JAIST Repository**

https://dspace.jaist.ac.jp/

| Title        | A Parametric Model Checking Approach for Real-<br>Time Systems Design                                                          |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Author(s)    | Sathawornwichit, Chaiwat                                                                                                       |  |  |  |
| Citation     |                                                                                                                                |  |  |  |
| Issue Date   | 2005-09-21                                                                                                                     |  |  |  |
| Туре         | Presentation                                                                                                                   |  |  |  |
| Text version | publisher                                                                                                                      |  |  |  |
| URL          | http://hdl.handle.net/10119/8325                                                                                               |  |  |  |
| Rights       |                                                                                                                                |  |  |  |
| Description  | 1st VERITE : JAIST/TRUST-AIST/CVS joint workshop<br>on VERIfication TEchnologyでの発表資料,開催<br>:2005年9月21日~22日,開催場所:金沢市文化ホール<br>3F |  |  |  |



Japan Advanced Institute of Science and Technology



#### A Parametric Model Checking Approach for Real-Time Systems Design

#### **Chaiwat Sathawornwichit**

#### Katayama Lab. School of Information Science



### Outline

- Background
- Parametric Model Checking
- Problems and our Approach
- Parametric Timed System Model
   Parametric Timed Structure (PTS)
- Parametric Timed Temporal Logic
  - Parametric CTL (PARCTL)
- Deriving Parametric Condition
- Determining Optimal Factor by Constraint Solving
- Discussion & Conclusion

#### Background

- □ The majority of computer system today are real-time systems
  - Embedded in devices.
  - Running infrastructure control applications.
  - Our society relies so much on them
- □ Timing characteristic is a crucial aspect of safety
  - *Correct* action must be taken at the *right* time.
- □ Formal verification techniques have been developed for assuring the correctness of real-time systems
  - Model checking for real-time systems.

### Background (2)

- □ Aspects of time make model checking approach for real-time systems seriously complicated.
  - *Time* is introduced to the **model**, and the **temporal logic**.
  - Correct action sequences + Correct timing.
- □ Timed model
  - Timed transition graph (a.k.a. timed Kripke structure)
    - **Time duration in the transitions**
    - □ Simple (can be model checked in linear to model size)
  - Timed automata
    - $\Box \quad Automata + clocks$
    - **Transition conditions on clock values**
    - □ Clocks can be set / reset
    - □ Very complicated (complexity depends on #clocks)

chaiwat@jaist.ac.jp -- September 21, 2005

#### Parametric Model Checking and Problems

- Parametric Model Checking
  - Abstraction of time values by variables.
  - The use of variables in
    - □ Temporal logic formulas, and
    - □ Timed models
- The Problems
  - Determine whether *there exists a valuations* of parameters under which the model *M* satisfies the property *p*.
  - Compute the solution set of parameters under which the model M satisfies the property p.

#### The Difficulties

- □ For time automata
  - Very high *computation complexity*, inapplicable to large problem.
  - *Undecidable* when #clocks 3.
- □ For timed transition graph
  - Only the use of parameters in temporal logic has been introduced so far.
  - Parametric model for timed transition graph has not been studied.

#### Our Approaches

- Instead of computing the solution set of parameters, we derive the parametric conditions over parameters (as a system of linear inequalities).
- □ We develop this approach for timed transition graph.
- We further propose the application of mathematical tools with this approach for determining the design for solution for an optimal criteria.

#### Contributions

(1) Introduce parameters to timed transition graph model.

- (2) Define a parametric timed temporal logic for reasoning real-time properties over (1).
- (3) Provide algorithms for deriving parameter conditions satisfying real-time property and non real-time restriction, e.g. cost, development time.
- (4) Demonstrate the application of mathematical programming methods to determine the parameter values which optimize a particular objective.

#### Parametric Approach Framework



2005

- 9 -

## Parametric Time Model

#### Parametric Timed Structure (PTS)

- Non-deterministic finite state machine
  - With time durations labelled on transitions.
  - The durations can be linear combinations of parameters
- Extension of
  - Simply-timed model [Markey et al. 2004],
  - Timed Kripke structure [Emerson & Trefler 1999],
  - Timed transition graph [Campos & Clarke 1994].

#### Syntax of PTS

A parametric timed structure  $\mathcal{M} = (S, S_0, \vec{x}, T, L)$  consists of

$$L(s) = \{ f \mid f \in AP \land s \models f \}$$

#### Syntax of PTS

A PTS  $\mathcal{M}$  with time variable vector  $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}_{0+}^n$ 

- The size n of  $\vec{x}$  is the degree of  $\mathcal{M}$
- A *linear expression* over  $\vec{x}$  is of the form,

$$\sum_{i=1}^{n} c_i x_i + c$$

• When all  $c_i = 0$ , the expression become a constant c.

- 13 -

#### **PTS** Examples



#### A mutual exclusion protocol example

chaiwat@jaist.ac.jp -- September 21, 2005

A Parametric Model Checking Approach for Real-Time System Design

## Basic Gastructs

#### Constraint, Condition, and Predicate

- A *linear constraint* over  $\vec{x}$  is a combination of the form  $(\alpha \sim \beta)$ 
  - $-\alpha, \beta$  are linear expression

$$- \sim \in \{<, \leq, =, \geq, >\}.$$

 $- \text{Ex.}, x_1 + x_2 \leq 5 \text{ is a constraint over } (x_1, x_2)$ 

• A *linear condition* over  $\vec{x}$  is a finite *conjunction* of linear constraints over  $\vec{x}$ .

 $- \text{ ex. } (x_1 + x_2 \le 5 \land x_1 \le 5 \land x_3 \ge 2x_1)$ 

• A *linear predicate* over  $\vec{x}$  is a finite *disjunction* of linear conditions over  $\vec{x}$ .

$$- \text{ ex. } (x_1 + x_2 \le 5) \lor (x_1 \le 5 \land x_3 \ge 2x_1)$$

chaiwat@jaist.ac.jp -- September 21, 2005

#### Assignment and Evaluation

For a linear expression e with parameters  $\vec{x} = (x_1, x_2)$ 

- $e_{[\vec{x} \leftarrow \vec{v}]}$  is an evaluation of e by assignment  $\vec{v}$ - ex 1.  $e = 2x_1 + x_2$ ;  $e_{[\vec{x} \leftarrow (1,2)]} = 2 \cdot 1 + 2 = 4$ - ex 2.  $e = 2x_1 + x_2$ ;  $e_{[\vec{x} \leftarrow (1,x_2)]} = 2 + y$
- $e_{[\vec{v}]}$  abbreviates  $e_{[\vec{x} \leftarrow \vec{v}]}$
- For a linear expression, evaluation results in another linear expression.

#### Assignment and Evaluation

For a linear condition or linear predicate q with  $\vec{x} = (x_1, x_2)$ 

•  $q_{[\vec{x} \leftarrow \vec{v}]}$  is an evaluation of q by assignment  $\vec{v}$ - ex 1.  $q = (x_1 + x_2 \ge 2x_2 + 1);$   $q_{[(x_1,2)]} = (x_1 + 2 \ge 2 \cdot 2 + 1)$  $x_1 \ge 3$ 

$$- \text{ ex } 2. \qquad q_{[(2,1)]} = (2 + 1 \ge 2 \cdot 1 + 1) \\ 3 \ge 3$$

- ex 3.  

$$q' = (x_2 \ge x_1 + 1);$$

$$q_{[(x_1,2)]} = (2 \ge x_1 + 1)$$

$$1 \ge x$$

 $- \text{ ex } 4. \ q'' = (q \land q'); \ q''_{[(x_1,2)]} = (x_1 \ge 3 \land 1 \ge x) = \mathsf{False}$ 

chaiwat@jaist.ac.jp -- September 21, 2005

A Parametric Model Checking Approach for Real-Time System Design

#### Assignment and Evaluation

- For linear predicate, evaluations results in another predicate which equivalent to a region in  $\mathbb{R}^n_{0^+}$ )
- Evaluations in the previous examples result in:
  - 1. region  $(x \ge 3 \land y = 2)$
  - 2. region (a point at  $(x = 2 \land y = 1)$ )
  - 3. region  $(x \le 1 \land y = 2)$
  - 4. empty region (intersection of region in 1. and 3. =  $\emptyset$ )

#### Linear Predicate and Assignment

Let  ${\tt C}$  be a linear condition which is a conjunction of linear constraints  ${\tt c} \in Q$ 

- $\llbracket \mathbb{C} \rrbracket$  denotes a set of assignment (which is region in  $\mathbb{R}^n_{0^+}$ )
- Such that, any assignment v in  $[\![C]\!]$  satisfies the predicate  $C(v \models C)$ .
- That is for an assignment  $\vec{v}$ :

$$\vec{v} \in \llbracket \mathbf{C} \rrbracket \ \text{ iff } q_{[\vec{x} \leftarrow \vec{v}]} \neq \emptyset$$

• The assignment set  $[\![C]\!]$  is determined by  $[\![C]\!] = \bigcap_{c \in Q} [\![c]\!]$ 

# Parametric

# Timer Logic

#### Syntax of Parametric CTL(PARCTL)

PARCTL formulas inductively defined by the grammar

$$\begin{array}{rll} f & ::= & p \mid \neg f \mid f \wedge f \mid f \vee f \\ & \mid f \; \mathsf{EU}^{\sim \alpha} f \mid f \; \mathsf{AU}^{\sim \alpha} f \end{array}$$

- $\alpha \in \overline{X}$ : a linear expression  $(\sum_i c_i x_i + c)$
- $\bullet \ \sim \in \{<,\leq,=,\geq,>\}$
- Now, we consider only < and  $\leq$  cases.
- $p \in AP$ : an atomic proposition

chaiwat@jaist.ac.jp -- September 21, 2005

### Semantics of PARCTL

 $\begin{array}{c|c} -s \models_{\vec{v}} p \\ -s \models_{\vec{v}} \neg f \\ -s \models_{\vec{v}} f_1 \wedge f_2 \\ -s \models_{\vec{v}} f_1 \lor f_2 \\ -s \models_{\vec{v}} f_1 \lor f_2 \\ -s \models_{\vec{v}} f_1 \mathsf{EU}^{\sim \alpha} f_2 \end{array}$ 

iff 
$$p \in L(s)$$
  
iff  $s \not\models_{\vec{v}} f$   
iff  $s \not\models_{\vec{v}} f_1$  and  $s \not\models_{\vec{v}} f_2$   
iff  $s \not\models_{\vec{v}} f_1$  or  $s \not\models_{\vec{v}} f_2$   
iff there exists a path  $\pi \in \Pi(s)$ ,  
 $i, j \in \mathbb{N}$  such that

 $\exists i. \left\lfloor \left( s_{(i)} \models_{\vec{v}} f_2 \right) \land \left( \lambda(\pi, i)[\vec{v}] \sim \alpha[\vec{v}] \right) \land \forall j < i. \left[ \left( s_{(j)} \models_{\vec{v}} f_1 \right) \land \left( s_{(j)} \not\models_{\vec{v}} f_2 \right) \right] \right\rfloor$ 

 $-s \models_{\vec{v}} f_1 \operatorname{AU}^{\sim \alpha} f_2 \quad \text{iff for all paths } \pi \in \Pi(s), \\ i, j \in \mathbb{N} \text{, such that}$ 

 $\exists i. \left[ \left( s_{(i)} \models_{\vec{v}} f_2 \right) \land \left( \lambda(\pi, i) [\vec{v}] \sim \alpha_{[\vec{v}]} \right) \land \forall j < i. \left[ \left( s(j) \models_{\vec{v}} f_1 \right) \land \left( s_{(j)} \not\models_{\vec{v}} f_2 \right) \right] \right]$ 

- 23 -

## Semantics of PARCTL (2)

- For a path  $\pi = s_0 \xrightarrow{x_0} s_1 \xrightarrow{x_1} s_2 \cdots \xrightarrow{x_{i-1}} s_i \cdots$  in  $\mathcal{M}$
- $\lambda(\pi, i)$  denotes duration function:

$$\lambda(\pi, i) \stackrel{\text{def}}{=} \sum_{j=0}^{i-1} e_j$$

chaiwat@jaist.ac.jp -- September 21, 2005

## Derivation of Parametric Condition

#### Parametric Condition Derivation

- Parametric condition  $\mathcal{P}$  is a linear condition over parameters  $\vec{x}$  of a PTS  $\mathcal{M}$  to satisfy a PARCTL property.
- $\mathcal{P}$  defines a set of assignments

$$\llbracket \mathcal{P}(s,f) \rrbracket \stackrel{\text{def}}{=} \{ \vec{v} \mid s \models_{\vec{v}} f \}$$

such that, any assignment  $\vec{v}$  in  $\llbracket \mathcal{P}(s, f) \rrbracket$ 

$$\vec{v} \models \mathcal{P}(s, f) \text{ iff } \mathcal{M}, s \models_{\vec{v}} f$$

chaiwat@jaist.ac.jp -- September 21, 2005

- 26 -

#### Parametric Predicate

2005

Parametric predicate  $\mathcal{P}(s, f)$  is compute inductive on the subformula of f.

 $\mathcal{P}(s,p) := \mathcal{M}, s \models p$  $\mathcal{P}(s, \neg f) := \neg \mathcal{P}(s, f)$  $\mathcal{P}(s, f_1 \wedge f_2) := \mathcal{P}(s, f_1) \wedge \mathcal{P}(s, f_2)$  $\mathcal{P}(s, f_1 \lor f_2) := \mathcal{P}(s, f_1) \lor \mathcal{P}(s, f_2)$  $\mathcal{P}(s, f_1 \mathsf{AU}^{\sim \alpha} f_2) := \{\mathcal{P}(s, f_2) \land (0 \sim \alpha)\} \lor \{\mathcal{P}(s, f_1)\}$  $\wedge \bigwedge_{(t,s')\in AC(s)} \mathcal{P}(s', f_1 \ \mathsf{AU}^{\sim \alpha - t} f_2) \}$  $\mathcal{P}(s, f_1 \mathsf{EU}^{\sim \alpha} f_2) := \{\mathcal{P}(s, f_2) \land (0 \sim \alpha)\} \lor \{\mathcal{P}(s, f_1)\}$  $\wedge \bigvee_{(t,s')\in AC(s)} \mathcal{P}(s', f_1 \; \mathsf{EU}^{\sim \alpha - t} f_2) \}$ - 27 chaiwat@jaist.ac.jp -- September 21, A Parametric Model Checking Approach for Real-Time

System Design

#### Example: Railroad Crossing Gate

#### Gate control system:

- 1 controller, and
- 2 gates.
- Minimize the cost,

| controller | $t_{offset}$ | $t_{extra}$ | cost  |
|------------|--------------|-------------|-------|
| $c_1$      | 4            | 6           | 2,000 |
| $c_2$      | 8            | 2           | 3,000 |

 $total \ cost = controller \ cost + 2 \times gate \ cost$ 

| gate  | $t_{lower}$ | $t_{delay}$ | $t_{raise}$ | cost |
|-------|-------------|-------------|-------------|------|
| $g_1$ | 12          | 8           | 16          | 400  |
| $g_2$ | 6           | 5           | 12          | 600  |
| $g_3$ | 4           | 3           | 10          | 800  |



#### Example: Railroad Crossing Gate



"The gate must be open again in x seconds after it is lowered."

Compute the parametric condition.

$$\mathcal{P}(s_0, \mathsf{AG}\ (lower \Rightarrow \mathsf{AF}^{\leq x} open))$$

The PTS for railroad crossing gate controller system.

chaiwat@jaist.ac.jp -- September 21, 2005 A Parametric Model Checking Approach for Real-Time System Design - 29 -

#### Example: Bridge Crossing Problem

Applying the algorithm, we obtain the parametric condition:

 $t_{lower} + t_{extra} + t_{raise} + 2 t_{delay} \le x - 25$ 

If the requirements for a crossing are settled that the waiting time x should be less than one minute. The condition becomes:

$$t_{lower} + t_{extra} + t_{raise} + 2 t_{delay} \le 35$$

Using the condition with information from the previous tables as input to a linear programming solver (LP\_solve).

| The minimum cost is choosing $c_1$ and $g_2$ |
|----------------------------------------------|
| $min \ cost = 2000 + (2 \times 600) = 3200$  |

#### Disscusion

- The same parametric condition for the gate controller system is applicable to controller systems at different locations by just adapt some parameters or cost factors.
- We implemented the algorithm by graph-based representation in Java.
- The complexity of derivation algorithm is linear to the PTS model size.
- The existing linear programming / integer programming solvers are sophisticated and able to solve large system of inequality as many as hundreads thousands inequalities.

#### Conclusion

(1) Introduce parameters to timed transition graph PTS.

- (2) Define a parametric timed temporal logic PARCTL for reasoning real-time properties over PTS.
- (3) Provide algorithms for deriving parametric conditions satisfying real-time property and non real-time constraints.
- (4) Demonstrate the application of mathematical programming methods to determine the parameter values which optimize a particular criteria.