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Abstract

Multi-attribute decision analysis (MADA) problems involve the task of ranking a finite
number of decision alternatives, each of which is explicitly described in terms of different
characteristics (also, often called attributes, decision criteria, or objectives), which have
to be taken into account simultaneously. Among various MADA methods, multi-attribute
utility theory (MAUT) is one widely used method to solve MADA problems. However,
substantial empirical evidence and recent research have shown that it is usually difficult
to build mathematically rigorous utility functions based on attributes and the conven-
tional attribute utility function often does not provide a good description of individual
behavioral/psychological preferences.

As a substitute for utility theory, in 1979 Kahneman and Tversky proposed the S-
shaped value function in the Prospect Theory to better represent decision makers’(DMs)
behavioral/psychological preferences, and in 1999 Heath et al. suggested that the inflec-
tion point in the S-shaped value function can be interpreted as a target. To develop
this concept further, target-oriented decision analysis involves interpreting an increasing,
bounded function, properly scaled, as a cumulative distribution function (cdf) and re-
lating it to the probability of meeting or exceeding a target value, i.e. it argues that
target serves as reference point and alters outcomes in a manner consistent with the value
function of Prospect Theory. As an emerging area considering the behavioral aspects of
decision analysis, target-oriented decision analysis lies in the philosophical root of Simon’s
bounded rationality as well as represents the S-shaped value function of Prospect Theory.

In fact, decision analysis with targets/goals has a long history in the literature.
Distance-based approach is one widely used method in decision analysis problems. How-
ever, different distances should have different impacts on DMs’ preferences, which is
missed in the distance-based approach. In this sense, revisiting the targets/goals in deci-
sion analysis problems is essential to many decision problems.

This research builds upon past research work and makes an intensive/in-depth study
on target-oriented decision analysis from the following three aspects:

1. Target-oriented decision analysis with different types of target preferences and hybrid
uncertain targets: We propose two methods to target-oriented decision model with
different target preferences and extend those two methods to target-oriented decision
analysis with fuzzy targets

(a) Target-oriented decision analysis with different types of target preferences
Original target-oriented decision model presumes that the DM has a monotoni-
cally increasing target preference, e.g., the attribute/criterion wealth. However,
there are three types of target preferences: “the more the better” (correspond-
ing to benefit target preference), “the less the better” (corresponding to cost
target preference), and range targets (too much or too little is not acceptable).

The key ideas of our methods are to use the cdf and level set of the probability
distribution function (pdf) in the target-oriented decision model. Compared
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with previous work, our methods can model different types of target preferences
and induce four shaped value functions: S-shaped, inverse S-shaped, convex,
and concave.

(b) Target-oriented decision analysis with fuzzy targets
In addition, target-oriented decision model assumes that target has a random
pdf. It is well known that all facets of uncertainty cannot be captured by
a single probability distribution. Fuzzy uncertainty is considered by DMs to
linguistically specify their uncertain targets. In our research, we extend those
two methods to decision analysis with fuzzy targets. Compared with the pi-
oneering work on fuzzy decision analysis by Bellman and Zadeh, our research
outperforms in terms of three aspects.

2. Multi-attribute target-oriented decision analysis: We develop a non-additive multi-
attribute target-oriented decision model based on fuzzy measure and fuzzy integral,
and develop a prioritized aggregation operator to model the prioritization between
targets/attributes.

(a) Non-additive multi-attribute target-oriented decision analysis
In many situations, multiple attributes are of interest. Several researches
have extended the target-oriented decision model into multi-attribute case. In
their model, multi-additive value function is used to aggregate partial target
achievements while assuming the mutual independence between different tar-
gets. However, it is recognized that in many decision problems attributes are
interdependent. On the other hand, even if, in an objective sense the targets are
mutually independent (probabilistically mutually independent), they are not
necessary considered to be independent from the DM’s subjective viewpoint.
Thus traditional approaches are not adequate for such complex situations.

The key idea of our work to model the interdependence between different tar-
gets is to use the fuzzy measure and fuzzy integral. In our research, several
similarities between multi-attribute target-oriented decision model and non-
additive fuzzy integral have been discovered. Hence, the λ-fuzzy measure is
used as a technique to induce the possible combinations of indices of meeting
targets and fuzzy integral is used to model the non-additive multi-attribute
model. Compared with previous research, our method can model the interde-
pendence from DM’s subjective viewpoint as well as be of simple use in real
applications.

(b) Prioritized multi-attribute target-oriented decision analysis
Furthermore, the importance information associated with different targets plays
a fundamental role in the comparison between alternatives by overseeing trade-
offs between respective satisfactions of different targets. A concept closely re-
lated to the importance information is the priority, which does not allow the
tradeoffs between different targets. In some cases, the DM may have a priori-
tization between different targets.

In our research, a prioritized OWA aggregation operator has been proposed
to model the prioritization between different targets based on the Ordered
Weighted Averaging (OWA) operator and Hamacher t-norms.
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3. Application to Kansei evaluation problems: We extend the proposed decision mod-
els into Kansei evaluation context and propose a Kansei evaluation model based on
prioritized multi-attribute fuzzy target-oriented decision analysis. A case study for
Kansei evaluation of Japanese traditional crafts is also conducted to illustrate the
proposed Kansei evaluation model.

Differed from existing work on Kansei evaluation, our proposed Kansei evaluation
model can

(a) solve the inconsistent preference order relations on Kansei attributes,

(b) integrate the psychological preferences in satisfaction degree of Kansei at-
tributes,

(c) and consider the prioritization between different Kansei attributes.

By using our model, consumers can choose their preferred products according to
their Kansei preferences. The consumer-oriented Kansei evaluations for traditional
crafts in Japan provides possible solutions for both consumer-oriented product de-
sign and recommendation strategy for traditional crafts in Japan. Thus we believe
that the proposed Kansei evaluation model would be of great help for marketing or
recommendation purposes.

In conclusion, our efforts in studying the target-oriented decision model are to solve de-
cision analysis with hybrid uncertain targets and different target preferences, non-additive
and prioritized multi-attribute target-oriented decision analysis, and then apply the deci-
sion models in Kansei evaluation problems.

Key word: S-shaped function; Bounded rationality; Target-Oriented decision model;
Different target preferences; Possibilistic/Probabilistic uncertainty; Fuzzy measure and
fuzzy integral; Prioritized aggregation; Kansei evaluation; Japanese traditional crafts.
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Chapter 1

Introduction

The study of decision analysis is part of many disciplines, including psychology, busi-
ness, engineering, operations research, systems engineering, and management science. It
is a scientistic discipline comprising a collection of principles and methods aiming to help
individuals, groups of individuals, or organization in the performance of difficult deci-
sions. In many decision problems, multiple attributes are of interest. A typical problem
in multi-attribute decision analysis (MADA) is concerned with the task of ranking a finite
number of decision alternatives, each of which is explicitly described in terms of different
characteristics (also, often called attributes, decision criteria, or objectives), which have
to be taken into account simultaneously [127].

Among various MADA methods, multi-attribute utility theory (MAUT) [75] is one
widely used method to solve MADA problems. Other methods involving attributes, utility
and relative measurement, include the analytical hierarchy process (AHP) [116] and the
simple multi-attribute rating technique (SMART), which are simple versions of MAUT [6,
140]. In MAUT, by assuming the existence of a utility function, decision makers (DMs)
try to maximize the utilities.

However, substantial empirical evidence has shown that it is difficult to build mathe-
matically rigorous utility functions based on attributes and the conventional attribute util-
ity function often does not provide a good description of individual behavioral/psychological
preferences [17, 70]. Recent research has shown that the behavioral aspects of decision
analysis has grown, and this was recognized by the award of the 2002 Nobel Prize in
Economics to Daniel Kahneman [135].

There are several decision theories focusing on DM’s psychological/behavioral prefer-
ences. In the next section, we will introduce some notable behavioral decision theories
and the development of target-oriented decision analysis, which will be studied in this
thesis.

1.1 Development of Target-Oriented Decision Model

1.1.1 Expected utility and prospect theory

In 1947, Von Neumann and Morgenstern [134] enunciated various axioms of rationality
which implied that

1. For any rational individual, it was always possible to define the utility of a con-
sequence as that probability p making the individual indifferent between receiving
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that consequence and receiving a lottery with a probability p chance of leading to
the best possible consequence and a (1 − p) chance of leading to the worst possible
consequence.

2. The rational individual, when choosing among several possible decisions, would al-
ways choose that decision whose possible consequences have the maximum expected
utility.

Prospect theory by Kahneman and Tversky [70] has attracted a good deal of attention
as an alternative to the well-established utility/value theory. The appeal of prospect
theory stems from its descriptive power. Experiments support that prospect theory is
consistent with the behavior of DMs [133]. Prospect theory also permits prediction and
description of behavior that violates axioms of rationality, e.g., the transitivity axiom.

There are some fundamental differences between prospect theory and utility/value
theory. In the original prospect theory by Kahneman and Tversky [70], outcomes are
expressed and evaluated as positive or negative deviations (gains and losses) from a ref-
erence alternative. Coding the outcomes as gains and losses is the most important part
of the editing phase that consists of a preliminary analysis of the offered prospects. The
other major operations (combination, segregation and cancelation) of the editing phase
are of less importance for our purpose and are discussed by Kahneman and Tversky [70].
S-shaped marginal value functions (difference functions) are applied on the gains and
losses. Another difference between the prospect theory and utility theory is that when
evaluating gambles to form the functions, prospect theory uses weighting functions rather
than probabilities, which may, but do not have to, coincide. The weighting function does
not obey the axioms of probability theory and it measures the impact of probabilities on
choices rather than the likelihood of the underlying events [70]. In addition to the orig-
inal risky choice problem, Tversky and Kahneman [132] have also applied the concepts
of reference alternatives and loss aversion to riskless choice. The idea is that a certain
magnitude of loss is valued more than the same magnitude of gain. The marginal value
of both gains and losses decreases by their size. These properties give again rise to an
asymmetric S-shaped value function, concave above the reference point and convex below
it.

1.1.2 Optimizing and satisficing

Two of the most important approaches to decision analysis are optimizing and satis-
ficing. Rational decision making is based on the optimizing principle. As Simon argued
in [120], the traditional utility theory presumes that a rational DM was assumed to have
“a well-organized and stable system of preferences, and a skill in computation”. How-
ever, there were serious costs associated with the memory and computations required to
calculate the utility of various outcomes and choose the outcome of highest utility. Most
decisions don’t seem to be worth the time and effort required to make such computations.
Even for decisions which are worth such time and effort, few, if any, individuals seem
oriented toward making such computations.

For this reason, Simon [120] enunciated his famous behavioral model for rational choice,
by enunciating the so-called theory of bounded rationality. In this theory, an individual
has certain pre-specified requirements. If those requirements are met, the individual
continues with his current decisions. When those requirements are not met, the individual
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actively searches for alternative decisions. Instead of looking for the ‘optimum’ decision,
the individual adopts the first alternative he discovers which satisfies the requirements.
Simon’s work establishes that DMs consciously make decisions by satisficing targets and
not by optimizing utility functions. Although simple and appealing from this target-
oriented point of view, its resulted model is still not complete because there may be
uncertainty about the target itself.

In fact, decision analysis with targets/goals has a long history in the literature.
Distance-based approach is one widely used method in decision analysis problems. How-
ever, different distances should have different impacts on DMs’ preferences, which is
missed in the distance-based approach. In this sense, revisiting the targets/goals in deci-
sion analysis problems is essential to many decision problems.

1.1.3 Target-oriented decision analysis: A behavioral decision

model

Castagnoli and LiCalzi [25] show that for any utility function, there exists a random
target with the utility being the cumulative distribution function (cdf) of the random
target, see also Bordley [18]. Heath et al. [54] suggest that the inflection point in this
S-shaped value function can be interpreted as a target. To develop this concept further,
target-oriented decision analysis involves interpreting an increasing, bounded function,
properly scaled, as a cdf and relating it to the probability of meeting or exceeding a
target value [130]. As an emerging area considering the behavioral aspects of decision
analysis, target-oriented decision analysis lies in the philosophical root of Simon’s bounded
rationality as well as represents the S-shaped value function of Prospect Theory, i.e. it
argues that target serves as reference point and alters outcomes in a manner consistent
with the value function of Prospect Theory.

In fact, there are three approaches to decision analysis in the literature,

1. Normative decision theory: Axioms of rationality.

2. Prescriptive approach: What people should do?

3. Descriptive approach: What people actually do?

The first theory develops theories of coherent or rational behavior of decision analysis.
Based on an axiomatic footing, certain principles of rationality are developed to which a
rational DM has to adhere if he or she wants to reach the “best” decision. The second one,
prescriptive approach, focuses on which principle people should follow. The last one, so-
called psychological/behavioral decision theory, empirically investigates how the (näıve)
DMs really make their decisions and develops descriptive theories of decision behavior
based on empirical findings.

In fact, utility-maximization is only one way of modeling normatively rational be-
havior. Alternatively, there exists another valid way, so-called target-oriented approach.
Consider the subjective expected utility theory perfected in Savage [117]. It provides
an axiomatic foundation which implies that the DM should choose an action d which
maximizes his expected utility Val(d) = EU(Xd) with respect to a subjective probability
distribution, where Xd denotes the random consequence associated with the decision d.
As proved by Bordley and LiCalzi [18] and LiCalzi [88], the target-based model satisfies

3



the Savage axioms, thus there is no way to tell if an individual follows Savage’s axioms
by maximizing his expected utility or is maximizing the probability of meeting his uncer-
tain target. Due to the equivalence of utility-based decision theory and target-oriented
decision theory, the target-oriented decision theory is a normative decision theory. Fur-
thermore, in maximizing expected utility, a DM behaves as if maximizing the probability
that performance is greater than or equal to a target, whether the target is real or just
a convenient interpretation. In this sense, the target-oriented decision model is also a
prescriptive approach to decision analysis.

Although the Prospect Theory can better represent DMs’ behavioral preferences, the
weighting function in Prospect Theory does not obey the axioms of probability theory
and it measures the impact of probabilities on choices rather than the likelihood of the
underlying events [84]. Therefore, prospect theory postulates a model which in general
is not linear in the known probabilities. Whereas, the target-oriented decision model
is equivalent to the expected utility theory. The target-oriented decision model argues
that target serves as reference point and alters outcomes in a manner consistent with the
value function of Prospect Theory. In this sense, the target-oriented decision model is a
behavioral model for decision analysis.

Due to the appealing features of target-oriented decision analysis, since its formulation
by Bordley and LiCalzi [15, 18], it has received a lot of attention in the past nine years.
Abbas and Howard [2] model target setting in organizations. They define “aspiration
equivalents” for the alternatives under consideration based on the organization’s utility
function, drawing an analogy with the notion of satisficing by seeking an alternative that
meets or exceeds an aspiration level [120], and show that these aspiration equivalents
can be used as targets. LiCalzi and Sorato [89] use the Pearson systems probability
distributions to model the uncertain targets. Taking a different tack, instead of random
uncertainty, Huynh et al. [61, 62] propose a target-oriented approach to decision analysis
under uncertainty with fuzzy targets. 1

In many decision analysis situations, multiple attributes are of interest [75], thus it
is important to extend basic target-oriented model to the multi-attribute case. Bordley
and Kirkwood [17] consider situations in which a target-oriented approach is natural and
define a target-oriented DM for a single attribute as one with a utility that depends only
on whether a target for that attribute is achieved. They extend this definition to targets
for multiple attributes, requiring that the DM’s utility for a multidimensional outcome
depend only on the subset of attributes for which targets are met, and they develop
a target-oriented approach to assess a multi-attribute preference function. Abbas and
Howard [2] introduce a class of multi-attribute utility functions called attribute dominance
utility functions that can be manipulated like joint probability distributions and allow the
use of probability assessment methods in utility elicitation. Taking a different tack, Tsetlin
and Winkler [131] consider decision analysis in a multi-attribute target-oriented setting
and study the impact on changes of expected utility in a parameters of performance and
target distributions via statistics technique. In addition, Tsetlin and Winkler [130] point
out that a multi-attribute utility function cannot always be expressed in the form of the

1It should be noted that target-oriented decision model is used in decision analysis under uncer-
tainty (DAUU). In the literature, there two types of DAUU problems: no probability information is given
and probability information is available (also called as decision analysis under risk) [20]. The probability
information can be subjective or objective. In fact, when there is no probability information, we can use
some kind of subjective probability, see [117].
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cdf.
Fig. 1.1 shows the historical formulation and main development of target-oriented

decision model.

Figure 1.1: History formulation and development of target-oriented decision model

1.2 Problem Statement

We are highly motivated by the great appealing features of target-oriented decision
model. After investigating and analyzing the current research on target-oriented decision
model, our study focuses on three main problems: (1) single attribute target-oriented de-
cision analysis; (2) multi-attribute target-oriented decision analysis; and (3) applications
of target-oriented decision analysis. We will state our research problems in a great detail.

1. The first main problem investigated here is Target-oriented decision analysis with
different types of target preferences and hybrid uncertain targets.
The original target-oriented decision model presumes that the DM has a mono-
tonically increasing target preference, e.g., the attribute/criterion wealth. How-
ever, there are three types of target preferences in most situations: “the more the
better” (corresponding to benefit target preference), “the less the better” (corre-
sponding to cost target preference), and range targets (too much or too little is not
acceptable). These three target preferences are missed in the literature. Moreover,
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target-oriented decision model views the cdf as the probability of meeting some
target. Can the cdf be also used to model the other two types of target preferences?

In addition, target-oriented decision model assumes that target has a random prob-
ability distribution function (pdf). Some researchers try to use different pdfs to
model the uncertain target. For example, LiCalzi and Sorato [89] use the Pearson
system probability distributions to model the uncertain target. Bordely and Kirk-
wood [18] and Tsetlin and Winkler [131] use the normal distribution to model the
uncertain target. However, it is not so easy to define the suitable pdf for the uncer-
tain target. It is also well known that all facets of uncertainty cannot be captured
by a single probability distribution. In decision analysis, fuzzy set is often used
by DMs to linguistically specify their uncertain requirements. Thus is is necessary
to consider fuzzy target-oriented decision analysis. Although Huynh et al. [61, 62]
consider fuzzy uncertainty in target-oriented decision model, they only consider the
payoff variables. In fact, fuzzy decision analysis has received a lot of attention since
their pioneering work on fuzzy decision analysis by Bellman and Zadeh [12], and
the Bellman-Zadeh paradigm is still widely used in many studies and applications.
Thus it is necessary to do a comparative analysis with Bellman-Zadeh paradigm.

2. The second main problem is to consider multiple attribute target-oriented decision
analysis.
In many situations, multiple attributes are of interest. Some researches have ex-
tended the target-oriented decision model into multi-attribute case. In their model,
multi-additive value function (MAVF) is used to aggregate partial target achieve-
ments by presuming the independence between different targets, e.g. [17]. Although
independence assumption leads to convenient and simple use in real applications, in-
terdependence/interaction phenomena among the targets are quite natural. Toward
this end, Tsetlin and Winkler [131] consider decision analysis in a multi-attribute
target-oriented setting and study the impacts on changes of expected utility in a
parameters of performance and target distributions via simple statistics techniques.
They firstly assume targets have some predefined probability distribution (norma
distribution), and then model the interaction phenomena between different tar-
gets by using a function of correlations. However, as targets may have different
probability distributions, their approach is limited and too complex in real ap-
plications. Furthermore, even if, in an objective sense the targets are mutually
independent (probabilistically mutually independent), they are not necessary con-
sidered to be independent from the DM’s subjective viewpoint. If the DM specifies
fuzzy targets, Tsetlin and Winkler’s approach will not be suitable. In this regard,
traditional analytic methods are inadequate and not applicable for modeling such
complex situations.

Another subproblem in this part is the prioritization of different targets. Consider-
ation of different relative importance information of different targets is important
as some targets are more important than others. In this case, the DM associates
different importance weights with different targets. The importance information as-
sociated with different targets plays a fundamental role in the comparison between
alternatives by overseeing tradeoffs between respective satisfactions of different tar-
gets. A concept closely related to the importance information is the priority, which
does not allow the tradeoffs between different targets. In some cases, the DM may
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have a prioritization between different targets. This type of multi-attribute target-
oriented decision analysis is also missed in the literature.

3. Finally yet importantly, the third main problem is the Application of target-oriented
decision model.
Since its formulation, the research of target-oriented decision model mostly focuses
on the theoretical part. In the literature, only one new product development example
is studied. Due to the research context in Japan Advanced Institute of Science and
Technology (JAIST), the Kansei evaluation problem will be studied as an application
of target-oriented decision model. Many studies have attempted to solve Kansei
evaluation in the literature. Generally speaking, there are two types of approaches
to Kansei evaluation.

Statistical methods: Statistical analysis plays an important role and is widely
accepted as the most systematic tool for Kansei evaluation.

Decision analysis methods: In addition to these methods, in closely similar and
related studies on sensory evaluation or subjective evaluation, decision analysis
has also been utilized in the evaluation problems.

Previous studies have significantly advanced the issue of Kansei and Kansei-related
evaluations. However, there are still two problems we need to solve. Firstly, con-
sumers’ preferences on Kansei attributes vary from person to person according to
character, feeling, aesthetic and so on. For example, a Kansei attribute fun hav-
ing left and right Kansei words as <solemn, funny>. Some consumers may prefer
solemn, others may prefer funny, and there are also some consumers preferring nei-
ther solemn nor funny. In this regard, we will have inconsistent order relations on
Kansei attributes. Furthermore, a consumer usually may have a priority order of
the Kansei attributes, i.e., some Kansei attributes may be necessary to be satisfied.

The objective of this part is to consider Kansei evaluation based on target-oriented
decision model.

1.3 Main Contributions

All in all, the objective of this study is to include DMs’ behavioral/psychological
preferences into MADA problems, and then apply the proposed models into Kansei eval-
uation problems. Although not all multi-attribute problems deal with risk, the shape
of the value function of the target-oriented decision model is the same as the gain/loss
function of Prospect Theory, which represents DMs’ behavioral preferences.

Our research strategy is threefold. Firstly, single target-oriented decision model will
be studied to discuss different target preferences and hybrid uncertain targets. Secondly,
multi-attribute target-oriented decision analysis will be studied to model the non-additive
representation and prioritized representation. Thirdly, we will develop a Kansei evaluation
model based on prioritized multi-attribute target-oriented decision analysis and conduct
a case study for Kansei evaluation of Japanese traditional crafts to illustrate the proposed
model. The main contributions of this thesis are summarized as follows.
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1. The first main contribution is that we propose two methods to target-
oriented decision model with different types of target preferences and
extend those two methods to fuzzy target-oriented decision analysis.

(a) The first sub-contribution in this part is that we develop two methods for target-
oriented decision analysis with different target preferences.
In most studies on target-oriented decision analysis, monotonic assumptions are
given in advance to simplify the problems, e.g., the attribute/criteria wealth.
However, there are three types of target preferences. Thus two methods have
been proposed to model the different target preference types: cdf based method
and level set based method. No matter which method is selected, these two
methods can both induce four shaped value functions: S-shaped, inverse S-
shaped, convex shaped, and concave shaped, which represent DM’s psycho-
logical preference depending different target preferences. The main difference
between these two methods is that the level set based model induces a stricter
value function than the cdf based model.

(b) The second sub-contribution in this part is that we extend those two random
target-oriented decision analysis to fuzzy uncertain targets.
Target-oriented decision model assumes that target has a random probability
distribution. Fuzzy numbers are usually used by DMs to linguistically specify
their uncertain targets. In this thesis, two methods of fuzzy target-oriented
decision analysis with respect to different target preferences have been pro-
posed. To do so, firstly, a thorough analysis of possibility-probability trans-
formations is given, and then the proportional approach is properly used to
transform a possibility distribution into its associated probability distribution.
Secondly, two methods of fuzzy target-oriented decision analysis have been
obtained based on the random target-oriented decision model. Finally, some
widely used fuzzy targets used in the pioneering work on fuzzy decision analysis
by Bellman and Zadeh [12] are selected to illustrate the fuzzy target-oriented
model. Our research outperforms better in terms of three aspects.

The publications related to this part are [153, 155, 157, 158, 159, 160].

2. The second main contribution is that we develop a non-additive multi-
attribute target-oriented decision model based on fuzzy measure and
fuzzy integral, and put forward a prioritized OWA aggregation operator
to model the prioritization between targets/attributes.

(a) The first sub-contribution in this part is that we model the interdependence
between different targets based on λ-fuzzy measure and Choquet fuzzy integral.
The use of fuzzy measures and fuzzy integral in MADA enables us to model
some interaction phenomena existing among different attributes. As we shall
see, multi-attribute target-oriented function has a similar structure with fuzzy
measure, and fuzzy integral does not assume the independence. The fact that
fuzzy integral model does not need to assume the independence of each target,
means it can be used in non-linear situations. Thus we use fuzzy measure and
fuzzy integral to model the interaction among targets. Since the specification
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for fuzzy measures requires the values of a fuzzy measure for all subsets, the λ-
fuzzy measure is used in order to reduce the difficulty of collecting information
and the Choquet fuzzy integral is used to model the dependence in multi-
attribute target-oriented decision analysis. A bisection search algorithm is also
designed to identify the fuzzy measures of individual attributes group with a
given λ value.

(b) The second sub-contribution in this part is that we put forward a prioritized
OWA aggregation operator to model the prioritization between different tar-
gets.
To consider the prioritization between different targets, firstly the OWA opera-
tor is used to obtain the satisfaction degree for each priority level. To preserve
the tradeoffs among the attributes in the same priority level, the degree of sat-
isfaction for each priority level is viewed as a pseudo attribute. Secondly, we
suggest that roughly speaking any t-norm can be used to model the priority
relationships between the attributes in different priority levels. To keep the
slight change of priority weight, strict Archimedean t-norms perform better in
inducing priority weight. As Hamacher family of t-norms provide a wide class
of strict Archimedean t-norms ranging from the product to weakest t-norm,
Hamacher t-norms are selected to induce the priority weight for each priority
level. Thirdly, considering DM’s requirement toward the higher priority levels,
a benchmark based approach is proposed to induce priority weight for each pri-
ority level, i.e. “the satisfactions of the higher priority targets are larger than
or equal to the DM’s requirements”. We suggest that the weights of lower
priority level should depend on the benchmark achievement of all the higher
priority levels. To illustrate the effectiveness and advantages of the prioritized
OWA operator mentioned above, we conduct several comparative analysis with
previous work on prioritized aggregation.

The publications related to this part are [154, 159, 161].

3. The third contribution is that we develop a Kansei evaluation model
based on prioritized multi-attribute fuzzy target-oriented decision anal-
ysis. A case study is also conducted to illustrate the proposed Kansei
evaluation model.
To overcome the those two above-mentioned problems in current research on Kansei
evaluation, we put forward a Kansei evaluation model based on fuzzy target-oriented
decision analysis and prioritized OWA aggregation operator. Firstly, like the tradi-
tional Kansei evaluation method, a preparatory experiment study is conducted in
advance to select Kansei attributes by means of semantic differential (SD) method.
In order to obtain Kansei data of products, a number of people are selected to as-
sess products regarding these Kansei attributes. Secondly, these Kansei data are
used to generate Kansei profiles for evaluated products by making use of the voting
statistics. Thirdly, according to consumer-specified preferences on Kansei attributes,
three main types of fuzzy targets are defined, to represent the consumers’ prefer-
ences. Based on the principle of target-oriented decision analysis, we can obtain
the satisfaction degrees (probabilities of meeting targets) regarding the Kansei at-
tributes selected by consumers for all the evaluated products. Finally, considering
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prioritization of the Kansei attributes, the prioritized OWA aggregation operator is
used to aggregate the partial satisfaction degrees for the evaluated products.

Kansei evaluation has been applied to consumer products with successful results,
e.g., table glasses, housing assessment, telephones, cars, and mobile phones. How-
ever, Kansei evaluation of traditional crafts has not been addressed yet. In Japan,
there are many traditional crafts such as fittings, textile, etc. These beautiful, el-
egant and delicate products are closely related to and have played an important
role in Japanese culture and life. Evaluations of these traditional crafts would be
of great help for marketing or recommendation purposes. Thus the Japanese tradi-
tional crafts are used as a case study to illustrate the proposed Kansei evaluation
model. By using our model, consumers can choose their preferred crafts according
to their preferences.

The publications related to this part are [63, 152, 155, 156].

1.4 Overview of the Thesis

As we shall see in the next chapter, MADA problems can be categorized into two main
steps: (1) to transform the consequence data into values according to DM’s preferences;
(2) to aggregate multiple scores into a global score. Thus, in this thesis the research
topic, multi-attribute target-oriented decision analysis, is divided into two parts: (1) single
attribute target-oriented decision analysis, which focuses on the transformations from the
consequence data into target achievements/satisfaction degrees; (2) multi-attribute target-
oriented decision analysis, which focuses on the aggregation of partial target achievements
according to the principle of target-oriented decision analysis.

Fig. 1.2 summaries of the organization of the thesis. A detailed explanation is as
follows:

• Chapter 1 describes the motivations and objectives of this thesis, including the
development history of target-oriented decision model, problems statement, and the
organization of the thesis.

• Chapter 2 is a background and literature review of MADA problems, including
the following aspects: structure of MADA, a summary of MADA methods, and the
inclusion of DMs’ behavioral preferences into MADA.

• Chapter 3 & Chapter 4 address decision analysis under hybrid uncertain per-
formance targets with different target preferences. Chapter 3 deals with decision
analysis under random uncertain target with different target preferences, where two
approaches have been proposed. In Chapter 4, we also consider decision analysis
under uncertainty with fuzzy targets.

• Chapter 5 & Chapter 6 consider multi-attribute target-oriented decision model.
Particularly, due to the similarity of structure between multi-attribute target-oriented
model and non-additive fuzzy measure and fuzzy integral, λ-fuzzy integral is used
to model the interdependence among different targets in Chapter 5. Furthermore,
in most cases importance information and priority information play different role
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in aggregation step. To consider the prioritization among different targets, a pri-
oritized Ordered Weighted Averaging (OWA) aggregation operator based on OWA
operator and triangular norms (T-norms) has been proposed in Chapter 6.

• As an application of the proposed prioritized multi-attribute target-oriented decision
model, Kansei evaluation has been studied in Chapter 7. A case study of Japanese
traditional crafts has also been conducted in Chapter 8

• Chapter 9 contains a summary of the main contributions of the research and
suggestions for future work.

Figure 1.2: Content of this thesis
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Chapter 2

Background and Literature Review
of Multi-Attribute Decision Analysis

Abstract: In this chapter, a background and literature review of multi-attribute decision
analysis (MADA) are presented to provide a foundation for the research in this thesis.
We first provide some basic information about MADA and its related research. Secondly,
the structure of MADA is presented. Thirdly, we classify different MADA methods from
three aspects. Finally, two behavioral MADA methods are introduced and discussed.
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2.1 Relationships Between MCDA, MADA, and MODA

Decision analysis is characterized by its involvement with information, value assess-
ments, and optimization. Thus, whereas inventiveness seeks many possible answers and
analysis seeks one actual answer, decision making seeks to choose the one best answer [38].
But the “one best answer” can be difficult to obtain, particularly when the decision is
based on several objectives. Multi-criteria decision analysis (MCDA), sometimes called
multi-criteria decision making (MCDM), is a discipline aimed at supporting decision mak-
ers (DMs) who are faced with making numerous and conflicting evaluations.

MCDA is one of the most widely used decision methodologies in the sciences, busi-
ness, and engineering worlds. Some applications of MCDA in engineering include the
use on flexible manufacturing systems, layout design, integrated manufacturing systems.
A typical problem in MCDA is concerned with the task of ranking a finite number of
decision alternatives, each of which is explicitly described in terms of different charac-
teristics (also, often called attributes, decision criteria, or objectives), which have to be
taken into account simultaneously [128]. Attributes are generally defined as characteris-
tics that describe in part the state of a product or system, while objectives are attributes
with a goal and a direction “to do better” as perceived by the DM [64]. Specifically,
goals are things desired by the DM expressed in terms of a specific state in space and
time. Thus, while objectives give the desired direction, goals give a desired (or target)
level to achieve [64]. In many cases, however, the terms “objective” and “goal” are used
interchangeably.

Ching-Lai Hwang has been on the forefront of the development of new techniques
and the enhancement of existing ones that aid the DM. His two references [64, 65] list
a multitude of techniques, grouped in two classes: the Multi-Attribute Decision Anal-
ysis (MADA) and Multi-Objective Decision Analysis (MODA) techniques. With the
above-mentioned definition for objectives in mind, MODA problem involve the design
of alternatives which optimize or “best satisfy” the objectives of the DM [64]. MADA
problems involve the selection of the “best” alternative from a pool of preselected alter-
natives described in terms of their attributes” [64]. In other words, MODA problems
are optimization problems (continuous MCDA), whereas MADA problems are product
selection problems (discrete MCDA). Together all techniques for solving both problems
can be classified as MCDA techniques. While criteria typically describe the standards
of judgment or rules to test acceptability, here they simply indicate attributes and/or
objectives.

In this thesis, we use MADA to represent the discrete MCDA problems (product
selection problems), MADA and MCDA are used interchangeably. Whereas MODA is
used to denote the continuous MCDA problems.

2.2 Structure of Multi-Criteria Decision Analysis

MCDA begins with a serial process of defining objectives, arranging them into crite-
ria (attributes), identifying all possible alternatives, and then measuring consequences.
Note that a consequence is a direct measurement of the succuss of an alternative according
to a criterion, and it does not include preferential information. The process of structuring
MCDA problems has received a great deal of attention. We follow the three steps of Roy’s
general modeling methodology for decision analysis problems [114]:

13



1. Object of decision. That is, defining the object upon which the decision has to
be made and the rationale of the decision.

2. Family of criteria. That is, the identification and modeling of a set of criteria
that affect the decision, and which are exhaustive and non-redundant.

3. Global preference model. That is, the definition of the function that aggregates
the marginal preferences upon each criterion into the global preference of the DM
about each alternative.

We will explain these three aspects in a great detail.

1. Object of decision
The first and the most important step for studying a multi-attribute decision prob-
lem is the identification of decision object. Roy [114] refers to the notion of the
decision “problematic”. The four types of common decision problematics identified
in MCDA literature are as follows:

(a) Choice, which involves choosing one alternative from a set of alternatives.

(b) Sorting, which involves classifying alternatives in predefined homogenous groups
in a given preference order.

(c) Ranking, which involves ranking alternatives from best to worst.

(d) Description, which involves describing all the alternatives in terms of their
major distinguishing features.

2. Family of criteria/attributes
The set of all alternatives is analyzed in terms of multiple attributes, in order to
model all possible impacts, consequences, or attributes. In MCDA, there types of
criteria are formally used [66]:

(a) Measurable, is a criterion that allows quantified measurement upon an eval-
uation scale.

(b) Ordinal, is a criterion that defines an ordered set in the form of a qualitative
or a descriptive scale.

(c) Interval, probabilistic, fuzzy data. Sometimes uncertainty must be con-
sidered. The data may be expressed as interval data, probabilistic data, and
fuzzy data. Probabilistic is a criterion that uses probability distributions to
cover uncertainty in the evaluation of alternatives. Fuzzy is a criterion where
evaluation of alternatives is represented in relationship to its possibility to
belong in one of the intervals of a qualitative or descriptive evaluation scale.

Generally speaking, the data used in MCDA can be divided into two large cate-
gories, numerical data and non-numerical data. With numerical data, information
is conveyed using the known properties of numbers. Non-numerical data may use
numbers, but only nominally, or may apply non-numerical structures. In this thesis,
only the numerical data are considered.
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3. Global preference model
Throughout this step, the development of a global preference model provides a way
to aggregate the values of each criterion in order to express the preferences between
the different alternatives. MCDA literature identifies the following categories of
preference modeling approaches:

(a) Value-Focused models [73], where a value system for aggregating the user
preferences on the different criteria is constructed. In such approaches, marginal
preferences upon each criterion are synthesized into a total value using a syn-
thesizing utility function.

(b) Outranking Relations models [113], where preferences are expressed as
a system of outranking relations between the alternatives, thus allowing the
expression of incomparability. In such approaches, all alternatives are one-to-
one compared between them, and preference relations are provided as relations
“a is preferred to b”, “a is equally preferred to b”, and “a is incomparable to
b”.

(c) Multi-Objective Optimization models [168], where criteria are expressed
in the form of multiple constraints of a multi-objective optimization problem.
In such approaches, usually the goal is to find a Pareto optimal solution for
the original optimization problem.

(d) Preference Disaggregation models [66], where the preference model is
derived by analyzing past decisions. Such approaches build on the models
proposed by the previous ones (thus they are sometimes considered as a sub-
category of other modeling approaches’ categories), since they try to infer a
preference model of a given form (e.g. value function) from some given pref-
erential structures that have led to particular decisions in the past. Inferred
preference models aim at producing decisions that are at least identical to the
examined past ones.

2.3 Multi-Attribute Decision Analysis Methods Based

on Decision Makers’ Preference Expressions

During the last thirty years, a multitude of models has been developed to solve MADA
problems. The value-focused thinking [73] method provides a systematics analy-
sis method, which will be studied in this thesis. To better review different models of
MADA, we shall discuss MADA from DMs’ preference information based on the work
by Chen [32]. Generally speaking, there are three kinds of preference expressions: value
functions (preferences on consequences), weights (preferences on criteria), and aggregation
operators (preferences on aggregation modes).

Common to all MADA techniques is the concept of a decision matrix. The basic struc-
ture of a decision matrix is an M-by-N matrix, as shown in Table 2.1. In this table, A =
{A1, A2, · · · , Am, · · · , AM} is the set of alternatives, and X = {X1, X2, · · · , Xn, · · · , XN}
is the set of attributes/criteria. The consequence on attribute Xn of alternative Am is
expressed as Xn(Am), which can be shortened to Xm

n when there is no possibility of
confusion. Note that there are M alternatives and N attributes altogether.
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Table 2.1: Multi-attribute decision matrix

Alternatives
Attributes

X1 · · · Xn · · · XN

A1 X1
1 · · · X1

n · · · X1
N

A2 X2
1 · · · X2

n · · · X2
N

...
...

...
...

...
...

Am Xm
1 · · · Xm

n · · · Xm
N

...
...

...
...

...
...

AM XM
1 · · · XM

n · · · XM
N

2.3.1 Preferences on consequence data

There are several ways for a DM to express preferences based directly on consequences.
Among them, the best known are utility theory-based definitions [75] and outranking
based definitions [114]. Some normalization methods can be regarded as transformations
from consequences to preferences.

Definition The DM’s preference on consequence for attribute Xn of alternative Am is
a value cn(Xm

n ) = cm
n . The DM’s preference on consequences over all attributes for

alternative Am is the value vector

cm = (cm
1 , · · · , cm

n , · · · , cm
N) . (2.1)

Values are refined data obtained by processing consequences according to the needs
and objectives of the DM. The relationship between consequences and values can be
expressed as a value function as

cm
n = fn (Xm

n ) (2.2)

where cm
n and Xm

n are a value and a consequence, respectively, and fn (Xm
n ) is a mapping

function to realize the transformation from consequences to preferences. A commonly
used mapping function is to as follows

fn (Xm
n ) : Xm

n → [0, 1] (2.3)

There are many approaches to generating values based on consequences. In this thesis,
we consider two types of approaches based on Chen [32]: single alternative-based methods
and binary alternative-based methods.

1. Single alternative-based methods
Single alternative-based methods focus on the expressions of values according to one
alternative, such methods are as follows.

(a) Utility functions [75]
In this method, a subset of alternatives are selected and ranked subjectively.
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This subset of alternatives is further used to determine a utility function for
all alternatives based on a monotonic piecewise linear utility function for the
attributes and their subjective preferences.

(b) Normalization functions [65]
There are two types normalization functions: linear and non-linear. In both
these two methods, the first step is to identify the maximum and minimum
values for each attribute, denoted as

Xmin
n = min

m=1,··· ,M
[Xm

n ] (2.4)

and
Xmax

n = max
m=1,··· ,M

[Xm
n ] . (2.5)

Two simple but frequently used linear transformation functions are shown in
Table 2.2

Table 2.2: Two linear transformation functions

Methods
Attribute type

Benefit attribute Cost attribute

Method 1 cm
n = Xm

n −Xmin
n

Xmax
n −Xmin

n
cm
n = Xmax

n −Xm
n

Xmax
n −Xmin

n

Method 2 cm
n = Xm

n

Xmax
n

cm
n = Xmin

n

Xm
n

These two transformation methods assume that all consequences are real num-
bers. There are some drawbacks in method 2. When the consequence data is
non-positive (negative and zero), the transformation method will not be suit-
able. However, in many MADA problems, the consequence data are given in
positive real numbers. In addition, due to the simplicity of these two methods,
they are are widely used in the literature.

(c) Fuzzy set based approach [12]
In their pioneering work on fuzzy decision making, Bellman and Zadeh [12]
suggested that an attribute can be represented as a fuzzy subset over the
alternatives. In particular, they modeled objectives and attributes together to
form the decision space which is represented by a fuzzy set whose membership
function is the degree to which each alternative is a solution. This method is
widely used in fuzzy MADA problems.

(d) Aspiration-level functions [93]
The approach involves the user choosing levels of the objectives that he de-
sires to achieve (levels of aspiration), and provides him with various kinds of
feedback.

2. Binary alternative-based methods
Binary relation-based models focus on expressions of values via comparisons of two
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alternatives. The following binary relation-based methods employ numerical data
to represent values.

(a) Analytic Hierarchy Process Method [116]
The Analytic Hierarchy Process (AHP) method was originally introduced by
Saaty and is intended to solve such product selection problems that have a hier-
archical structure of attributes. Attributes in one level are compared in terms
of relative importance with respect to an element in the immediate higher
level, treating the pairwise comparison with the eigenvector method as out-
lined in [119]. This process is executed from the top down starting with the
overall goal as the single top element of the hierarchy and closing with the al-
ternatives at the very bottom, ranking the attributes/alternatives at each level
with respect to the overall goal.

While AHP method is well known, it has several disadvantages as outlined
in [119]. First, it requires attributes to be independent with respect to their
preferences, which is rarely the case in product selection cases. Second, all
attributes and alternatives are compared with each other (at a given level),
which may cause a logical conflict of the kind: A > B and B > C but C >
A. The likelihood of such conflicts occurring in the hierarchy tree increases
dramatically with the number of alternatives and attributes. Last but not least,
AHP has the potential of introducing a rank reversal of alternatives, depending
on the number of alternatives assessed, which is particularly troublesome for
normative decision making environments [119].

(b) ELECTRE [114]
ELECTRE [114] is a family of MADA methods that originated in Europe in
the mid-1960’s. The acronym ELECTRE stands for: ELimination Et Choix
Traduisant la REalité (ELimination and Choice Expressing REality). The
method was first proposed by Bernard Roy and his colleagues at SEMA con-
sultancy company. A team at SEMA was working on the concrete, multiple
criteria, real-world problem of how firms could decide on new activities and
had encountered problems using a weighted sum technique. Bernard Roy was
called in as a consultant and the group devised the ELECTRE method. As
it was first applied in 1965, the ELECTRE method was to choose the best
action(s) from a given set of actions, but it was soon applied to three main
problems: choosing, ranking and sorting. ELECTRE employs concordance and
discordance matrices to transform consequences to values.

(c) The PROMETHEE method [21]
The PROMETHEE (Preference Ranking Organization METHod for Enrich-
ment Evaluation) is a MADA method developed by Brans and Vincke [21].
It is a quite simple ranking method in conception and application compared
with other methods used for multi-attribute analysis. It is well adapted to
problems where a finite number of alternatives are to be ranked according to
several, sometimes conflicting criteria/attributes. The evaluation table is the
starting point of the PROMETHEE method. In this table, the alternatives are
evaluated on the different criteria.

The implementation of PROMETHEE requires two additional types of infor-
mation, namely: (1) Information on the relative importance that is the weights
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of the criteria/attributes considered. (2) Information on the DM’s preference
function, which he/she uses when comparing the contribution of the alterna-
tives in terms of each separate criterion.

2.3.2 Preferences on attributes

Preferences on criteria/attributes refer to expressions of the relative importance of
criteria/attributes. They are generally called weights; the weight for attribute Xn is wn.
It is usually assumed that wn ≥ 0 for all criteria, and

∑N
n=1 wn = 1. A weight vector is

denoted W = (w1, · · · , wn, · · · , wN).
Belton and Stewart [13] summarize two kinds of weights: tradeoff-based weights and

non-tradeoff based weights. Tradeoff-based weights emphasize the “compensation” of val-
ues across attributes, which permits preference data to be compared as they are aggregated
into a single representative evaluation. Non-tradeoff based weights do not permit direct
tradeoffs across criteria; they are usually associated with outranking methods. Several
weights determination approaches are as follows:

• AHP and geometric ratio weighting. These two methods are integrated methods,
which means they proceed from values and weight assessments to aggregated pref-
erences to final results.

• Swing weights apply ratio data to represent weights. This direct estimation method
is preferred by von Winterfeldt and Edwards [13].

• Ordered weighted averaging (OWA) weights. Many techniques are available to cal-
culate the OWA weights [44]. We could resolve a mathematical programming prob-
lem [44, 138, 139], associate it with a linguistic quantifier [44, 141], or obtain OWA
weights via an analytic method [43].

• Data envelopment analysis (DEA) employs ratio data to represent weights. This
method, proposed by Cook et al. [35], has the unique feature that the values of
weights are determined by optimizing the measure of each alternative.

2.3.3 Preferences on aggregation modes

After the basic construction of an MADA problem and acquisition of preferences from
the DMs, a global model to aggregate preferences and solve a specified problem (choose,
rank or sort) may be constructed. By using this, an aggregation function F is used to
aggregate each cm

n into an overall degree of satisfaction Val(Am) with respect to the set
of attributes such that

Val(Am) = F (cm
1 , · · · , cm

n , · · · , cm
N) (2.6)

The choice of the form for F models the DM’s desired imperative and individual preference
for combining the criteria [94, 148].

Consideration of different relative importances of different criteria is important as
some criteria are more important than others. In this case, the DM associates different
importance weights with different attributes [23, 79, 94, 101, 125, 126, 141, 144]. There are
several approaches to incorporating and/or assigning weights to different criteria. Typical
is some form of weighted arithmetic mean, such as quasi-arithmetic means, weighted
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arithmetic means, weighted quasi-arithmetic means [23]. These aggregation operations
work well in situations in which any differences are viewed as being in conflict because the
operator reflects a form of compromise behavior among the various criteria [94, 137]. In
general, the importance information associated with different criteria plays a fundamental
role in the comparison between alternatives by overseeing tradeoffs between respective
satisfactions of different criteria [148, 150].

Many studies have attempted to include different priorities of criteria into MADA
problems in the literature. Generally speaking, approaches to prioritized MADA can
be classified into two categories according to our knowledge. Approaches belonging to
the first class aim to use non-monotonic intersection operator [58, 142] and triangular
norms (t-norms) to model the priority relationships among criteria, for more detail, see [30,
39, 95, 143, 145, 150, 31].

Furthermore, in real applications, for purposes of simplicity, independence among
different attributes are given in advance. Although independence assumption leads to
convenient and simple use in real applications, interdependence/interaction phenomena
among the attributes is very natural. Considering the interdependence among different
attributes, fuzzy measure and fuzzy integral are widely used in MADA [47, 49, 48, 50, 51].

Fig. 2.1 shows the relationships among the main different aggregation methods. It
should be noted that, in the literature of MADA, aggregation operators have been widely
studied. For more details and properties of aggregations operators, see [23, 22, 36, 50, 126].

Figure 2.1: Set relations between various aggregation operators, adapted from De-
tyniecki [36]

2.4 Inclusion of Decision Makers’ Behavioral Prefer-

ences into Multi-Attribute Decision Analysis

Recent research shows that DMs’ behavioral aspects play an important role in human
decision making, and this was recognized by the award of the 2002 Nobel Prize in Eco-
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nomics to Daniel Kahneman. In the following, we will introduce two behavioral MADA
methods based on the S-shaped value function in Prospect Theory [70].

2.4.1 The TODIM method

The TODIM method (an acronym in Portuguese of Interactive and Multi-Criteria De-
cision Making), is a discrete multi-criteria method based on Prospect Theory [70]. The
TODIM method makes use of a global measurement of value calculable by the application
of the paradigm of Prospect Theory. In this way, the method is based on a description,
proved by empirical evidence, of how people effectively make decisions under risk. The
use of TODIM relies on a global multi-attribute value function, which is built in parts,
with their mathematical descriptions reproducing the gain/loss function of Prospect The-
ory. The global multi-attribute value function of TODIM then aggregates all measures of
gains and losses over all attributes.

From the construction of the aforementioned TODIM additive difference function,
which functions as a multi-attribute value function and, as such, must also have its use
validated by the verification of the condition of mutual preferential independence [75],
the method leads to a global ordering of the alternatives. It can be observed that the
construction of the multi-attribute value function, or additive difference function, of the
TODIM method is based on a projection of the differences between the values of any two
alternatives to a referential attribute or reference attribute.

The TODIM method makes use of pair comparisons between the decision attributes,
using technically simple resources to eliminate occasional inconsistencies arising from
these comparisons. It also allows value judgments to be carried out in a verbal scale,
using a attributes hierarchy, fuzzy value judgments and making use of interdependence
relationships among the alternatives. Roy and Bouyssou [113] state that it is: “...a method
based on the French School and the American School. It combines aspects of the Multi-
Attribute Utility Theory, of the AHP method and the ELECTRE methods” (p. 638). The
concept of introducing expressions of losses and gains in the same multi-attribute function,
present in the formulation of the TODIM method, gives this method some similarity to
the PROMETHEE methods, which make use of the notion of net outranking flow, in
other words, it is based on a notion extremely similar to a net flow, in the PROMETHEE
sense.

Let us consider the multi-attribute decision matrix, as showed in Table 2.1. The
TODIM method consists of the following four steps [46]:

1. Obtain the consequence data and the weights of attributes
The consequence on attribute Xn of alternative Am is expressed as Xm

n . The weights
of attributes are expressed as W = (w1, · · · , wn, · · · , wN), where for all attributes
wn ≥ 0 and

∑N
n=1 wn = 1.

2. Normalize the consequence data
The value transformed from the consequence data over all attributes for alternative
Am is a value vector, denoted as

cm = (cm
1 , · · · , cm

n , · · · , cm
N)
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In TODIM method, the normalization method is as follows

cm
n =

Xm
n∑M

m=1 Xm
n

(2.7)

3. Obtain the partial matrices of dominance and the final matrix of dominance

In this step, the DM must indicate which attribute is to be chosen as the reference
attribute for the calculations according to the importance weight assigned to each
attribute. In this way, the attributes with the highest value accorded to its im-
portance will usually be chosen as the reference attribute. The reference attribute
is denoted as Xr. We also denote wn/r is the weight of attribute Xn divided by
the weight of the reference attribute Xr. Using wn/r allows all pairs of differences
between performance measurements to be translated into the same dimension, i.e.
that of the reference attribute. The measurement of dominance of each alternative
Am over each alternative Al, now incorporated to Prospect Theory, is given by the
mathematical expression

δ(Am, Al) =
N∑

n=1

Φn(Am, Al), ∀(m, l) (2.8)

where

Φn(Am, Al) =

⎧⎪⎪⎨⎪⎪⎩
√

wn/r(cm
n −cl

n)PN
n=1 wn/r

, if cm
n − cl

n ≥ 0;

−1
θ

√
(

PN
n=1 wn/r)(cl

n−cm
n )

wn/r
, if cm

n − cl
n < 0.

(2.9)

Here δ(Am, Al) represents the measurement of dominance of alternative Am over
alternative Al; N is the number of attributes; Xn is any attribute, for n = 1, · · · , N ;
wn/r is equal to wn divided by wr, where r is the reference attribute; cm

n and cl
n are

the values of the alternatives Am and Al with respect to attribute Xn, respectively;
θ is the attenuation factor of the losses, different choices of θ lead to different shapes
of the prospect theoretical value function in the negative quadrant.

The expression Φn(Am, Al) represents the parcel of the contribution of attribute Xn

to function δ(Am, Al), when comparing alternative Am with alternative Al.

• If the value of cm
n − cl

n is positive, it will represent a gain for the function
δ(Am, Al) and, therefore the expression Φn(Am, Al) will be used.

• If cm
n − cl

n is nil, the value zero will be assigned to Φn(Am, Al).

• If cm
n − cl

n is negative, Φn(Am, Al) will be negative.

The construction of function Φn(Am, Al) in fact permits an adjustment of the data of
the problem to the value function of Prospect Theory, thus explaining the aversion
and the propensity to risk.

4. Obtain the global dominance matrices
The overall values of the various alternatives are combined to produce a rank or-
dering by computing the following values:

ξm =

∑N
n=1 δ(Am, Al) − min

∑N
n=1 δ(Am, Al)

max
∑N

n=1 δ(Am, Al) − min
∑N

n=1 δ(Am, Al)
(2.10)
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where ξm is the overall value of alternative Am.

The TODIM method assumes that the consequence data in certain. However, in most
cases, the consequence data may be uncertain, e.g. fuzzy interval, probabilistic. In addi-
tion, the TODIM method assumes the mutual preference independence among different
attributes, this is unrealistic in many situations. Furthermore, the TODIM method needs
a normalization of consequence data. As we introduced before, the normalization is a
kind of preference expression. Finally, the TODIM method tries to part away from the
utility axiomatization.

2.4.2 The SMAA-P method

Stochastic multicriteria acceptability analysis (SMAA) methods handle imprecise,
partly missing, or conflicting weight information by exploring the weight space in or-
der to describe what kind of weights, if any, make an alternative most preferred. During
the analysis, both criteria measurements and weights are constrained by their distribu-
tions. Several versions of SMAA have been developed. The original SMAA method [81]
considers alternatives’ acceptability for the first rank through additive value functions.
SMAA-2 [83] extends the analysis to consider all ranks thereby improving the possibilities
of finding good compromise solutions in group decision making problems. SMAA-O [82]
is developed for problems with mixed ordinal and cardinal criteria.

The SMAA-P method combines features from prospect theory and the SMAA-2 method.
Similar to SMAA-2, SMAA-P has been developed for multi-attribute group decision prob-
lems where neither criteria measurements nor weights are precisely known. The descrip-
tive measures that SMAA-P computes for the alternatives are also similar to the rank
acceptability indices, central weight vectors and confidence factors of SMAA-2. The main
difference between SMAA-P and SMAA-2 is that SMAA-P is not based on a utility or
value function model; instead the DMs preferences are represented in the spirit of prospect
theory for riskless choice.

The SMAA-P method considers a special case, where the weights of attributes and
consequence data are constrained by probability distributions. In addition, it focuses on
group decision analysis problems.

2.5 Conclusions

In this chapter, we give a background and literature review of (MADA) problems
to provide a foundation for the research in this thesis. The basic context of MADA is
explained as follows:

1. Firstly, MADA, MCDA, and MODA problems are introduced and classified.

2. Secondly, the structure of MADA problems is explained in detail. The value-focused
model will be used in this thesis.

3. Thirdly, a summary of MADA techniques based on DMs’ preference expression is
given: (1) preferences on consequence data; (2) preferences on attributes; and (3)
preferences on aggregation modes.
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4. Finally, two main techniques for including behavioral preferences into MADA are
discussed: the TODIM method and SMAA-P method.

Based on the background information and literature review, from the next chapter,
we shall begin our topic: multi-attribute target-oriented decision analysis and its applica-
tions. In the literature, the MADA problems can be categorized into two main steps: (1)
transformation from consequence data into values according to DM’s preferences, and (2)
aggregation of partial values into a global value. Thus, we shall study the multi-attribute
target-oriented decision analysis from two aspects: single attribute case (focusing on how
to obtain values) and multi-attribute case (focusing on how to model the aggregation
under the target-oriented decision principle).
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Chapter 3

Random Target-Oriented Decision
Analysis with Different Target
Preferences

Abstract: In most studies on target-oriented decision analysis, monotonically increasing
assumption is given in advance to simplify the decision problems, e.g., the attribute
wealth. In this case, the decision maker (DM) prefers “the more the better”, and then
target-oriented decision model views the cumulative distribution function (cdf) as the
probability of meeting targets. However, there are another two types of target preferences:
“the less the better” (corresponding to cost target preference), and range targets (too
much or too little is not acceptable). The main focus of this chapter is to model the
three types of target preferences in target-oriented decision model. Toward this end, two
methods have been developed to model the different target preference types: cdf based
method and level set based method. The results show that no matter which method
is selected, these two methods can both induce four shaped value functions: S-shaped,
inverse S-shaped, convex, and concave. These four shaped value functions can represent
DMs’ psychological preferences. The main difference between these two methods is that
the level set based method induces a steeper value function than the cdf based method.
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3.1 Introduction

Traditionally, when modeling a decision maker (DM)’s rational choice between acts
with uncertainty, it is assumed that the uncertainty is described by a probability distri-
bution on the space of states, and the ranking of acts is based on the expected utilities
of the consequences of these acts. This utility maximization principle was justified ax-
iomatically in von Neumann and Morgenstern [134] and Savage [117]. As Simon [120]
argued, the traditional utility theory presumes that a rational DM was assumed to have
“a well-organized and stable system of preferences, and a skill in computation” that was
unrealistic in many decision contexts [16]. At the same time, Simon proposed his famous
behavioral model for rational choice, so-called bounded rationality, which implies that due
to the cost or the practical impossibility of searching among all possible acts for the op-
timal, the DM simply looks for the first “satisfactory” act that meets some predefined
targets. It is also concluded that human behavior should be modeled as satisficing instead
of optimizing. Intuitively, the satisficing approach has some appealing features because
thinking of targets is quite natural in many situations.

Particularly, in an uncertain environment, each act a may lead to different outcomes
usually resulting in a random consequence Xa. Then, given a target t, the agent can
only assess the probability Pr(Xa � t) of the act a’s consequence meeting the target. In
this case, according to the optimizing principle, the agent should choose an act a that
maximizes the probability Val(a) = Pr(Xa � t) [96]. Although simple and appealing
from Simon’s satisficing-oriented point of view, its resulted model is still not complete
because there may be uncertainty about the target itself. Therefore, Castagnoli and
LiCalzi [25]and Bordley and LiCalzi [18] have relaxed the assumption of a known target
by considering a random consequence T instead. Then the target-oriented decision model
prescribes that the DM should choose an act a that maximizes the probability of meeting
an uncertain target T , provided that the target T is stochastically independent of the
random consequences to be evaluated. The satisficing approach is sufficient but not
necessary to make target-oriented decisions.

On the other hand, traditional utility theory presumes that the DM has to define a
utility function for an attribute. However, substantial empirical evidence has shown that
it is difficult to build mathematically rigorous utility functions based on attributes [17]
and the conventional attribute utility function often does not provide a good description
of individual preferences [70, 132, 133]. As a substitute for the utility theory, Kahneman
and Tversky [70] proposed an S-shaped value function, and Heath et al. [54] suggested
that the inflection point in this S-shaped value function can be interpreted as a target.
To develop this concept further, target-oriented decision analysis involves interpreting an
increasing, bounded function, properly scaled, as a cumulative distribution function (cdf)
and relating it to the probability of meeting or exceeding a target value. Note that if a
target is fixed, its cdf simplifies to a step function with a single step at the target. Abbas
and Matheson [3] model target setting in organizations. They define “aspiration equiva-
lents” for the alternatives under consideration based on the organization’s utility function,
drawing an analogy with Simon’s [120] notion of satisficing by seeking an alternative that
meets or exceeds an aspiration level, and show that these aspiration equivalents can be
used as targets.

Target-oriented decision analysis focuses on using a distribution to represent the utility
function. In fact, Berhold [14] notes that “there are advantages to having the utility
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function represented by a distribution” (p. 825), arguing that it permits the use of the
known properties of distribution functions to find analytic results. Manski [96] calls this
the “utility mass model”. Castagnoli and LiCalzi [25] provided a formal equivalence
of von Neumann and Morgenstern’s expected utility model and the target-based model
with reference to preferences over lotteries and lately, Bordley and LiCalzi [18] showed a
similar result for Savage’s expected utility model with reference to preferences over acts.
Thus, despite the differences in approach and interpretation, both target-oriented decision
procedure and utility-based decision procedure essentially lead to only one basic model
for decision analysis. In maximizing expected utility, a DM behaves as if maximizing the
probability that performance is greater than or equal to a target, whether the target is
real or just a convenient interpretation.

In general, target-oriented decision model lies in the philosophical root of bounded
rationality [120] as well as represents the S-shaped value function in prospect theory [70].
Although previous research greatly advanced target-oriented decision analysis, in most
studies on target-oriented decision analysis, monotonically increasing assumption of at-
tribute is given in advance to simplify the decision problems, e.g. the attribute wealth.
In decision analysis under uncertainty based on target-oriented decision model, the payoff
variable is also the monotonically increasing preference. In this case, the DM prefers “the
more the better”. However, as well-known, in the context of decision analysis involving
targets, usually there are three types of targets: “the more the better” (corresponding
to benefit target), “the less the better” (corresponding to cost target), and target values
are fairly fixed and not subject to much change, i.e., too much or too little is not ac-
ceptable (we shall call this type of targets as range level type). Thus it is important to
consider these three types of targets. The target-oriented decision model views the cdf as
the probability of meeting the uncertain target T . In case of benefit target, the probabil-
ity of meeting target is indeed the cdf. Can the cdf also be used in other types of target
preferences? Furthermore, in the probability theory, the level set of probability density
function (pdf) also provides a convenient way to represent the probability distribution.
Can the the level set of pdf also be used in the target-oriented decision model?

Due to the above-mentioned two observations, the main focus of this chapter is to
consider the target-oriented decision model with different types of target preferences by
making use of the cdf and the level set of pdf. The key idea of our work is to add a target
achievement level u. The rest of this chapter is organized as follows. In Section 3.2, we
present the cdf based method for target-oriented decision analysis with different target
preferences. The level set based method for target-oriented decision analysis with different
target preferences is showed in Section 3.3. In Section 3.4 we use two examples to illustrate
the proposed two methods. A comparative analysis with related research is also given in
Section 3.5. Section 3.6 gives some discussions of the proposed model. Section 3.7 gives
some concluding remarks.

3.2 Cumulative Distributive Function based Method

for Different Types of Target Preferences

For notational convenience, let us designate an evaluation attribute by X, and an
arbitrary specific level of that evaluation attribute by x. We also restrict the variable
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x to a bounded domain D = [Xmin, Xmax]. 1 Suppose that a DM has to rank several
possible decisions A = {A1, · · · , Am, · · · , AM}, where Am represent the alternatives (or
acts) available to a DM, one of which must be selected. Assume for simplicity that the
set A of consequences is finite and completely ordered by a preference relation �. Denote
by pAm his probability distribution for the random consequence Xm associated with an
act Am. Let p be the DM’s subjective probability distribution on the state space S.
The probability distribution pAm is induced by the alternative Am : S → A through the
equality pAm(Xm = x) = p(Am(s) = x).

The expected utility model suggests that the ranking be obtained by using the follow-
ing value function2

Val(Am) = EU(Xm) =
∑

x

U(x) · pAm(x) (3.1)

where U(x) is a von Neumann and Morgenstern (NM-)utility function over consequences.
Most often, it is assumed that the probability distribution satisfies that

∑
xpAm(x) = 1.

As pointed out by Bordley and Kirkwood [17], an expected utility DM is defined to be
target oriented for a single attribute decision if the DM’s utility for an outcome depends
only on whether a target is achieved with respect to x. Thus a target-oriented DM has
only two different utility levels, and because a utility function is only specified to within
a positive affine transformation, these two utility levels can be set to one (if the target is
achieved) and zero (if the target is not achieved). Then a target-oriented DM’s expected
utility for alternative Am is

Val(Am) = Pr(Xm � T )

=
∑

x

[Pr(x � T ) ∗ 1 + (1 − Pr(x � T )) ∗ 0] pAm(x)

=
∑

x

Pr(x � T )pAm(x)

(3.2)

where T is an uncertain target having a random distribution on D, Pr(x � T ) is the prob-
ability of meeting the uncertain target T and T is stochastically independent of Xm. The
idea that the NM-utility function U should be interpreted as a probability distribution
may appear unusual but, in fact, NM-utilities are probabilities [1, 18]. With the assump-
tion that the attribute is monotonically increasing, x and t are mutually independent,
Bordley and Kirkwood [17] suggest the following function

Pr(x � T ) =

∫ x

Xmin

p(t)dt, (3.3)

where t is a random level of the uncertain target T and p(t) is the probability density
function of uncertain target T .

In most studies on target-oriented decision making, monotonic assumptions of at-
tributes (e.g., wealth) are given to simplify the problems. In many decision problems
involving goals/targets, usually there are three types of goal preferences [71].

1Without loss of generality, we can set Xmin = −∞ and Xmax = +∞. However, to clearly show our
work and better compare with other research, we shall use D = [Xmin, Xmax] instead.

2It should be noted that when there is only one state of nature in S, then the problem reduces to
single attribute decision problem under certainty. Although this thesis focuses on multi-attribute decision
analysis problem, here, without loss of generality, we shall use the general representation.
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• Goal values are adjustable: “more is better” (we shall call benefit targets);

• Goal values are adjustable: or “less is better” (with respect to cost targets);

• Goal values are fairly fixed and not subject to much change, i.e. too much or too
little is not acceptable (we shall call this type of target as equal or range level
targets). Examples where this might hold include manufacturing processes where
there is an ”ideal” level for some characteristic of the product, materials management
with a target inventory level, or medical conditions with an ideal level for a medical
indicator, such as blood pressure.

Now let us consider these three target preferences via the cdf. The target-oriented
decision model assumes that the pdf of the uncertain target is unimodal as well as views
the mode value of the pdf of the uncertain target as the reference point, denoted as
Tm [18]. To model the three types of target preferences, we define

Pr(x � T ) =

∫ Xmax

Xmin

u(x, t)p(t)dt. (3.4)

where u(x, t) is used to denote the target achievement levels.

1. Benefit target
In case of benefit target, the DM has a monotonically increasing preference, i.e.
“the more the better”. As target-oriented model assumes that there are only two
levels of utility (1 or 0), thus, we define as follows:

u(x, t) =

{
1, x ≥ t;
0, otherwise.

(3.5)

Then we can obtain the probability of meeting uncertain target as the following
function

Pr(x � T ) = Pr(x ≥ T ) =

∫ x

Xmin

p(t)dt. (3.6)

This is consistent with the target-oriented model in the literature [18, 25], i.e. the
target-oriented model views the cdf as the probability of meeting the uncertain
target T .

2. Cost target
Similar with the benefit target, for cost target we define

u(x, t) =

{
1, x ≤ t;
0, otherwise.

(3.7)

Then we can induce the probability of meeting a cost target T as follows

Pr(x � T ) = Pr(x ≤ T )

=

∫ Xmax

x

p(t)dt

= 1 −
∫ x

Xmin

p(t)dt

(3.8)
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3. Equal/range target
In this case, the mode value Tm is the reference point. There will be added loss of
value for missing the reference point on the low side, or added loss for exceeding
the reference point. When x = Tm the probability of meeting target should be
equivalent to one. Based on this observation, we define the probability of meeting
uncertain target T as follows:

(a) When x < Tm

Pr(x � T ) = Pr(x ∼= T )

=

∫ x

Xmin
p(t)dt∫ Tm

Xmin
p(t)dt

.
(3.9)

(b) When x = Tm

Pr(x � T ) = Pr(x ∼= T )

=

∫ Tm

Tm
p(t)dt∫ Tm

Tm
p(t)dt

= 1.
(3.10)

(c) When x > Tm

Pr(x � T ) = Pr(x ∼= T )

=

∫ Xmax

x
p(t)dt∫ Xmax

Tm
p(t)dt

.
(3.11)

The main idea behind this definition is that we use a relative probability of meeting
targets. As target-oriented decision model views the mode Tm as the reference point.
If the arbitrary specific level x of attribute X is less than the reference point, it can
be viewed as as pseudo benefit attribute. When the arbitrary specific level x of
attribute X is greater than the reference point, it can be viewed as as pseudo cost
attribute. Otherwise, we can define u(x, t) as follows

u(x, t) =

{
1, x = t;
0, otherwise.

It should be note that in case of benefit and cost targets, we can also use this rela-
tive probability of meeting uncertain targets. When the DM prefers monotonically
increasing preference, then we can define

Pr(x ≥ T ) =

∫ x

Xmin
p(t)dt∫ Xmax

Xmin
p(t)dt

=

∫ x

Xmin

p(t)dt.

When the DM prefers monotonically decreasing preference, then we can define

Pr(x ≤ T ) =

∫ Xmax

x
p(t)dt∫ Xmax

Xmin
p(t)dt

=

∫ Xmax

x

p(t)dt.

Generally speaking, when the DM has an range level target preference, the reference
point Tm may have a interval range, such that Tm ≡ [Tml, Tmu]. In this case, the
probability of meeting target T becomes
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(a) When x < Tml

Pr(x ∼= T ) =

∫ x

Xmin
p(t)dt∫ Tml

Xmin
p(t)dt

. (3.12)

(b) When x ∈ [Tml, Tmu]

Pr(x ∼= T ) =

∫ Tmu

Tml
p(t)dt∫ Tmu

Tml
p(t)dt

= 1. (3.13)

(c) When x > Tmu

Pr(x ∼= T ) =

∫ Xmax

x
p(t)dt∫ Xmax

Tmu
p(t)dt

. (3.14)

3.3 Target-Oriented Decision Analysis Based on the

Level Set of Probability Density Function

The level set of the pdf provides a convenient way to represent the probability dis-
tribution. Dubois et al. [40] call this level set “confidence interval” which is different
from the confidence interval in measurement theory. In this section, we shall consider the
target-oriented decision model with different target preferences by means of the level set
of the pdf.

Let T be an uncertain target having a random pdf over the bounded domain D =
[Xmin, Xmax], p(t) be the pdf of the random target T . Let σ be any given probability
level, where 0 ≤ σ ≤ sup T (sup T denotes the support of the pdf of uncertain target), Tσ

consists of all the elements whose probabilities are greater than or equal to σ such that

Tσ = {t ∈ D|p(t) ≥ σ}, (3.15)

Tσ is called the σ-level set of random target T . It should be noted that target-oriented
decision analysis assumes that the uncertain target has a unimodal pdf, thus we can
express as

Tσ = [T l
σ, T r

σ ], (3.16)

where T l
σ and T r

σ are the left and right bound of level cut, respectively.
Based on the distribution function of level sets of pdf provided before, similar but

different from Garcia et al. [45], we define the following function:

Pr(x � T ) =

∫ sup T

0

u(x, Tσ)Tσdσ, (3.17)

where u(x, Tσ) indicates the degree that the target achievement in the level set Tσ, sup T
denotes the support of the pdf of uncertain target, and u(x, Tσ) ∈ [0, 1], sup u(x, Tσ) = 1.

Considering different target preferences, we further define

Pr(x � T ) =

⎧⎪⎨⎪⎩
Pr(x ≥ T ) =

∫ sup T

0
u(x ≥ Tσ)Tσdσ, benefit target preference;

Pr(x ≤ T ) =
∫ sup T

0
u(x ≤ Tσ)Tσdσ, cost target preference;

Pr(x ∼= T ) =
∫ sup T

0
u(x ∼= Tσ)Tσdσ, equal/range target preference.

(3.18)
Now let us consider these three cases in more detail.
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Benefit target preference
If the DM has a monotonically increasing target preference, for an interval Tσ =
[T l

σ, T r
σ ], to ensure that u(x, Tσ) ∈ [0, 1] and sup u(x, Tσ) = 1, we define

u(x ≥ Tσ) =

∫ T r
σ

T l
σ

u(x, t)p(t)dt∫ T r
σ

T l
σ

p(t)dt
(3.19)

As target-oriented model assumes that there are only two levels of utility (1 or 0),
thus we define

u(x, t) =

{
1, if x ≥ t;
0, otherwise.

where u(x, t) denotes whether the attribute level achieves target level or not. Then
we can obtain u(x ≥ Tσ) as follows:

u(x ≥ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < T l

σ;R x

Tl
σ

p(t)dt
R Tr

σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

1, if x > T r
σ .

(3.20)

By substituting Eq. (3.20) into the general representation of level set based target-
oriented decision model Eq. (3.18), we can obtain the probability of meeting uncer-
tain target T .

Cost target preference
In case of cost target preference, similarly we define

u(x, t) =

{
1, if x ≤ t;
0, otherwise.

and then we can obtain u(x ≤ Tσ) as follows:

u(x ≤ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
1, if x < T l

σ;R Tr
σ

x p(t)dtR Tr
σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

0, if x > T r
σ .

(3.21)

It is clear that u(x ≤ Tσ) = 1 − u(x ≥ Tσ), thus we obtain

Pr(x ≤ T ) =

∫ sup T

0

u(x ≤ Tσ)Tσdσ

=

∫ sup T

0

(1 − u(x ≥ Tσ)) Tσdσ

=

∫ sup T

0

Tσdσ −
∫ sup T

0

u(x ≥ Tσ)Tσdσ

= 1 − Pr(x ≥ T )

(3.22)

Equal/range target preference
In case of non-monotonic target preference, there exists an “ideal” level. Recall that
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target-oriented decision analysis views the modal value Tm of the pdf as reference
point (reflection point), then there will be added loss of value for missing the refer-
ence point on the low side, or added loss for exceeding the reference point. In other
words, when x = Tm the probability of meeting target should be equivalent to one;
when x < Tm it can be viewed as pseudo benefit attribute; and when x > Tm it
can be viewed as pseudo cost attribute. Due to this observation, we can define the
following function:

1. When x < Tm,

u(x ∼= Tσ) =

⎧⎨⎩ 0, if x < T l
σ;R x

Tl
σ

p(t)dt
R Tm

Tl
σ

p(t)dt
, otherwise.

(3.23)

2. When x = Tm,

u(x ∼= Tσ) =

∫ x

Tm
p(t)dt∫ Tm

Tm
p(t)dt

= 1 (3.24)

3. When x > Tm,

u(x ∼= Tσ) =

⎧⎨⎩ 0, if x > T r
σ ;R Tr

σ
x p(t)dtR Tr

σ
Tm

p(t)dt
, otherwise.

(3.25)

It should be noted that if the mode value Tm is an interval range, such that Tm ≡
[Tml, Tmu], then we can define u(x ∼= Tσ) = 1 if Tml ≤ x ≤ Tmu. Typical examples
of this case are the trapezoidal distributions.

3.4 Illustrative Examples

In this section, we shall consider two special cases to illustrate the proposed two
methods.

3.4.1 Normally distributed targets

In real applications, the uncertain targets may have different probability distributions.
For example, Tsetlin and Winkler [131] used the normal probability distribution, LiCalzi
and Sorato [89] used the Pearson system probability distributions to represent the un-
certainty of the target. Choosing a suitable probability distribution for uncertain target
T is due to specific problems. As the normal distribution is widely used as a model
of quantitative phenomena in the natural and behavioral sciences, we shall assume that
the uncertain target is normally distributed over the bounded domain D and with mode
value Tm. We assume a DM has three types of monotonic preferences: benefit, cost, and
equal/range target. According to the two target-oriented decision methods proposed in
previous sections, we can obtain the probability of meeting the normal target with respect
to these three target preference types. We will discuss these three cases in great detail.

• Firstly, let us consider the benefit case. Fig. 3.1 graphically depicts the pdf, induced
probability of meeting the normal target. To distinguish these two methods, PrI(x ≥
T ) is used to denote the value function induced by the cdf based method, whereas
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PrII(x ≥ T ) is used to denote the value function induced by the level set based
method.

Looking at the induced value functions PrI(x ≥ T ) and PrII(x ≥ T ) with respect to
benefit target preference, as shown in Fig. 3.1. It is clearly seen that no matter which
method is chosen, the induced value function (utility function) corresponds to an
S-shaped function, which is equivalent to the S-shaped utility function of Prospect
Theory by Kahneman and Tversky [70] as well as is consistent with “Goals as
reference point” by Heath et al. [54]. The induced value functions have the following
two properties:

1. Gain and loss
The target divides the space of outcomes into regions of gain and loss (or
success and failure). Thus, the value function assumes that people evaluate
outcomes as gains or losses relative to the reference point Tm.

2. Diminishing sensitivity
The value function draws an analogy to psychophysical process and predicts
that outcomes have a smaller marginal impact when they are more distant
from the reference point Tm.
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Figure 3.1: Induced value functions with a normally distributed target by means of cdf
and level set based methods, with respect to benefit target preference

Remark It should be noted that in their Prospect Theory [70] Kahneman and
Tversky assume another principle: outcomes that are encoded as losses are more
painful than the similar sized gains are pleasurable. In their words, “losses loom
larger than gains”. From Fig. 3.1, the induced value function by target-oriented
model does not entirely satisfy this principle. The main reasons for this observation
are twofold. The first reason is the distribution type of target. The normal target
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is symmetrically distributed around the mode value Tm. Another reason is the
bounded domain. In fact, when the attribute value has a bounded domain, and the
reflection point in the Prospect Theory is the middle value of the domain, the value
function induced by prospect theory will also not satisfy this principle.

In addition, from Fig. 3.1 it is clearly that although those two induced value func-
tions have an S-shaped value function, the behaviors of value function are different.
The value function PrII(x ≥ T ) induced by the level set based method is stepper
towards the mode value Tm of the corresponding target T than that PrI(x ≥ T )
by the cdf based method. This practically implies that the level set based value
function reflects a stronger decision attitude by the DM towards the target T than
that defined by the cdf function. A similar result for this phenomenon is given in
Huynh et al. [61].

• In case of cost target, the DM will have a monotonically decreasing preference.
According to Eq. (3.8), we can obtain the value function induced by the cdf based
method, denoted as PrI(x ≤ T ). By means of Eqs. (3.18) and (3.21) we can obtain
the probability of meeting target based on the level set of pdf, denoted as PrII(x ≤
T ). Fig. 3.2 graphically depicts the pdf of the normal target T , its induced value
functions by the cdf based method and level set based method.
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Figure 3.2: Induced value functions with a normally distributed target by means of cdf
and level set based methods, with respect to cost target preference

From Fig. 3.2, it is clear that no matter which method is chosen, these two methods
both induce an inverse S-shaped value function. The reference point Tm divides
the value function into two parts: gains and losses (the value below Tm can be
viewed as a kind of gains; the value upper than Tm can be viewed a kind of losses).
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In addition, the value function draws an analogy to psychophysical process and
predicts that outcomes have a smaller marginal impact when they are more distant
from the reference point Tm. Finally, the behaviors of value function PrII(x ≤ T )
induced by the level set based method is also stepper towards the mode value of the
corresponding target than that PrI(x ≤ T ) induced by the cdf based method.

• In case of equal/range target preference, according to Eqs. (3.9)-(3.11) we can obtain
the value function induced by the cdf based method, denoted as PrI(x ∼= T ). By
means of Eqs. (3.18) and (3.23)-(3.25), we can induce the value function via the
level set based method, denoted as PrII(x ∼= T ). Fig. 3.3 graphically depicts the
pdf of the normal target T , its induced value functions by the cdf based method
and level set based method with respect to equal/range target preference.
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Figure 3.3: Induced value functions with a normally distributed target by means of cdf
and level set based methods, with respect to equal/range target preference

As the DM assumes interval/range target preference, there will be added loss of
value for missing the reference point on the low side, or added loss for exceeding
the reference point Tm. Thus the reference point Tm is the reflection point. As
illustrated in Fig. 3.3, the value functions induced by the cdf based method and
level set based method have a convex shaped function, i.e. below or upper than the
mode value Tm is viewed as loss. Furthermore, it is clear that the behavior of value
function PrII(x ∼= T ) induced by the level set based method is stepper towards the
mode value Tm of the corresponding target than that PrI(x ∼= T ) induced by the
cdf based method.
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3.4.2 Uniformly distributed target

Furthermore, let us consider a special case. Without additional information about the
target distribution, we can assume that the random target T has a uniform distribution
on D with the pdf p(t) defined by

p(t) =

{
1

Xmax−Xmin
, Xmin ≤ t ≤ Xmax;

0, otherwise.
(3.26)

Under the assumption that the random target T is stochastically independent of any
alternative, by means of the cdf based method and the level set based method we can
obtain the same value function with respect to benefit and cost target preferences as
follows

Pr(x � T ) =

{
Pr(x ≥ T ) = x−Xmin

Xmax−Xmin
, for benifit target;

Pr(x ≤ T ) = Xmax−x
Xmax−Xmin

, for cost target.
(3.27)

In this case, the level set and cdf based methods are equivalent. From Eq. (3.27) it
is easily seen that, for benefit and cost attribute there is no way to tell whether the DM
selects an alternative by traditional normalization method or by target-oriented model.
In other words, in this case the target-based decision model with the decision function is
equivalent to the traditional normalization function. Fig. 3.4 graphically depicts the value
function induced by target-oriented decision model under uniformly distributed target.
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Figure 3.4: Uniformly distributed target with benefit and cost target preference

3.5 Comparison and Relationship with Related Re-

search

In this section, we shall compare our research with related work.
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3.5.1 Comparison with Bordley and Kirkwood’s approach

To show that the goal programming method is just a special case of target-oriented
decision model, Bordley and Kirkwood [17] define the following function to induce the
goal programming problem. For a decision with a single evaluation attribute X and a
target T , let t be the possibly uncertain target level for T and x be the possibly uncertain
actual performance, and assume that utility is specified as a function u(x, t)

u(x, t) =

{
−a(t − x), if x < t;
b − c(x − t), otherwise.

(3.28)

where a ≥ 0, b ≥ 0, and c ≥ 0. Then they define

1. If the DM prefers monotonically increasing preference (benefit target), then we can
set a = 0, b = 1, c = 0;

2. if the DM prefers non-monotonic preference (equal/range target), then we can set
a > 0, b = 0, c > 0.

Examples where this might hold include manufacturing processes where there is an “ideal”
level for some characteristic of the product, materials management with a target inventory
level, or medical conditions with an ideal level for a medical indicator, such as blood
pressure.

However, this approach is debatable. As pointed out by Bordley and Kirkwood, an
expected utility DM is defined to be target oriented for a single attribute decision if the
DM’s utility for an outcome depends only on whether a target is achieved with respect to
X ([17], p. 824). Thus we shall have only two utility levels u(x, t) = 1 or u(x, t) = 0. The
above functions allow more than two utility levels, thus there exists some inconsistency
in Bordley and Kirkwood’s approach. Furthermore, consider the uncertain target having
a normal distribution, as shown in Fig. 3.3. If we assume the DM has an equal/range
target preference, substituting Eq. (3.28) into Eq. (3.4) we will always obtain the non-
positive (negative or zero) value function. In target-oriented decision model, the target
achievement (probability of meeting target) belongs to [0, 1], thus there exists some conflict
in Bordley and Kirkwood’s approach. The main reason for this problem is that, target-
oriented decision model uses the cdf or some function of the cdf to represent the degree
of satisfaction, while goal programming approach focus on using distance-based function
to represent the degree of satisfaction.

3.5.2 Relationship with Prospect Theory

Prospect theory [70] deals with decision making under risk, where probability distri-
butions of the lotteries are known to agent. Prospect theory assumes that the ranking
procedure is linear in the distorted probabilities. In other words, the ranking procedure
is generated by the value function

Val(Am) =
∑

x

U(x) · φ [pAm(x)] , (3.29)

which is linear in φ but not in pAm(x). The weighting function does not obey the axioms
of probability theory and it measures the impact of probabilities on choices rather than
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the likelihood of the underlying events [84]. Therefore, prospect theory postulates a model
which in general is not linear in the known probabilities. It is apparent how little prospect
theory tries to part away from the expected utility model [88].

Target-oriented decision model focuses on whether the value function meets a random
variable, T having a probability distribution. In addition, target-oriented model views
the mode value of probability distribution as reference point, this point was illustrated
by Heath et al. [54]. Finally, target-oriented decision model satisfies NM-utility axioma-
tization [18, 88].

3.6 Discussions

In fact, target-oriented decision analysis focuses on the decision analysis under risk (DAUR)
problems. The most classical method for DAUR is to use the expected value. Our re-
search focuses on using the expected probability of meeting uncertain targets. Thus our
research can deal with DAUR problems. This thesis focuses on multi-attribute decision
analysis (MADA), this chapter provides a way to induce the value functions for MADA
problems. Although not all MADA problems deal with risk, the shapes of the value
functions can better represent DM’s behavioral/psychological preferences.

Here the behavioral/psychological preferences mean that the induced value functions
are S-shaped, inverse S-shaped, convex, or concave. Kahneman and Tversky [70] have
already done some empirical experiments to show DM’s psychological preferences in deci-
sion analysis, our research is based on their work. In addition, the reflection point in the
S-shaped value function of prospect theory can be viewed as a target, this was proved by
Heath et al. [54]. Our research not only validates this point, but also other shaped value
functions, e.g. inverse S-shaped, concave, and convex.

3.7 Summary

In this chapter, we proposed two methods to model the target-oriented decision analy-
sis with different target preferences: cdf based method and level set based method. Both
of these two methods can induce four shaped value functions: S-shaped, inverse S-shaped,
convex, and concave, which represent DM’s psychological preference. The main difference
between these two methods is that the value function induced by the level set based
method model is steeper than that induced by the cdf based method.

Target-oriented decision analysis presumes that target has a random probability dis-
tribution. In some cases, it is not so easy for the DM to specify a suitable pdf for the
uncertain target. Furthermore, it is well known that all facets of uncertainty cannot be
captured by a single probability distribution. In many applications, fuzzy subsets provide
a very convenient object for the representation of uncertain information. In the next
chapter, we shall discuss target-oriented decision analysis with fuzzy targets.
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Chapter 4

Fuzzy Target-Oriented Decision
Analysis with Different Target
Preferences

Abstract: Simon proposed a behavioral model for rational choice, by enunciating the
so-called theory of bounded rationality implying that the decision maker (DM) simply
looks for the first “satisfactory” act that meets some predefined target. Target-oriented
decision model has relaxed the assumption of a known target by considering a random
consequence T instead. Then the target-oriented decision model prescribes that the DM
should choose an act a that maximizes the probability of meeting the random target.
However, in many situations, it is not so easy to specify a probability function for the
uncertain target. Moreover, it is widely acknowledged that all facets of uncertainty cannot
be captured by a single probability distribution. Fuzzy subset provides a very convenient
object for representing uncertain information.

Toward this end, the main focus of this chapter is to discuss the issue of how to
use fuzzy targets in the target-oriented decision model with different target preferences.
To do so, we firstly analysis different fuzzy-probability transformation techniques, then
the proportional transformation method is chosen to transform the fuzzy targets into
probabilistic targets. Secondly, based on the probabilistic target-oriented decision model
discussed in Chapter 3, we can finally obtain the fuzzy target-oriented decision model
with different target preferences.
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4.1 Introduction

Simon [120] proposed a behavioral model for rational choice, by enunciating the so-
called theory of bounded rationality implying that due to the cost or the practical im-
possibility of searching among all possible acts for the optimal, the decision maker (DM)
simply looks for the first “satisfactory” act that meets some predefined targets. Although
simple and appealing from this satisficing-oriented point of view, its resulted model is still
not complete because there may be uncertainty about the target itself. Target-oriented
decision model has relaxed the assumption of a known target by considering a random
consequence T instead. Then the target-based decision model prescribes that the agent
should choose an act a that maximizes the probability of meeting an uncertain target T ,
assuming that the target T is stochastically independent of the random consequences to
be evaluated.

However, it is now more and more widely acknowledged that all facets of uncertainty
cannot be captured by a single probability distribution. Moreover, it is usually not easy
for a DM to specify the probability distribution of the uncertain target. In many applica-
tions, fuzzy subsets provide a very convenient object for the representation of uncertain
information. The subjective assessments provides by DMs are usually conceptually vague,
with uncertainty that is frequently represented in linguistic forms. To help people easily
express their subjective assessments, the linguistic variables are used to linguistically ex-
press requirements. Fuzzy numbers are usually used in decision analysis problems. Thus
it is necessary to consider the fuzzy targets in target-oriented decision model. Toward this
end, Huynh et al. [61, 62] have discussed the problem of decision analysis under uncer-
tainty (DAUU) with a payoff variable. There are three drawbacks in their work. Firstly,
only one target preference is considered. As we mentioned in Chapter 3, the DM can
have three types of target preferences. Secondly, a thorough analysis of the possibility-
probability conversion problems is ignored. In the literature, there are many techniques
to transform a possibility into its associated probability. Thirdly, in fact, fuzzy decision
analysis has received a lot of attraction since the pioneering work on fuzzy decision anal-
ysis by Bellman and Zadeh [12] in 1970. Bellman and Zadeh’s paradigm is still widely
used in most literature of fuzzy decision analysis, comparing fuzzy target-oriented decision
model with Bellman and Zadeh paradigm will be of great help to fuzzy decision analysis.
However, a complete analysis with Bellman and Zadeh is missed in their research.

Based on the above-mentioned observations, the main focus of this chapter is to revisit
fuzzy targets in target-oriented decision model based on the probabilistic target-oriented
decision model discussed in Chapter 3. To do so, firstly a through analysis of differ-
ent possibility-probability transformation techniques is given and then the proportional
transformation method is properly chosen. Secondly, we extend the probabilistic target-
oriented decision model into fuzzy target case. Thirdly, we use several fuzzy targets,
commonly used in Bellman and Zadeh paradigm, to illustrate the proposed fuzzy target-
oriented decision model. Finally, we compare our work with Bellman and Zadeh in terms
of three aspects.

The rest of this chapter is organized as follows. In Section 4.2 we introduce some
concepts of possibility distribution and fuzzy subsets. Section 4.3 analyzes different
possibility-probability conversion methods. Section 4.4 revisits fuzzy target-oriented de-
cision model with different target preferences. In Section 4.5, four commonly used fuzzy
targets in Bellman and Zadeh paradigm, are selected to illustrate our proposed models.
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Section 4.6 gives a comparative analysis with Bellman and Zadeh paradigm from three
aspects. Finally, some concluding remarks are given in Section 4.7.

4.2 Possibility Distributions and Fuzzy Subsets

Possibility measures are set functions similar to probability measures, but they rely
on an axiom which only involves the operation “supremum”. A possibility measure Π
on a set X (e.g., the set of real numbers) is characterized by a possibility distribution
π : X → [0, 1] and is defined by

∀A ⊆ X, Π(A) = sup{π(x), x ∈ A}. (4.1)

On finite sets this definition reduces to

∀A ⊆ X, Π(A) = max{π(x), x ∈ A}. (4.2)

To ensure Π(x) = 1, a normalization condition demands that π(x) = 1.
As pointed out by Zadeh [164], the membership function of a fuzzy set can be used for

encoding a possibility distribution. Formally, the soft constraint imposed on a variable
V in the statement “V is F”, where F is a fuzzy set, can be considered as inducing a
possibility distribution π on the domain of V such that μ(x) = π(x). In this thesis, we
shall use membership function and possibility distribution interchangeably.

A fuzzy set F of U is a mapping from U into the unit interval: μF : U → [0, 1], where

μF (x) is called the membership degree of x in F . A fuzzy number Ã is defined as a fuzzy
set with the membership function μ eA(x) of the set R of all real numbers that satisfies the
following properties [76]:

• Ã is a normal fuzzy set, i.e., supx∈R
μ eA(x) = 1;

• Ã is a convex fuzzy set, i.e.,

μ eA(λx1 + (1 − λ)x2) ≥ min(μ eA(x1), μ eA(x2))

for ∀x1, x2 ∈ R and λ ∈ [0, 1];

• The support of Ã, i.e., the set sup(Ã) = {x ∈ R|μ eA(x) > 0}, is bounded.

A fuzzy number A can be conveniently represented by the canonical form [76]

π eA(x) =

⎧⎪⎪⎨⎪⎪⎩
f eA(x), a ≤ x ≤ b,
1, b ≤ x ≤ c,
g eA(x), c ≤ x ≤ d,
0, otherwise.

(4.3)

where f eA(x) is a real-valued function that is monotonically increasing, and g eA(x) is a real-
valued function that is monotonically decreasing. In addition, as in most applications, we
assume that functions f eA and g eA are continuous. If f eA(x) and g eA(x) are linear functions

then Ã is called a trapezoidal fuzzy number and denoted by [a, b, c, d]. In particular,
[a, b, c, d] becomes a triangular fuzzy number if b = c.
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For any fuzzy number Ã expressed in the canonical form, its α-cuts are expressed for
all α ∈ [0, 1] by the formula

Ãα =

{
[f−1

eA (α), g−1
eA (α)], when α ∈ (0, 1)

[b,c], when α = 1.
(4.4)

where f−1
eA and g−1

eA are the inverse functions of f eA and g eA, respectively. In the case that

Ã degenerates into a crisp interval, i.e., A = [a, b], we define Aα = A for all α ∈ (0, 1).

4.3 Transformations from Possibility to Probability

Since possibility and probability represents different types uncertainties, there exists a
transformation between them. The conversion problem between possibility and probabil-
ity has its roots in the possibility/probability consistency principle of Zadeh [162], that he
propose in the paper founding possibility theory in 1978 [164]. The possibility-probability
consistency principle is a heuristic relationship between possibilities and probabilities.
This principle can be summarized as: “the possibility of an event is always greater than
or equal to the probability of the event”. This is based on the consideration that possibility
representation and probability representation are not just two equivalent representations
of uncertainty, but the representation is weaker because it explicitly handles imprecision.
Generally speaking, there are four possibility-probability transformation methods:

(1) Uniform distribution transformation [72]

p(x) = π(x) + (hu − 1) (4.5)

where hu is the conversion constants which ensure that the area under the continuous
probability function is equal to one.

This conversion of a fuzzy number into its corresponding probability distribution
is computationally straightforward. However, when this transformation method is
used, both the domain and the range of the resulting distribution may be reduced
(or increased). The reduced (or increased) domain indicates the partial rejection (or
addition) of some members from (or to) the set. Hence, this particular conversion
method is not entirely suitable.

(2) Entropy-based transformation [7, 26]
Entropy is a measure of the uncertainty of a variable, it can also be looked upon as a
measure of imprecision for a fuzzy variable [72]. Using the basic concept of entropy,
the fuzzy imprecision can be transformed to random uncertainty. The basis of this
transformation is that the measurement is invariant under transformation.

This transformation method has two drawbacks. Firstly, as pointed out by [40],
the probabilistic representation and the possibilistic one are not just two equiva-
lent representations of uncertainty, hence there should be no symmetry between the
two mutual conversion procedures. The possibilistic representation is weaker than
probabilistic representation. Secondly, even if the possibilistic representation and
probabilistic one have the equivalent uncertainty, one precondition in this transfor-
mation from possibility to probability is to specify a probability distribution. It
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is usually difficult and inconvenient for the DM to specify the known probability
distribution. Based on these two observations, the entropy-based transformation
method will also be ill-suitable.

(3) α-cut based transformation [40, 42]
Dubois et al. [42] propose a conversion method based on the alpha-cut of fuzzy
numbers

p(x) =

∫ π(x)

0

1

|Aα|
dα (4.6)

where π is the possibility distribution of the fuzzy number A and |Aα| is the width
of the α-cut of π. One main problem of this approach is that for a unimodal fuzzy
number, we can not obtain the probability of the mode value. For example, for a
triangular fuzzy number (a, b, c) its associated probability density at point b will be
+∞.

Taking a different view, Dubois et al. [40] propose a method to convert symmetric
triangular fuzzy number into its associated probability distribution based on the
concept of “confidence interval”. The ”confidence interval” used by Dubois et al. [40]
is different from the traditional confidence interval in measurement theory. They
view the ”confidence interval” as the level sets of probability density function. As
fuzzy numbers can have a variety of shapes as well as may be asymmetric, this
method is also inappropriate.

(4) Proportional probability density function [26, 72, 146, 148]
Yager [146] investigates the problem of instantiating a possibility variable over a dis-
crete domain by converting its possibility distribution into a probability distribution,
via a simple normalization. This conversion has been extended into a continuous
domain [148] as follows:

p(x) =
π(x)∫

x
π(x)dx

. (4.7)

When applying this proportional probability density distribution to convert the
fuzzy number, it is noted that the range of the membership grade of the resul-
tant proportional distribution is greatly reduced when the fuzzy number has a wide
domain. Consequently, the ability of the membership function to discriminate pre-
cisely among the members of the fuzzy set is impaired. Fortunately however, the
domain of the fuzzy number is always sufficiently narrow to avoid this becoming a
problem.

Based on the above analysis and comparisons, from the analytical point of view,
the proportional proportional transformation approach can deal with different types of
possibility distributions while following the possibility/probability consistency principle
of Zadeh [164]. From the computational point of view, the proportional approach is
convenient and simple in real applications. Thus, in this study, the proportional conversion
method will be used to transform the possibility distribution to probability distribution.
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4.4 Fuzzy Target-Oriented Decision Analysis

In many applications, the subjective assessments provided by DM(s) are usually
conceptually vague, with uncertainty that is frequently represented in linguistic forms.
To help people easily express their subjective assessments, the linguistic variables [163]
are used to linguistically express requirements. Assume that the fuzzy targets linguis-
tically specified by the DM have the canonical form, and π(t) is the membership de-

gree/possibility distribution of fuzzy target T̃ .
For notational convenience, we also designate an evaluation attribute by X, and an

arbitrary specific level of that evaluation attribute by x. We also restrict the variable
x to a bounded domain D = [Xmin, Xmax]. Suppose that a DM has to rank several
possible decisions A = {A1, · · · , Am, · · · , AM}, where Am represent the alternatives (or
acts) available to a DM, one of which must be selected. Assume for simplicity that the set
A of consequences is finite and completely ordered by a preference relation �. By a fuzzy
target we mean a possibility variable T̃ over the attribute domain D, by a possibility
distribution T̃ : D → [0, 1]. We also assume further that T̃ is a piecewise continuous

function having a bounded support and
∫

D
T̃ (t)dt > 0.

Given a fuzzy target T̃ , let π(t) be the possibility distribution function, and p(t) be its
associated probability distribution function. According to the proportional transformation
method, we can obtain the induced probability distribution as follows:

p(t) =
π(t)∫

t
π(t)dt

. (4.8)

In the following, we shall extend the two probabilistic target-oriented decision models
into the fuzzy target-oriented decision analysis case.

4.4.1 Cumulative Distribution Function Based Method

Probabilistic target-oriented decision model suggests using the following ranking of
alternatives be obtained by using the value function defined by

Val(Am) =
∑

x

Pr(x � T )pAm(x)

where pAm is the probability distribution for the random consequence Xm associated with
an act Am, T is an uncertain target having a random distribution on D, Pr(x � T ) is the
probability of meeting the uncertain target T and T is stochastically independent of Xm.

As we mentioned in Chapter 3, there are three type of target preferences: benefit
target, cost target, and equal/range level target. Based on probabilistic target-oriented

decision model and the induced pdf of fuzzy target T̃ , we can obtain the probability of
meeting target as follows:

Pr(x � T̃ ) =

∫ Xmax

Xmin
u(x, t)π(t)dt∫ Xmax

Xmin
π(t)dt

. (4.9)

In case of benefit target preference, we can obtain the target achievement function as

Pr(x � T̃ ) = Pr(x ≥ T̃ )

=

∫ x

Xmin
π(t)dt∫ Xmax

Xmin
π(t)dt

(4.10)
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In case of cost target preference, we can obtain the target achievement function as

Pr(x � T̃ ) = Pr(x ≤ T̃ )

=

∫ Xmax

x
π(t)dt∫ Xmax

Xmin
π(t)dt

.
(4.11)

When the DM has equal/range level target preference, as the target-oriented decision
model views the mode value of the pdf as a reflection point, there will be added loss
of value for missing the reference point on the low side, or added loss for exceeding the
reference point. We first consider the situation that the pdf is unimodal, the mode value
is denoted by Tm. Then the fuzzy target-oriented decision model with respect to equal
target preference can be defined as

Pr(x ∼= T̃ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R x

Xmin
π(t)dt

R Tm
Xmin

π(t)dt
, if x < Tm;

1, else if x = Tm;R Xmax
x

π(t)dtR Xmax
Tm

π(t)dt
, otherwise.

(4.12)

Generally speaking, the reference point Tm may have a interval range, such that Tm ≡
[Tml, Tmu]. In this case, the induced value function is defined as follows:

Pr(x ∼= T̃ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R x
Xmin

π(t)dt
R Tml
Xmin

π(t)dt
, if x < Tml;

1, else if x ∈ [Tml, Tmu];R Xmax
x π(t)dtR Xmax
Tmu

π(t)dt
, if x > Tmu.

(4.13)

4.4.2 Level Set Based Approach

In Chapter 3, a level set based approach has been proposed to deal with the target-
oriented decision making with probabilistic uncertainty. The first step is to converse the
fuzzy target T̃ into probability distribution such that

p(t) =
π(t)∫
x
π(t)

.

Let T be the induced probabilistic target having a random pdf over the bounded do-
main D = [Xmin, Xmax]. Let σ be any given probability level, where 0 ≤ σ ≤ sup T (sup T
denotes the support of the pdf of uncertain target), Tσ consists of all the elements whose
probabilities are greater than or equal to σ such that

Tσ = {t ∈ D|p(t) ≥ σ}, (4.14)

Tσ is called the σ-level set of random target T . It should be noted that target-oriented
decision analysis assumes that the uncertain target has a unimodal pdf, thus we can
express as Tσ = [T l

σ, T r
σ ], where T l

σ and T r
σ are the left and right bound of level cut,

respectively.
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Based on the distribution function of level sets of pdf provided before, similar but
different from Garcia et al. [45], we define the following function:

Pr(x � T ) =

∫ sup T

0

u(x, Tσ)Tσdσ, (4.15)

where u(x, Tσ) indicates the degree that the target achievement in the level set Tσ,
sup T = 1R

t π(t)dt
denotes the support of the pdf of uncertain target, and u(x, Tσ) ∈ [0, 1],

sup u(x, Tσ) = 1.
Considering different target preferences, we further define

Pr(x � T ) =

⎧⎪⎨⎪⎩
Pr(x ≥ T ) =

∫ sup T

0
u(x ≥ Tσ)Tσdσ, benefit target preference;

Pr(x ≤ T ) =
∫ sup T

0
u(x ≤ Tσ)Tσdσ, cost target preference;

Pr(x ∼= T ) =
∫ sup T

0
u(x ∼= Tσ)Tσdσ, equal/range target preference.

(4.16)
The second step is to calculate the target achievement with respect to different target

preferences based on the induced probability distribution function.

Benefit target preference
If the DM has a monotonically increasing target preference, for an interval Tσ =
[T l

σ, T r
σ ], to ensure that u(x, Tσ) ∈ [0, 1] and sup u(x, Tσ) = 1, we define

u(x ≥ Tσ) =

∫ T r
σ

T l
σ

u(x, t)p(t)dt∫ T r
σ

T l
σ

p(t)dt
(4.17)

As target-oriented model assumes that there are only two levels of utility (1 or 0),
thus we define

u(x, t) =

{
1, if x ≥ t;
0, otherwise.

where u(x, t) denotes whether the attribute level achieves target level or not. Then
we can obtain u(x ≥ Tσ) as follows:

u(x ≥ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < T l

σ;R x

Tl
σ

p(t)dt
R Tr

σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

1, if x > T r
σ .

(4.18)

By substituting Eq. (4.18) into the general representation of level set based target-
oriented decision model Eq. (4.16), we can obtain the probability of meeting uncer-
tain target T .

Cost target preference
Similarly, in case of cost target preference, we define

u(x, t) =

{
1, if x ≤ t;
0, otherwise.
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and then we can obtain u(x ≤ Tσ) as follows:

u(x ≤ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
1, if x < T l

σ;R Tr
σ

x
p(t)dtR Tr

σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

0, if x > T r
σ .

(4.19)

It is clear that u(x ≤ Tσ) = 1 − u(x ≥ Tσ), thus we obtain

Pr(x ≤ T ) =

∫ sup T

0

u(x ≤ Tσ)Tσdσ

=

∫ sup T

0

(1 − u(x ≥ Tσ)) Tσdσ

=

∫ sup T

0

Tσdσ −
∫ sup T

0

u(x ≥ Tσ)Tσdσ

= 1 − Pr(x ≥ T )

(4.20)

Equal/range target preference
In case of non-monotonic target preference, there exists an “ideal” level. Recall that
target-oriented decision analysis views the modal value Tm of the pdf as reference
point (reflection point), then there will be added loss of value for missing the refer-
ence point on the low side, or added loss for exceeding the reference point. In other
words, when x = Tm the probability of meeting target should be equivalent to one;
when x < Tm it can be viewed as pseudo benefit attribute; and when x > Tm it
can be viewed as pseudo cost attribute. Due to this observation, we can define the
following function:

1. When x < Tm,

u(x ∼= Tσ) =

⎧⎨⎩ 0, if x < T l
σ;R x

Tl
σ

p(t)dt
R Tm

Tl
σ

p(t)dt
, otherwise.

(4.21)

2. When x = Tm,

u(x ∼= Tσ) =

∫ x

Tm
p(t)dt∫ Tm

Tm
p(t)dt

= 1 (4.22)

3. When x > Tm,

u(x ∼= Tσ) =

⎧⎨⎩ 0, if x > T r
σ ;R Tr

σ
x

p(t)dtR Tr
σ

Tm
p(t)dt

, otherwise.
(4.23)

It should be noted that if the mode value Tm is an interval range, such that Tm ≡
[Tml, Tmu], then we can define u(x ∼= Tσ) = 1 if Tml ≤ x ≤ Tmu. Typical examples
of this case are the trapezoidal distributions.

In the following subsection, we shall use four commonly used fuzzy targets in decision
making to illustrate the proposed model.
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4.5 Illustrative Examples

Fuzzy decision analysis has been widely studied in the literature. Some commonly
used fuzzy targets in decision problems are shown in Fig. 4.1.

Figure 4.1: Different fuzzy targets used in decision making problems

In decision analysis involving fuzzy targets, there are four types of commonly used
fuzzy targets: “fuzzy min Tm”, “fuzzy max Tm”, “fuzzy equal Tm” and “fuzzy
range/interval: from Tml to Tmu”. For computational efficiency, trapezoidal or triangu-
lar fuzzy numbers are used to represent the above uncertain targets. In the following, we
shall consider these four types of fuzzy targets to illustrate our proposed models.

4.5.1 Fuzzy min

We first assume that the DM assesses his fuzzy target T̃ as fuzzy min Tm distributed
over the domain D, where Tm is viewed as the reference point. In this case the DM has
a monotonically increasing preference, the fuzzy number can be represented as

π(t) =

{
t−Xmin

Tm−Xmin
, if Xmin ≤ t ≤ Tm

1, if Tm < t ≤ Xmax.
(4.24)

Secondly, we use those two approaches mentioned above to obtain the induced proba-
bility of meeting this target. Fig. 4.2 graphically depicts the membership function of the
fuzzy min target, its associated probability distribution and the corresponding proba-
bility of meeting the target.

As illustrated, no matter which approach is chosen, the fuzzy min target induces the
S-shaped function, according to which

1. The target divides the space of outcomes into regions of gains and loss relative the
reflection point Tm.
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2. People tend to be risk averse over gains and risk seeking over looses.

3. Outcomes that encoded as losses are more painful than similar sized gains are plea-
surable. In Kahneman and Tversky’s [70] words, “losses loom larger than gains”.

It is clearly seen from Fig. 4.2 that the portraits of PrI(x ≥ T̃ ) and PrII(x ≥ T̃ ) have

similar shapes for this corresponding target. However, the behavior of PrII(x ≥ T̃ ) is

steeper towards the modal value of this target than that of PrI(x ≥ T̃ ). This practically

implies that the value function defined with PrII(x ≥ T̃ ) reflects a stronger decision

attitude towards the target than that defined with PrI(x ≥ T̃ ).
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PrII(x ≥ T̃ )

Figure 4.2: Target achievements under fuzzy min target

4.5.2 Fuzzy max

Similarly, we now assume that the DM assesses as the membership function for his
target of at most about Tm, where Tm is viewed as the reference point. And we get the
membership function for this target as follows:

π(t) =

{
1, if Xmin ≤ t ≤ Tm;

Xmax−t
Xmax−Tm

, if Tm < t ≤ Xmax.
(4.25)

In this case, the DM has a monotonically decreasing target preference, and then we
obtain the associated probability density distribution by the proportional transformation
approach and the induced target achievement by means of those two approaches mentioned
above. The related functions of this target are graphically illustrated in Fig. 4.3.

As illustrated, we obtain the inverse S-shaped function, according to which
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1. The target divides the space of outcomes into regions of gains and loss relative to
the reflection point Tm. The consequence x below the reference point can be viewed
as a loss, whereas the consequence x upper than the reference point is viewed as
loss.

2. People tend to be risk averse over gains and risk seeking over looses.

3. Outcomes that encoded as losses are more painful than similar sized gains are plea-
surable.

It can be also seen from Fig. 4.3 that the value function PrII(x ≤ T̃ ) induced by the
level set based method also reflects a stronger decision attitude towards the target than
that defined with PrI(x ≤ T̃ ) induced by the cdf based method.
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Figure 4.3: Target achievements under fuzzy max target

4.5.3 Fuzzy equal

Another fuzzy target is “fuzzy equal”. In this case, the target values are fairly fixed
and not subject to much change, i.e., too much or too little is not acceptable. Let us
assume that the DM assesses the membership function for his target about Tm as

π(t) =

⎧⎨⎩
t−Xmin

Tm−Xmin
, if Xmin ≤ t < Tm;

1, if t = Tm;
Xmax−t

Xmax−Tm
, if Tm < t ≤ Xmax.

(4.26)
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This fuzzy target characterizes the situation at which the DM establishes a modal
target value Tm as the mostly likely target and assesses the possibilistic uncertain target as
distributed around it. We call this target the unimodal. And then we obtain the associated
probability density distribution by the proportional transformation approach and the
induced target achievement by means of those two approaches mentioned above. Fig. 4.4
graphically depicts the membership function of the fuzzy equal target, its associated
probability distribution and the corresponding probability of meeting the target.
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Figure 4.4: Target achievements under fuzzy equal target

Looking at Fig. 4.4, as the DM assesses Tm as the mostly likely target, he/she will feel
losses with respect to the modal value. The unimodal target induces the convex value
function when the possible attribute values are below or upper the mode value. The value
function defined with PrII(x ∼= T̃ ) also reflects a stronger decision attitude towards the

target than that defined with PrI(x ∼= T̃ ).

Remark It should be noted that, the fuzzy equal target can have other types of seman-
tics. For example, Huynh et al. [62] have also considered this fuzzy target by assuming
monotonically increasing target preference. Generally speaking, we suggest that each
fuzzy number can have three types of target preference depending on DM’s preferences.
To be consistent with Bellman-Zadeh paradigm the same semantics of fuzzy numbers are
assumed.

4.5.4 Fuzzy interval

The “fuzzy equal” target is a special case of the “fuzzy interval” target. In this case, the
DM assesses target ranges. An example is a manufacturing process where any dimension

52



for manufactured component within a tolerance is equally acceptable. The fuzzy interval
target can be defined as

π(t) =

⎧⎨⎩
t−Xmin

Tml−Xmin
, if Xmin ≤ t < Tm;

1, if Tml ≤ t ≤ Tmr;
Xmax−t

Xmax−Tmr
, if Tm < t ≤ Xmax.

(4.27)

Fig. 4.5 graphically shows the possibility distribution, induced probability distribution,
and its associated probability function of meeting targets. As illustrated, the fuzzy interval
target induces the convex probability function when the possible attribute values are
below Tml or upper than Tmu. The value function defined with PrII(x ∼= T̃ ) also reflects

a stronger decision attitude towards the target than that defined with PrI(x ∼= T̃ ).
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Figure 4.5: Target achievements under fuzzy interval target

4.6 Comparison with Bellman-Zadeh’s Paradigm

In their pioneering work on fuzzy multi-attribute decision making, Bellman and Zadeh [12]
suggest that a attribute can be represented as a fuzzy subset over the alternatives. In
particular, if x is a attribute we can represent this as a fuzzy subset x over A such that
A(x) is the degree to which this criterion is satisfied, where ∀ A(x) ∈ [0, 1]. They use
the fuzzy membership function to represent the degree of preference (utility). Both the
Bellman-Zadeh’s paradigm and our approach use fuzzy subset to model decision mak-
ing involving targets. The main differences between our approach and Bellman-Zadeh’s
paradigm are threefold.
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1. The semantics of membership functions of fuzzy sets are different. Bellman and
Zadeh view the membership function of fuzzy sets as a kind of utilities, whereas
in our approach the membership function of fuzzy sets is viewed as a kind of un-
certainty representations, possibility distribution. In fact, according to the context
of problems, membership degrees can be interpreted as similarity, preference, or
uncertainty [41]. As pointed out by Beliakov and Warren [11]:

In fuzzy set theory, membership functions of fuzzy sets play the role
similar to utility functionsthe role of degrees of preference. Many authors,
including Zadeh himself, refer to membership functions as ‘a kind of utility
functions’. The equivalence of utility and membership functions extends
from semantical to syntactical level. Although this is not the only possible
interpretation of membership functions, it allows one to formulate and
solve problems of multiple attributes decision making using the formalism
of fuzzy set theory.

In our approach, besides random uncertainty, we also consider fuzzy uncertainty,
whereas Bellman and Zadeh only considers fuzzy uncertainty.

2. The semantics of fuzzy numbers are different. In our approach, even the same fuzzy
number can have more than one semantic depending on DM’s preferences. Whereas,
Bellman and Zadeh consider only one semantic. For example, for the fuzzy number
T = (Xmin, Tm, Xmax), in the above discussion, we view this fuzzy number as fuzzy
equal target. Huynh et al. [62] have also considered this fuzzy target by assuming
monotonically increasing target preference. Generally speaking, we suggest that
each fuzzy number can have three types of target preference depending on DM’s
preferences. In this study, we only listed the three types of fuzzy targets commonly
used in Bellman-Zadeh paradigm. To be consistent with Bellman-Zadeh paradigm
the same semantics of fuzzy numbers are assumed.

3. Our approach can model the psychological preferences of DM, in which the utility
functions can have four shapes: S-shaped, inverse S-shaped, convex, and concave.

4.7 Conclusions

Target-oriented model assumes that target has a random probability distribution.
It is now more and more widely acknowledged that all facets of uncertainty cannot be
captured by a single probability distribution. Moreover, it is usually not easy to find
the probability distribution of the uncertain target. In many applications, fuzzy subsets
provide a very convenient object for the representation of uncertain information. The
contribution of this chapter is to propose two fuzzy target-oriented decision models with
respect to different target preferences. The proportional approach is used to transform a
possibility distribution into the probability distribution. Some widely used fuzzy targets
used in Bellman-Zadeh paradigm [12] are selected to illustrate the fuzzy target-oriented
model.
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Chapter 5

Non-Additive Multi-Attribute
Target-Oriented Decision Analysis

Abstract: In many decision-making situations, multiple attributes are of interest, so it is
necessary to consider multi-attribute target-oriented decision analysis. In the literature,
several researches have extended the target-oriented decision model into multi-attribute
case. In their model, multi-additive value function (MAVF) is used to aggregate partial
target achievements while assuming the independence between different targets. However,
it is recognized that in many decision problems targets are interdependent. On the other
hand, even if, in an objective sense the targets are mutually independent (probabilistically
mutually independent), they are not necessary considered to be independent from the
decision maker (DM)’s subjective viewpoint.

Due to this observation, the main focus of this chapter is to model the interdependence
between different targets based on the fuzzy measure and fuzzy integral. In our research,
several similarities between multi-attribute target-oriented model and non-additive fuzzy
integral have been discovered. Hence, the λ-fuzzy measure is used as a technique to induce
the possible combinations of indices of meeting targets and fuzzy integral is used to model
the non-additive multi-attribute model. Compared with previous research, our method
can model the interdependence from DM’s subjective viewpoint as well as be of simple
use in real applications.
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5.1 Introduction

Target-oriented decision analysis presumes that a decision maker (DM)’s utility may
depend not on the absolute level of performance on an attribute, but rather on whether
that level of performance meets a target, in which case the DM is said to be target
oriented. For example, typical attributes in new product development include cost, qual-
ity, and features, and the corresponding targets might be the best performance on these
attributes by competing products. In previous chapters, we considered target-oriented
decision analysis with different target preferences under single attribute case. In many
decision making situations, multiple attributes are of interest [75], so it is important to
know whether the basic target-oriented results extend to the multi-attribute case. In this
chapter, we focus on multi-attribute target-oriented decision analysis.

Bordley and Kirkwood [17] consider situations in which a target-oriented approach is
natural and define a target-oriented decision maker for a single attribute as one with a
utility that depends only on whether a target for that attribute is achieved. They extend
this definition to targets for multiple attributes, requiring that the DM’s utility for a mul-
tidimensional outcome depend only on the subset of attributes for which targets are met,
and they develop a target-oriented approach to assess a multi-attribute preference func-
tion. Abbas and Howard [2] introduce a class of multi-attribute utility functions called
attribute dominance utility functions that can be manipulated like joint probability distri-
butions and allow the use of probability assessment methods in utility elicitation. Taking
a different tack, Tsetlin and Winkler [131] consider decision making in a multi-attribute
target-oriented setting and study the impact on expected utility of changes in parame-
ters of performance and target distributions (i.e., location, spread, and dependence) by
making use of statistics theory. Furthermore, Tsetlin and Winkler [130] also consider the
equivalent target-oriented formulations for multi-attribute utility function.

In the literature, multi-additive value function (MAVF) is used to simplify the deci-
sion problems while assuming the mutual independence between different targets, e.g. [17].
Although mutual independence assumption leads to convenient and simple use in real ap-
plications, the interdependence/interaction phenomena between different targets is very
natural in many applications. Toward this end, Tsetlin and Winkler [131] consider the
interdependence in multi-attribute target-oriented decision model by means of statistics
analysis. They firstly assume targets have some predefined probability distributions, and
then model the interaction among targets using a function of correlations through an ex-
ample, in which two targets are both normally distributed. However, as targets may have
different probability distributions, their approach will be too complex in real applications.
Furthermore, even if, in an objective sense the targets are mutually independent (prob-
abilistically mutually independent), they are not necessary considered to be independent
from the DM’s subjective viewpoint. As discussed in previous chapters, if the DM specifies
fuzzy targets, there is no interdependence between targets from the probabilistic view-
point, however, the targets may be interdependent from the DM’s subjective viewpoint.
In this sense, Tsetlin and Winkler’s approach will not be suitable, traditional analytic
methods are inadequate and not applicable for modeling such complex situations.

Due to the above observations, the main focus of this chapter is to develop a non-
additive multi-attribute target-oriented decision model. In the literature, the use of fuzzy
measure and fuzzy integral in multi-attribute decision analysis (MADA) enables us to
model some interaction phenomena existing among different attributes. As we shall see,
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there are some similarities between the fuzzy measure and multi-attribute target-oriented
decision model. In addition, the fuzzy integral model does not need to assume the inde-
pendence of each target, thus it can be used in non-linear situations. Based on these two
reasons, we shall use the λ-fuzzy measure and Choquet fuzzy integral to model the inter-
dependence between different targets in multi-attribute target-oriented decision analysis.

The rest of this chapter is organized as follows. Section 5.2 formulates the multi-
attribute target-oriented decision model. In Section 5.3 we recall some basic knowledge of
fuzzy measure and fuzzy integral. In Section 5.4 we propose a non-additive multi-attribute
target-oriented decision model based on the λ-fuzzy measure and Choquet integral. Sec-
tion 5.5 gives an example to illustrate the proposed model. Finally, some concluding
remarks are given in Section 5.6.

5.2 Formulation of Multi-Attribute Target-Oriented

Function

Now let us consider the multi-attribute decision matrix mentioned in Chapter 2. A =
{A1, · · · , Am, · · · , AM} is the set of alternatives, and X = {X1, · · · , Xn, · · · , XN} is the
set of attributes/criteria. The consequence on attribute Xn of alternative Am is expressed
as Xn(Am), which can be shortened to Xm

n when there is no possibility of confusion.
Note that there are M alternatives and N attributes altogether. In this chapter, for
denotational simplicity, for an alternative we shall use xn instead of Xm

n to denote the
consequence data of an alternative.

According to Bordley and Kirkwood [17], with the set of N attributes and N targets
T = (T1, · · · , Tn, · · · , TN), a DM is defined to be target oriented if his or her utility for
outcome (alternative) x = (x1, · · · , xn, · · · , xN) depends only on which targets are met
by that outcome, where there is a single target for each attribute. 1

If the DM cares only about meeting the targets, his/her utility function should reflect
that. The utility function for a target-oriented DM is completely specified by 2N constants
where these constants are the utilities of achieving specific combinations of the various
targets. Therefore, to calculate expected utilities it is necessary to know the probability
for each of the 2N different possible combinations of target achievement as a function
of the levels for the N attributes. Define I = (I1, · · · , In, · · · , IN) as a set of indicator
variables for the outcome (alternative) 2, where

In =

{
1, if xn � Tn;
0, otherwise.

(5.1)

Then a target-oriented DM has a function UI(I) assigning utilities to the 2N possible values
of I [130, 131]. Let UI(I) = νR, where R is the set of indices {n|In = 1} corresponding to
the attributes in I for which the targets are met.

For example, UI(1, 0, · · · , 0) = ν1, UI(0, 1, 1, · · · , 0) = ν2,3 and so on. If R1 ⊆ R2,
then νR1 ≤ νR2; utility can never be reduced by meeting additional targets [130, 131].

1In Chapter 3 and 4, we consider probabilistic target and fuzzy target. In this chapter, without
denotation danger, we assume that the probabilistic target and fuzzy target are both represented as T .

2It should be noted that � can have three semantics: greater than or equal to ≥, less than or equal to
≤, and equal/range level ∼=.
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We also know that 0 ≤ νR ≤ 1 for all R, with ν∅ = UI(0, · · · , 0, · · · , 0) and ν1,··· ,n,··· ,N =
UI(1, · · · , 1, · · · , 1) = 1, leaving 2N − 2 utilities νR to be assessed.

Let us consider a simple example with N = 2, we know

UI(I) = ν∅I∅ + ν1I1 + ν2I2 + ν12I1I2 (5.2)

Recall that In depends on whether xn � Tn, ν∅ = 0, and ν12 = 1 thus by integrating the
uncertainty about T , we can get

Pr(x � T) = ν1 (Pr1 − Pr1,2) + ν2 (Pr2 − Pr1,2) + Pr1,2

= ν1Pr1 + ν2Pr2 + (1 − ν1 − ν2)Pr1,2

(5.3)

where Pr1,2 is the joint probability of meeting targets T1 and T2, Pr1 and Pr2 are the
probability of meeting targets T1 and T2 respectively. If targets are mutually independent

Pr(x � T ) = ν1Pr1 + ν2Pr2 + (1 − ν1 − ν2)Pr1Pr2 (5.4)

Extending this approach to the case of N targets, the target-oriented function for the
outcome x is as follows [17]

Pr(x � T ) =
∑

R

νRPrR (5.5)

where νR is the DMs utility function over R. As pointed out by Bordley and Kirkwood [17],
there is a descriptive formulation that is equivalent to Eq. (5.5), just as there is a descrip-
tive formulation for the single attribute case. Specially, if νR in Eq. (5.5) is interpreted
as the probability that a particular set of target achievements R is “good enough” with
respect to the entire set of targets, then the right side of gives the probability for the
decision maker to select this alternative.

Assessment of 2N possible νR could be time consuming and the mutual dependence
among targets will lead to complexity and inconvenience in real applications. Thus,
Bordley and Kirkwood [17] assume that the targets are mutually independent. Some
special cases of multi-attribute target-oriented function with mutual independent targets
are as follows:

1. Independent preference
Targets are independent if the DM’s probability of achieving the target on any
attribute depend only on the value of attribute, and not on whether targets for
other attributes are achieved. A target-oriented DM with independent targets is
strategically equivalent to multi-linear utility function [130].

Pr(x � T ) =
N∑

n=1

νnPrn +
N∑

n=1

∑
m>n

νnmPrnPrm + · · · + ν123···N
∏N

n=1
Prn. (5.6)

2. Additive target preferences
The target-oriented preference function for a target-oriented DM with independent
targets and additive independent preferences is strategically equivalent to additive
utility function [17, 130].

Pr(x � T ) =
N∑

n=1

νnPrn. (5.7)
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In many applications, MAVF is used to simplify the decision problems. Although
independence assumption leads to convenient and simple use in real applications, inter-
dependence/interaction phenomena among the targets is very natural. Toward this end,
Tsetlin and Winkler [131] consider the interdependence in multi-attribute target-oriented
decision model by means of statistics analysis. They firstly assume targets have some
predefined probability distribution, and then model the interaction among targets using
a function of correlations through an example, in which two targets are both normally
distributed. However, as targets may have different probability distributions, their ap-
proach is too complex in real applications. Furthermore, even if, in an objective sense the
targets are mutually independent (probabilistically mutually independent), they are not
necessary considered to be independent from the DM’s subjective viewpoint. Finally, as
discussed previously, if the DM specifies fuzzy targets, Tsetlin and Winkler’s approach
will not be suitable. In this regard, traditional analytic methods are inadequate and not
applicable for modeling such complex situations.

The use of fuzzy measures and fuzzy integral in MADA enables us to model some
interaction phenomena existing among different attributes; see [47, 50, 51]. As we shall
see, multi-attribute target-oriented function has a similar structure with fuzzy measure
and fuzzy integral does not assume the independence, thus we shall use fuzzy measure
and fuzzy integral to model the interaction between different targets.

5.3 Fuzzy Measure and Fuzzy Integral

5.3.1 General fuzzy measure

Fuzzy measure is an assessment for representing the membership degree of objects
in candidate sets. It assigns a value to each crisp set in the universal set and signifies
the degree of evidence or belief about the element’s membership in the set. Let X be a
universal set. The fuzzy measure is then defined by the following function ν : P (X ) →
[0, 1]. That assigns each crisp subset of X a number in the unit interval [0, 1]. The
definition of function ν is the power set P (X ). When a number is assigned to a subset
R ∈ P (X ), νR represents the degree of available evidence or the subject’s belief that a
given element in X belongs to the subset R [34]. This particular element is most likely
found in the subset assigned the highest value.

For quantifying a fuzzy measure, function ν must satisfy several properties. Conven-
tionally, function ν is assumed to have met the conditions of the axiom of probability
theory, a probability theory measurement. However, actual practice always goes against
this assumption. It is a fuzzy measurement in reality that should be defined by weaker
axioms. The probability measure becomes a special type of fuzzy measure. Axioms of the
fuzzy measure should include the following:

• Axiom 1: boundary conditions, ν∅ = 0 (∅ is the empty set) and νX = 1.

• Axiom 2: monotonic, if R ⊆ S, then νR ≤ νS, ∀R, S ∈ P (X ).

If the universal set is infinite, it is necessary to add continuous axiom. It is quite
implicit that the elements in question are not within an empty set but within the universal
set, regardless of the amount the evidence from the boundary conditions in Axiom 1.
Axiom 2 refers to the necessary evidence for particular elements to belong to a certain
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set. There would have to be equivalent evidence required for the subset belonging to a
set, making this monotonic.

For each subset of the attributes R ⊆ P (X ), νR can then be interpreted as the weight
or the importance of the coalition R. The monotonicity of ν means that the weight of a
subset of the attributes can only increase when one adds new attributes to it. The fuzzy
measure is often defined by an even more general function ν : β → [0, 1], where R ∈ P (X )
so that ∅ ∈ β and X ∈ β. The set β is usually called a Borel field. The triplet (X , β, ν)
is called a fuzzy measure space if ν is a fuzzy measure in a measurable space (X , β).

In actual practice, it is sufficient to consider the finite set. Let X be a finite attributes
set such that X = {X1, · · · , Xn, · · · , XN}. The power set P (X ) be a class of all of the
subsets of X . It can be noted that ν{Xn} for a subset with a single element, {Xn} is called
a fuzzy density. For purposes of simplicity, in the following we shall use νn to represent
ν{Xn}.

To differentiate the proposed model from other fuzzy measure models (such as λ-fuzzy
measure, F-additive measure, classical probability measure), a general fuzzy measure is
used to designate a fuzzy measure that is monotonic and only required to satisfy the
boundary conditions. A general fuzzy measure has the fewest number of constraints and
is the most general measure pattern.

5.3.2 λ-fuzzy measure

Since the specification for fuzzy measures requires the values of a fuzzy measure for
all subsets in X , Sugeno and Terano [122] incorporated the λ-additive axiom in order
to reduce the difficulty of collecting information. In a fuzzy measure space (X , β, ν), let
λ ∈ (−1,∞). If R ∈ β, S ∈ β, R ⊂ S = ∅, and νR∪S(λ) = νR + νS + λνRνS, then the
fuzzy measure ν is λ-additive.

1. If νR∪S(λ) < νR + νS then ν satisfies the substitutive effects.

2. If νR∪S(λ) > νR + νS then ν satisfies the multiplicative effects.

3. If νR∪S(λ) = νR + νS then ν satisfies the mutual independence.

This particular fuzzy measure is termed λ fuzzy measure because it must fulfil λ-additive.
It is known as Sugeno measure. Then the λ-fuzzy measure of the finite set can be derived
from fuzzy densities, as indicated in the following equation

ν{X1,X2}(λ) = ν1 + ν2 + λν1ν2 (5.8)

where ν1 and ν2 represent the fuzzy density. Extending this to N attributes, we obtain

νλ ({X1, · · · , Xn, · · · , XN}) =
N∑

n=1

νn + λ
N−1∑
n=1

N∑
m=n+1

νnνm + · · · + λn−1
N∏

n=1

νn

=
1

λ

[
N∏

n=1

(1 + λνn)

] (5.9)

where −1 < λ < ∞, and λ is the parameter showing the relationship among the related
attributes (if λ = 0 it is an additive form; if λ �= 0, it is a non-additive form) [29, 34]. In
a later publication by Sugeno, the value of the parameter λ is allowed to include −1, i.e.,
−1 ≤ λ < ∞.
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5.3.3 Choquet fuzzy integral

When using a fuzzy measure to model the importance of each subset of attributes, a
suitable aggregation operator that generalizes the weighted arithmetic mean is the discrete
Choquet integral which is defined as follows [34]

Definition Consider a fuzzy measure space (X , β, ν). Let h be a measurable function
from X to [0, 1], Assuming that h(X1) ≥ · · · ≥ h(Xn) ≥ · · · ≥ h(XN), then the fuzzy
integral is defined as follows:

(C)

∫
hdν =

N∑
n=1

νHn [h(Xn) − h(Xn+1)] (5.10)

where H1 = {X1}, H2 = {X1, X2}, · · · , HN = {X1, · · · , Xn, · · · , XN}, and h(XN+1) = 0.

The Choquet integral takes into account the interaction among attributes by means
of the fuzzy measure ν. As soon as ν is additive, that is, as soon as attributes are inde-
pendent, the Choquet integral collapses into the multi-additive value function (MAVF),
i.e.,

(C)

∫
hdν =

N∑
n=1

h(Xn)νn (5.11)

It should be noted that an axiomatic characterization of the Choquet integral as an
aggregation operator has been proposed by Marichal [97]. Although there are other forms
of integrals defined over fuzzy measures, such as the Sugeno integral, we considered only
the Choquet integral for our analysis.

5.4 Multi-Attribute Target-Oriented Decision Anal-

ysis Based on λ-Fuzzy Measure and Choquet Fuzzy

Integral

Recall that DM’s utility function νR in Eq. (5.5) satisfy the axioms of the fuzzy
measure: boundary conditions, ν∅ = 0 (∅ is the empty set) and ν1,2,··· ,N = 1; monotonic, if
R1 ⊆ R2, then νR1 ≤ νR2 . Here R1 and R2 are two sets of indices {n|In = 1} corresponding
to the attributes in I for which the targets are met. Thus we can model DM’s utility
function νR over R via fuzzy measure. Particularly, the λ-fuzzy measure is used to induce
the utility for the DM.

The fact that fuzzy integral model does not need to assume the independence of each
target, means it can be used in non-linear situations. As pointed out by [34], even if, in
an objective sense any two targets are independent, they are not necessarily considered to
be independent from the DM’s subjective viewpoint. This explains why a fuzzy integral
is more appropriate. Furthermore, even if one target is probabilistically independent from
another, fuzzy integral can be used to measure the relations between each target in the
same group.

Due to these observations, we shall use λ-fuzzy measure and Choquet fuzzy integral
to model the dependence in multi-attribute target-oriented decision analysis. With a set
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of N attributes X = (X1, · · · , Xn, · · · , XN) and N targets T = (T1, · · · , Tn, · · · , TN), for
each attribute, we assume that the importance weight is given by

W = (w1, · · · , wn, · · · , wN)).

For an outcome
x = (x1, · · · , xn, · · · , xN),

we obtain the probability of meeting target for each attribute, denoted as

Pr = (Pr1, · · · , Prn, · · · , PrN).

And then we proceed as follows:

1. Reorder the partial target achievements Pr = (Pr1, · · · , Prn, · · · , PrN) as Pr
′
1 ≥

· · ·Pr
′
n ≥ · · · ≥ Pr

′
N , where Pr

′
n is the n-th largest value in the collection Pr. We

also reorder the importance weights W according to the order of Pr
′
, denoted as

W
′

= (w
′
1, · · · , w

′
n, · · · , w

′
N).

2. Using λ-fuzzy measure to express the fuzzy measures of each individual attributes
group

(a) Obtain the individual attributes group H1 = {X ′
1}, H2 = {X ′

1, X
′
2}, · · · , HN =

{X ′
1, · · · , X

′
n, · · · , X

′
N}.

(b) Specify a λ value

(c) Identify the fuzzy measures of individual attributes group with a given λ value
according to Algorithm 1.

Algorithm 1 A bisection search algorithm to find νλ(HN) = 1

1: Normalize weights where max(w
′
n) = 1

2: Initialize lower = 0, κ = 0.5, upper = 1
3: Specify ν{X′

n} = κ · w′
n

4: for 1 ≤ n ≤ N do
5: νHn = νHn−1 + ν{X′

n} + λνHn−1ν{X′
n} where n = 2, · · · , N

6: if νHn > 1 then
7: upper = v, κ = (lower + upper)/2, go to 3
8: else
9: continue

10: end if
11: end for
12: if νHn < 1 then
13: lower = v, κ = (lower + upper)/2, go to 3
14: else if νHn = 1 then
15: Specify ν{X′

n} = κ · w′
n

16: end if

3. The fuzzy integral of the fuzzy measure ν(·) and Pr
′
(·) on X can be defined using

(C)

∫
Pr

′
dν =

N∑
n=1

[Pr
′
n − Pr

′
n+1]νHn ,

where Pr
′
N+1 = 0.
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5.5 Illustrative Example-New Products Development

Problem

In this section we shall consider the following example borrowed from [17, 74] to
illustrate the effectiveness and advantages of our proposed approach.

5.5.1 Problem descriptions

A company wants to assess how prospective customers would evaluate a proposed new
tester for very large-scale integrated circuits. They identified four categories of evaluation
criteria (technical, economic, software, and vendor support) with a total of 17 evaluation
attributes, as shown in the first column of Table 5.1. The preference monotonicity for
each evaluation attribute is shown in the third column of the table, and the performance
scores on each of the evaluation attributes are shown from the fourth through the sixth
column of the table for the OR 9000, which was the proposed new tester, and its two
competitors, the J941 and the Sentry 50.

Table 5.1: New product development: Data

Evaluation attribute Weight Monotonicity
Tester ratings

OR 9000 J941 Sentry 50

Technical X1 0.52

Pin capacity X11 0.15 Increasing 160 96 256

Vector depth X12 0.20 Increasing 0.128 0.256 0.064

Data rate X13 0.10 Increasing 50 20 50

Timing accuracy X14 0.35 Decreasing 1,000 1,000 600

Pin capacitance X15 0.10 Decreasing 55 50 40

Programmable measurement units X16 0.10 Increasing 8 2 4

Economic X2 0.14

Price X21 0.50 Decreasing 1.4 1 2.8

Uptime X22 0.20 Increasing 98 95 95

Delivery time X23 0.30 Decreasing 3 6 6

Software X3 0.32

Software translator X31 0.15 Increasing 90 90 90

Networking: Communications X32 0.20 Increasing 1 1 1

Networking: Open X33 0.20 Increasing 1 0 0

Development time X34 0.30 Decreasing 3 4 4

Data analysis software X35 0.15 Increasing 1 1 1

Vendor support X4 0.02

Vendor service X41 0.30 Decreasing 2 4.75 6

Vendor performance X42 0.30 Decreasing 4 4 4

Customer applications X43 0.40 Increasing 1 1 1
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5.5.2 Previous research

Keeney and Lilien [74] assessed the measurable value function for a lead user at a
primary customer company company for this testing equipment. This lead user first as-
sessed a minimum acceptability level and a maximum desirability level for each attribute.
They then confirmed that the user’s preference were describable by an additive measur-
able value function, and assessed a single dimensional value function and an importance
weight for each attribute. Keeney and Lilien used a two-stage process to assess weights
for the evaluation attributes with each of four evaluation categories were assessed, and
then weights were assessed for each of the four categories so that the overall weight for
each evaluation attribute was the product of its category weight and its within-category
weight. Both the within-category weights and the category weights (which are 0.52, 0.14,
0.32, and 0.02) are shown in the third column of Table 5.1. The assessed additive measur-
able value function was then used to evaluate the OR 9000 against J941 and Sentry 50,
and the result served as input to determine that the proposed new tester OR 9000 was
not competitive enough to market.

It is natural to think this decision problem in terms of performance targets because
the explicit purpose of the analysis is to determine whether the OR 9000 was attractive
against the J941 and the Sentry 50 or not. Thus, the performance of these two testers sets
targets against which the OR 9000 is judged. Toward this end, Bordley and Kirkwood [17]
use the performance targets to valuate the multi-attribute performance analysis. As there
is no random uncertainty about the performance of the three testers, they specify crisp
target for each attribute (see Column 2 of Table 5.2).

The target for each attribute is specified by using the following function

T(·) =

{
max{XJ941

(·) , XSentry 50

(·) }, increasing preference,

min{XJ941
(·) , XSentry 50

(·) }, decreasing preference.
(5.12)

For example, consider the attribute Pin capacity X11, the performance scores of J941
and Sentry 50 are XJ941

11 = 96 and X
Sentry 50
11 = 256, respectively. As X11 is a benefit

attribute, thus

T11 = max{XJ941
11 , XSentry 50

11 }
= max{96, 256}
= 256

According to Bordley and Kirkwood, we know the target achievement method of benefit
target is Pr(·) = 1, if x(·) ≥ T(·); 0, otherwise.3 The cost attribute has a contrary
function. Using the performance targets and target achievement computation method
given by Bordley and Kirkwood, we can obtain the target achievements for each attribute
with respect to those three testers, as shown in Columns 4-6 of Table 5.2.

For purposes of simplicity, Bordley and Kirkwood assume that additive independence
holds and then based on multi-additive value function, they suggest that OR 9000 was
not competitive enough against the J941 and the Sentry 50 with the specified targets.
The overall values and ranking result of these three testers are

Sentry 50 = 0.820 � J941 = 0.584 � OR 9000 = 0.514.

3In Section 5.2, we already mentioned that xn can be used to represent Xm
n .
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Usually, it is difficult for the DM(s) to specify exactly their target values. There are
two basic reasons why such parameters or inputs cannot be assigned precise values. First,
some quantities are subject to intrinsic variability. Another reason for uncertainty is the
plain lack of knowledge about relevant parameters. This lack of knowledge may stem from
a partial lack of data, either because this data is impossible to collect, or too expensive to
collect, or because the measurement devices have limited precision, or yet because only
human experts can provide some imprecise information [10]. In addition, dependence
among the targets is very natural.

These two observations lead us to use the fuzzy target-oriented decision model and
the non-additive multi-attribute target-oriented decision model to solve this problem.

Table 5.2: New product development: Target-oriented analysis

Attribute Target Fuzzy target
Bordley-Kirkwood Fuzzy target-oriented

OR 9000 J941 Sentry 50 OR 9000 J941 Sentry 50

X1

X11 256 (96, 256, 256) 0 0 1 0.160 0.000 1.000

X12 0.256 (.064, .256, .256) 0 1 0 0.111 1.000 0.000

X13 50 (20, 50, 50) 1 0 1 1.000 0.000 1.000

X14 600 (600, 600, 1000) 0 0 1 0.000 0.000 1.000

X15 40 (40, 40, 50) 0 0 1 0.000 0.000 1.000

X16 4 (2, 4, 4) 1 0 1 1.000 0.000 1.000

X2

X21 1 (1, 1, 2.8) 0 1 0 0.467 1.000 0.000

X22 95 (95, 95, 95) 1 1 1 1.000 1.000 1.000

X23 6 (6, 6, 6) 1 1 1 1.000 1.000 1.000

X3

X31 90 (90, 90, 90) 1 1 1 1.000 1.000 1.000

X32 1 (1, 1, 1) 1 1 1 1.000 1.000 1.000

X33 0 (0, 0, 0) 1 1 1 1.000 1.000 1.000

X34 4 (4, 4, 4) 1 1 1 1.000 1.000 1.000

X35 1 (1, 1, 1) 1 1 1 1.000 1.000 1.000

X4

X41 4.75 (4.75, 4.75, 6) 1 1 0 1.000 1.000 0.000

X42 4 (4, 4, 4) 1 1 1 1.000 1.000 1.000

X43 1 (1, 1, 1) 1 1 1 1.000 1.000 1.000
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5.5.3 Non-additive fuzzy target-oriented decision analysis

In this subsection, we shall use the fuzzy target-oriented decision model discussed in
Chapter 4 and the non-additive multi-attribute target-oriented decision model to solve
this problem.

Fuzzy target-oriented decision analysis

Similar with Bordley and Kirkwood [17], the first step in our approach is to specify
a target for each attribute. As there is no random uncertainty about the performance
scores, Bordley and Kirkwood specified crisp performance target for each attribute; see
Eq. (5.12). This specification method is too arbitrary and too strict. For example, the
performance scores of J941 and Sentry 50 with respect to the attribute Pin capacity
X11 are XJ941

11 = 96 and XSentry 50
11 = 256. Using Bordley and Kirkwood’s method, 256

is the performance target value of attribute X11. Recall that the explicit purpose of
the analysis was to determine whether the OR 9000 was attractive against the J941 and
the Sentry 50 or not. Thus, the performance of these two testers sets targets against
which the OR 9000 is judged [17]. Although there is no random uncertainty about the
performance scores of the three testers, there exists some fuzzy uncertainty. If 256 is
the target value, how about the performance scores of J941 regarding X11 or a possible
value 200? To integrate the fuzzy uncertainty, we shall use fuzzy subsets to represent the
uncertainty of target.

As discussed previously, the fuzzy targets can have different types. However, For the
sake of simplicity and to be consistent with Bordley and Kirkwood, it is assumed that
every benefit attribute should be “fuzzy min” target, and for a cost attribute the fuzzy
target is “fuzzy max” target. We will use Bordley and Kirkwood’s crisp target values as
the reference point of each fuzzy target. The reservation and utopia points are specified
according to the min and max values of XJ941

(·) and XSentry 50

(·) .
For example, consider the attribute Pin capacity X11, as it is a benefit attribute, we

can define fuzzy target as (96, 256, 256) 4. The fuzzy targets specified for attributes are
shown in Column 3 of Table 5.2. Then by making use of the performance data in Table 5.1
and the fuzzy targets in Column 3 of Table 5.2, we can obtain the probability of meeting
targets for benefit and cost attributes, respectively 5. The satisfaction degrees calculated
by the target-oriented decision model are shown from column 7 to 9 of Table 5.2.

From Table 5.2 it is clearly seen that there are three different target achievements
between our approach and Bordley and Kirkwood’s approach, the bold numbers in Column
7 of Table 5.2. Taking the attribute Pin capacity X11 as an example, the crisp target
defined by Bordley and Kirkwood is 256. It is clearly that

XJ941
11 < XOR 9000

11 < XSentry 50
11 = 256,

thus OR 9000 performs better than J941, but worse than Sentry 50 with respect to
X11. However, According to Bordley and Kirkwood’s approach, we know that there is

4It should be noted that when XJ941
(·) = XSentry 50

(·) , there will be no uncertainty about the performance
target. In this case, we will obtain a crisp target. Generally speaking, the crisp target can be viewed as
a special case of fuzzy target.

5In this example, the cumulative distribution function (cdf) based target-oriented decision model,
which has been proposed in Chapter 4, is used.
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no difference between OR 9000 and J941 regarding X11. This is the main reason why we
utilize fuzzy target-oriented decision model.

Non-additive aggregation

Both Keeney and Lilien [74] and Bordley and Kirkwood [17] use the multi-additive
value function (MAVF) assuming the independence of targets. However, the interdepen-
dence among different targets is quite natural. Thus we shall use λ-fuzzy measure and
fuzzy integral to aggregate the partial target achievements according to the procedure in
Section 5.4. The areas of the λ value is −1 ≤ λ < ∞. The research sets the λ value from
-1 to 100 (Table 5.3, Fig. 5.1 and Fig. 5.2) to acquire different effective values and vary-
ing ranking. To clearly distinguish the differences between aggregation values regarding
different λ values, we divide the λ value domain as two groups: [−1, 0] and [0, 100].

Table 5.3: Sensitivity scores of three testers

Three testers
λ value

-1.0 -0.5 0.0 1.0 5.0 10.0 20.0 50.0 100.0 (MAVF)

OR 9000 0.9758 0.6462 0.5707 0.4929 0.3751 0.317 0.2624 0.2003 0.1621 0.5707

J941 0.9835 0.6621 0.584 0.5027 0.3782 0.317 0.2581 0.1919 0.1512 0.584

Sentry 50 1.0 0.8672 0.82 0.7655 0.6696 0.6152 0.5583 0.4848 0.433 0.820

Table 5.3 shows the sensitivity scores of three testers regarding the parameter λ. Based
on the analysis in Table 5.3, we discover that

1. when −1 ≤ λ < 0, there are substitutive effects among the three testers;

2. when λ = 0, there is no interdependence;

3. when 0 < λ ≤ 100, there is multiplicative effects.

When λ = 0, the non-additive multi-attribute target-oriented decision model is consistent
with the multi-additive value function.

Looking at Fig. 5.1, it is known that OR 9000 is not competitive enough to market.
However, it lacks consistent ranking.

1. When −1 ≤ λ < 10, the ranking is Sentry 50 � J941 � OR 9000;

2. when λ = 10, the ranking is Sentry 50 � J941 ∼ OR 9000;

3. when 10 < λ ≤ 100, the ranking is Sentry 50 � OR 9000 � J941.
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Figure 5.1: Aggregation values of three testers with different λ: λ value from -1 to 0
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Figure 5.2: Aggregation values of three testers with different λ: λ value from 0 to 100
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Discussions

Although in this example the competitive shortcomings of the OR 9000 can be iden-
tified with all the three analysis approaches. Slightly changing the performance scores of
OR 9000 may induce different results.

The Keeney and Lilien [74]’s measurable value analysis requires ranges for all the
evaluation attributes and mid-values for those ranges, while both Bordely and Kirkwood’s
approach and our approach require that a target be specified for each attribute. These
three methods require that attribute weights be assessed.

Both Bordley and Kirkwood’s approach and our approach consider that the perfor-
mance of these two testers sets targets against which the OR 9000 is judged. However,
as J941 and Sentry 50 are competitors of OR 9000, there should be some fuzzy uncer-
tainty about the target itself. The main advantage of our approach is that it can capture
the fuzzy quantities of target achievement. In addition, it is quite natural to consider
interdependence among different targets, which is missed in both Keeney and Lilien’s ap-
proach and Bordely and Kirkwood’s approach. Our approach can model the dependence
phenomena via fuzzy measure and fuzzy integral.

5.6 Summary

In this chapter, we develop a non-additive multi-attribute target-oriented decision
model based on fuzzy measure and fuzzy integral. Particularly, the λ-fuzzy measure is
used as a technique to induce the possible combinations of indices of meeting targets and
fuzzy integral is used to model the non-additive multi-attribute model. A bisection search
algorithm is also designed to identify the fuzzy measures of individual attributes group
with a given λ value. An illustrative example borrowed from the literature is also given to
compare our work with previous research. Compared with previous research, our method
can model the interdependence from DM’s subjective viewpoint as well as be of simple
use in real applications.

In future, we would like to consider the bipolar scale in this non-additive multi-
attribute target-oriented decision model. Target-oriented decision model assumes that the
target divides the outcomes into gains and loss, thus the outcomes below or exceeding the
reference point should have different impacts on the aggregation of partial target achieve-
ments. In this case, from the point view of aggregation, multi-attribute target-oriented
decision model satisfies the conditions that the values to be aggregated lie on different
bipolar scales, where 0 is the worst score, 1 is the best score, and there exists different
reference points, denoted as e. For different attributes, the values e are probably different
as different attributes may have different target distributions. The resulting continuous
piecewise linear aggregation function has the ability to represent decisional behaviors that
depend on the “positive” or “negative” satisfaction of some of the attributes.
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Chapter 6

Prioritized Multi-Attribute
Target-Oriented Decision Analysis

Abstract: In multi-attribute target-oriented decision model, the importance information
associated with different targets is important as some targets are more important than
others. In general, the importance information plays a fundamental role in the compar-
ison between alternatives by overseeing the tradeoffs between respective satisfactions of
different targets. A concept closely related to the importance of targets is the priority
of targets. Simply speaking, by saying target T1 has a higher priority than target T2,
it indicates that we are not willing to tradeoff satisfaction of target T1 until perhaps we
attain some level of satisfaction of target T2.

The main objective of this chapter is to study the prioritized multi-attribute target-
oriented decision model, where there exists a prioritization of different targets. To do
so, firstly, the ordered weighted averaging (OWA) operator will be used to obtain the
satisfaction degree for each priority level. Secondly, we suggest that roughly speaking
any t-norm can be used to model the priority relationships between the targets in dif-
ferent priority levels. To keep the slight change of priority weight, strict Archimedean
t-norms perform better in inducing priority weight. As Hamacher family of t-norms pro-
vide a wide class of strict Archimedean t-norms ranging from the product to weakest
t-norm, Hamacher t-norms are selected to induce the priority weight for each priority
level. Thirdly, considering decision maker (DM)’s requirement toward the higher priority
levels, a benchmark based approach is proposed to induce priority weight for each priority
level, i.e., “the satisfactions of the higher priority attributes are larger than or equal to the
DM’s requirements”. We suggest that the weights of lower priority level should depend
on the benchmark achievement of all the higher priority levels.
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6.1 Introduction

For a multi-attribute decision analysis (MADA) problem, with N attributes and N
targets, a decision maker (DM) is defined to be target oriented if his or her utility for
outcome (alternative) depends only on which targets are met by that outcome, where
there is a single target for each attribute. As our research is based on the value-focused
model [75] and we divide MATODA problems into two main steps: (1) on the target
achievement of single attribute, (2) aggregation of partial target achievements into a global
value. In this chapter, we assume that the target achievements of different attributes
have already been obtained according to the target-oriented decision models proposed
in Chapter 3 and Chapter 4. Thus we can simply view the MATODA problems as an
aggregation problems, and MATODA can be viewed as a special case of MADA problems,
where there exists a target for each attribute. In fact, traditional MADA problems assume
that there exists one utility function for each attribute. Target-oriented decision model
presumes a target-oriented utility. From now on, we shall use MATODA and MADA
interchangeably.

In Chapter 5, several cases of MATODA problems have been introduced and discussed:
(1) general representation; (2) independent case; (3) additive preference case; and (4)
non-additive case based on fuzzy measure and fuzzy integral. In all these four cases,
the importance information associated with different targets/attributes is important as
some targets/attributes are more important than others. In this case, the DM usually
associates different importance weights with different targets/attributes. There are several
approaches to incorporating and/or assigning weights to different targets/attributes [23,
79, 94, 101, 125, 126, 141, 144]. Typical is some form of weighted arithmetic mean, such as
quasi-arithmetic means, weighted arithmetic means, weighted quasi-arithmetic means [23].
These aggregation operations work well in situations in which any differences are viewed
as being in conflict because the operator reflects a form of compromise behavior among
the various targets/attributes [94, 137]. In general, the importance information associated
with different attributes plays a fundamental role in the comparison between alternatives
by overseeing tradeoffs between respective satisfactions of different targets [148, 150].

A concept closely related to the importance of attributes is the priority of attributes [36,
148]. In practical decision making situations, it is usual for DMs to consider different pri-
orities of targets/attributes. A typical example is in the case of buying a car based upon
the attributes of safety and cost. Assume that the DM specifies two targets; Tsafety and
Tcost. In this case, usually we may not allow compensation between the target achieve-
ments of cost and safety. Simply speaking, by saying target Tsafety has a higher priority
than target Tcost, it indicates that we are not willing to tradeoff satisfaction of target Tcost

until perhaps we attain some level of satisfaction of target Tsafety, This kind of MATODA,
so-called prioritized MATODA, will be studied in this chapter.

Many studies have attempted to include different priorities of attributes into MADA
problems in the literature. Generally speaking, approaches to prioritized MADA can
be classified into two categories according to our knowledge. Approaches belonging to
the first class aim to use non-monotonic intersection operator [58, 142] and triangular
norms (t-norms) to model the priority relationships among attributes. For example,
Yager [143] uses the non-monotonic intersection operator to deal with MADA problems
and presents a type of attribute, called second order attribute. Yager [145] uses the
weighted conjunction of fuzzy sets and fuzzy modeling to develop the operators in fuzzy
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information structures. Chen and Chen [30] extend the non-monotonic intersection op-
erator to present a prioritized multi-attribute fuzzy decision making problems based on
the similarity measure of generalized fuzzy numbers. Luo et al [95] give five methods to
construct the priority operators that are used for calculating the global degree of satis-
faction of a prioritized fuzzy constraint problem based on Dubois et al [39]. The second
class of approaches tend to use weighted aggregation operators to model the prioritized
MADA. For example, Yager [148] shows that the prioritization of attributes can be mod-
eled by using importance weights in which the weights associated with the lower priority
attributes are related to the satisfaction of the higher priority attributes. Moreover, they
provide some models that allow for the formalization of these prioritized MADA prob-
lems using both the Bellman-Zadeh paradigm [12] for MADA and the ordered weighted
averaging (OWA) operator. To develop this concept further, Yager [150] proposes a prior-
itized averaging/scoring aggregation operator with a strict/weak priority order by means
of the product t-norm. Furthermore, taking DM’s requirements into account, Wang and
Chen [31, 136] suggest that the weights of the lower priority attributes depend on whether
each alternative satisfies the requirements of all the higher priority attributes or not.

In this study, we focus on the second class of prioritized MADA, i.e., priority weighted
MADA [31, 136, 148, 150]. Although previous research has greatly advanced the priority
weighted MADA, there are still some limitations and drawbacks in previous works.

1. Firstly, in prioritized MADA we will have a prioritization of attributes. Attributes
in the same priority level should allow different tradeoffs. However, as we shall see
in Section 6.3, Yager’s method [148, 150] does not preserve this property.

2. Secondly, as suggested by Yager [148, 150], the product triangular norm is used to
induce the priority weight for each priority level. However, as there are many types
of t-norms available, can any t-norm be used to induce the priority weight? If so,
which type of t-norms are better?

3. Thirdly, DM(s) may have a requirement toward the higher priority levels. The
method of inclusion of DM’s requirements into satisfaction function proposed by
Wang and Chen [31, 136] will be too strict for DM to make decision under prioritized
environments. In addition, due to the vagueness or impreciseness of knowledge, it
is difficult for DMs to estimate their requirements with precision.

Motivated by the above observations, the objective of this paper is to propose a
prioritized aggregation operator to overcome the limitations and drawbacks of previous
works [31, 136, 148, 150]. Toward this end, firstly, similar with Yager [148, 150] and Wang
and Chen [31, 136], the OWA operator will also be used to obtain the degree of satisfaction
for each priority level. To preserve the tradeoffs among the attributes in the same priority
level, the degree of satisfaction for each priority level is viewed as a pseudo attribute.
Secondly, we suggest that roughly speaking any t-norm can be used to model the priority
relationships between the attributes in different priority levels. To keep the slight change
of priority weight, strict Archimedean t-norms perform better in inducing priority weight.
As Hamacher family of t-norms provide a wide class of strict Archimedean t-norms rang-
ing from the product to weakest t-norm [110], Hamacher t-norms are selected to induce
the priority weight for each priority level. Thirdly, considering DM’s requirement toward
the higher priority levels, a benchmark based approach is proposed to induce priority
weight for each priority level, i.e., “the satisfactions of the higher priority attributes are
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larger than or equal to the DM’s requirements”. We suggest that the weights of lower pri-
ority level should depend on the benchmark achievement of all the higher priority levels.
In particular, �Lukasiewicz implication is utilized to compute benchmark achievement for
crisp requirements. In case of fuzzy uncertain requirements, as target-oriented decision
analysis [17, 18] lies in the philosophical root of Simon’s bounded rationality [120] as well
as represents the S-shaped value function [70], fuzzy target-oriented decision analysis [62]
is utilized to obtain the benchmark achievement.

The rest of this chapter is organized as follows. In Section 6.2 we recall some basic
knowledge of aggregation operators in MADA problems operator and t-norms. In Sec-
tion 6.3 we propose a prioritized weighted aggregation operator based on OWA operator
and t-norms, we also compare our method with Yager’s prioritized aggregation opera-
tor [148, 150]. In Section 6.4, we propose a benchmark based approach to induce the
priority weight for each priority level by taking DM’s requirement toward higher priority
levels in account. Considering the uncertainties of DM’s requirements, crisp and fuzzy
uncertain benchmarks are studied. Comparative analysis with [31, 136] are also given
to show the effectiveness and advantages of our proposed approach. Finally, we provide
some concluding remarks and future work in Section 6.5.

6.2 Theoretical Background

In this section, we shall recall some basic knowledge about aggregation operators in
MADA problems operator and t-norms.

6.2.1 Aggregation in multi-attribute decision analysis

A MADA problem consists of a set of alternatives A = {A1, · · · , Am, · · · , AM} and
a set of attributes X = {X1, · · · , Xn, · · · , XN} to evaluate each alternative and rank or
select the best alternatives. Assume that the satisfaction degrees with respect to each
attribute are denoted as cm

n , where ∀cm
n ∈ [0, 1]. By using this, an aggregation function F

is used to aggregate each cm
n into an overall degree of satisfaction Val(Am) with respect

to the set of criteria C such that

Val(Am) = F (cm
1 , · · · , cm

n , · · · , cm
N) . (6.1)

The choice of the form for F models the DM’s desired imperative and individual
preference for combining the criteria [94, 148]. As suggested by Bellman and Zadeh [12],

1. if the relationship is that we desire all attributes be satisfied then we can use
Val(Am) = minn[cm

n ];

2. when we need only one attribute satisfied then we can model this as Val(Am) =
maxn[cm

n ].

Yager [141] introduced the ordered weighted averaging (OWA) operator to provide
a method for aggregating multiple inputs that lie between the min and max operators.
An OWA operator of dimension N is a mapping F : RN → R that has an associated
weighting vector W = (w1, · · · , wn, · · · , wN) such that

wn ∈ [0, 1],
N∑

n=1

wn = 1, for n = 1, 2, · · · , N.
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and

OWA (cm
1 , · · · , cm

n , · · · , cm
N) =

N∑
n=1

bm
n · wn

where bm
n is the n-th largest element in the collection X .

The OWA operator provides a class of averaging operators parameterized by the
weighting vector W . The type of average is determined by the weighting vector W .
Some notable examples are

1. If W = W∗ where wN = 1 and wn = 0 for n �= N , then

OWA (cm
1 , · · · , cm

n , · · · , cm
N) = min

n
[cm

n ]

2. If W = W ∗ where w1 = 1 and wn = 0 for n �= 1, then

OWA (cm
1 , · · · , cm

n , · · · , cm
N) = max

n
[cm

n ]

3. If W = WN where wn = 1
N

, then

OWA (cm
1 , · · · , cm

n , · · · , cm
N) =

1

N

N∑
n=1

cm
n

Central to the OWA operator is how to obtain OWA weights. Many techniques are
available to calculate the OWA weights [44]. We could resolve a mathematical program-
ming problem [44, 138, 139], associate it with a linguistic quantifier [44, 141], or obtain
OWA weights via analytic method [43]. In the first part, Yager [141] introduced two char-
acterizing measures associated with the weighting vector W of an OWA operator. The
first one, orness measure of the aggregation, is defined as

Ω = orness(W ) =
N∑

n=1

N − n

N − 1
· wn

and it characterizes the degree to which the aggregation is like an or operation. It
is clear that Ω(W ) ∈ [0, 1] holds for any weighting vector. Recently, the “orness” of
OWA operator is also called “attitudinal character” [147, 149], as it associates with the
subjective preference in decision making. In this study, we prefer using “attitudinal
character”.

The second one, the dispersion measure of the aggregation, is defined as

disp(W ) = −
N∑

n=1

wn · ln wn

and it measures the degree to which W takes into account all information in the aggre-
gation.

O’Hagan [108] suggested a maximum entropy method to determined OWA operator
weights, which formulates the OWA operator weight problem as a constrained nonlinear
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optimization model with a predefined degree of orness (attitudinal character) as its con-
straint and the entropy as its objective function. This approach is based on the solution
of the following mathematical programming problem:

Maximize −
N∑

n=1

wn · ln wn (6.2a)

subject to

N∑
n=1

N − n

N − 1
· wn = Ω, 0 ≤ Ω ≤ 1 (6.2b)

N∑
n=1

wn = 1, wn ∈ [0, 1], n = 1, 2, · · · , N. (6.2c)

An Operations Research software package called LINDO1 can be used to solve this
mathematical programming problem.

6.2.2 Triangular norms

Definition A triangular norm (t-norm for short) T is a mapping from [0, 1]2 to [0, 1],
which is increasing in both arguments, commutative, associative and fulfilling the bound-
ary condition: ∀x ∈ [0, 1], T(x, 1) = x [9, 36, 110].

The definition of t-norms does not imply any kind of continuity. Nevertheless, such a
property is desirable from theoretical as well as practical points of view.

Definition A t-norm is is said to be continuous if it is continuous as a two-place function.

T-norms can be classified as follows:

• A t-norm T is called Archimedean if it is continuous and T(x, x) < x, for all x ∈
(0, 1).

• An Archimedean t-norm T is called strict if it is strictly increasing in each variable
for x, y ∈ (0, 1).

• An Archimedean t-norm T is called nilpotent if it is not strictly increasing in each
variable for x, y ∈ (0, 1).

Typical examples of t-norm operators are listed as below [78, 79, 95].

1. Minimum operator: TM(x, y) = min(x, y)

2. Product operator: TP (x, y) = x · y

3. �Lukasiewicz operator: TL(x, y) = max(x + y − 1, 0)

These basic t-norms have some remarkable properties. The minimum t-norm TM is the
largest t-norm. The product t-norm TP and the �Lukasiewicz t-norm TL are prototypical
examples of two important subclasses of t-norms (of strict Archimedean and nilpotent
Archimedean t-norms, respectively).

1http://www.lindo.com/.
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6.3 Prioritized Multi-Attribute Target-Oriented De-

cision Analysis

Let us consider a multi-attribute target-oriented decision matrix, as shown in Chap-
ter 2. Assume that the set of alternatives is A = {A1, · · · , Am, · · · , AM}, and X =
{X1, · · · , Xn, · · · , XN} is the set of attributes. The consequence on attribute Xn of
alternative Am is expressed as Xn(Am), which can be shortened to Xm

n when there
is no possibility of confusion. In addition, a DM has specified N targets, such that
T = (T1, · · · , Tn, · · · , TN). For an alternative Am, we obtain the probability of meeting
target for each attribute, denoted as

Prm = (Prm
1 , · · · , Prm

n , · · · , Prm
N).

In the following, for denotational simplify, we shall use (·) to represent the m alternative.
Assume that a set of attributes X are partitioned into Q distinct priority levels,

H = {H1, · · · , Hq, · · · , HQ}, such that Hq = {Xq1, · · · , Xqk, · · · , XqNq}, where Nq is the
attributes number in priority level Hq, and Xqk is the k-th target in priority level Hq. We
also assume a prioritization of these priority levels is H1 � · · · � Hq � · · · � HQ. The
prioritization of different targets indicates that we have a prioritization of the attributes.
From now on, we shall use the prioritization of targets and prioritization of attributes
interchangeably.

In this prioritization, we have for each attribute Xqk, a value Prqk indicating the target
achievement regarding attribute Xqk. Table 6.1 shows the priority hierarchy structure of
the set of attributes X.

Table 6.1: Priority hierarchy of a set of attributes X
Priority level Attributes

H1 X11, · · · , X1k, · · · , X1N1

...
...

Hq Xq1, · · · , Xqk, · · · , XqNq

...
...

HQ XQ1, · · · , XQk, · · · , XQNQ

Yager [148, 150] classified this priority hierarchy into two cases:

strict priority order if each priority level has only one attribute or one target, i.e.
Nq = 1 for q = 1, · · · , Q;

weakly ordered prioritization if more one target/attribute exists in each priority level.

6.3.1 A prioritized OWA aggregation operator

As an OWA operator is similar to a weighted mean, but with the values of the variables
previously ordered in a decreasing way [79, 91]. Thus, contrary to the weighted means, the
weights are not associated with concrete variables. Consequently, OWA operators satisfy
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symmetry. Moreover, OWA operators generalize the arithmetic mean and the median, and
they also exhibit some other interesting properties such as monotonicity, idempotence, and
compensativeness (i.e., the value of an OWA operator is located between the minimum
and the maximum values of the variables). Due to these properties, the OWA operator
will be used to obtain degree of satisfaction for each priority level.

Given DM’s attitudinal character Ωq toward priority level Hq, according to O’Hagan’s
OWA weight determination method as shown in Eq. (6.2), we can associate with priority
level Hq an OWA weighting vector such that Uq = (uq1, · · · , uqk, · · · , uqNq), where uqk ∈
[0, 1] and

∑Nq

k=1 uqk = 1. In addition, let B
(·)
q = (b

(·)
q1 , · · · , b

(·)
qNq

) be the reordered vector of

Pr(·)
q = (Pr

(·)
q1 , · · · , Pr

(·)
qNq

), where b
(·)
qk is the k-th largest in priority level Hq. Using this we

can calculate the satisfaction degree in priority level Hq for an alternative as

Sat(·)
q = OWAΩq [Hq]

=

Nq∑
k=1

b
(·)
qk · uqk

(6.3)

To model the priority relationship, as suggested by Yager [148, 150], the lower priority
targets/attributes will become important with the higher degree of satisfaction of higher
priority level, i.e., the priority weights are dependent upon the satisfaction of higher
priority levels. Motivated by this observation, we will associate with each priority level
a priority weight Z

(·)
q , which is derived from the degree of satisfaction of all the higher

priority levels. Furthermore, as t-norms do not allow low values to be compensated by
high values [9, 36, 110], t-norms are used to induce the priority weight Z

(·)
q for each priority

level.
In particular, for priority level H1, we have Z

(·)
1 = 1. For priority level H2, we express

the priority weight as Z
(·)
2 = T

(
Z

(·)
1 , Sat

(·)
1

)
. For priority level H3, we express the priority

weight as Z3 = T

(
Z

(·)
2 , Sat

(·)
2

)
. More succinctly and generally, we can induce the priority

weight for priority level Hq as

Z(·)
q = T

(
Z

(·)
q−1, Sat

(·)
q−1

)
= T

q−1
l=0 Sat

(·)
l

(6.4)

with the understanding that Z
(·)
0 = Sat

(·)
0 = 1.

We now see that for priority level Hq, we have a priority weight Z
(·)
q . In addition, for

each attribute in priority level Hq, we have a local OWA weight. To preserve the tradeoffs
between attributes in the same priority level, we shall view the degree of satisfaction of
each priority level as a pseudo attribute. In this way, we can get an aggregated value for
each alternative under these prioritized attributes as 2

Val(·) =

Q∑
q=1

Z(·)
q · Sat(·)

q (6.5)

2It should be emphasized that Sat(·)q and Z
(·)
q are used to denote the satisfaction degree and the

priority weight in the q-th priority level for any alternative. If we use Am to express the alternative, we
can express them as Satm

q and Zm
q , respectively.
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No matter what type of t-norms is selected, the priority weight Z
(·)
q of a priority level

depends upon the satisfaction of all the higher priority levels, such that Z
(·)
q = Tq−1

l=0 Sat
(·)
l ,

thus poor satisfaction of all the higher priority levels leads to lower priority weights for
the current priority level. In addition, the OWA operator are used to aggregate the
criteria in the same priority level. Based on these two features, we shall call the proposed
aggregation operator as Prioritized OWA operator.3

The prioritization of the attributes induces a priority weighting schema such that the
attributes gain more importance only if all the higher priority attributes are higher sat-
isfied. If one wants to raise the global degree of satisfaction of all attributes, a attribute
with a relatively high priority level must be sufficiently satisfied prior to the attributes
in relatively low priority levels. This is accordance with the meaning of the word prior-
ity in English dictionaries [111]. In fact, the concept of priority has the following two
characteristics [95]:

1. It measures the relative importance among things in a group to determine only their
relative precedence, and

2. the higher the priority of one thing, the earlier the thing should be handled or the
more preferred is the thing.

Consequently, the higher the priority of level, the more preference should be given
when finding a solution. That is precisely the reason why this kind of aggregation is
called prioritized aggregation.

6.3.2 Properties of proposed prioritized OWA operator

Proposition 6.3.1. The proposed prioritized aggregation operator is monotonic regarding
any attribute Xlk.

Proof. For monotonicity to hold, for any attribute Xlk we have to prove ∂Val(·)
∂ Pr

(·)
lk

≥ 0.

Not all the Sat(·)
q and Z

(·)
q change with Pr

(·)
lk , thus we express Val(·) as

Val(·) =

l−1∑
i=1

Z
(·)
i Sat

(·)
i + Z

(·)
l Sat

(·)
l +

Q∑
j=l+1

Z
(·)
j Sat

(·)
j

And then we can obtain ∂Val(·)
∂ Pr

(·)
lk

as

∂Val(·)
∂ Pr

(·)
lk

= 0 +
∂Sat

(·)
l

∂ Pr
(·)
lk

Z
(·)
l +

Q∑
j=l+1

[
∂Z

(·)
j

∂ Pr
(·)
lk

Sat
(·)
j

]

=
∂Sat

(·)
l

∂ Pr
(·)
lk

Z
(·)
l +

Q∑
j=l+1

[
∂Z

(·)
j

∂Sat
(·)
l

∂Sat
(·)
l

∂ Pr
(·)
lk

Sat
(·)
j

]

Since we use the OWA operator to obtain the degree of satisfaction for each priority

level and OWA is monotonic, thus we know that ∂Sat(·)
l

∂ Pr
(·)
lk

≥ 0.

3It should be noted that each priority level Hq may have a different attitudinal character Ωq. Here for
purposes of simplicity, we assume that each priority level Hq has the same attitudinal character Ωq = Ω.
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Since Z
(·)
j = T

(
Z

(·)
j−1, Sat

(·)
j−1

)
≥ 0 and t-norm increases in both arguments, thus

∂Z
(·)
j

∂Sat(·)
l

≥ 0. The product of monotonic operators is also monotonic, hence we know that

∂Val(·)
∂ Pr

(·)
lk

≥ 0.

Proposition 6.3.2. Our proposed prioritized OWA operator guarantees monotonicity re-
garding DM’s attitudinal character Ω.

Proof. To prove our proposed prioritized OWA operator is monotonic regarding DM’s
attitudinal character, we have to prove that

∂Val(·)
∂Ω

=
∂
(∑Q

q=1 Z
(·)
q Sat(·)

q

)
∂Ω

≥ 0

We know that

∂
(∑Q

q=1 Z
(·)
q Sat(·)

q

)
∂Ω

=

Q∑
q=1

(
Sat(·)

q

∂Z
(·)
q

∂Ω
+ Z(·)

q

∂Sat(·)
q

∂Ω

)

According to the properties of OWA operator, it is clear that
∂Sat(·)

q

∂Ω
≥ 0 [52]. In addition,

we know Zq(·) = T

(
Z

(·)
q−1, Sat

(·)
q−1

)
and t-norm increases in both arguments, thus

∂Z
(·)
q

∂Ω
≥ 0,

hence ∂Val(·)
∂Ω

≥ 0.

6.3.3 Illustrative examples

We shall apply the proposed prioritized OWA aggregation operator to deal with a car
selection problem, adapted from [31, 136].

Example Assume that John wants to buy a new car considering the following attributes
“X1 Safety”, “X2 Price”, “X3 Appearance” and “X4 Performance”. We also
assume that there are four alternatives of cars A1, A2, A3, A4 and the degrees in which
each alternative satisfies each attribute are shown in Table 6.2. We also assume that the
priority hierarchy specified by John is H1 = {X1}, H2 = {X2}, H3 = {X3, X4}, and

H1 � H2 � H3.

For purposes of simplicity, for each priority level Hq we shall specify the same atti-
tudinal character, such that Ωq = Ω, where q = 1, 2, 3. We assume that Ω = 0.5. The
minimum t-norm TM is the largest t-norm. The product t-norm TP and the �Lukasiewicz
t-norm TL are prototypical examples of two important subclasses of t-norms (of strict
Archimedean and nilpotent Archimedean t-norms, respectively). In this example, these
three prototypical t-norms are used to induce the priority weights. Taking car A1 as an
example. We first consider product t-norm TP , we proceed as follows:
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Table 6.2: Satisfaction degree of each attribute regarding each alternative: car selection

Alternatives
Attributes

X1 X2 X3 X4

A1 0.95 0.60 0.70 0.80

A2 0.91 0.75 0.50 0.90

A3 0.95 0.70 0.80 0.70

A4 0.945 0.75 0.30 0.70

1. We first calculate the degree of satisfaction for each priority level via OWA operator
as follows:

Sat1
1 = OWA0.5{Pr1

11} = OWA0.5{0.95} = 0.95
Sat1

2 = OWA0.5{Pr1
12} = OWA0.5{0.60} = 0.6

Sat1
3 = OWA0.5{Pr1

13, Pr1
14} = OWA0.5{0.70, 0.80} = 0.75

2. Then, according to Eq. (6.4), we calculate the priority weight for each priority level
by using product t-norm as follows:

Z1
1 = TP (Z1

0 , Sat1
0) = TP (1, 1) = 1

Z1
2 = TP (Z1

1 , Sat1
1) = TP (1, 0.95) = 0.95

Z1
3 = TP (Z1

2 , Sat1
2) = TP (0.95, 0.6) = 0.57

3. According to Eq. (6.5), we obtain the global prioritized aggregated value as follows:

Val(A1) =
∑3

q=1 Z1
q · Sat1

q = 1 · 0.95 + 0.95 · 0.6 + 0.57 · 0.75 = 1.9475

Similarly, the prioritized aggregation values for cars A2, A3, and A4 by product t-norm
can be obtained. We can also obtain the aggregated value with Minimum t-norm and
�Lukasiewicz t-norm, as shown in Table 6.3. From Table 6.3, it is clearly seen that car A3

is the best choice whatever the t-norm is. The ranking order of prioritized aggregation
values are as A3 � A2 � A4 � A1, where � denotes “prefer to”.

Table 6.3: Prioritized aggregation with different t-norms under attitudinal character Ω =
0.5

T-norms
Alternatives

A1 A2 A3 A4

Minimum t-norm TM 1.9700 2.1175 2.1400 2.0286

Product t-norm TP 1.9475 2.0703 2.1137 2.0080

�Lukasiewicz t-norm TL 1.9325 2.0545 2.1025 2.0012
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6.3.4 Discussion: Choosing a suitable t-norm

In the previous example, we used minimum t-norm TM , �Lukasiewicz t-norm TL and
product t-norm TP to induce the priority weight for each priority level. As mentioned
previously, in general any t-norm can be used to induce the priority weight. Are there
any differences between these t-norms? Which type of t-norms perform better in inducing
priority weight? To illustrate this point, we shall discuss this topic from the following two
aspects.

A Special Case
Firstly, let us consider a special case, where only two levels of priority hierarchy
exists, i.e. Q = 2. We observed that in this case, no matter which t-norm is used,
we always obtain the priority weight Z

(·)
1 = 1 for priority level H1 and a priority

weight Z
(·)
2 = Sat

(·)
1 for priority level H2. The main reasons for this are as follows:

1. we assume there exists a pseudo hierarchy level H0 with Z
(·)
0 = Sat

(·)
0 = 1.

2. Moreover, any t-norm has the property such that T(1, x) = x.

An Example
Assume that there are two alternatives A1 and A2. For the q-th priority level, the
priority weight and degree of satisfactions are shown in Columns 2-3 of Table 6.4.
According to Eq. (6.4) and the three typical t-norms, we can calculate three induced
priority weights for priority level q + 1, as shown in Columns 4-6 of Table 6.4.

Table 6.4: The priority weight and degree of satisfactions of q-th priority level and its
induced priority weights

Alt.
q-th priority level Induced priority weights Zq+1

Priority weight Zq Satisfaction degree Minimum TM �Lukasiewicz TL Product TP

A1 0.3 0.5 0.3 0 0.15

A2 0.3 0.6 0.3 0 0.18

It is clear that the priority weights of q + 1-th priority level induced by Minimum
t-norm and �Lukasiewicz t-norm do not reflect the changes of the priority weight and
degree of satisfactions of q-th priority level. We want to preserve the slight change
of priority weight as well as do not want to ignore the slight change, thus non-
Archimedean t-norms and nilpotent t-norms are not suitable to induce the priority
weight for each priority level. The product t-norm is the prototypical example of
strict Archimedean t-norms and can catch the slight change of of priority weight.
This is perhaps the main reason why Yager [150] and Wang and Chen [31, 136] both
use the product t-norm to induce the priority weight.

Based on the above observations, strict Archimedean t-norms perform well in reduc-
ing the priority weight. As Hamacher family of t-norms provide a wide class of strict
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Archimedean t-norms ranging from the product to weakest t-norm [110], we shall use
Hamacher parameterized t-norm to induce the priority weight such that

T
γ
H =

Z
(·)
q−1Sat

(·)
q−1

γ + (1 − γ)
(
Z

(·)
q−1 + Sat

(·)
q−1 − Z

(·)
q−1Sat

(·)
q−1

)
= T

γ
H

q−1
l=0 Sat

(·)
l

(6.6)

where γ ≥ 0
If γ = 0, then we can obtain the priority weight inducing method as

Z(·)
q =

Z
(·)
q−1Sat

(·)
q−1

Z
(·)
q−1 + Sat

(·)
q−1 − Z

(·)
q−1Sat

(·)
q−1

(6.7)

When γ = 1, the induced priority weight is represented as

Z(·)
q = Z

(·)
q−1Sat

(·)
q−1 =

q−1∏
l=0

Sat
(·)
l (6.8)

with the understanding that Z
(·)
0 = Sat

(·)
0 = 1.

Now let us reconsider the example as shown in Table 6.2 via the Hamacher parame-
terized t-norm. According to the three steps of our proposed prioritized aggregation, we
obtain the prioritized aggregated values as shown in Fig. 6.1, where γ is set to ∈ [0, 1000].

Obviously Tγ
H is non-increasing with respect to γ [110]. In addition, the ranking order

of prioritized aggregation values may be different with different γ values. From Fig. 6.1, it
is clearly that the prioritized aggregation values are non-increasing with respect to γ. In
our example, there are two γ values changing the ranking order of the four alternatives,
γI ≈ 16.8295 and γII ≈ 145.8237. Thus five ranking orders can be obtained:

• When 0 ≤ γ < γI, the ranking result is A3 � A2 � A4 � A1;

• When γ = γI, the ranking result is A3 � A2 ∼ A4 � A1;

• when γI < γ < γII, the ranking result is A3 � A4 � A2 � A1;

• When γ = γII, the ranking result is A3 ∼ A4 � A2 � A1;

• when γII < γ ≤ 1000, the ranking result is A4 � A3 � A2 � A1.

Remark From Fig. 6.1 we know that different γ values may lead to different ranking
orders. Then a natural question that arises is how the DM selects optimal alternative with
different γ values. From the theoretical point of view, we show that the strict Archimedean
t-norms perform well in reducing the priority weight for each priority level. As Hamacher’s
family of t-norms supplies a wide class of t-norm operators ranging from the probabilistic
product to the weakest t-norm, extending the product t-norm into Hamacher’s family of
t-norms provides a generalization of previous research. In our prioritized aggregation, the
γ value can be viewed as an index to represent strongness of the prioritization. The larger
the γ value is, the stronger of prioritization the DM prefers. From the applicable point of
view, it is not easy to specify a γ value. In fact, we can do sensitivity analysis of prioritized
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aggregation with respect to different γ values. When DM’s preferred γ value falls into
a range, we can approximately know the best alternative. If the DM does not provide
his/her subjective preference, two commonly used cases are γ = 0 and γ = 1 (product
t-norm). We can set γ = 1 for default.
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Figure 6.1: Prioritized aggregated values by means of Hamacher’s t-norm: γ ∈ [0, 1000]

6.3.5 Comparison with previous research

To illustrate the effectiveness and advantages of our formulation of prioritized ag-
gregation, we shall compare our approach with previous work. Yager [150] proposed a
prioritized aggregation operator according to the following three steps:

1. To calculate the degree of satisfaction for each priority level by OWA operator as
follows:

Sat(·)
q = OWAΩ[Hq]

2. The product t-norm is used to calculate the priority weight Z
(·)
q for priority level Hq

Z(·)
q = TP

(
Z

(·)
q−1, Sat

(·)
q−1

)
=

q−1∏
l=0

Sat
(·)
l (6.9)

where Z
(·)
0 = Sat

(·)
0 = 1.
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3. To calculate the overall degree of satisfaction

(a) For strict priority order, where Nq = 1 and q = 1, · · · , N , an averaging aggre-
gation is used as follows:

Val(·) =

∑Q
q=1

[∑Nq

k=1 Z
(·)
q Pr

(·)
qk

]
∑Q

q=1 Z
(·)
q

⇒
∑Q

q=1 Z
(·)
q Pr(·)

q∑Q
q=1 Z

(·)
q

(6.10)

(b) For weak priority order, a scoring aggregation is used as follows:

Val(·) =

Q∑
q=1

[
Nq∑
k=1

Z(·)
q Pr

(·)
qk

]
(6.11)

In the first step of both Yager’s prioritized aggregation operator and our prioritized
OWA operator, the OWA operator is used to obtain the degree of satisfaction for each
priority level. To find out some limitations of Yager’s prioritized operator, we compare
our operator with Yager’s operator from the following three aspects:

T-norm selection
In Yager’s aggregation operator, the product t-norm is used to induce the priority
weight for each priority level. As mentioned previously, we suggested that roughly
speaking, any t-norm can be used to induce the priority weight for each priority
level. To preserve the slight change of priority weight as well as do not want to
ignore the slight change, we suggest using Hamacher parameterized t-norm. In this
view, Yager’s operator is one special case of our operator.

Tradeoffs of attributes in the same priority level

Let us consider a special case. If the DM does not specify the priority hierarchy, it
means that the DM agrees the tradeoffs among all the criteria. In this case, only
one priority level is considered, all the criteria have the same priority level, we shall
use Pn instead of P1n to represent the n-th criterion. Our proposed prioritized OWA
operator Eq. (6.5) reduces to the OWA operator [141] such that

Val(·) = PRI-OWA(H1)

= OWAΩ

(
Pr

(·)
1 , · · · , Pr(·)

n , · · · , Pr
(·)
N

)
.

(6.12)

Whereas, Yager’s prioritized aggregation operator reduces to the summation of all
the degrees of satisfactions of all the attributes, such that

Val(·) =

N∑
n=1

Pr(·)
n (6.13)

In this regard, Yager’s prioritized aggregation operator only allows summation trade-
offs for each priority level, whereas our approach allows OWA tradeoffs.
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Averaging or Scoring Aggregation

Yager [150](p.267) pointed out that under strictly ordered prioritization (only one
criterion in each priority level), the prioritized aggregation should be represented as
the normalized form; under weakly ordered prioritization, the prioritized aggregation
should be represented as the scoring type. The main reason is that the normalized
form under weakly ordered prioritization dose not always guarantee monotonicity.

However, as the strictly ordered prioritization and weakly ordered prioritization are
just two special cases of the prioritization hierarchy, hence they should have the
same properties and type. To keep the general properties of aggregation operators
as well as to keep the original priority changes, similar with [22, 77, 78] we shall use
the scoring type of aggregation.

6.4 Including Benchmark into Prioritized OWA Ag-

gregation

We now turn to a possible variation of our formulation for prioritized OWA aggregation

Val(·) =

Q∑
q=1

Z(·)
q Sat(·)

q

where
Z(·)

q = T
γ
H

(
Z

(·)
q−1, Sat

(·)
q−1

)
= T

γ
H

q−1
l=0 Sat

(·)
l

and
Satq(·) = OWAΩ[Hq].

In this formulation, the priority weight Z
(·)
q directly depends upon the satisfactions of

the attributes in all higher priority levels. As suggested by Yager [148], as a variation of

this, we can let Z
(·)
q depend on some function of the satisfactions of the higher priority

attributes. Without loss of generality, we assume that for any priority level, the DM
specifies a requirement. In particular, we can let E : [0, 1] → [0, 1] such that E(0) = 0,
E(1) = 1, and E(x) ≥ E(y) if x ≥ y. Using this we can express

Z(·)
q = T

γ
H(Z

(·)
q−1, E(Sat

(·)
q−1))

= T
γ
H

(
E
(

Sat
(·)
0

)
, E
(

Sat
(·)
1

)
, · · · , E

(
Sat

(·)
q−1

))
= T

γ
H

q−1
l=0 E

(
Sat

(·)
1

) (6.14)

Roughly speaking, we can view E
(

Sat
(·)
1

)
as some kind of effective or pseudo satisfac-

tion. Here then the score value associated with attributes can be different in its evaluation
of induced priority weights and the satisfaction degree used in the aggregation. With the
introduction of the use of function E to transform levels of satisfaction, we are able to
model the linguistically expressed DM’s requirements by means of Zadeh’s paradigm of
computing with words [165, 166]. Due to this observation, DM’s requirement can be
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viewed as benchmark or reference level for the degrees of satisfaction of each priority
level, i.e., “the satisfactions of the higher priority criteria are larger than or

equal to the DM’s requirements” expressed as E

(
Sat(·)

q ≥ Gq

)
= E

(
Sat

(·)
1

)
. We

shall consider two possible DM’s requirements such that

1. The DM specifies a certain requirement Gq for priority level Hq,

2. The DM specifies an uncertain requirement G̃q for priority level Hq.

In the following, we will deal with these two types of benchmarks respectively.

6.4.1 Crisp requirements

Before discussing crisp requirements, we shall recall some knowledge of R-implications.

R-implication

Definition An implication operator I is a mapping: [0, 1]2 → [0, 1], such that [24, 110]

• I is non-increasing with respect to its first argument;

• I is non-decreasing with respect to its second argument;

• I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

Basically, there are many implication operators. We shall use the R-implications.
R-implications I are based on the idea that implication reflects partial ordering on propo-
sition, i.e., I(x, y) = 1 if and only if x ≤ y. In the standard semantics of t-norm based
fuzzy logics, where conjunction is interpreted by a t-norm, the residuum plays the role of
implication (often called R-implication). R-implications can be obtained by residuum of
a continuous t-norm T [110] as follows,

x → y = sup{z ∈ [0, 1]|T(x, z) ≤ y}, for all x, y, z ∈ [0, 1]. (6.15)

These implications arise from the intutionistic logic formalism [24]. Typical examples of
R-implication operators are

1. Kleene-Dienes implication:

I(x, y) = max(1 − x, y) (6.16)

2. �Lukasiewicz implication:

I(x, y) = min(1 − x + y, 1) (6.17)

3. Gödel implication:

I(x, y) =

{
1, if x ≤ y,
y, otherwise.

(6.18)
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Benchmark based on R-implication

If both the degree of satisfaction and the requirement are both crisp numbers, we

can implement E

(
Sat(·)

q ≥ Gq

)
using the strict implication operator. It is clear that this

will be very sensitive to small changes of both arguments. However, we can still sustain
the benchmark character if we use an R-implication operator to transform the degrees of
satisfaction. As �Lukasiewicz implication is the one that satisfies most of the properties
pertaining to the logical implication operators [110], in this study �Lukasiewicz implication
was used as a technique to compute benchmark satisfaction for crisp requirements. Given
DM’s requirement Gq of priority level Hq, according to �Lukasiewicz implication Eq. (6.17),
we can define

E

(
Sat(·)

q ≥ Gq

)
= Gq → Sat(·)

q

= min{1 − Gq + Sat(·)
q , 1}

(6.19)

It is of interest noting that in Section 6.3, Z
(·)
q directly depends on the satisfaction of

higher priority criteria. In this case, the DM’s requirement can be modeled as Gq = 1.
According to Eq. (6.19), we know that

E

(
Sat(·)

q ≥ Gq

)
= min{1 − Gq + Sat(·)

q , 1}

= min{Sat(·)
q , 1}

= Sat(·)
q

6.4.2 Uncertain requirements

Due to the vagueness or impreciseness of knowledge, it is difficult for DM(s) to estimate
their requirements with precision. In many applications, fuzzy subsets [162] provide a very
convenient object for the representation of uncertain information [151]. The subjective
assessments provided by DM(s) are usually conceptually vague, with uncertainty that
is frequently represented in linguistic forms [129]. To help people easily express their
subjective assessments, the linguistic variables [163, 167] are used to linguistically express
requirements.

A fuzzy number G̃ can be conveniently represented by the canonical form [76]

μ eG(g) =

⎧⎪⎪⎨⎪⎪⎩
f eG(g), g1 ≤ g ≤ g2,

1, g2 ≤ g ≤ g3,
h eG(g), g3 ≤ g ≤ g4,

0, otherwise.

(6.20)

where μ eG(g) denotes the membership function of fuzzy number G̃, f eG(g) is a real-valued
function that is monotonically increasing, and h eG(g) is a real-valued function that is mono-
tonically decreasing. In addition, like most applications, we assume that functions f eG(g)

and h eG(g) are continuous. If f eG(g) and h eG(g) are linear functions then G̃ is called a trape-

zoidal fuzzy number and denoted by G̃ = (g1, g2, g3, g4). In particular, G̃ becomes a
triangular fuzzy number if g2 = g3.
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Fuzzy target-oriented decision analysis is used to compute E(Satq(·)) for uncertain

requirements G̃q. Firstly, we define

E

(
Sat(·)

q ≥ G̃q

)
= Pr

(
Sat(·)

q ≥ G̃q

)
(6.21)

where Pr
(

Sat(·)
q ≥ G̃q

)
denotes the probability of “meeting the fuzzy benchmark G̃q”.

Then we can obtain the probability of “meeting the fuzzy benchmark G̃q” as follows

Pr
(

Satq(·) ≥ G̃q

)
=

∫ Satq(·)
0

μ eG(g)dg∫ g4

g1
μ eG(g)dg

(6.22)

Remark It is of interest noting that in a different context, Carlsson and Fullér [24]
concentrated on the issue of linguistic importance weighted aggregations, where the im-
portance is interpreted as benchmarks. In their study, when both importance weights
and ratings of criteria are given as crisp numbers, �Lukasiewicz implication is also used
to compute the benchmark achievement. In case of fuzzy numbers, a possibilistic ap-
proach is presented to compute the benchmark achievement. In addition, Carlsson and
Fullér’s method only focus on symmetric triangular fuzzy numbers. The benchmark used
in our aggregation operator has similar but different meaning with Carlsson and Fullér’s
method [24]. Firstly, as there are various types of fuzzy numbers, specifying only symmet-
ric triangular fuzzy numbers will not be appropriate in practical applications. Secondly,
instead of the possibility interpretation, the benchmark has a probability interpretation
lying in the philosophical root of Simon’s bounded rationality [120] as well as represents
the S-shaped value function [70]. Finally, benchmark in Carlsson and Fullér’s work [24]
and ours has different meanings. Carlsson and Fullér viewed importance weight as bench-
mark of criteria satisfaction, whereas our method considered DM’s requirements.

6.4.3 A comparative analysis

To show the effectiveness and advantages of our approach, we shall use the same
example (car selection) introduced in Section 6.3 to compare our approach with related
research.

Wang and Chen’s approach

Wang and Chen [31, 136] suggested that the weights of lower priority criteria depends
on whether each alternative satisfies the requirements of all the higher priority criteria
or not . They proposed two benchmark achievement according to two cases.

1. For criteria in priority level Hq, a degree of satisfaction Sat(·)
q is calculated as follows

Sat(·)
q = OWAΩ[Hq] (6.23)

2. Then an importance weight Z
(·)
q for priority level Hq by means of product t-norm is

calculated as follows

Z(·)
q =

q−1∏
l=0

E(Sat
(·)
l ) = Zq−1(·)E(Sat

(·)
q−1) (6.24)
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where Z
(·)
0 = Sat

(·)
0 = 1. To obtain the benchmark achievement E(Sat(·)

q ), Wang and
Chen considered two cases:

(a) The DM wants that a good solution must have at least Gq degree of satisfaction
such that

E(Sat(·)
q ) =

{
1, if Sat(·)

q ≥ Gq,
0, otherwise.

(6.25)

(b) The decision maker wants that a good solution must have at least Gq and as
high as possible degree of satisfaction such that

E
(

Sat(·)
q

)
=

{
Satq, if Sat(·)

q ≥ Gq,
0, otherwise.

(6.26)

3. To calculate the overall degree of satisfaction as follows

Val(·) =

Q∑
q=1

Z(·)
q Sat(·)

q (6.27)

A comparative analysis

In both our approach and Wang and Chen’s work [31, 136], OWA operator is used to
obtain the degrees of satisfaction for each priority level. For purposes of simplicity, we
shall assume that DM’s attitudinal character Ω = 0.5. The main difference between our
approach and Wang and Chen are twofold.

1. Firstly, more than product t-norm, we proposed using Hamacher parameterized t-
norm to induce the priority weight for each priority level. As product t-norm is one
special case of Hamacher parameterized t-norm where γ = 1, and in previous section
we have already discussed the t-norm selection problem, here in order to distinguish
the main difference between our approach from Wang and Chen’s approach, we shall
just use product t-norm.

2. Secondly, instead of strict threshold method, we propose using �Lukasiewicz impli-
cation to compute benchmark achievement. In addition, due to the uncertainty of
DM’s requirements, target-oriented decision decision analysis is used to solve the
fuzzy requirement.

Let us reconsider the same example as shown in Table 6.2. Assume that John wants
to buy a car having a requirement for the satisfaction of criterion safety. We also assume
that John specifies his attitudinal character as Ω = 0.5. Considering the uncertainty of
requirement, we do comparative analysis from the following three aspects.

Benchmark: at least G1

Assume that John specifies his requirement toward the criterion safety as G1, here
specify three possible values, as shown in the first column of Table 6.5. According
to Wang and Chen’s approach (Eq. (6.23), Eq. (6.24), Eq. (6.25) and Eq. (6.27)),
we can obtain the aggregation values with different G1 values, as shown in Columns
2-5 of Table 6.5. With the three steps of our prioritized OWA aggregation operator
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and the benchmark achievement Eq. (6.19) we can easily obtain the aggregation
values as shown in Columns 6-9 of Table 6.5.

Looking at the second row of Table 6.5 where G1 = 0.91, it is clearly seen that both
Wang and Chen’s approach and our approach get the same result as A2 � A3 �
A4 � A1. Secondly, we consider the case G1 = 0.96, the fourth row of Table 6.5.
We can see that the prioritized aggregation values are different. Taking alternative
A1 and A3 as an example, from Table 6.2 we know that the degrees of satisfaction
of criterion safety are X1

1 = X3
1 = 0.95. Using Wang and Chen’s approach we know

that satisfaction of criterion safety does not satisfy the requirement G1 = 0.95 at
all, i.e. the priority weights of lower priority criteria are all 0, thus A1 and A2 induce
the same aggregation value. However, the satisfactions of lower priority criteria of
alternative A3 are higher than those alternative A1, and 0.95 is slightly less than
G1 = 0.96, thus Wang and Chen’s approach [31, 136] is too strict. By using our
approach, it is clearly seen that the ranking order of alternatives is A3 � A2 � A4 �
A1.

Table 6.5: Prioritized aggregated value under different crisp requirements

Benchmark: at least G1
Wang and Chen Our proposed method

A1 A2 A3 A4 A1 A2 A3 A4

G1 = 0.91 2.0000 2.1850 2.1750 2.0700 2.0000 2.1850 2.1750 2.0700

G1 = 0.95 2.0000 0.9100 2.1750 0.9450 2.0000 2.1340 2.1750 2.0644

G1 = 0.96 0.9500 0.9100 0.9500 0.9450 1.9895 2.1213 2.1628 2.0531

0 G1 1
0

1
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en

ch
m
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k 
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ve

m
en

t

Lukasiewicz implication

Wang and Chen’s threhold

Figure 6.2: Benchmark achievement: at least G1
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The main difference of benchmark achievement in inducing priority weight between
our approach and Wang and Chen’s approach is illustrated in Fig. 6.2.It is clear that
when the degree of satisfaction of criterion safety is higher than requirement G1,
we will obtain the same result with Wang and Chen. If the degree of satisfaction of
criterion safety is less than requirement G1, Wang and Chen’s approach will be too
strict.

Benchmark: at least G1 and as high as possible
Now let us consider the second type of requirement. Column 1 of Table 6.6 shows the
requirement values. According to Wang and Chen’s approach (Eq. (6.23), Eq. (6.24),
Eq. (6.26) and Eq. (6.27)), we can obtain the aggregation value with different G1

values, as shown in Columns 2-5 of Table 6.6.

Table 6.6: Prioritized aggregated value under different fuzzy uncertain requirements

at least and as high as possible
Wang and Chen’s method Our proposed method

A1 A2 A3 A4 A1 A2 A3 A4

G1 = 0.91 1.9475 2.0703 2.1137 2.0081 1.4167 0.9100 1.4944 1.3825

G1 = 0.95 1.9475 0.9100 2.1137 0.9450 0.9500 0.9100 0.9500 0.9450

G1 = 0.96 0.9500 0.9100 0.9500 0.9450 0.9500 0.9100 0.9500 0.9450

0 G1 1
0
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t

Proposed target achievement

Wang and Chen’s approach

Figure 6.3: Benchmark achievement: at least G1 and as high as possible
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To model at least G1 and as high as possible, we can use fuzzy number to represent
this uncertainty, denoted as G̃1 = (G1, G1, 1, 1). It is in fact an interval number
[G1, 1]. And then according to Eq. (6.22) and our prioritized aggregation operator we
can obtain the prioritized aggregation values as shown in Columns 6-10 of Table 6.6.

We will analysis the difference between our approach and Wang and Chen via
Fig. 6.3. The red line in Fig. 6.3 shows the benchmark achievement by means
of fuzzy target-oriented decision analysis under the requirement G̃1 = (G1, G1, 1, 1).
The green line in Fig. 6.3 represents Wang and Chen’s approach. According to
Fig. 6.3, it is clear that when the degree of satisfaction of criterion safety is slightly

less than the benchmark G1, the induced degree of satisfaction E
(

Sat
(·)
1

)
will be

zero, which will be too strict; when the degree of satisfaction of criterion safety is

more than the benchmark G1, the induced degree of satisfaction E
(

Sat
(·)
1

)
will be

Sat
(·)
1 . Whereas our approach is more consistent than Wang and Chen’s approach.

In addition, our approach usually constrain the benchmark achievement into an
interval range [0, 1].

Benchmark: Fuzzy at least G1

Due to the vagueness or impreciseness of knowledge, it is difficult for DMs to es-
timate their requirements with precision. Fuzzy min target (fuzzy at least) is the
target commonly used in decision making. We can model the fuzzy min G1 as
G̃1 = (0, G1, 1, 1). In the previous case, we considered the requirement “at least
G1 and as high as possible” via target-oriented decision analysis. The fuzzy target
(G1, G1, 1, 1) is a special case of fuzzy at least G1. And then according to Eq. (6.22)
we obtain the target achievement function. Finally, according to our prioritized ag-
gregation operator, we can easily obtain the aggregation values as shown in Columns
2-5 of Table 6.7, in which A3 is always the optimal alternative.

Table 6.7: Prioritized aggregated value under different fuzzy min requirements

Fuzzy min G1
Our proposed method

A1 A2 A3 A4

(0, 0.91, 1, 1) 1.9037 1.9744 2.0626 1.9565

(0, 0.95, 1, 1) 1.9000 1.9685 2.0583 1.9522

(0, 0.96, 1, 1) 1.8991 1.9675 2.0573 1.9513

Fig. 6.4 graphically depicts the fuzzy requirement and its associated target achieve-
ment function. It is clear from the red line in Fig. 6.4, the benchmark achievement
reflects Simon’s bounded rationality and the S-shaped value function. This is main
reason why we utilize fuzzy target-oriented decision model to calculate fuzzy bench-
mark achievement.
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Figure 6.4: Benchmark achievement: fuzzy min G1

6.5 Conclusions

In this paper, we have concerned ourselves with multi-attribute decision analysis (MADA)
problems where there exists a prioritization of attributes, in which the priority weights
associated with the lower priority are related to the satisfactions of the higher priority
attributes. We have builded upon the work of [31, 136, 148, 150] and extended it in a
number of directions.

1. Firstly, the OWA operator is used to obtain the degree of satisfaction for each
priority level. To preserve the tradeoffs between the attributes in the same priority
level, the degree of satisfaction regarding each priority level is viewed a pseudo
attribute.

2. Secondly, we suggest that roughly speaking any t-norms can be used to model the
priority relationships between the attributes in different priority levels. To preserve
slight change of the priority weight, strict Archimedean t-norms perform better
in inducing priority weight. As Hamacher family of t-norms provide a wide class
of strict Archimedean t-norms ranging from the product to weakest t-norm [110],
Hamacher t-norms are selected to induce the priority weight.

3. Thirdly, considering DM’s requirement toward higher priority levels, a benchmark
based approach has been proposed to induce priority weight for each priority level.
In particular, �Lukasiewicz implication is used as a technique to compute benchmark
achievement for crisp requirements. In case of fuzzy uncertain requirements, as
target-oriented decision analysis lies in the philosophical root of Simon’s bounded
rationality [120] as well as represents the S-shaped value function [70], fuzzy target-
oriented decision analysis [62] is utilized to obtain the benchmark achievement. In
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contrast to Wang and Chen’s [31, 136] work, our approach can catch the slight
changes of DM’s requirement as well as coincide with the intuition of DM.

Multi-criteria decision analysis (MCDA) problems can be categorized into two classes:
discrete and continuous MCDA [127], in this study we focused on discrete MCDA (MADA).
In the context of continuous MCDA (multi-objective decision analysis), Ogryczak and
Śliwiáski [107] proposed using the OWA operator to solve linear programming problems.
Furthermore, it is practical to consider that there are different importances and priorities
of objectives [28, 60, 86, 87]. In this regard, we believe that our proposed prioritized OWA
operator will provide a general and convenient tool for multi-objective decision making
with multiple priorities. However, this is left for the future work.
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Chapter 7

Kansei Evaluation Based on
Prioritized Multi-Attribute Fuzzy
Target-Oriented Decision Analysis

Abstract: In this chapter, we focus on the evaluation problems using Kansei data, tak-
ing consumers’ preferences on Kansei attributes into consideration. This chapter aims
at proposing and developing a Kansei evaluation model based on multi-attribute target-
oriented decision analysis. To do so, firstly, like the traditional Kansei evaluation method,
a preparatory experiment study is conducted in advance to select Kansei attributes by
means of semantic differential (SD) method. In order to obtain Kansei data of products,
a number of subjects are selected to assess products regarding these Kansei attributes.
Differed from the previous research, linguistic variables are used to represent the uncertain
assessments. Secondly, these Kansei data are used to generate Kansei profiles for eval-
uated products by means of the voting statistics. Thirdly, as consumers’ preferences on
Kansei attributes vary from people to people and the consumers may have prioritization
of Kansei attributes, we can view the current Kansei evaluation problem as a prioritized
multi-attribute target-oriented decision analysis problem. Based on the proposed Kansei
evaluation model, the consumers can select or choose the products according to their
preferences.
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7.1 Introduction

In today’s increasingly competitive market place, satisfying consumers’ needs and
tastes has become a great concern of almost every company [59, 68, 129]. Consumers have
put more emphasis not only on functional requirements of products, defined objectively,
but also on psychological needs and feelings, by essence subjective [112]. Moreover, with
the development of global markets and modern technologies, it is likely that many similar
products will be functionally equivalent [68], thus consumers may find that it is difficult to
distinguish and choose their desired product(s). In this regard, consumers’ psychological
needs and feelings must be considered in choice of products.

Kansei engineering has been developed as a methodology to deal with consumers’
subjective impressions (called Kansei in Japanese) regarding a product into the design
elements of a product [103, 104, 105]. There is no corresponding term to Kansei in
English. The term Kansei is imbedded in the Japanese culture in a way that is difficult
to translate into words. A specific Kansei arises when a human is subjected to an artifact
in a certain environmental context [118]. Kansei may be easier to experience than define
by a western person. Looking at picture or artifact may evoke a certain “good feeling”
that is difficult to describe. This is what Kansei is about. According to Nagamachi [103]
and Schütte [118],

Kansei is an individual subjective impression from a certain artifact, envi-
ronment or situation using all the senses of sight, hearing, feeling, smell, taste,
recognition and balance.

For building a Kansei database on psychological feelings regarding products, the most
commonly used method is to choose Kansei words (bipolar subjective words) first, and
then ask people to express their feelings using those words often by means of the semantic
differential (SD) method [109] or its modifications [53, 118].

In this chapter, we focus on the evaluation problems using Kansei data, taking con-
sumers’ preferences on Kansei attributes into consideration. The evaluation would be
of great help for marketing or recommendation purposes, and particularly in the era of
e-commerce, where recommendation systems have become an important research area [4].
It should be emphasized that many studies of Kansei engineering or other consumer-
oriented design techniques have involved an evaluation process, in which a design could
be selected for production, e.g., [112].

This chapter aims at proposing and developing a Kansei evaluation model based on
multi-attribute target-oriented decision analysis. To do so, firstly, like the traditional
Kansei evaluation method, a preparatory experiment study is conducted in advance to
select Kansei attributes by means of semantic differential (SD) [109] method. In order
to obtain Kansei data of products, a number of subjects are selected to assess products
regarding these Kansei attributes. Differed from the previous research, linguistic variables
are used to represent the uncertain assessments. Secondly, these Kansei data are used to
generate Kansei profiles for evaluated products by means of the voting statistics. Thirdly,
as consumers’ preferences on Kansei attributes vary from people to people and the con-
sumers may have prioritization of Kansei attributes, we can view the current Kansei
evaluation problem as a prioritized multi-attribute target-oriented decision analysis prob-
lem. In particular, three main types of fuzzy targets are defined to represent consumers’
uncertain preferences on Kansei attributes. Based on the fuzzy target-oriented decision
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analysis model discussed in Chapter 4, we can obtain the satisfaction degrees (probabili-
ties of meeting targets) regarding the Kansei attributes selected by consumers for all the
evaluated products. And then, considering prioritization of the Kansei attributes, the
so-called prioritized OWA aggregation operator discussed in Chapter 6 is used to aggre-
gate the partial satisfaction degrees for the evaluated products. Based on the proposed
Kansei evaluation model, the consumers can select or choose the products according to
their preferences.

The rest of this chapter is organized as follows. In Section 7.2 we recall some basic
knowledge of Kansei evaluation and give the motivations of our work. In Section 7.3
we put forward a Kansei evaluation model based the fuzzy target-oriented decision model
discussed in Chapter 4 and the prioritized OWA aggregation operator proposed in Chapter
6. In Section 7.4 we give some discussions of the our model and give some effective analysis.
Finally, some concluding remarks are given in Section 7.5.

7.2 Literature Review of Kansei Evaluation and Mo-

tivations

In this section, we shall given some basic knowledge of Kansei evaluation and its
related work, and then review some approaches to Kansei evaluation. Finally, we will
given our motivations of current research.

7.2.1 Definition of Kansei evaluation

Kansei engineering has been developed as a methodology to deal with consumers’
subjective impressions (called Kansei in Japanese) regarding a product into the design
elements of a product [103, 104, 105]. It is a methodology that integrates a affective
elements already in the developing process [118]. Kansei engineering has been applied to
home equipment, architecture, packagings design. Most Kansei studies are done in Japan
and Korea. There is no corresponding term to Kansei in English. The term “Kansei” is
embedded in Japanese culture in a way that is difficult to translate into words. Several
definitions of Kansei can be trailed from the literature. A notable definition of Kansei
is given by Nagamachi [103] and Schütte [118] as “Kansei is an individual subjective
impression from a certain artifact, environment or situation using all the sense of sight,
hearing, feeling, smell, taste, recognition and balance.”

Kansei engineering is also sometimes referred to as “sensory engineering” or “emo-
tional usability” [53]. Kansei engineering can be either used by designers as a design aid
to develop products that are able to match consumers’ Kansei or used by consumers to
select products based on their Kansei requirements [103]. Among Kansei engineering,
Kansei evaluation is an important process in which a product design may be selected
for production or design [27, 85, 90, 92, 112, 129]. In this chapter, we focus on Kansei
evaluation process based on consumers’ Kansei requirements, the very early process in
Kansei engineering.

In the literature, Kansei evaluation is also called as sensory evaluation. A classical
definition of sensory evaluation is given by Stone and Sidel [121] and Dijksterhuis [37] as
follows: “ Sensory evaluation is a scientific discipline used to evoke, measure, analyze, and
interpret reactions to those characteristics of products or materials as they are perceived
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by the senses of sight, smell, taste, touch and hearing”. The term “subjective
evaluation” is also used in the literature, e.g., [100, 106, 129]. The term “subjective” means
private “mental” stuff: sensations, beliefs, feelings, emotions, opinions, etc.; whereas
objective (the opposite of subjective) is the public ”physical” stuff: publicly-observable
things, events, knowledge, facts 1. In this thesis, we shall reserve the term “Kansei”
instead of “sensory” and “subjective”, as the research context is closely related to Japanese
culture.

7.2.2 Approaches to Kansei evaluation

Many studies have attempted to solve Kansei evaluation [8, 27, 85, 90, 92, 102, 112] in
the literature. Generally speaking, there are two types of approaches to Kansei evaluation.

1. Statistical methods
Statistical analysis plays an important role and is widely accepted as the most
systematic tool for Kansei evaluation. For example, Hsu et al. [59] used multivari-
ate analysis to analyze consumers’ perceptions and to build conceptual models for
telephone design. Llinares and Page [92] performed statistical analysis to quan-
tify purchaser perceptions in housing assessment to identify main attributes which
describe consumers’ perception. To reduce dimensionality, principal component
analysis (PCA) and fuzzy PCA are also used [92, 106] in Kansei evaluation. More-
over, Barone et al. [8] proposed a weighted regression approach by means of conjoint
analysis, in which attribute importance weights are estimated by using respondent
choice time in controlled interviews. Petiot and Yannou [112] proposed an inte-
grated approach which rates and ranks the new product prototypes according to
their closeness to the specified “ideal product”, in which three types of satisfaction
utility functions are defined and a multi-additive model is used to obtain the global
satisfaction utility.

2. Decision analysis methods
In addition to these methods, in closely similar and related studies on sensory eval-
uation or subjective evaluation, decision analysis has also been utilized in the eval-
uation problemsFor example, Mart́ınez [98] proposed a sensory evaluation model
based on linguistic decision analysis by using the linguistic 2-tuple representation
model [56, 57], in which knowledge used for sensory evaluation is acquired from
a panel of experts by means of the five senses of sight, taste, touch, smell and
hearing. The sensory evaluation model [98] considers the evaluation problem as a
multi-expert/multi-attribute decision problem, assuming a consistent order relation
on the quantitative evaluation scale treated as the linguistic term set of a linguis-
tic variable [163, 167]. More studies of sensory evaluation based on the linguistic
2-tuple representation model [56, 57] can be found in the literature [99, 115, 169].
The additive or multiplicative utility model has also been used for subjective eval-
uations [69, 112].

1http://instruct.westvalley.edu/lafave/subjective_objective.html
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7.2.3 Motivations

Previous studies have significantly advanced the issue of Kansei and Kansei-related
evaluations. However, there are still some drawbacks.

1. Firstly, consumers’ preferences on Kansei attributes vary from person to person
according to character, feeling, aesthetic and so on. For example, a Kansei attribute
fun having left and right Kansei words as <solemn, funny>. Some consumers
may prefer solemn, others may prefer funny, and there are also some consumers
preferring neither solemn nor funny. In this regard, in contrast to the sensory
evaluation model [98, 99, 115, 169], we will have inconsistent order relations on
Kansei attributes.

2. Furthermore, as pointed out by Bordley and Kirkwood [17], empirical evidence
indicates that conventional concave attribute utility function often does not provide
a good description of individual preference, and usually it is difficult for consumers
to determine their utility functions for Kansei attributes.

3. Finally, a consumer usually may have a priority order of the Kansei attributes, i.e.,
some Kansei attributes may be necessary to be satisfied.

These considerations lead us to solve Kansei evaluation based on multi-attribute fuzzy
target-oriented decision analysis and prioritized aggregation. In their pioneering work
Kahneman and Tversky [70] proposed an S-shaped value function to substitute for utility
function. Heath et al. [54] suggested that the reference point in this S-shaped value func-
tion can be interpreted as a target. Developing this concept further, target-oriented deci-
sion analysis [18] suggested that instead of maximizing the utility, the decision makers try
to maximize the probability of meeting target. In general, target-oriented decision analy-
sis lies in the philosophical root of Simon’s bounded rationality [120] as well as represents
the S-shaped value function [70]. Particularly, in Kansei evaluation, due to vagueness and
uncertainty of consumers’ preferences, fuzzy targets can be used to represent consumers’
uncertain preferences. In addition, multiple Kansei attributes are usually considered. To
model the prioritization of Kansei attributes, the prioritized OWA aggregation operator
proposed in Chapter 6 induces a weighting schema by using priority weights in which the
weights associated with the lower priority Kansei attributes are related to the satisfaction
of the higher priority Kanesi attributes.

7.3 A Kansei Evaluation Model Based on Prioritized

Multi-Attribute Target-Oriented Decision Anal-

ysis

In this section we shall propose a Kansei evaluation model, based on the assumption
that a consumer will be only interested in products that best meet her/his psychological
needs from an aesthetic point of view. Our proposed Kansei evaluation model consists of
the following steps, as shown in Fig. 7.1.

The dashed rectangle I in Fig. 7.1 shows the preparatory experiment study phase,
a common process in Kansei engineering, which is used to identify and measure Kansei
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attributes first and then to obtain Kansei data of the products to be evaluated. The
dashed rectangle II in Fig. 7.1 shows the target-oriented decision analysis phase, in which
fuzzy target-oriented decision analysis is used to compute degrees of satisfaction for the
Kansei attributes selected by consumers, and a prioritized aggregation operator is used to
aggregate partial degrees of satisfaction under a given priority hierarchy. In the following
subsections, we will describe our model in more detail.

Figure 7.1: Proposed Kansei evaluation process

7.3.1 Identification and measurement of Kansei attributes

Let A be set of products to be evaluated and M is the cardinality of products, i.e.,
M = |A|. Once having identified and selected the products to be evaluated, we have
to identify and measure Kansei attributes used by people to express their psychological
feelings regarding the products to be evaluated. Usually Kansei attributes are identified
by a panel of experts (experts means people familiar with the product type and Kansei
engineering) via a brainstorming process [53].

A person’s Kansei will be expressed through physiological functions. There are differ-
ent ways of measuring the Kansei:

1. Words

2. Physiological response (Heart rate, EMG, EEG)

3. People’s behaviors and actions

4. Facial and body expressions

The words reflect elements of the Kansei. They are just external descriptions of the Kansei
within a person’s mind. Elements of the Kansei may be absent because we do not have
words to describe all emotions. The words are not the Kansei itself. Facial and body
expressions have been used within emotional design outside Kansei Engineering as well.
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Most of the Kansei Engineering studies which have been published in English use words
when measuring the Kansei. In this study, words are also used to measure the Kansei.

Each Kansei attribute is defined by a bipolar pair of Kansei words. The bipolar pairs of
Kansei words describing the product domain can be collected from many sources, such as
Magazines, Literature, Manuals, Experts, Experienced users, Ideas, and Visions [53]. It is
important to also include words from ideas and visions so that potential new solutions also
are included. This collection of words goes on until no new words occur. A good result
depends on that all important words are included, so it is better to include a few more
words than necessary. Although identification of Kansei words in practice is a difficult
task, it is a necessary and important process in Kansei engineering.

Particularly, the Kansei attributes can be expressed as follows:

1. Let X = {X1, · · · , Xn, · · · , XN} be set of Kansei attributes of products, where N
denotes the total number of Kansei attributes;

2. Let KWn =
〈
KW−

n , KW+
n

〉
be the opposite pair of Kansei words with respect to

Kansei attribute Xn, n = 1, 2, · · · , N . For example, a Kansei attribute fun can be
denoted as bipolar Kansei words as <solemn, funny>.

In addition, a questionnaire is designed by means of the SD method [109] to collect sub-
jective assessments provided by a number of subjects (respondents for the questionnaire).
The questionnaire consists of listing Kansei attributes, each of which corresponds to a
bipolar pair of Kansei words with a 2K + 1-point odd qualitative scale. For example, the
odd qualitative scale of Kansei attributes can be 5-point scale [106], 7-point scale [102],
and 9-point scale [53].

The subjective assessments provided by the subjects are usually conceptually vague,
with uncertainty that is frequently represented in linguistic forms [129]. To help people
easily express their subjective assessments, the linguistic variables [163, 167] are used to
linguistically assess the products to be evaluated. In order to establish the linguistic term
set for each Kansei attribute, we have to choose syntax and semantics [55, 56] as follows

1. The cardinality of each linguistic term set for each Kansei attribute corresponds to
the semantic scale of each Kansei attribute, i.e., the cardinality of each linguistic
term set is 2K + 1.

2. Similar to the linguistic decision analysis [55, 56], ordered structure approach has
been used to choose linguistic descriptors for Kansei attributes. For example, the
linguistic terms “fairly” and “very” are used to describe the Kansei linguistic vari-
ables.

3. Fuzzy numbers are used to represent the Kansei linguistic variables. Fuzzy numbers
can have a variety of shapes. In practical applications, for simplicity, the triangular
or trapezoidal form of the membership function is used most often for representing
fuzzy numbers [57, 76]. In this study, triangular fuzzy numbers are used to represent
the Kansei linguistic variables.

In this way, we can establish a linguistic term set for each Kansei attribute, denoted
as

Ln = {L−K
n , L−(K−1)

n , · · · , Lk
n, · · · , L(K−1)

n , LK
n },

where k = −K,−(K − 1), · · · , 0, · · · , (K − 1), K.
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Example Assume a Kansei attribute fun having left and right Kansei words <solemn,
funny> with a 7-point (K = 3) scale, similar to the linguistic variables in [90, 98], the
linguistic term set for this Kansei attribute can be defined as

L = {L−3, L−2, L−1, L0, L1, L2, L3}
= {Very solemn, Solemn, Fairly solemn, Neutral, Fairly funny, Funny, Very funny}
= {(−3,−3,−2), (−3,−2,−1), (−2,−1, 0), (−1, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 3)}

Fig. 7.2 shows the semantics and fuzzy numbers of Kansei linguistic variables for Kansei
attribute fun.

Figure 7.2: Linguistic variables for Kansei attribute fun

It should be noted that the Kansei linguistic term set Ln for each Kansei attribute Xn

here we used is different from that used in the sensory evaluation model [98, 99, 115, 169].
The sensory evaluation model considers the linguistic term set having a consistent order
relation. However, for the linguistic term set of a Kansei attribute, the order relation
depends on the consumers’ preferences, in this sense, we have inconsistent order relations.
Now we will take the Kansei attribute fun represented in Fig. 7.2, as an example to
illustrate the inconsistent order relations. Generally, three types of order relations can be
considered

1. Some consumers may prefer solemn, then the linguistic order relation is

L−3 � L−2 � L−1 � L0 � L1 � L2 � L3;
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2. Other consumers prefer neutral, then the linguistic order relation is

L−3 ≺ L−2 ≺ L−1 ≺ L0 � L1 � L2 � L3;

3. There are also some consumers preferring funny, then the linguistic order relation
is

L−3 ≺ L−2 ≺ L−1 ≺ L0 ≺ L1 ≺ L2 ≺ L3.

7.3.2 Generation of Kansei profiles

The questionnaire is then assigned to a number J of subjects S, who are selected to
linguistically express their subjective assessments regarding the Kansei attributes in a
simultaneous way. Formally, we can model the Kansei data of each product Am according
to Kansei attributes obtained from the assessment of subjects Sj, as shown in Table 7.1,
where Xm

n (Sj) ∈ Ln, for j = 1, · · · , J = |S| and k = −K,−(K−1), · · · , 0, · · · , (K−1), K.

Table 7.1: Kansei linguistic assessment data of product Am

Subjects
Kansei attributes

X1 · · · Xn · · · XN

S1 Xm
1 (S1) · · · Xm

n (S1) · · · Xm
N (S1)

S2 Xm
1 (S2) · · · Xm

n (S2) · · · Xm
N (S2)

...
...

...
...

...
...

Sj Xm
1 (Sj) · · · Xm

n (Sj) · · · Xm
N (Sj)

...
...

...
...

...
...

SJ Xm
1 (SJ) · · · Xm

n (SJ) · · · Xm
N (SJ)

Having obtained the Kansei assessments given by the subjects, we can obtain Kansei
profiles as follows. For evaluated product Am, m = 1, 2, · · · , M , we define for Kansei
attribute Xn, n = 1, 2, · · · , N , a probability distribution function pm

n : Ln → [0, 1] as
follows

pm
n (Lk

n) =
|{Sj ∈ S : Xm

n (Sj) = Lk
n}|

|S| (7.1)

where k = −K,−(K − 1), · · · , 0, · · · , (K − 1), K, and Xm
n (Sj) denotes the Kansei as-

sessment for product Am with respect to Kansei attribute Xn given by subject Sj , j =
1, · · · , J .

In the same way, we can obtain a 2K +1-tuple of probability distributions for product
Am with respect to Kansei attribute Xn,

pm
n =

[
pm

n (L−K
n ), pm

n (L−(K−1)
n ), · · · , pm

n (L0
n), · · · , pm

n (L(K−1)
n ), pm

n (LK
n )
]

(7.2)

and call this tuple as Kansei profile of Am with respect to Kansei attribute Xn.
The 2K + 1-tuple of probability distributions, as shown in Table 7.2, can be viewed as

a general multi-attribute decision matrix, where each Kansei attribute has 2K + 1 states
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of nature. For Kansei attribute Xn at the state of nature k, where k = −K,−(K −
1), · · · , 0, · · · , (K − 1), K. From Table 7.2 we know that all the products have the same
attribute values (fuzzy numbers) for the same indexed linguistic variables. However,
the semantics of these linguistic variables are different. Furthermore, the probability
distributions (Kansei profiles) with respect to the same indexed linguistic variables are
also usually different.

Table 7.2: Kansei profiles of evaluated products: probability distributions of Kansei as-
sessments

Products

Kansei attributes

X1 · · · XN

−K · · · 0 · · · K · · · −K · · · 0 · · · K

A1 p1
1(L−K

1 ) · · · p1
1(L0

1) · · · p1
1(V

K
1 ) · · · p1

N(L−K
N ) · · · p1

N(L0
N ) · · · p1

N(LK
N )

A2 p2
1(L−K

1 ) · · · p2
1(L0

1) · · · p2
1(V

K
1 ) · · · p2

N(L−K
N ) · · · p2

N(L0
N ) · · · p2

N(LK
N )

...
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

AM pM
1 (L−K

1 ) · · · pM
1 (L0

1) · · · pM
1 (V K

1 ) · · · pM
N (L−K

N ) · · · pM
N (L0

N ) · · · pM
N (LK

N )

7.3.3 Specification of consumers’ preferences

Having generated Kansei profiles for all evaluated products Am ∈ A, m = 1, 2, · · · , M
as above, we now consider the preferences of consumers. Assume that a potential consumer
is interested in a collection of Kansei attributes2

X = {X1, · · · , Xn, · · · , XN}.

As mentioned previously, order relations of Kansei linguistic term sets regarding Kansei
attributes vary from person to person according to their character, feeling, aesthetic and
so on, a preference function for Kansei attribute Xn, n = 1, 2, · · · , N is needed.

In the context of multi-attribute decision analysis (MADA), usually there are two
types of goal preferences [71, 127].

• Target goal values are adjustable: “more is better” or “less is better”;

• Target goal values are fairly fixed and not subject to much change, i.e., too much
or too little is not acceptable.

To model consumers’ preference order relations on Kansei linguistic term set, we shall
define three main types of target preferences3 as follows:

2The number of Kansei attributes selected by consumers may be different from the total number of
Kansei attributes. Here for simplicity of denotation we shall use the same number N .

3Generally speaking, any target can be defined by consumers. However, as consumers are not so
specific about their own personal preference, here we just provide three types of targets.
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• Less is better : Left Kansei words preferred;

• More is better : Right Kansei word preferred;

• Target goal values are fairly fixed : Neutral preferred.

Due to the vagueness and uncertainty of Kansei preference values, fuzzy targets are
used to represent consumers’ preferences. Fig. 7.3 shows the three types of preferences
represented by fuzzy targets.

Figure 7.3: Target-oriented preferences

Based on consumer-specified preferences, a collection of fuzzy targets such that T =
(T1, · · · , Tn, · · · , TN), can be obtained with respect to the collection of Kansei attributes
X = {X1, · · · , Xn, · · · , XN}.

In addition to the preference order relations on Kansei linguistic term sets, consumers
may have a priority order of the Kansei attributes. Simply speaking, by saying Kansei
attribute X1 has a higher priority than Kansei attribute X2, it means that the consumers
are not willing to trade off satisfaction to Kansei attribute X2 until they attain some level
of satisfaction of Kansei attribute X1 [148].

Considering these two types of consumer-specified preferences, we divide the evaluation
process into two phases

1. Calculate degree of satisfaction for Kansei attribute Xn;

2. Aggregate partial degrees of satisfaction under the prioritized hierarchy.

Fuzzy target-oriented decision analysis proposed in Chapter 4 has been extended to
calculate the degree of satisfaction for Kansei attribute Xn, and then the prioritized OWA
aggregation operator proposed in Chapter 6 is used to aggregate the partial degrees of
satisfaction. In this regard, we shall view our research problem as prioritized multi-
attribute fuzzy target-oriented decision analysis. In the following two subsections,
we shall discuss these two steps in further detail.
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7.3.4 Calculation of satisfaction degree based on fuzzy target-
oriented decision model

According to the principle of target-oriented decision analysis [17], for our general
decision matrix as shown in Table 7.2, we can define the probability of product Am

meeting the fuzzy target Tn with respect to Kansei attribute Xn as follows:

Pr(Xm
n � Tn) =

K∑
k=−K

pm
n (Lk

n) · Pr(Lk
n � Tn) (7.3)

where Lk
n denotes the k-th linguistic variable for Kansei attribute Xn, where

k = −K,−(K − 1), · · · , 0, · · · , (K − 1), K,

pmn(Lk
n) denotes the probability distribution of Kansei attribute Xn at linguistic variable

Lk
n, and Pr(Lk

n � Tn) is the probability of Lk
n meeting target Tn.

Central to this problem is how to compute the probability Pr(Lk
n � Tn) of Lk

n meeting
fuzzy target Tn. In Chapter 3 & 4, we already discussed target-oriented decision analysis
with different target preferences and hybrid uncertain targets. In this Chapter, for the sake
of simplicity, we shall use the cumulative distributive function based approach to calculate
Pr(Lk

n � Tn). In this representation, both Lk
n and Tn are fuzzy numbers. In the following,

we first show a generation of target-oriented decision model discussed in Chapter 3 and
Chapter 4, and then given the expression of target-oriented decision analysis in Kansei
evaluation problems.

General representation of target-oriented decision analysis

Before discussing how to obtain Pr(Lk
n � Tn), we shall consider the general represen-

tation. We firstly assume that, for an attribute X, there exists a fuzzy target, denoted
as T . The consequence of attribute X is denoted as Xd. We also assume that π(t) is the
possibility distribution function of fuzzy target T . We also restrict the consequence of
attribute X to a bounded domain D = [Xmin, Xmax].

If the consequence of attribute X is a crisp number, denoted as x, we have Xd = x.
Based on the research work in Chapter 4, we can get the following value functions.

• For benefit target

Pr(x � T ) = Pr(x ≥ T )

=

∫ x

Xmin
π(t)dt∫ Xmax

Xmin
π(t)dt

(7.4)

• For cost target

Pr(x � T ) = Pr(x ≤ T )

=

∫ Xmax

x
π(t)dt∫ Xmax

Xmin
π(t)dt

(7.5)
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• For rang level target

Pr(x � T ) = Pr(x ∼= T )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R x
Xmin

π(t)dt
R Tml
Xmin

π(t)dt
, if x < Tml;

1, else if x ∈ [Tml, Tmu];R Xmax
x

π(t)dtR Xmax
Tmu

π(t)dt
, if x > Tmu.

(7.6)

The equal target preference, such that Tml = Tmu, is a special case this range level
targets.

In the case where the consequence Xd is an interval value over the domain [Xmin, Xmax],
we consider Xd as a random variable with the uniform distribution on [Xmin, Xmax]. Thus
we can obtain the probability distribution as

p(x) =
1

Xmax − Xmin

If Xd is a fuzzy quantity represented by a possibility distribution π(x), we have the
associated probability distribution of π(x) defined by

p(x) =
π(x)∫ +∞

−∞ π(x)dx
.

Having considered X and T as two uncertain variables, we can define the probability
of Xd meeting the target T as

Pr(Xd � T ) =

∫ ∞

−∞
p(x) Pr(x � T )dx (7.7)

where Pr(x � T ) denotes the target achievement in case of benefit target, cost target,
and range/equal target, which can be obtained from Eqs. (7.4)-(7.6).

Kansei evaluation based on target-oriented decision analysis

For evaluated product Am in our general multi-attribute decision matrix, we can get
the probability of product Am meeting fuzzy target Tn with respect to Kansei attribute
Xn as follows:

Pr(Xm
n � Tn) =

K∑
k=−K

pm
n (Lk

n) · Pr(Lk
n � Tn)

=

K∑
k=−K

pm
n (Lk

n) ·
[∫ ∞

−∞
pLk

n
(x) Pr(x � Tn)dx

] (7.8)

where pLk
n
(x) is the probability density function of Kansei linguistic variable Lk

n and
Pr(x � Tn) can be calculated according to the fuzzy target-oriented decision model men-
tioned above based on consumers’ preference types.
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7.3.5 Prioritized aggregation of target achievements

Having computed the probability of meeting consumers’ specified fuzzy target-oriented
preferences for Kansei attributes selected by consumers, we have to aggregate partial de-
grees of satisfaction (target achievements) Pr(Xm

n � Tn). Here for denotational simplicity,
we shall use Prm

n . One commonly used approach for aggregation is to calculate for product
Am a value Val(Am) by using an aggregation function F as

F (Prm
1 , · · · , Prm

n , · · · , Prm
N)

and then order the evaluated products according to these values Val(Am).
In many types of applications, people usually associate importance weights with the

attributes [23]. A commonly used form for F is a weighted average of the Am. In this
case we calculate

Val(Am) =
N∑

n=1

wn · Prm
n , where

N∑
n=1

wn = 1.

Central to this types of aggregation operators is the ability to trade off between at-
tributes [148].

In some situations, the consumers may not need this kind of tradeoffs between Kansei
attributes. In this case, we will have a prioritization hierarchy. Assume that the collection
of Kansei attributes X = {X1, · · · , Xn, · · · , XN} are partitioned into Q distinct priority
levels H = {H1, · · · , Hq, · · · , HQ}, such that Hq = {X ′

q1, · · · , X
′
qi, · · · , X

′
qNq

}, where Nq

is the Kansei attribute number in priority level Hq, and Xqi is the i-th Kansei attribute
in category Hq. We also assume a prioritization of these Kansei attributes is H1 � · · · >
Hq � · · · � HQ. Table 7.3 shows the priority hierarchy structure of the Kansei attributes.

Table 7.3: Prioritization of Kansei attributes specified by consumers

H1 X
′
11, · · · , X

′
1i, · · · , X

′
XN1

...
...

Hq X
′
q1, · · · , X

′
qi, · · · , X

′
qNq

...
...

HQ X
′
Q1, · · · , X

′
Qi, · · · , X

′
QNQ

In this case, we shall use Prm
qi to express the degree of satisfaction for the i-th Kansei

attribute in priority level Hq with respect to evaluated product Am. In Chapter 6, we have
already proposed a prioritized OWA aggregation operator based on the assumption that
prioritized aggregation can be modeled by using a kind of priority weight in which the
weight of a lower priority attribute will be based on its satisfaction to the higher priority
attribute. The prioritized aggregation operator suggested using the following steps:

1. For Kansei attributes in priority level Hq regarding product Am, a degree of satis-
faction Satm

q is calculated as follows

Satm
q = OWAΩ

(
Prm

qi, · · · , Prm
qi, · · · , Prm

qi

)
(7.9)
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where OWAΩ means the ordered weighted averaging (OWA) aggregation based on
consumers’ decision attitudinal Ω.

The OWA operator is generally composed of the following three steps [91]:

(a) Reorder the input arguments in descending order,

(b) Determine the weights associated with the OWA operator by using a proper
method, and

(c) Utilize the OWA weights to aggregate these reordered arguments.

In this case we would supply a desired level of tolerance Ω and solve the following
constrained optimization problem for the i-the element in priority hierarchy level
Hq a weight uqi.

Maximize −
Nq∑
i=1

uqi · ln uqi (7.10a)

subject to

Nq∑
i=1

[
Nq − i

Nq − 1
· uqi

]
= Ω, 0 ≤ Ω ≤ 1 (7.10b)

Nq∑
i=1

uqi = 1, 0 ≤ uqi ≤ 1. (7.10c)

2. Then a priority weight Zm
q for priority level Hq is calculated as follows

Zm
q =

q∏
l=1

Satm
l−1

= Zm
q−1 · Satm

q−1

(7.11)

where Zm
0 = Satm

0 = 1.

3. To calculate the overall degree of satisfaction for product Am as follows

Val(Am) =

Q∑
q=1

Zm
q · Satm

q (7.12)

Once having calculated Val(Am) for all the evaluated products, we then select as our
optimal choice, the product A∗ which satisfy

Val(A∗) = max
m

[Val(Am)]. (7.13)

7.4 Discussions

Like most studies on Kansei evaluation, one preparatory step in our proposed model
is to identify and measure Kansei attributes and then conduct a questionnaire to collect
Kansei data. In practical application, the preparatory study is time-consuming, difficult
and subjective. This bottleneck lies in most studies of Kansei evaluation. The proposed
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Kansei evaluation model can be used for recommendation purpose, as it is a consumer-
oriented Kansei evaluation model. It can also be used in Kansei engineering. In product
design, Kansei evaluation is an essential step. Once we can obtain consumers’ preference
information, we can evaluate the products.

In the proposed Kanesi evaluation model, we only consider three types of target pref-
erences. In general, the consumers can define many targets. However, as it is not so easy
to capture consumers’ preference information, we define three target preferences. Fur-
thermore, in Kansei evaluation problems, usually there are many Kansei attributes. Thus
the principle component analysis (PCA) is used to analyze the main factors that impact
the evaluation problems. This work is left for the future work.

7.5 Conclusions

Usually consumers purchase or select products according to their functional require-
ments or psychological needs. In this chapter we concerned ourselves with Kansei evalua-
tion focusing on consumers’ psychological needs and feelings according to so-called Kansei
attributes, which reflect aesthetic aspects of human perception on products. In particu-
lar, a preliminary study is conducted beforehand to obtain Kansei data of products, by
means of the semantic differential method and linguistic variables. These Kansei data
are then used to generate Kansei profiles for evaluated products by means of the voting
statistics. Because consumers’ preferences on Kansei attributes of products vary from
person to person and target-oriented decision analysis provides a good description of in-
dividual preference, the target-oriented decision analysis is used to quantify how well a
product meets consumers’ Kansei preferences. Due to the vagueness and uncertainty of
consumers’ preferences, three types of fuzzy targets are defined to represent consumers’
preferences. Because consumers usually may prioritize Kansei attributes, i.e., a prioriti-
zation hierarchy of Kansei attributes, a prioritized OWA aggregation operator is utilized
to aggregate the partial degrees of satisfaction for the evaluated products.

In the next chapter, we shall conduct a case study to illustrate how the proposed
Kansei evaluation model works in practice.
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Chapter 8

Case Study: Kansei Evaluation of
Japanese Traditional Crafts

Abstract: Most research of Kansei evaluation focuses on the product design. However,
Kansei evaluations of existing products have generally received less attention. Kansei
evaluations of existing products would be of great help for marketing or recommendation
purposes, and particularly in the era of e-commence. As the aesthetic aspects (brand
image, pattern, personal aesthetics, current trends of fashion etc.) play a crucial role in
consumers’ perceptions of traditional crafts, Kansei information is essential and necessary
for this evaluation problem.

The main focus of this chapter is to conduct a case study for Kansei evaluation for
Kanazawa gold leaf, one types of Japanese traditional crafts. To do so, a preparative study
is conducted first to gather the Kansei assessments of the thirty products of Kanazawa gold
leaf. Secondly, the Kansei profiles of the thirty Kanzawa gold leaf were obtained based on
the preparative study. Thirdly, based on two types of preferences (Kansei feeling target
and prioritization of these targets), we obtained the Kansei evaluation results. From
this case study, the consumers can choose their preferred products of Kanazawa gold leaf
according to their Kansei preferences.
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8.1 Introduction

In an increasing completive world market, it is more and more important for manufac-
tures to have a customer-oriented approach to improve the attractiveness in development
of new products, which should not only satisfy requirements of physical quality, defined
objectively, but should also satisfy consumers’ psychological needs, by essence subjective.
This has actually received much attention since the 1970s from the research community
of consumer-oriented design and Kansei engineering. As an essential step in Kansei engi-
neering, Kansei evaluation is today well established methodology in product design and
commercial available service in Asia. Kansei evaluation has been applied to product design
with successful results, e.g., food industry [5], design of mobile phone models [8, 68, 90],
telephones [59], tactile sense on surface roughness [33], material selection and design of
Chair [123], machine tool design [102], design of battery drills [118], car design [104],
design of baby stroller [129], design of table glasses [112].

Most research of Kansei evaluation focuses on the product design. However, Kansei
evaluation of existing products have generally received less attention. Kansei evaluation
of existing products would be of great help for marketing or recommendation purposes,
and particularly in the era of e-commence, where recommendation systems have become
an important research area. Therefore, Llinares and Page [92] have analyzed consumers’
emotional response to real estate promotions by using Kansei evaluation techniques. And
they conducted a case study by using the urban flats in the city of Valencia (Spain).

According to our knowledge, little research of Kansei evaluation for traditional crafts
has been addressed yet. As the aesthetic aspect (brand image, pattern, personal aes-
thetics, current trends of fashion etc.) plays a crucial role in consumers’ perceptions of
traditional crafts, Kansei information is essential and necessary for this evaluation prob-
lem. In this chapter, we focus on Kansei evaluation of traditional crafts. In Japan, there
are many traditional crafts such as fittings, textile, etc. These beautiful, elegant and deli-
cate products are closely related to and have played an important role in Japanese culture
and life. Evaluations of these traditional crafts would be of great help for marketing or rec-
ommendation purposes. In addition, as consumers’ preferences on the Kansei attributes
of traditional crafts vary from people to people, we shall use the proposed Kansei evalua-
tion model proposed in Chapter 7 by considering consumers’ preference information into
account.

Based on the above two reasons, the main objectives of this chapter are twofold.

1. To conduct a case study of Kansei evaluation for traditional crafts in Japan,

2. and to demonstrate the effectiveness of the proposed Kansei evaluation model in
Chapter 7.

The rest of this chapter is organized as follows. Section 8.2 introduces some background
information of traditional crafts in Japan. In Section 8.3 we conduct a preparative study
to gather the Kansei assessments of thirty products of Kanazawa gold leaf. In Section 8.4
we evaluate the thirty products of Kanazawa gold leaf by means of the Kansei evaluation
model proposed in Chapter 7. In Section 8.5 we give some discussions of this case study.
Finally, some concluding remarks are given in Section 8.6.
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8.2 Background of Traditional Crafts in Japan

In Japan there are a large number of traditional craft products which are so closely
connected to Japanese traditional culture. As explained in the Web site of The Asso-
ciation for the Promotion of Traditional Craft Industries 1, each of the traditional craft
products in Japan is “unique fostered through regional differences and loving dedication
and provides a continual wealth of pleasure”. However, due to the rapid chang of lifestyles
of younger generations and the prevalence of modern industrial products with their ad-
vantage in cost and usage, the market of traditional crafts in Japan has been shrinking
over the last recent decades. In 1974, Japanese government (METI) enacted the so-called
Densan Law for the “Promotion of Traditional Craft Industries” as quoted below 2

Japan has a great number of items for daily use whose development reflects
the country’s history, environment and lifestyle. Meanwhile, because of the
factors such as changing lifestyle and the development of new raw materials,
crafts manufactured with traditional methods and materials are having hard
times. Under the circumstances, METI enacted the above law in May 1974
with the objective of promoting the traditional crafts industry in order that
traditional crafts bring richness and elegance to people’s living and contribute
to the development of local economy, consequently, the sound development of
nation’s economy.

In addition, since 1984 METI has designated the month of November as the “Tra-
ditional Crafts Month” as well as conducted publicity and educational programs related
to traditional crafts throughout Japan. All of these attempts have been not only im-
portant from the economic perspective but also particularly important from the cultural
perspective in maintaining a spiritual heritage which makes the country unique.

On the other hand, with the fast growing of e-commerce in today’s business, the Inter-
net can be of a great help in traditional craft industries. Manufacturers and retailers via
their Web sites can make their marketing better as providing more attractive introduc-
tion and, hopefully, personalized recommendation, or even helping bring people back to
traditional and cultural values concerning their products. In fact, as reported in a recent
Reuters’ news article on May 20, 2007 by Mayumi Negishi 3, the kimono (described as
one of Japan’s oldest works of art) market could impressively improve its situation of
shrinking to less than half its size in more than last two decades, helped by a host of Web
sites where online tips, for instance, on kimono wear and care or on selecting the right
pattern of kimono play a role.

Our main concern here is to conduct Kansei evaluation for Japanese traditional craft
products by considering consumers’ preferences into account. The consumer-oriented
evaluation can provide a personalized recommendation for the consumers. A particular
focus is put on the Kansei evaluation of traditional craft products in Ishikawa prefecture,
Japan, where Japan Advanced Institute of Science and Technology is located. Fig. 8.1
shows the distribution of tractional craft products in Ishikawa prefecture, Japan.

1http://www.kougei.or.jp/english/promotion.html
2http://www.kansai.meti.go.jp/english/dentousangyou/top_page.html
3http://www.reuters.com/article/technologyNews/idUSN2029563220070520
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Figure 8.1: Distribution of traditional craft products in Ishikawa, Japan

8.3 A Preparative Study

The aesthetic aspects, such as brand image, pattern, personal aesthetics, current
trends of fashion and so on, play a crucial role in consumers’ perceptions of traditional
crafts, thus Kansei information is essential and necessary for this evaluation problem. In
addition, consumers’ preference information varies according to their character, feeling,
aesthetic and so on.
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In this section, we shall conduct a case study for Kansei evaluation of the traditional
crafts in Japan to illustrate the Kansei evaluation model proposed in Chapter 7 as well as
to provide a personified recommendation for the consumers. The consumers’ preferences
on Kansei attributes consist of two parts:

1. Consumers’ preferences on the relation order on Kansei attributes.

2. Consumers’ preferences on the prioritization of Kansei attributes.

8.3.1 Identification of products to be evaluated: Kanazawa gold

leaf

We will use the Kanazawa gold leaf, a traditional craft material with a history of over
400 years, as a case study to illustrate the proposed Kansei evaluation model. According
to Association for the Promotion of Traditional Craft Industries, the introduction to
Tradition Crafts in Japan are as quoted as follows 4

The history of Kanazawa gold leaf can be traced back to the latter half
of the Sengoku period (1428-1573), when Maeda Toshiie, the feudal lord of
the Kaga clan governing the southern part of the area now known as Ishikawa
Prefecture, sent a document back to the country from a campaign in Korea,
explaining how to produce gold leaf. The Shogunate subsequently set up a
gilders’ guild and controlled the production and sale of gold leaf throughout
the country. After the Meiji Restoration in 1868, however, Kanazawa gold
leaf workers took the opportunity on the abolition of governmental control to
successfully develop both the techniques and extent of production. Being of
such a high quality, Kanazawa maintains its position as the number one center
for the production of gold leaf in the country.

The leaf is very thin and in the case of gold leaf is between 0.0001 mm
and 0.0002 mm thick. For this reason, it is possible to apply the leaf to
materials however complicated the pattern might be. What is more, none of
the brilliance of the raw gold is lost at all, and the beauty and splendor of
the finished products never cease to captivate the heart of the beholder. It
still has a wide range of craft applications in the fields of textiles, lacquer
ware, ceramics and on various types of screens, often applied to paper. It is
also used on signs and individual carved characters as well as on the mizuhiki
decorations for gifts and on the best art mountings. Large amounts of gold
leaf in particular are used on household Buddhist altars and on shrine and
temple buildings, too. The industry is sustained by 200 firms employing 1,000
staff, among whom they are 26 Master Craftsmen.

Within the framework of a research project supported by the local government, a
total of thirty products of Kanazawa gold leaf have been collected for Kansei evaluation,
as photographically shown in Fig. 8.2.

4http://www.kougei.or.jp/english/crafts/1503/f1503.html

115



Figure 8.2: Thirty products of Kanazawa gold leaf used for Kansei evaluation
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8.3.2 Identification of the subjects

A total of subjects, including relevant researchers of Kansei engineering, senior resi-
dents in Kanazawa, and certified masters of traditional crafts, were chosen as subjects.
Among these 211 participants, 61.1% (129) were women and 38.9% (82) were men. The
distribution of their ages is shown in Table 8.1. The ratio of men and women, as well as
the approximate age data of evaluators were considered, trying to match the ratio in the
general Japanese population, but the selection of ages from early twenties to latter half
of sixties is especially due to those age groups being targeted as potential customers.

Table 8.1: Age distributions of subjects participating in the evaluation process

Age Number of subject Percentage

20 to 29 56 26.5%

30 to 39 51 24.2%

40 to 49 51 24.2%

50 to 59 4 1.9%

≥ 60 49 23.2%

Total 211 100%

It should be noted that, in many studies of Kansei engineering, the number of subjects
involved in experimental studies usually ranges from 10 to 35 [27, 85, 90, 91]. For pur-
poses of our Kansei evaluation, such a small number of subjects may not provide enough
information from various points of view, and may bring a statistical bias. To possibly
reduce the subjectiveness of the assessments, a number of subjects, with a larger size,
211, were selected.

8.3.3 Identification and measurement of Kansei attributes

Before gathering Kansei assessment data of the 30 products of Kanazawa gold leaf
by the 211 subjects, preliminary research was carried out to select Kansei attributes, by
consulting with local manufactures and selling shops. Finally, 26 opposite pairs of Kansei
words were selected through a brainstorming process. The bipolar Kansei words for the
n-the Kansei attribute are represented as KWn =< KW−

n , KW+
n >, where n = 1, · · · , 26.

A 7 point scale was used to put a value each Kanazawa gold leaf with respect to each
one of the Kansei attributes. In the literature, the point scale can be 5 point [92, 106], 7
point [102] or 9 point [53]. Choice of the odd point scale depends on specific problems.
The smaller the point scale is, the less differential semantics the Kansei attributes have.

As human perceptions are subjective and not objective, therefore the assessment pro-
vided by the individuals are vague and uncertain. In such a case, linguistic descriptors
are straight direct provided by the subjects to assess Kanazawa gold leaf. The fuzzy
linguistic approach [163, 167] provides a systematic way to represent linguistic variables
in a natural assessment procedure. It does not require a subject to provide a precise
value at which an uncertain factor exists. Thus each Kansei attribute Xn is represented
by a 7-scale linguistic term set Ln and triangular fuzzy numbers are used to denote the
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linguistic variable, such that

Ln = {L−3
n , L−2

n , L−1
n , L0

n, L1
n, L2

n, L3
n}

= { Very KW−
n , KW−

n , Fairly KW−
n , Neutral , Fairly KW+

n , KW+
n , Very KW+

n }
= {(−3,−3,−2), (−3,−2,−1), (−2,−1, 0), (−1, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 3)}

Table 8.2 shows the Kansei attributes with linguistic variables and triangular fuzzy num-
bers, where Kansei words were used in Japanese at first and approximately translated
into English in this study.

Table 8.2: Kansei attributes of traditional crafts, shown using linguistic variables and
triangular fuzzy numbers.

Xn
Left Kansei word 7-scale Kansei linguistic variable Right Kansei word

KW−
n L−3

n L−2
n L−1

n L0
n L+1

n L+2
n L+3

n KW+
n

X1 conventional � � � � � � � unconventional

X2 simple � � � � � � � compound

X3 solemn � � � � � � � funny

X4 formal � � � � � � � casual

X5 serene � � � � � � � forceful

X6 still � � � � � � � moving

X7 pretty � � � � � � � austere

X8 friendly � � � � � � � unfriendly

X9 soft � � � � � � � hard

X10 blase � � � � � � � attractive

X11 flowery � � � � � � � quiet

X12 happy � � � � � � � normal

X13 elegant � � � � � � � loose

X14 delicate � � � � � � � large-hearted

X15 luxurious � � � � � � � frugal

X16 gentle � � � � � � � pithy

X17 bright � � � � � � � dark

X18 reserved � � � � � � � imperious

X19 free � � � � � � � regular

X20 level � � � � � � � indented

X21 lustered � � � � � � � matte

X22 transpicuous � � � � � � � dim

X23 warm � � � � � � � cool

X24 moist � � � � � � � arid

X25 colorful � � � � � � � sober

X26 plain � � � � � � � gaudy, loud
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8.3.4 Gathering Kansei assessments

Having identified the subjects and Kansei attributes, the next step is to gather the
Kansei profiles of the thirty products of Kanazawa gold leaf. A total 211 population of
subjects were invited to assess the thirty products of Kanazawa gold leaf in a simultaneous
way. Each subject was given an answer sheet to rate the Kansei data for each Kansei
attribute regarding each product. A sample answer sheet is given in Fig. 8.3 and the
simultaneous process is shown in Fig. 8.4.

Figure 8.3: A sample of the answer sheet in Japanese

Figure 8.4: Gathering data for evaluation of Kanazawa gold leaf
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8.4 Consumer-Oriented Kansei Evaluation of Kanazawa

Gold Leaf

From now on, we shall evaluate the thirty products of Kanazawa gold leaf based on
the Kansei evaluation model proposed in Chapter 7.

8.4.1 Generation of Kansei profiles

Having obtained the Kansei assessments given by the subjects, we can obtain Kansei
profiles as follows. For evaluated product Am, m = 1, 2, · · · , 30, we define for Kansei
attribute Xn, n = 1, 2, · · · , 26, a probability distribution function pm

n : Ln → [0, 1] as
follows

pm
n (Lk

n) =
|{Sj ∈ S : Xm

n (Sj) = Lk
n}|

|S|
where k = −3,−2,−1, 0, 1, 2, 3, and Xm

n (Sj) denotes the Kansei assessment for product
Am with respect to Kansei attribute Xn given by subject Sj , j = 1, · · · , 211. In the same
way, we can obtain a 7-tuple of probability distributions for product Am with respect to
Kansei attribute Xn, such that

pm
n =

[
pm

n (L−3
n ), pm

n (L−2
n ), pm

n (L−1
n ), pm

n (L0
n), pm

n (L+1
n ), pm

n (L+2
n ), pm

n (L+3
n )
]
.

For example, the Kansei profile of Kanazawa gold leaf A1 is graphically shown in Fig. 8.5.

8.4.2 Specification of consumers’ preferences

Now let us consider the consumer-oriented evaluation for this problem. Assume that
a consumer has selected seven Kansei attributes she/he cares about, such that X =
{X4, X10, X11, X15, X21, X25, X26}. The seven Kansei attributes selected by the consumer
and their corresponded bipolar Kansei words are shown from Column 1 to 2 in Table 8.3.

We further assume that the consumer specifies seven targets according to the seven
selected Kansei attributes, denoted as T = (T4, T10, T11, T15, T21, T25, T26). The targets
specified by the consumer consist of two parts: semantics and fuzzy values. There are three
types of target preferences in this study: left Kansei word preferred, neutral preferred,
and right Kansei word preferred. Triangular fuzzy numbers are used to represent these
three targets. Table 8.3 shows the seven targets, their associated semantics and fuzzy
values, respectively.

In addition, the consumer may have a prioritization of the seven targets/Kansei at-
tributes. We also assume that the seven Kansei attributes are partitioned into 3 distinct
priority levels H1, H2, H3, where H1 � H2 � H3, as shown in Table 8.4. The attributes
are re-denoted according to their priority levels. For example, attribute X4 is the first
one in priority level H1, thus we use X

′
11 to denote X4. In this prioritization hierarchy

structure, attributes X4 and X26 have the highest priority level, i.e., the consumer is not
willing to trade off satisfaction with the Kansei attributes in hierarchy level H2 and H3,
until she/he has attained some level of satisfaction regarding X4 and X26.

Based on these two types of preferences, we divide our evaluation procedure into two
steps: calculation of target achievements regarding each Kansei attribute and prioritized
aggregation. In the following, we shall discuss these two steps in great detail.
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Figure 8.5: Kansei profile of Kanazawa gold leaf A1

Table 8.3: The preferred seven Kansei attributes and their corresponded targets

Kansei attributes Bipolar Kansei words Target Semantics of targets Fuzzy values of targets

X4 <formal, casual> T4 Neutral preferred (-3,0,3)

X10 <blase, attractive> T10 Attractive preferred (-3,3,3)

X11 <flowery, quiet> T11 Flowery preferred (-3,-3,3)

X15 <luxurious, frugal> T15 Luxurious preferred (-3,-3,3)

X21 <lustered, matte> T21 Matte preferred (-3,3,3)

X25 <colorful, sober> T25 Colorful preferred (-3,-3,3)

X26 <plain, gaudy> T26 Neutral preferred (-3,0,3)
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Table 8.4: Prioritization of the seven Kansei attributes/feeling targets

H1 X4(X
′
11), X26(X

′
12)

H2 X11(X
′
21), X15(X

′
22), X21(X

′
23)

H3 X10(T
′
31), X25(X

′
32)

8.4.3 Calculation of target achievements

According to Chapter 7, we can obtain the probability of product Am meeting fuzzy
feeling target Tn with respect to Kansei attribute Xn by meas of the following function

Prm
n = Pr(Xm

n � Tn) =

3∑
k=−3

pm
n (Lk

n) ·
[
Pr(Lk

n � Tn)
]

(8.1)

where pm
n (Lk

n) is the probability distribution function of Kansei linguistic variable Lk
n.

Taking product A1 and Kansei attribute X4 as an example. According to Kansei
profile of product A1 in Fig. 8.5, we know that the probability distribution of each Kansei
linguistic variable with respect to Kansei attribute X4 is as follows.

p1
4 =

[
p1

4(L
−3
4 ), p1

4(L
−2
4 ), p1

4(L
−1
4 ), p1

4(L
0
4), p1

4(L
+1
4 ), p1

4(L
+2
4 ), p1

4(L
+3
4 )
]

= [0.2654, 0.2607, 0.2607, 0.1374, 0.0569, 0.0142, 0.0047]
(8.2)

We also know that the linguistic variables for Kansei attribute X4 are

L4 =
[
L−3

4 , L−2
4 , L−1

4 , L0
4, L

1
4, L

2
4, L

3
4)
]

= {Very formal, Formal, Fairly formal, Neutral, Fairly casual, Casual, Very casual}
= {(−3,−3,−2), (−3,−2,−1), (−2,−1, 0), (−1, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, 3)}

(8.3)

The feeling target T4 specified by the consumer is a neutral preferred target, denoted
as (−3, 0, 3). Pr(Lk

4 � T4) can be obtained according to the extended target-oriented
decision model with respect to equal target preference discussed in Chapter 7 as follows.

Pr(L−3
4 � T4) Pr(L−2

4 � T4) Pr(L−1
4 � T4) Pr(L0

4 � T4) Pr(L1
4 � T4) Pr(L2

4 � T4) Pr(L3
4 � T4)

0.0185 0.1296 0.4630 0.7963 0.4630 0.1296 0.0185

According to Eq. 8.1, we can obtain the probability Prm
n of Kansei attribute X4 meeting

target T4 regarding product A1 as

Pr1
4 =

3∑
k=−3

p1
4(L

k
4) ·
[
Pr(Lk

4 � T4)
]

= 0.2654 ∗ 0.0185 + 0.2607 ∗ 0.1296 + 0.2607 ∗ 0.4630+

0.1374 ∗ 0.7963 + 0.0569 ∗ 0.4630 + 0.0142 ∗ 0.1296 + 0.0047 ∗ 0.0185

= 0.2971

Similarly, we can obtain the probabilities of other products meeting the seven targets,
as shown in Table 8.5.

122



Table 8.5: Probabilities of each Kansei attribute meeting the target with respect to the
thirty products of Kanazawa gold leaf

Products

Probability of each Kansei attribute meeting target

T4 T10 T11 T15 T21 T25 T26

X4 X10 X11 X15 X21 X25 X26

A1 0.2971 0.3579 0.5965 0.6249 0.1371 0.5948 0.4777

A2 0.2750 0.3915 0.5728 0.6052 0.1259 0.5690 0.4761

A3 0.3724 0.3943 0.3714 0.4328 0.1350 0.3924 0.4703

A4 0.2823 0.3702 0.6327 0.6848 0.1111 0.6514 0.4603

A5 0.3687 0.3409 0.3194 0.3800 0.2113 0.2881 0.4919

A6 0.3239 0.4107 0.4519 0.5487 0.1440 0.4647 0.4798

A7 0.3629 0.3795 0.3243 0.3824 0.1839 0.3018 0.4451

A8 0.3666 0.3484 0.3497 0.4072 0.1898 0.3508 0.4619

A9 0.3603 0.4140 0.2218 0.3727 0.2168 0.2606 0.4719

A10 0.3877 0.3247 0.3901 0.4322 0.1584 0.4268 0.5056

A11 0.3345 0.3854 0.5815 0.5904 0.1507 0.5631 0.4803

A12 0.3555 0.3857 0.4800 0.5293 0.1789 0.4937 0.5135

A13 0.3492 0.3854 0.2562 0.3369 0.2829 0.2947 0.4482

A14 0.3808 0.3819 0.2928 0.4034 0.2185 0.3292 0.4761

A15 0.3866 0.3215 0.3977 0.4516 0.1767 0.4443 0.4640

A16 0.3703 0.3526 0.1613 0.2392 0.1980 0.2088 0.4735

A17 0.3871 0.2737 0.3051 0.3458 0.2535 0.3420 0.4735

A18 0.3329 0.1944 0.2882 0.3497 0.3081 0.3246 0.3455

A19 0.2881 0.3441 0.4014 0.3241 0.2010 0.3352 0.5161

A20 0.2529 0.3509 0.3597 0.3054 0.2256 0.3276 0.5146

A21 0.3582 0.2455 0.2890 0.3684 0.2115 0.3337 0.4314

A22 0.3382 0.2260 0.4740 0.5587 0.1598 0.5821 0.3166

A23 0.3050 0.2948 0.4366 0.4096 0.1503 0.4772 0.4661

A24 0.2529 0.3486 0.5639 0.4425 0.1335 0.5162 0.4798

A25 0.2876 0.3158 0.3592 0.3887 0.5311 0.3654 0.4635

A26 0.2834 0.3771 0.5974 0.6304 0.1178 0.6117 0.4840

A27 0.3476 0.4248 0.3424 0.4201 0.1618 0.3609 0.4509

A28 0.3224 0.3740 0.5682 0.6067 0.1447 0.5637 0.4703

A29 0.2792 0.3967 0.6098 0.6462 0.1189 0.6140 0.4593

A30 0.3260 0.3953 0.3058 0.4268 0.1763 0.3529 0.4645
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8.4.4 Prioritized aggregation of target achievements

To illustrate the prioritized aggregation process, we shall take product A1 as an ex-
ample. According to prioritization of the seven targets in Table 8.4 and the partial
satisfaction degrees in Table 8.5, we can obtain the target achievements with respect to
the seven predefined feeling targets regarding product A1 as follows

For priority level H1: Pr1
4 = 0.2971, Pr1

26 = 0.4777

For priority level H2: Pr1
11 = 0.5965, Pr1

15 = 0.6249, Pr1
21 = 0.1371

For priority level H3: Pr1
10 = 0.3579, Pr1

25 = 0.5948

Assume that the consumer specifies her/his attitudinal character Ω = 0.5. In this
case, the consumer prefers an averaging tradeoffs between different target achievements
of targets. Here, the attitudinal character can be related to the linguistic quantifier for
determining the weights. The OWA weighting vectors for priority hierarchy Hq, q = 1, 2, 3
are

For priority level H1: U1 = (0.5, 0.5)

For priority level H2: U2 = (1
3
, 1

3
, 1

3
)

For priority level H3: U3 = (0.5, 0.5)

Then the prioritized OWA aggregation is proceeded as follows:

1. To calculate a degree of satisfaction for each priority hierarchy level:

Sat1
1 = OWA0.5(0.2971, 0.4777) = 0.3874

Sat1
2 = OWA0.5(0.5965, 0.6249, 0.1371) = 0.4528

Sat1
3 = OWA0.5(0.3579, 0.5948) = 0.4764

2. To calculate the induced priority weight for each priority hierarchy level by means
of product t-norm:

Z1
1 = Z1

0 ∗ Sat1
0 = 1.0;

Z1
2 = Z1

1 ∗ Sat1
1 = 0.3874;

Z1
3 = Z1

2 ∗ Sat1
2 = 0.1754

3. To calculate the global value of satisfaction for product A1:

Val(A1) = Z1
1 ∗ Sat1

1 + Z1
2 ∗ Sat1

2 + Z1
3 ∗ Sat1

3 = 0.6464

Similarly, we can obtain the aggregation values for other products with different atti-
tudinal characters. In this study, we used 11 Ω values such that

Ω = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

Table 8.6 shows the ranking list of the top 5 products with 11 attitudinal characters.
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Table 8.6: Top 5 products under prioritized aggregation with 11 attitudinal characters Ω

Attitudinal character Ω Ranking order of top 5 Kanazawa gold leaf

Ω = 0.0 A17 � A14 � A15 � A5 � A10

Ω = 0.1 A17 � A14 � A15 � A10 � A5

Ω = 0.2 A17 � A10 � A12 � A15 � A14

Ω = 0.3 A12 � A10 � A15 � A11 � A17

Ω = 0.4 A12 � A11 � A10 � A28 � A15

Ω = 0.5 A12 � A11 � A28 � A10 � A1

Ω = 0.6 A12 � A11 � A1 � A26 � A4

Ω = 0.7 A12 � A11 � A26 � A4 � A1

Ω = 0.8 A4 � A26 � A1 � A11 � A12

Ω = 0.9 A4 � A26 � A1 � A29 � A11

Ω = 1.0 A4 � A26 � A1 � A29 � A2

8.5 Analysis of Obtained Results and Discussions

In this section, we shall analyze the obtained results from two aspects: calculation of
satisfaction degree for each Kansei attribute and prioritized aggregation. And then give
some discussions on how to link the model with practice.

8.5.1 On probability of each Kansei attribute meeting target

In this case study, we used the following function to obtain the probability of Kansei
attribute Xn meeting consumer’s fuzzy feeling target Tn with respect to product Am

Prm
n = Pr(Xm

n � Tn) =

3∑
k=−3

pm
n (Lk

n) ·
[
Pr(Lk

n � Tn)
]

In this function, pm
n (Lk

n) is the probability distribution function of Kansei linguistic
variable Lk

n, Lk
n is used to represent the uncertain assessments provided by the subjects,

and Tn is used to represent consumer’s uncertain feeling target according to her/his pref-
erence on Kansei attribute Xn. The current function can capture consumers’ preference
information and uncertainty of assessments. Once the consumer has specified her/his
feeling targets, the probabilities of meeting these targets depend on the provability dis-
tribution pm

n (Lk
n) of the seven linguistic variables. In addition, the target achievements

are obtain by the target-oriented decision model, which focuses on whether the attribute
consequence meets consumer’ feeling target.
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Compared with related research of Kansei evacuation, our Kansei evaluation model
can not only capture the uncertain assessments by the population of subjects via voting
statistics, but also can capture the uncertain assessments by each subject via fuzzy lin-
guistic variables. Some researchers try to use linguistic 2-tuple model [56] to do Kansei
evaluation problems, e.g. Mart́ınez [98]. However, as we already mentioned in Chap-
ter 7, the consumers may have inconsistent preference order relations, thus the sensory
evaluation model based on linguistic 2-tuple model is limited. Some researcher also used
the utility theory to obtain the satisfaction degrees for different Kansei attributes, e.g.
[19, 67, 69, 80, 100, 115, 169]. In this case, the consumer must define a utility function
for each Kansei attribute, which is very complex and difficult in real applications. In this
regard, consumers’ feeling target toward each Kansei attribute is a straight way for the
consumer to express her/his preference information.

In real applications, we can do some questionnaire to collect consumers’ feeling tar-
gets toward different Kansei attributes. Another possible solution is to use the rating
techniques in recommender systems.

8.5.2 On prioritized aggregation

To discuss the aggregation phase, we first analyze the current prioritization structure
and then consider two special cases.

Analysis of current prioritization hierarchy

Under current prioritization hierarchy as shown in Table 8.4, Kansei attributes X4 and
X26 have the highest priority. In this case, the consumer prefers meeting her/his feeling
targets T4 and T26 first. If these two targets are achieved in some level, then she/he will
consider other targets. From the prioritized aggregation phase in Subsection 8.4.4, we
know that lower satisfaction degree of higher priority Kansei attributes will induce lower
priority weights for the attributes in lower priority level. The induced priority weights
are product dependent. This is the fundamental feature of prioritized OWA aggregation
operator discussed in Chapter 6.

As attributes X4 and X26 are in priority level H1, there exists some tradeoffs between
the target achievement of their associated targets. In general, importance weight plays
an important role in overseeing the tradeoffs. As specify importance weights for different
attribute/targets is time-consuming, the OWA operator is used to aggregate the target
achievements of Kansei attributes in the same priority level. With different attitudinal
character Ω, we can obtain different aggregated values. Table 8.7 shows the prioritized
aggregation with eleven attitudinal characters for the thirty Kanazawa gold leaf.

Assume that the consumer specifies Ω = 0. In this case, the consumer prefers the
most pessimistic attitudinal, i.e. she/he prefers that “all” type of aggregation in the same
priority level. When Ω = 1.0, the consumer prefers “exist one” type of aggregation.

It is clearly that the prioritized OWA aggregation allows the tradeoffs between Kansei
attributes in the same priority level and does not allow tradeoffs between Kansei attributes
in different priority levels. In the literature of Kansei evaluation, usually the importance
weighted aggregation is used. In this sense, the prioritized OWA operator is a better
solution for the aggregation in Kansei evaluation problems.
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Table 8.7: Prioritized aggregation with 11 attitudinal characters for Kanazawa gold leaf

Products

Prioritized aggregations with 11 attitudinal characters Ω

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A1 0.3524 0.4099 0.4669 0.5251 0.5850 0.6464 0.7092 0.7730 0.8367 0.8987 0.9538

A2 0.3231 0.3801 0.4370 0.4953 0.5554 0.6172 0.6805 0.7447 0.8091 0.8719 0.9283

A3 0.4424 0.4767 0.5095 0.5416 0.5735 0.6052 0.6366 0.6677 0.6982 0.7276 0.7542

A4 0.3253 0.3854 0.4455 0.5075 0.5718 0.6385 0.7073 0.7776 0.8485 0.9181 0.9809

A5 0.4691 0.4952 0.5214 0.5479 0.5748 0.6020 0.6297 0.6577 0.6860 0.7144 0.7426

A6 0.3898 0.4357 0.4813 0.5274 0.5744 0.6223 0.6711 0.7204 0.7700 0.8191 0.8654

A7 0.4498 0.4731 0.4959 0.5188 0.5417 0.5648 0.5880 0.6114 0.6347 0.6577 0.6799

A8 0.4604 0.4873 0.5133 0.5391 0.5649 0.5907 0.6164 0.6421 0.6676 0.6925 0.7160

A9 0.4587 0.4765 0.4966 0.5184 0.5417 0.5666 0.5930 0.6211 0.6513 0.6840 0.7206

A10 0.4690 0.5060 0.5415 0.5768 0.6121 0.6475 0.6829 0.7182 0.7531 0.7868 0.8174

A11 0.4043 0.4597 0.5127 0.5656 0.6187 0.6722 0.7259 0.7794 0.8318 0.8814 0.9236

A12 0.4437 0.4919 0.5390 0.5862 0.6340 0.6823 0.7311 0.7801 0.8288 0.8762 0.9195

A13 0.4651 0.4819 0.4994 0.5174 0.5358 0.5548 0.5741 0.5940 0.6144 0.6355 0.6574

A14 0.4914 0.5124 0.5345 0.5574 0.5811 0.6056 0.6309 0.6570 0.6841 0.7121 0.7416

A15 0.4769 0.5082 0.5382 0.5677 0.5971 0.6265 0.6558 0.6850 0.7137 0.7415 0.7667

A16 0.4425 0.4591 0.4762 0.4937 0.5115 0.5297 0.5482 0.5672 0.5866 0.6064 0.6267

A17 0.5121 0.5293 0.5467 0.5642 0.5820 0.6000 0.6182 0.6367 0.6554 0.6743 0.6933

A18 0.4475 0.4523 0.4574 0.4627 0.4682 0.4739 0.4798 0.4859 0.4921 0.4987 0.5056

A19 0.3655 0.4042 0.4437 0.4843 0.5259 0.5685 0.6122 0.6567 0.7022 0.7483 0.7946

A20 0.3286 0.3684 0.4091 0.4506 0.4930 0.5363 0.5805 0.6255 0.6713 0.7177 0.7646

A21 0.4525 0.4696 0.4871 0.5050 0.5234 0.5422 0.5615 0.5812 0.6015 0.6221 0.6433

A22 0.3786 0.4058 0.4319 0.4578 0.4839 0.5101 0.5365 0.5629 0.5891 0.6144 0.6371

A23 0.3644 0.4038 0.4427 0.4821 0.5222 0.5631 0.6045 0.6464 0.6882 0.7291 0.7668

A24 0.2984 0.3472 0.3979 0.4512 0.5071 0.5657 0.6270 0.6907 0.7565 0.8236 0.8901

A25 0.4236 0.4536 0.4855 0.5190 0.5539 0.5902 0.6281 0.6676 0.7090 0.7526 0.7996

A26 0.3294 0.3893 0.4493 0.5111 0.5749 0.6409 0.7087 0.7778 0.8472 0.9150 0.9758

A27 0.4242 0.4535 0.4824 0.5115 0.5409 0.5706 0.6006 0.6310 0.6614 0.6916 0.7207

A28 0.3865 0.4401 0.4924 0.5449 0.5983 0.6524 0.7073 0.7625 0.8172 0.8699 0.9165

A29 0.3255 0.3837 0.4414 0.5005 0.5614 0.6240 0.6881 0.7532 0.8184 0.8818 0.9383

A30 0.4038 0.4331 0.4633 0.4944 0.5266 0.5599 0.5941 0.6294 0.6657 0.7030 0.7412
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Analysis of other prioritization cases

In previous examples, we consider a prioritization hierarchy as shown in Table 8.4.
Now let us consider another two special cases.

1. Only one priority level
If the consumer has specified the same seven Kansei attributes and the does not
specify the priority hierarchy of the seven Kansei attributes, i.e. all the Kansei
attributes are in the same priority level such that

H1 = {X4, X10, X11, X15, X21, X25, X26}.

It means that the consumer allows a tradeoffs between the seven Kansei attributes/targets.
In this case, the prioritized OWA aggregation reduces to the original OWA aggrega-
tion operator. The OWA aggregated values with different attitudinal characters are
shown in Table 8.8. Assume that the consumer specifies Ω = 0, then the aggregation
mode is in fact

Val(Am) = min[Prm
4 , Prm

10, Prm
11, Prm

15, Prm
21, Prm

25, Prm
26]

Table 8.8: Top 5 Kanazawa gold leaf under OWA aggregation with 11 attitudinal char-
acters

Ω Weighting vector Top 5 Kanazawa gold leaf

Ω = 0.0 (0,0,0,0,0,0,1) A25 � A13 � A17 � A20 � A14

Ω = 0.1 (0.0018,0.0048,0.0127,0.0336,0.0890,0.2354,0.6227) A25 � A13 � A17 � A12 � A14

Ω = 0.2 (0.0155,0.0271,0.0472,0.0822,0.1433,0.2497,0.4351) A25 � A12 � A11 � A28 � A13

Ω = 0.3 (0.0439,0.0608,0.0842,0.1166,0.1614,0.2236,0.3096) A12 � A11 � A25 � A28 � A1

Ω = 0.4 (0.0862,0.1005,0.1171,0.1364,0.1589,0.1852,0.2158) A11 � A4 � A29 � A1 � A28

Ω = 0.5 (0.1429,0.1429,0.1429,0.1429,0.1429,0.1429,0.1429) A4 � A29 � A26 � A1 � A11

Ω = 0.6 (0.2158,0.1852,0.1589,0.1364,0.1171,0.1005,0.0862) A4 � A29 � A26 � A1 � A11

Ω = 0.7 (0.3096,0.2236,0.1614,0.1166,0.0842,0.0608,0.04399 A4 � A29 � A26 � A1 � A11

Ω = 0.8 (0.4351,0.2497,0.1433,0.0822,0.0472,0.0271,0.0155) A4 � A29 � A26 � A1 � A2

Ω = 0.9 (0.6227,0.2354,0.0890,0.0336,0.0127,0.0048,0.0018) A4 � A29 � A26 � A1 � A2

Ω = 1.0 (1,0,0,0,0,0,0) A4 � A29 � A26 � A1 � A28

2. Strict priority case
There exists another special case where only one Kansei attribute/feeling target
in each priority level is considered, i.e. the consumer does not need the tradeoffs
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between the target achievements with respect to different Kansei attributes. In this
case, the attitudinal character Ω will not affect the aggregation value for each priority
level, thus the aggregation results depend only upon priority hierarchy of the seven
Kansei attributes. For purposes of simplicity, we assume that the prioritization has
been made in order of the index of Kansei attributes, denoted as

X4 � X10 � X11 � X15 � X21 � X25 � X26.

Then the ranking list of the top 5 Kanazawa gold leaf that best meet consumer’s
preferences is:

A12 � A3 � A11 � A14 � A10.

8.5.3 Discussions

In this study, a preparative study is conducted first to gather the Kansei assessments
for the thirty products of Kanazawa gold leaf. Although it is difficult and time-consuming
to gather the Kansei assessments, the preparative study is a common step in Kansei
engineering. In Kansei engineering, Kansei evaluation is an essential step. As Kansei
engineering can be used by designers as a design aid to develop products that are able to
match consumers’ Kansei. In this sense, this case study provides a possible solution to
consumer-oriented design in Kansei engineering research for the Kanzawa gold leaf.

On the other hand, as Kansei engineering can be used by consumers to select products
based on their Kansei requirements, this case study also provides a possible solution for the
recommender systems. Japanese traditional crafts usually have the following properties:
low purchasing frequency, high price, high involvement in selection of preferred crafts.
As the aesthetic aspect (brand image, pattern, personal aesthetics, current trends of
fashion etc.) plays a crucial role in consumers’ perceptions of traditional crafts, Kansei
information is essential and necessary for the consumers. Thus a preparative study is quite
necessary in choice of traditional crafts. In fact, in recommender systems, product rating
techniques have been well developed. We can use the rating techniques in recommender
systems to fulfil the preparative study step. In addition, it is not so easy to find consumers’
preference information on different Kansei attributes of the traditional crafts, consumers’
feeling target provides a good solution to find the preferred crafts.

8.6 Conclusions

In this chapter, a case study of Kansei evaluation for thirty products of Kanazawa
gold leaf, one type of Japanese traditional crafts, was conducted to help the consumers to
choose their preferred crafts. To do so, a preparative study is conducted first to gather the
Kansei assessments of the thirty products of Kanazawa gold leaf. Secondly, the Kansei
profiles of the thirty Kanzawa gold leaf were obtained based on the preparative study.
Thirdly, based on two types of preferences (Kansei feeling target and prioritization of
these targets), we obtained the Kansei evaluation results. From this case study, the
consumers can choose their preferred products of Kanazawa gold leaf according to their
Kansei preferences.
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Chapter 9

Contributions and Future Work

9.1 Main Contributions of the Thesis

In this thesis, we have presented a study of multi-attribute target-oriented decision
analysis and its applications to Kansei evaluation problems. Among the nine chapters of
the thesis, the main chapters are Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter
7, and Chapter 8. The main contributions of this thesis are as follows.

1. The first main contribution is that we propose two methods to target-
oriented decision model with different target preferences and extend
those two methods to fuzzy target-oriented decision analysis.

(a) The first sub-contribution in this part is that we develop two methods for target-
oriented decision analysis with different target preferences.
In most studies on target-oriented decision making, monotonic assumptions are
given in advance to simplify the problems, e.g., the attribute/criteria wealth.
However, there are three types of target preferences. Two methods have been
proposed to model the different target preference types: cumulative distribu-
tion function (cdf) based method and level set based method. No matter which
method is selected, both of these two methods can induce four shaped value
functions: S-shaped, inverse S-shaped, convex, and concave, which represents
decision maker’s psychological preference. The main difference between these
two methods is that the level set based model induces a stricter value function
than the cdf based model.

(b) The second sub-contribution in this part is that we extend those two random
target-oriented decision analysis to fuzzy uncertain targets.
Target-oriented decision model assumes that target has a random probability
distribution. Fuzzy uncertainty is considered by decision makers to linguisti-
cally specify their uncertain targets. In this thesis, two methods of fuzzy target-
oriented decision analysis with respect to different target preferences have been
proposed. Firstly, a thorough analysis of possibility-probability transforma-
tions is given, and then the proportional approach is properly used to trans-
form a possibility distribution into the probability distribution. Secondly, two
methods of fuzzy target-oriented decision analysis have been obtained from
the random target-oriented decision model. Finally, some widely used fuzzy

130



targets used in the pioneering work by Bellman and Zadeh [12] are selected to
illustrate the fuzzy target-oriented model. Our research outperforms better in
terms of three aspects.

2. The second main contribution is that we develop a non-additive multi-
attribute target-oriented decision model based on fuzzy measure and
fuzzy integral, and put forward a prioritized aggregation operator to
model the prioritization between targets/attributes.

(a) The first sub-contribution in this part is that we model the interdependence be-
tween different targets based on λ-fuzzy measure and Choquet fuzzy integral.

The use of fuzzy measures and fuzzy integral in MADA enables us to model
some interaction phenomena existing among different attributes. As we shall
see, multi-attribute target-oriented function has a similar structure with fuzzy
measure, and fuzzy integral does not assume the independence. The fact that
fuzzy integral model does not need to assume the independence of each target,
means it can be used in non-linear situations. Thus we use fuzzy measure and
fuzzy integral to model the interaction among targets. Furthermore, even if,
in an objective sense any two targets are independent, they are not necessar-
ily considered to be independent from the DM’s subjective viewpoint. This
explains why a fuzzy integral is more appropriate. Since the specification for
fuzzy measures requires the values of a fuzzy measure for all subsets, the λ-fuzzy
measure is used in order to reduce the difficulty of collecting information and
the Choquet fuzzy integral is used to model the dependence in multi-attribute
target-oriented decision analysis. A bisection search algorithm is also designed
to identify the fuzzy measures of individual attributes group with a given λ
value.

(b) The second sub-contribution in this part is that we put forward a prioritized
OWA aggregation operator to model the prioritization between different targets.

Firstly the OWA operator is used to obtain the satisfaction degree for each pri-
ority level. To preserve the tradeoffs among the attributes in the same priority
level, the degree of satisfaction for each priority level is viewed as a pseudo
attribute. Secondly, we suggest that roughly speaking any t-norm can be used
to model the priority relationships between the attributes in different prior-
ity levels. To keep the slight change of priority weight, strict Archimedean
t-norms perform better in inducing priority weight. As Hamacher family of
t-norms provide a wide class of strict Archimedean t-norms ranging from the
product to weakest t-norm, Hamacher t-norms are selected to induce the pri-
ority weight for each priority level. Thirdly, considering DM’s requirement
toward the higher priority levels, a benchmark based approach is proposed to
induce priority weight for each priority level, i.e., “the satisfactions of the higher
priority attributes are larger than or equal to the DM’s requirements”. We sug-
gest that the weights of lower priority level should depend on the benchmark
achievement of all the higher priority levels.

To illustrate the effectiveness and advantages of the prioritized OWA operator
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mentioned above, we conduct several comparative analysis with previous work
on prioritized aggregation.

3. The third contribution is that we develop a Kansei evaluation model
based on prioritized multi-attribute fuzzy target-oriented decision anal-
ysis. A case study is also conducted to illustrate the proposed Kansei
evaluation model.

To overcome the those two above-mentioned problems in current research on Kansei
evaluation, we put forward a Kansei evaluation model based on fuzzy target-oriented
decision analysis and prioritized OWA aggregation operator. Firstly, like the tradi-
tional Kansei evaluation method, a preparatory experiment study is conducted in
advance to select Kansei attributes by means of semantic differential (SD) method.
In order to obtain Kansei data of products, a number of people are selected to as-
sess products regarding these Kansei attributes. Secondly, these Kansei data are
used to generate Kansei profiles for evaluated products by making use of the voting
statistics. Thirdly, according to consumer-specified preferences on Kansei attributes,
three main types of fuzzy targets are defined, to represent the consumers’ prefer-
ences. Based on the principle of target-oriented decision analysis, we can obtain
the satisfaction degrees (probabilities of meeting targets) regarding the Kansei at-
tributes selected by consumers for all the evaluated products. Finally, considering
prioritization of the Kansei attributes, the prioritized OWA aggregation operator is
used to aggregate the partial satisfaction degrees for the evaluated products.

Kansei evaluation has been applied to consumer products with successful results,
e.g., table glasses, housing assessment, telephones, cars, and mobile phones. How-
ever, Kansei evaluation of traditional crafts has not been addressed yet In Japan,
there are many traditional crafts such as fittings, textile, etc. These beautiful, el-
egant and delicate products are closely related to and have played an important
role in Japanese culture and life. Evaluations of these traditional crafts would be
of great help for marketing or recommendation purposes. Thus the Japanese tradi-
tional crafts are used as a case study to illustrate the proposed Kansei evaluation
model. By using our model, consumers can choose their preferred crafts according
to their preferences.

9.2 Suggestions for Future Research

The development of this thesis not only provides approaches to modeling and analyzing
decision problems with target while considering decision makers’ behavioral preferences,
but it also opens up new avenues to further research in multi-attribute decision making.
Below are some possible directions for future research.

9.2.1 Bipolar scale aggregation in multi-attribute target-oriented
decision model

Target-oriented decision model assumes that the target divides the outcomes into gains
and loss, thus the outcomes below or exceeding the reference point should have different
impacts on the aggregation of partial target achievements. In this case, from the point

132



view of aggregation, multi-attribute target-oriented decision model satisfies the conditions
that the values to be aggregated lie on different bipolar scales, where 0 is the worst score,
1 is the best score, and there exists different reference points, denoted as e. For different
attributes, the values e are probably different as different attributes may have different
target distributions. The resulting continuous piecewise linear aggregation function has
the ability to represent decisional behaviors that depend on the “positive” or “negative”
satisfaction of some of the attributes.

The motivation for such a work may be only mathematical. However, there are psy-
chological evidence that in many cases, scores or utilities manipulated by humans lie on a
bipolar scale, that is to say, a scale with a neutral value making the frontier between good
or satisfactory scores, and bad or unsatisfactory scores. With our convention, good scores
are positive ones, while negative scores reflect bad scores. Most of the time, our behavior
with positive scores is not the same than with negative ones: for example, a conjunctive
attitude may be turned into a disjunctive attitude when changing the sign of the scores.
So, it becomes important to define aggregation operators being able to reflect the variety
of aggregation behaviors on bipolar scales.

Recently, Grabisch et al. [48] have proposed a bipolar fuzzy integral to model this
type of aggregation within a bounded domain [−1, 1] based on prospect theory [70, 133],
where the reference point is zero. Target-oriented decision model represents the S-shaped
function, thus we believe the target-oriented model can also satisfy this point. However,
there are some differences between multi-attribute target-oriented model and the bipolar
aggregation operator proposed by Grabisch et al.

1. The bounded domains are different. In our research the bounded domain is [0, 1],
whereas the bipolar aggregation operator assumes [−1, 1]. This difference may be
only mathematical. However, in decision theory it represents different semantics.

2. The reference points are different. In our research the reference points can be
different, whereas the bipolar aggregation operator assumes a constant reference
point 0.

3. In fact, the bipolar aggregation operator proposed by Grabisch et al. [48] is based on
the prospect theory. Although target-oriented model can represents the S-shaped
value function, it is different from the prospect theory and have some advantages
than prospect theory.

Another possible research is to consider different importances and priorities into the
proposed aggregation operator as importance and priority information have different se-
mantics and meanings.

9.2.2 Continuous multi-attribute decision making based on target-
oriented decision model

Multi-criteria decision analysis (MCDA) problems can be categorized into two classes:
discrete and continuous MCDA [127], also known as multi-attribute decision analysis (MADA).
In this study we only focused on MADA. In the context of continuous MCDA (multi-
objective decision analysis), utility theory is one of widely used techniques. As there are
some drawbacks in utility theory, thus it is possible and necessary to apply the target-
oriented decision model into multi-objective decision making. Another reason for this
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work is the behavioral preferences. Distance-based approaches are quite broadly used
in goal programming. As different distances should have different impacts on decision
makers’ preferences, thus it is better to consider the target-oriented model in goal pro-
gramming. In fact, as pointed out by Todorov et al. [124], probability can be viewed as
some kind of distance while considering decision makers’ psychological preferences.

Furthermore, in the literature several several subfields are developed rather inde-
pendently, such as Goal Programming and multi-objective Decision Analysis. Target-
oriented decision model will provide opportunities for collaboration with MCDM/MAUT
researchers, leading to synergistic advances and less fragmentation of these fields. In
this sense, this research will provide a future research direction to collaborate with
MCDM/MAUT researchers [135]. Fig. 9.1 graphically depicts the review of MODM ap-
proaches by Sen and Yang [119].

Figure 9.1: Decision tree for MODM technique, adapted from Sen & Yang [119]
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9.2.3 Applications in recommender systems

Last but not at least, another future research is try to apply this research into the
recommender systems. The motivation for this research theme comes from the Kansei
evaluation model and case study in Chapter 7 & 8.

In the context of purchase decision making, a typical two-stage process may unfold as
follows. First, the consumer screens a large set of relevant products, without examining
any of them in great depth, and identifies a subset that includes the most promising
alternatives. Particularly, for the kinds of products of low purchasing frequency,
high involvement, and high price, e.g., traditional crafts in Japan, the consumer
usually has no sufficient knowledge to evaluate the products. Therefore, in addition to
the ability to interact with the consumer to acquire and analyze his requirements, the
system needs to have specific domain knowledge to evaluate different products and to
suggest the optimal ones satisfying the consumers’ requirements. Fig. 9.2 shows the
interactive recommendation strategy.

Figure 9.2: A recommendation strategy

1. Applying target-oriented decision model into critique-based recommender
systems
Many highly interactive recommender systems engage users in a conversational dia-
log in order to learn their preferences and use their feedback to improve the systems
recommendation accuracy. Such interaction models have been referred as conver-
sational recommenders or critiquing-based recommender systems [4]. The main
component of the interaction is that of example and critique. The system simu-
lates an artificial salesperson that recommends example options based on a user’s
current preferences and then elicits her feedback in the form of critiques such as
“I would like something cheaper” or with “faster processor speed”. These critiques
form the critical feedback mechanism to help the system improve its accuracy in pre-
dicting the users needs in the next recommendation cycle. In many critique-based
recommender systems, different comparison methods are used to revise consumers’
preference/requirements. Utility theory is one of the most widely used method to
compare and evaluate consumers’ critiques. Thus our first research objective is to
view the critiques as targets.
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2. Considering both subjective and objective information in recommender
systems
In interactive recommender systems, most researchers focus on objective information
such as size, weight of the product. In non-interactive recommendations systems,
most researchers focus on using some algorithm to predict the utility value of the
product to be recommended. The first point is to consider both subjective and
objective information in interactive recommender systems. Another point is to
consider Kansei information (a kind of subjective information). In non-interactive
recommender systems, most work tries to use consistent preference order relation to
rate the product, such as linguistic word “good”. However, as discussed in Chapter
7, Kansei words usually have different preference relations. We believe that this
research is missed in the literature of recommender systems.

3. A software-based decision support system (DSS) could help a consumers implement
this approach easily and expeditiously. Hence, a computer-based DSS should be
developed to integrate the recommendation methodology and assist in practical
applications.
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