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Japan Advanced Institute of Science and Technology, Hokuriku 

       15 Asahidai Tatsunokuchi, Ishikawa 923-12 

                          .Japan

                              Abstract 

  It is known that in {-4, A}-fragment of the natural deduction system of intuitionistic 
propositional logic NJ balanced formulas have unique /3ii-normal proofs. A balanced 
formula is a formula such that 

  1. every propositional variable has at most one negative occurrence and 

  2. every propositional variable has at most one positive occurrence. 

  It will be shown here that the above condition 1 is sufficient for formulas to have 
unique /.3rA-normal proofs. This can be obtained by a close examination of Mints' proof, 
whose details are given in the present report.

1 Introduction

Recently analogies between proofs/normalization steps of natural deduction system of intu-
itionistic logic and terms/reductions of typed lambda calculus are widely accepted. Since 
computational aspects of logic attract our large interest both in logic and in theoretical 
computer science, this analogies lead us to study the properties' of formal proofs rather than 
usual provability of propositions. We study here relations between formulas and their proofs, 
especially about conditions for uniqueness of normal proofs with respect to formulas. 

  Originally, an interest in uniqueness problem arose from coherence problem in category 
theory. In the late-70s, G.E.Mints proved that proofs of balanced formulas are ,Qhj-congruent 
in {-*}-fragment of NJ ([4]). A balanced formula is a formula such that 

  1. every propositional variable has at most one negative occurrence and 

  2. every propositional variable has at most one positive occurrence. 

Successively, A.A.Babaev and S.V.Solovjev proved it in {--;, A}-fragment ([1]). Later, 
G.E.Mints gave a simpler proof of it using the idea of V.Orekov's depth-reducing trans-
formations of formulas ([5]). 

  In the mid-80s, an interest in uniqueness problem arose again from Y.Komori's conjecture 
that normal proofs of minimal formulas are unique in {-*}-fragment of NBCK and NJ. 
NBCK is the natural deduction system of BCK, i.e. the intuitionistic propositional logic
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without a contraction rule. A minimal formula is a provable formula which is not a non-
trivial substitution instance of other provable formulas. It is already known that above 
conjecture is true for NBCK but false for NJ  ([3],[7]  ). Moreover implicational minimal 
formulas in BCK is balanced ([2] ). So the balancedness condition is a one of the main 
conditions which come out when we think of the uniqueness problem. 

  So far, it is still a fascinating question whether there is yet an other condition to have 
unique normal proofs. Recently, G.E.Mints' proof became to available ([6]). The main result 
of the present report is to show that the balancedness condition can be weakened by a close 
examination of his proof. More precisely, the above condition 1 is sufficient for formulas to 
have unique Mi-normal proofs. We will present here a detailed proof of it, supplementing 
and modifying Mints' proof in [6].

2 Preliminaries

2.1 natural deduction system 

We work on the {-->, A}-fragment of intuitionistic propositional logic. We use P, Q, R, S, T, .. . 
for propositional variables and A, B, C, D, ... for arbitrary formulas. 

   We use r, E, A, II, ... for finite sets of formulas. Set-union is denoted by U and set-

difference is by \. 
  We use {... , A°, ...} to denote A possibly does not exists in the set. For example, 

{A°, B, C} might be {A, B, C} or {B, C}. (This notation is used to combine the way 
of assumption-cancelling in natural deduction systems to set-notation of antecedents of 
sequents. We can deduce B, C I- A -+ D not only from A, B, C I-- D but also from 
B, C F- D. Using our notation, we can say that the subproof over a proof of B, C I- A -+ D 
is a proof of A°, B, C I- D. See definitions below and the proof of THEOREM.3.10, Case 
3-3.) 
  We use E. for syntactical equality. 

DEFINITION. 2.1 [sequent ] 
  Any expression of the form 

r E- A 

is called a sequent. Here r is called the antecedent of the sequent and A the succedent. 

  We use the natural deduction system NJ which consists of the following inference rules. 

  1. -4 introduction

[A](') 

 D 

 B   
 A-4B (1)

Here [A](1) means that assumptions [A] in D is often cancelled along with the appli-
cation of this inference.
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2.  --> elimination

Di D2 
A —^ B A

B

3. A introduction

Di D2 
A B

AAB

4. A elimination

D 
AAB

D 
AAB

A B

Formulas just over an inference are called the premises of the inference and a formula 
which is just below an inference is called the conclusion. In —+ elimination rule, the left 
premise is called the major premise and the right premise is called the minor premise. 

  The —^ introduction rule and A introduction rule are called introduction rules. The 
-4 elimination rule and A elimination rule are called elimination rules . 

  The set of assumptions of a proof D is the set of uncancelled assumptions which appear 
in D. The conclusion of a proof D is a conclusion of the last inference. A proof D of a 
sequent r I- A is a proof which has r as the set of assumptions and A as the conclusion 
(written as D : r I-- A). A sequent F I— A is said to be derivable if there exists a proof 
D of r I- A. The outermost { and } of r are often omitted as usual.

2.2 reductions

We consider following reduction rules.

1. /L-contraction

[A](1) 

D A —^ B (1)
B

D' 
A 
D 
B

2. /3A-contractions
D1 D2 
A B

AAB
A

D1 
A

D1 D2 
A B
AAB

B
D2 
B
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3. Restricted  7_,-expansion

D 
A — B [A4(1)

D 
A -4 B -,

 B   
 AB (1)

Here we assume that the reduction can be made only when this occurrence of A -* B 
does not appear in D neither as a conclusion of -4 introduction nor as a major premise 
of -4 elimination.

4. Restricted 1)A-expansion

D 
AAB

D 
AAB

D 
AAB

A B
-4 AAB

Here we assume that the reduction can be made only when this occurrence of A A B 

does not appear in D neither as a conclusion of A introduction nor as a premise of A 
eliminations.

/L-contraction and /3A-contraction are called 13-reductions. Restricted g...,-expansion 
and restricted 77A-expansion are called 1 -1-reductions. 

   A proof which is irreducible by A-1-reductions is said to be ,37)-1-normal. A proof 
which is reduced by a reduction is called reduct of the reduction. A reduction from D1 to D2 
is written as D1 -4 D2. A /3i-reduction sequence is a sequence of form D1 --> D2 --> • • •. 
A 0y-1-reduction sequence is said to be terminating if it ends in a finitely many steps with 
a normal proof. If D1 --> D2 -+ • • • --> D,l and Dn is normal, then D,,, is called a normal 
form of 7)1.

  The following three results on reductions of natural deduction systems are well-known. 

(Proofs are all omitted.)

THEOREM. 2.2 [ strongly normalizing property w.r.t. 0y1-1-reduction 
  Given a proof of r I- A, there is no infinite /3/F1-reduction sequences starting with it.

THEOREM. 2.3 [ Church-Rosser property w.r.t. /3q-l-reduction ] 
  Given a proof of r I-- A, /.3q-1-reduction sequences which start with it are confluent.

COROLLARY. 2.4 

  Given a proof of r I- A, it has the one and only ,q-1-normal form of it.

2.3 negative and positive occurrence 

DEFINITION. 2.5 [ negative, positive, strictly positive ] 
  A negative, positive and strictly positive occurrence of a formula is defined by simul-

taneous induction as follows:

1. A has a (strictly) positive occurrence in A;
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  2. A has a (strictly) positive occurrence in B  —^ C if A has a (resp. strictly) positive 
     occurrence in C or has a negative occurrence in B; 

  3. A has a negative occurrence in B —> C if A has a negative occurrence in C or has a 
    positive occurrence in B; 

  4. A has a (strictly) positive occurrence in B A C if A has a (resp. strictly) positive 
    occurrence in B or in C; 

  5. A has a negative occurrence in B A C if A has a negative occurrence in B or in C; 

  6. A has a (strictly) positive occurrence in r if A has a (resp. strictly) positive occurrence 
    in C for some C E r; 

  7. A has a negative occurrence in r if A has a negative occurrence in C for some C E r; 

  8. A has a (strictly) positive occurrence in r F- C if A has a (resp. strictly) positive 
    occurrence in C or has a negative occurrence in r; 

  9. A has a negative occurrence in r C if A has a negative occurrence in C or has a 
    positive occurrence in r. 

The set of propositional variables which have a positive (negative, strictly positive) occur-
rence in A is written as Pos(A) (resp. Neg(A). Spos(A)). 

3 Uniqueness for 2-sequents 

3.1 2-sequents 

DEFINITION. 3.1 [ 2-formula ] 
  A 2-formula is a formula which has one of the following forms: 

Q,Q—>R,(Q R)—'S,Q--* (R—'S),(QAR)—'S,Q (RAS), 

where Q, R and S are mutually distinct. 

DEFINITION. 3.2 [ 2-sequent ] 
  A 2-sequent is a sequent of the form 

rF- P 

where A is a 2-formula for all A E r. 

PROPOSITION. 3.3 
  Any 61r'-normal proof of 2-sequents can be described inductively by following cases: 

     1. 

[P]
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2a.

 [Q  -'  P]
P

D 
Q.

2b.

[R-+ ((2 -' P)]

J1 
D1 
R

Q -> P
P

D2 
Q.

3.

D 
Q

[(R -* (2) -~P] R—Q
P

4a.

[R-9 (PA(2)]
D 
R

P A Q
P

4b.

[R--* (QAP)]
D 
R

QAP
P

5.
ul 
V1 
R

E1 
D2 
Q

[(RA(2)--~P] RAQ

P

Proof . 
  Because of /3-normality, assumptions at major premises of inferences of introduction 

can not be cancelled. Hence they must be 2-formulas. Because of q-1-normality, tracing up 
minor premises of inferences of -+ elimination and premises of inferences of A elimination 
rule, we must encounter a propositional variable before inferences of introduction rule. This 
ensures that proofs are described inductively.O

Remark. 
  Many of our proofs described below proceed by induction on the structure of i37) 

proofs, making use of this proposition.

-1 -normal
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3.2 properties of normal proofs of  2-sequents 

PROPOSITION. 3.4 
   Let A I— P be a 2-sequent. Then P E Pos(A). 

Proof. 
   This is an immediate corollary of COROLLARY.2.4 and PROPOSITION.3.3.^ 

PROPOSITION. 3.5 
  Let A I— P be a 2-sequent. If T E Neg(A) then T E Pos(A). 

Proof. 
   Our proof proceeds by induction on the structure of ,371-1-normal proofs of A I— P. 

    Case 1. Let A F— P be derived as 
[P]. 

    Since Neg(P) = 0, the proposition follows immediately. 

    Case 2a. Let A I— P be derived as 

E 
D 

[Q —; P] Q  

P 

   If T E Neg(E), then T E Pos(E) by induction hypothesis. If T 0 E, then T - Q. But 
    Q E Pos(E) by applying PROPOSITION.3.4 to D. So, the proposition follows. 

  Cases 213,,,5 follow similarly.^ 

3.3 properties of suc-sequents 

DEFINITION. 3.6 [ suc-sequent 
  Let r i- P be a 2-sequent. A suc-sequent of r F- P is a derivable sequent 

rl,Q11Q2,...,Qn I— R 

where r C_ r, R E Neg(F) and for all Qi there exists Qi, Q2' such that ((Qi —* (4) —+ Q7) E 
r. 

Remark. 
  Suc-sequents are again 2-sequents. 

PROPOSITION. 3.7 
  Let r I- P be a 2-sequent and A F— R a suc-sequent of F F— P. If A' F— R' is a 

derivable sequent where A' C A and R' E Neg(A), then it is again a suc-sequent of r I- P. 

Proof. 
  This is immediate by the definition of suc-sequents.^



LEMMA. 3.8 

  Let  r  F- P be a 2-sequent in which P has at most one negative occurrence. If A E r and 

P E Spos(A), then all positive occurrences of P in antecedents of suc-sequents of F f- P 
are in A. 

Proof . 
  Let 

r',Q1,Q2,...,Q71 I- R 

be a suc-sequent as is in the definition of suc-sequents (DEFINITION.3.6). By our assump-
tions, A E r and P E Spos(A). 

  Now, assume that there is some another formula BE (F' U{Q1,Q2,,Qn})which 
contains at least one positive occurrence of P. 

  1. Case where B E F'. There are at least two negative occurrences of P in I' I-- P as in 
    A and in B. This is a contradiction. 

  2. Case where B F' (i.e. B - Qi for some i ). Then P - Qi for some i and from this 
   follows ((P — (4) -+ Q7) E r for some QZ and Q7 by the definition of suc-sequents. 

    (a) Subcase where A = ((P --+ Q'i) -* Q . Then Q7 - P since P E Spos(A). So 
        there are at least two negative occurrences of P in I' I- P as in A - ((P -+ 

Qi) -4 P). This is a contradiction. 

    (b) Subcase where A 0 ((P --+ Qi) — Q7). Then there are at least two nega-
        tive occurrences of P in P I-- P as in A and in (P — Qi) -+ Qz'. This is a 

         contradiction. 

  As a consequence, P has no other occurrences in antecedents of suc-sequents of F t- P 

than in A.^ 

PROPOSITION. 3.9 

  Let r I-- P be a 2-sequent in which every propositional variable has at most one negative 

occurrences and A I- R be a suc-sequent of F I- P. Then R 0 Neg(A). 

Proof . 
  It suffices to show that there does not occur such A in ,3ir1-normal proofs. Let A I- R 

be 
r', Q1, Q2) ... , Qn H R 

as is in the definition of suc-sequents (DEFINI'cioN.3.6). 
  Our proof proceeds by induction on the structure of ,C37/-1-normal proofs of A I-- R. 

    Case 1. Let A F- R be derived as 
[R] . 

   Then R Neg({R}) since Neg({R}) = 0.
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Case 2a. Let  0  I— R be derived as

D 
[S 17] S

R

Firstly, E I- S is a suc-sequent of F I-- P by PROPOSITION.3.7 since E C_ 0 and 
S E Neg(0). So, we can apply induction hypothesis to E I— S and get S 0 Neg(E). 
Hence (S —^ R) E. 

Now, positive R occurs as S —4 R in antecedent of suc-sequents of E U {S —* R} I-- R 
by LEMMA.3.8 since 

                f (S R)EEU{S-4R}and 
                  R E Spos(S R). 

So positive R occurs as S —4 R in E. Hence R Pos(E) since (S —* R) E. From 
this follows R Neg(E) by PROPOSITION.3.5. 
Moreover R Neg(S --> R) by the definition of 2-sequents, because R # S. Therefore 
R 0 Neg(0). 
Cases 2bN5 follow similarly.^

3.4 uniqueness theorem for 2-sequents 

THEOREM. 3.10 
  Let D : 0 I— P and D' : 0' I— P be 1311-1-normal proofs. If every propositional variable 

in A U 0' I- P has at most one negative occurrence, then D #73'. 

Proof . 
  Our proof proceeds by induction on the structure of /3q—'-normal proofs D and V'. We 

present only several cases here but remaining cases follow similarly. 

    Case 1-1. Let D and V' be proofs of forms 

[P] and [P], 

    respectively. Then D - D' - [P]. 

    Case 1-2a. Let D and D' be proofs of forms 

D' I 

[Q' -' P] Q'  
            [P] andP 

    respectively. Since P, Q' —p PE AU Al, there are at least two negative occurrences of 
    P in 0 U A'. So, this is not the case.
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Case 2a-2a. Let  D and  V' be proofs of forms 

D1D' 
[Q P] Q[Q'-'P] Q'  

PandP 

respectively. 

(a) Subcase where Q Q'. Since Q P, Q' -> P E A U A', there are at least two 
    negative occurrences of P in A U A'. So, this is not the case. 

(b) Subcase where Q - Q'. By our assumption, every propositional variable in E U 
      U {Q — P} I- P has at most one negative occurrence. So, every propositional 

    variable in E U E' I- Q has at most one negative occurrence since no negative 
    occurrence is added. So D1 - D1' by induction hypothesis. Therefore D - D'. 

Case 3-3. Let D and D' be proofs of forms 

E' 
D1D' 
QQ, 

[(R Q) R-*Q[(R'_*Q')-*P] R' ----------Q' 
PandP 

respectively. 

(a) Subcase where Q # Q' or R # R'. Since (R -> Q) P, (R' --> Q') -> P E 
0 U A', there are at least two negative occurrences of P in A U A'. So, this is 

    not the case. 

(b) Subcase where Q - Q' and R - R'. By our assumption, every propositional 
   variable in (E\{R° }) U (E'\{R° }) U { (R — Q) -* P} t- P has at most one 

   negative occurrence. Now (E\{R°}) U (E'\{R°}) I-- Q is a suc-sequent of it. 
   From this follows (R Q) —* P 0 E\{R°}, E'\{R°} by PROPosITION.3.9 since 

   Q E Neg((R -p Q) --> P). So, every propositional variable in E U E' E- Q has at 
    most one negative occurrence since no negative occurrence is added. (R already 

   had it's negative occurrence as in (R Q) -> P.) So D1 - D1' by induction 
 hypothesis. Therefore D - D'.^

4 Extension to general cases 

4.1 reduction to 2-sequents 

For a given /3i-1-normal proof of F I- A, we define reduction to some 07/-1-normal proof 
of a 2-sequent with a variable table. 

CONVENTION. 4.1 
  At each reduction, we need to supply new propositional variables, that is, propositional 

variables unused in the proof to reduce. We call such variables dummy propositional 
variables. We use letters p, q, r, s, t, ... to denote these propositional variables. 

                             10



DEFINITION. 4.2 

  A variable table is a set of forms x  :_ 

formula.

A where x is a propositional variabl e and A is a

DEFINITION. 4.3 [ succedent reduction 
  Given a pair of a proof of r I-- A where A is not dummy propositional variabl 

variable table 9, we reduce it to a proof of r, A --> p I-- p with 0 as 

D 
D [A p] A

We call this re

e and a

A H

duction succedent reduction.

DEFINITION. 4.4 [ antecedent reduction rule ] 
  Given a pair of a proof of ihr 1-normal  

antecedent reduction rules as below. 
  Any rule in the following is applied 

2-formulas. We will not mentior. about the 
reduction rule.

p

                     of A-1-normal oof of r I— A and a variable table 0, we define

pplied to ofs if they contain assumptions which are not 
                         about the variable table 9 when it is not changed by its

1. Case for assumption of form A --* B where either 

    • neither A nor B is a propositional variable or 

    • A and B are the same propositional variable.

[A B]
D1 
A

B 
D

[p—'B]

D1 

[A—'p] A
p

D

B 
D.

2. Case for assumption of form A —^ P where A is not a propositional variable. 

(a). Subcase for assumption of form (C -4 Q) --> P where either C is not a proposi-
     tional variable or C - Q or C - P.

[Cr) 
D1 
Q

[(c -> Q) P] C —* Q (1)

P 
D

['r—C] [r](1)
C 
Dl 
Q

[(r—*Q)~P] r --^Q (1)

P 
D.

If the cancelled assumption [C](1) 
to the variable table.

does not appear in the proof, r := C is added
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(b) Subcase for assumption of form (R  —> D) --' P where either D is not a proposi-
   tional variable or D - P. 

[R](1)
[R](1) 

Dl 
D

[(R—>D)-->P] R—D (1)

P 
D

D1 

[D-->q] D

[(R —' q) P]

q---------- (1) 
R —> q

P 
D.

(c) Subcase for assumption of form (C —> D) —+ P where neither C nor D is a
propositional variable. 

[Cr) 
D1 
         D  

[(C —> D) —* P} C --> D (1) 

P D

                [r —* C] [r](1) 
C 

D1 
[D q] D 

q   

               [(rq)r (1)—'q  

P D.

   If the cancelled assumption [C](1) does not appear in the proof, r := C is added 
   to the variable table. 

(d) Subcase for assumption of form (C A Q) —> P where C is not a propositional 
   variable or C - Q or C - P. 

D1 
D1 D2[C -* r] C D2 
C Qr Q  

[(CAQ)->P] CAQ [(rAQ)--+P]rAQ  
PP 
DDD.

(e) Subcase for assumption of form (RAD) —> P where either D is not a propositional
variable or D - P. 

D1 D2 
R D  

[(RAD)-13] RAD  
P 
D

D2 
D1 [D —> q] D 
R --------------q  

[(RAq)—*P] RAq  
P 
D.
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(f) Subcase for assumption of form (C A D) P where neither C nor D is a propo-
  sitional variable. 

 D1D2 
D1 D2[C -+ "r] C [D —+ q] D  
C Drq  

[(CAD) CAD [(rAq)—>P]rAq 
PP 
DI>D.

3. Case for assumption of form P --> B where B is not a propositional variable. 

   (a) Subcase for assumption of form P --> (C --> R) where either C is not a proposi-
      tional variable or C - R or C - P. 

        [P—'(C—R)] PlD[P—'(q—~R)] P [C q] C 
C-->RC q Rq  

RR 
DDD.

(b) Subcase for assumption of form P (Q —> D) where either D is not a proposi-
   tional variable or D - P. 

D1 
           D1[P — (Q —* r)] P D2 
[P (Q—D)] P D2Q --^r Q  

Q D Q [r D]  
DD 
DDD.

(c) Subcase for assumption of form P --> (C --i D) where neither C nor D is a 
   propositional variable. 

D1 D2 
D1[P-->(q-->r)] P [C q] C  

[P —+ (C —* D)] 1' D2q -' r q  
C DC [r DJr  

DD 
DDD.

(d) Subcase for assumption of form P --^ (C A R) where C is not a propositional 
   variable or C - R or C - P. 

D1 
D1[P —* (q A R)] P  

[P—(CAR)] PqAR  
C A R[q --* C] q  

CC 
DD D.

13



 D1 

[P (C A R)] P
CAR

R 
D

[P-'(qAR)]
Dl 

P

qAR

R 
D,

  and q := C is added to the variable table. 

(e) Subcase for assumption of form P —+ (QAD) where either D is not a propositional
variable or D - P. 

                     Dl 

[P -' (Q A D)] P  
QAD  

D 
DD

D1 

[P-*(QAr)] P  
QAr  

[r — D] 

D D.

D1Dl 

[P --r (QAD)] P[P -' (Q A r)] P  
QADQAr  

QQ 
DD D, 

  and r := D is added to the variable table. 

(f) Subcase for assumption of form P -4 (C A D) where neither C nor D is a propo-
  sitional variable. 

D1

[P -* (CAD)]
D1 
P

C, A D
C 
D

[q -> Cr]

[P -' (qAr)] P
qAr

q

D

and r := D is added to the variable table.

[P (CAD)]
Dl 
P

C 
D,

[P —i (qAr)]
D1 
P

[r- D]
qAr

C, A D q

D 
D D

and q := C is added to the variable table.

4. Case for assumption of form A A B.

D 
D,

[p AAB] [p]
[A A B] 

D D
AAB 

D.

14



  An antecedent reduction consists of parallel applications of a reduction rule to each 
occurrence of the assumption assuming that dummy propositional variables are newly  se-
lected in each reduction. Note that at reductions which are applications of 2(a) or 2(c), 
r := C is added to the variable table, only when the cancelled assumption [C] does not 
appear in any occurrence of the redex.

Remark. 
  By "parallel applications", we mean that given an assumption that is not a 2-formula 

we rewrite all occurrences of the assumption (and subproofs around it) simultaneously by a 
reduction rule that is specified by the form of the assumption. This is possible since there 
is only one open assumption in the left side of each reduction rule and for any assumption 
there is at most one applicable reduction rule according to the form of the assumption. 
This emphasis is because of our assumption that dummy propositional variables are newly 
selected in each reduction. So even if there are many occurrences of the same assumption 
in a proof, a reduction produces at most three new assumptions. In each reduction, a new 
propositional variable is added to the proof. We would give an example of the antecedent 
reduction to supplement these explanations. 

A proof ofR,S-+T,(RA(S->T))->P,P-->R F- P — 

[S -' T][S](1)

[R]
 T   

 S->T(1)

[(RA(S—'T))—P] RA(S-*T)

[P R] P
[S-*T][S1(2)

S-------- (2)
[(RA(S->T))->P]

R

RA(S->T)
P

reduces toa proof ofR,S->T,(S-*T)-->Q.(RAQ)->P,P-*R I-P—

   Dl 

[R] Q
[(RAQ)-'P] R. A Q

[P R1 P

R
D2 
Q

[(R A Q) P] RAQ

P

where D1 is

[S -> T][S](1)
T

[(S->T)-'Q] S -> T (1)

Q
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and  D2 is 

                            [S —+ T][S](2)  

                         T  

                   [(S-*T)-*Q] S-*T (2) 
Q 

Note that the same dummy propositional variable Q is used in both D1 and 7)2. This 
is because we apply a reduction rule 2(e) to two occurrences of redex around the same 
assumption [(R A (S -* T)) -* P] at the same time. 

DEFINITION. 4.5 
  Antecedent reductions and succedent reduction are called transformations. We say 

D :r I- A transforms to (E : L I-- P, 0) if (D : F F- A, 0) transforms to (E : A I-- P, 0). 

PROPOSITION. 4.6 
   Given a 0i-1-normal proof D, there is a transformation sequence that terminates, and 

the final reduct is a pair of a /3i -normal proof of a 2-sequent and a variable table 0. More-
over, the final reduct is unique up to renaming of dummy propositional variables regardless 
of reduction sequences. 

Proof . 
  Succedent reduction can be applied only once. All antecedent reduction except applica-

tions of Case 4 reduce the length of the formulas. No reductions produce assumptions of 
form A A B. So strong normalizability follows. Church-Rosser property follows from the 
fact that redex are independent, so the final reduct is unique up to renaming of dummy 

propositional variables regardless of reduction sequences. /3/ 1-normality follows from the 
definition of transformations. The reduct is a proof of 2-sequent also by the definition of 
transformations.0

4.2 general uniqueness theorem 

DEFINITION. 4.7 [ decomposition 
  Given a formulas A, we define a decomposition of A as follows: 

  1. decomp(A->B)dee decomp(A) U decomp(B) where either 

• neither A nor B is a propositional variable or 

      • A and B are the same propositional variable; 

  2. decomp(A -* P) where A is not a propositional variable; 

    (a) decomp((R --f Q) P) def {(R - Q) -* P} where R, Q and P are mutually 
        distinct; 

    (b) decomp((C Q) P) def {(r -* Q) P} U decomp(r C) where C is not a 
        propositional variable or C - Q or C - P; 

    (c) decomp((R D) P) def {(R -> q) --> P} U decomp(D --> q) where D is not a 
        propositional variable or D - P; 
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    (d) decomp((C  — D) P) aef {(r -i q) --> P} U decomp(r -> C) U decomp(D -> q) 
        where neither C nor D is not a propositional variable; 

    (e) decomp((R A Q) -> P) aef {(R A Q) -4 P} where R, Q and P are mutually 
       distinct; 

    (f) decomp((C A Q) -., P) aef {(r A Q) -> P} U decomp(C -> r) where C is not a 
        propositional variable or C - Q or C - P; 

    (g) decomp((R A D) P) aef {(R A q) -> P} U decomp(D -> q) where D is not a 
       propositional variable or D - P; 

    (h) decomp((C A D) P) def {(r A q) --> P} U decomp(r -> C) U decomp(D -> q) 
        where neither C nor D is a propositional variable; 

  3. decomp(P -> B) where B is not a propositional variable; 

    (a) decomp(P --> (Q = R)) aef {P --> (Q -+ R)} where P, Q and R are mutually 
       distinct; 

    (b) decomp(P -> (C -> R)) aef {P -> (q -> R)} U decomp(C -> q) where C is not a 
       propositional variable or C - P or C - R; 

     (c) decomp(P -> (Q -> D)) aef {P -> (Q -> r)} U decomp(r -> D) where D is not a 
        propositional variable or D - P; 

    (d) decomp(P -> (C -> D)) def {P -4 (q --> r)} U decomp(C -> q) U decomp(r -> D) 
        where neither C nor D is a propositional variable; 

    (e) decomp(P -> (Q A R)) def {P --> (Q A R)} where P, Q and R are mutually 
       distinct; 

     (f) decomp(P --> (C A R)) def {P --p (q A R)} U decomp(q -> C) where C is not a 
        propositional variable or C - P or C - R; 

    (g) decomp(P -> (Q A D)) aef {P -> (Q A r)} U decomp(r -> D) where D is not a 
        propositional variable or D - P; 

    (h) decomp(P -> (C A D)) def {P -> (q A r)} U decomp(C -> q) U decomp(r —* D) 
        where neither C nor D is a propositional variable; 

 4. decomp(A A B)def decomp(p -+ (A A B)) U {p}. 

Here p, q, r are dummy propositional variables that follows the same convention in the case 
of definition of transformations. We assume that dummy propositional variables are newly 
selected in each decomposition step. 

PROPOSITION. 4.8 
  Assume that D : I' I- A reduces to ( : A E- P, 0), where A I- P is 2-sequent 
and 9 is a variable table. Then by suitable renaming of dummy propositional variables, 

A C decomp(A --> P) U decomp(F). 
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 Proof  . 
  This is immediate by the definition of transformations and decomposition. ^ 

PROPOSITION. 4.9 
  Assume that D, D' : r F- A transforms to (E : A I-- P, 0), (E' : A' F- P, 0') where 

A F- P, A' F- P are 2-sequeiits and 0,0' are variable tables. If D # D', then E # E' or 
8 # 8' for any renaming of dummy propositional variables. 

Proof . 
  This is immediate by the definition of transformations.^ 

PROPOSITION. 4.10 
  Assume that D : F I- A transforms to (E : A F- P, 8), where A F- P is a 2-sequent 
and 0 is a variable table. 

  1. If every propositional variable in F F- A has at most one positive occurrence, then so 
is in A F- P. 

  2. If every propositional variable in F F- A has at most one negative occurrence, then so 
    is in A F- P. 

Proof . 
  This is immediate by the definition of transformations.^ 

THEOREM. 4.11 [ general uniqueness theorem I 
  Let D, D' be a ,A-1-normal proof of F A. If every propositional variable in r F- A 

has at most one negative occurrence, then D - D'. 

Proof . 
  Assume that they transform to (£' : A F- P, 0) and (E' : A' F- P, 8') respectively. 

Given an assumption A E F, it's decomposition by transformations is defined unique up to 
renaming of dummy variables. So, only difference between A and A' is that decomposition 
of formulas that appear in the right of := in 0\0' appear in A' and decomposition of formulas 
that appear in the right of := in 8'\8 appear ill A. By PROPOSITION.4.10, every propositional 
variable in A F- P and A' F- P has at most one negative occurrence. So, by suitable 
renaming of dummy variables, every propositional variable in A U A' F- P become to 
have at most one negative occurrence. So, = E' by THEOREM.3.10, and A - A' for 
such renaming. From this also follows 8 - 8 for such renaming. Therefore D - D' by 
PROPOSITION.4.9.^ 

COROLLARY. 4.12 
  Let D, D' be a A-normal proof of F F- A. If every propositional variable in F F- A has 

at most one negative occurrence, then D = V'. 

Remark. 
  This is because i-1-reduction can change proofs only locally and i -normal proof and 
i-1-normal proof is in one-one correspondence.
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   2. 

 [P —~ Q —' R](3) [pJ(l) [P -_> Q](2) [P]pp)  
Q—RQ  

------ 1 
                           P—~RO (2) 

(P —' Q) —' (P —' R)  
                    (P-->Q—>R) (P—'Q)—'(P—'R)(3) 
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