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1 Introduction

This document presents the semantics of CafeOBJ system and language (see [11]). CafeOBJ 
can be seen as a succesor of the famous algebraic specification and programming language OBJ 
[24, 10] but adding several new paradigms to the traditional OBJ language, such as specification 
of concurrent systems, object-orientation, and behavioural specification. 

  CafeOBJ is a declarative language in the same way other OBJ-family languages (OBJ, Eglog 
[19, 4], FOOPS [21], Maude [27]) are. Therefore the formal semantics of CafeOBJ follows the same 
general principle:

(P1) there is an underlying logicl in which all basic constructs/features of the language 
can be rigorously explained.

This intimate relationship between the language and its underlying logic was called "logical 

programming" by Goguen and Meseguer in [20]. 
  In providing the semantics for CafeOBJ we distinguish between four levels of the language:2

- programming "in the small" , 

- programming "in the large", 

- programming "in the huge", and 

- environment .

Programming "in the small" refers to collections of program statements (as obtained by flattening 
the individual modules), programming "in the large" to the module interconnection system, pro-

gramming "in the huge" to the software system composition, and the environment to the set of 
tools (including methodologies) supporting the process of programming and specification build-
ing in CafeOBJ. While programming in the small and in the large require formal mathematical 
semantics, programming in the huge can be approached semantically using some general tech-
niques developed for programming in the large (see [121), the environment cannot (and should 
not) be given formal semantics. However we devote a brief section to the latter because this is 
an essential aspect of the CafeOBJ system which should be understood in relationship to the 
former levels. So we formulate the second principle of our semantics: 

  *On leave from the Institute of Mathematics of the Romanian Academy. 
'Here "logic" should be understood in the modern relativistic sense of "institution" which provides a mathemati-

cal definition for a logic (see [14]) rather than in the traditional sense. 
'This hierarchy was first suggested by Professor Goguen, and we find it very meaningful for structuring our 

approach to the semantics of CafeOBJ.



(P2) provide an integrated, cohesive, and unitary approach to the semantics of pro-

gramming/specification in the small and in the large.

The third principle refers to the methodology of developing the logical semantics:

(P3) develop all ingredients (concepts, results, etc.) at the highest appropriate level 
of abstraction.

In order to achieve this we make extensive use of the powerful modern semantic tools made 
available by research in algebraic specification over the past decade, such as institutions and cat-

egory theory. Institutions make it perfect for developing the semantics of sophisticated systems 
implementing a multitude of mutually interacting paradigms in a simple, clean, and compact 

manner. Modern systems, including CafeOBJ, cannot escape a certain degree of complexity and 
sophistication, however institutions (and more generally, categorical methods) greatly help in 

retaining a basic simplicity at least at the level of semantics. Moreover, our abstract logical ap-

proach permits future extensions of CafeOBJ with other paradigms provided they are rigorously 
based on logic and they interact well with the existing paradigms; such extensions will still lie 

within the present semantics. 
  Finally, this document does not address the detalied mathematical aspects of this semantics 

(which sometimes could be rather sophisticated) but rather give pointers to other documents 
backing our claims. However, we provide in the appendices very brief surveys of several key 

structures; we hope this will make this document more self contained.
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2 Main Features of  CafeOBJ

This section gives a brief overview of the main features of CafeOBJ, all of them reflecting in 
the logical semantics. These should be understood in their combination rather than as sep-

arated features. Combining some of these features (sometimes all of them!) results in new 
specification/programming paradigms that are often more powerful than the simple sum of 

the paradigms corresponding to the individual features. One example is given by [8].

Equational specification and programming 

This is inherited from OBJ [24, 10] and constitute the basis of the language, the other features 
being built on top of it. As with OBJ, CafeOBJ is executable, which gives an elegant declarative 
way of functional programming, often refered as algebraic programming.

Concurrent systems specification 

This is based on Meseguer's rewriting logic [27] (abbreviatted RWL) specification framework for 
concurrent system which gives a non-trivial extension of traditional algebraic specification to-

wards concurrency. This feature brings the Maude language [27] close to a subset of CafeOBJ. 
RWL incorporates many different models of concurrency in a natural, simple, and elegant way, 

thus giving CafeOBJ a wide range of applications.
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Behavioural specification 

Behavioural specification [16,  18] provides another novel generalisation of traditional algebraic 
specification but in a different direction. Behavioural specification characterise how objects (and 
systems) behave, not how they are implemented. This is achieved by using specification with 
hidden sorts and a behavioural concept of satisfaction based on the idea of indistiguishability of 
states that are observationally the same.

Object orientation 

In CafeOBJ there are two sources of object-orientation. The first is given by the rewriting logic a 
la Maude treatment of objects which is implemantation oriented, the second one is given by the 
behavioural specification of objects which is more faithful to the principle of state encapsulation.

Powerful module system 

The principles of the CafeOBJ module system are inherited from OBJ which builds on ideas first 
implemented by the language Clear [2, 3]. CafeOBJ has several kinds of imports, parameterised 

programming (also allowing integration of CafeOBJ specifications with executable code in a 
lower level language), views, and module expressions.

Powerful type system 

The type system that allows subtypes based on order sorted algebra [22, 15] (abbreviatted OSA). 

The method of retracts, a mathematically rigorous form of runtime type checking and error han-
dling, gives CafeOBJ a syntactic flexibility comparable to that of untyped languages, while pre-
serving all the advantages of strong typing. The order sortedness of CafeOBJ not only greatly 

increases expressivity, but it also provides a rigorous framework for multiple data representa-
tions and automatic coercions among them [15].

3 The Underlying Logic

Each of the main paradigms implemented in CafeOBJ is rigorously based on some underlying 
logic; the paradigms resulting from various combinations are based on the combination of logics. 

This is consistent with the way the semantics of other multi-paradigm declarative languages has 

been treated, i.e., by combining the underlying logics. The following table shows the correspon-
dence between specification/programming paradigms and logics as they appear in the actual 

version of CafeOBJ, also pointing to some basic references.
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ABBREVIATION

MSA

OSA

HSA

HOSA

RWL

OSRWL

HSRWL

HOSRWL

LOGIC

many sorted 

algebra

order sorted 

algebra

hidden sorted 

algebra

hidden order sorted 

algebra

rewriting logic

order sorted 

rewriting logic

hidden sorted 

rewriting logic

hidden order sorted 

rewriting logic

 SPEC  /  PGM PARADIGM
algebraic specification

algebraic specification 

with subtypes

behavioural specification

behavioural specification 

with subtypes

concurrent 

algebraic specification

concurrent 

algebraic specification 

with subtypes

behavioural concurrent 

algebraic specification

behavioural concurrent 

algebraic specification 

with subtypes

BASIC REF.

[13]

[13, 22, 15]

[16]

[16,1]

[27]

[8]

  There are some enrichment/embedding relations between these logics, which correspond to 

institution embeddings (i.e., a strong form of institution morphisms of [14, 9]; see Appendix A), 
and which are shown by the following CafeOBJ cube (the orientation of arrows correspond to 

moving from "less complex" to "more complex" logics).

OSA-----------------> OSRWL

MSA----- RWL

    HOSA

HSA---------------> HSRWL

HOSRWL

  More rigorously, when dealing with pre-defined data types (which is required for any system 

having reasonable library support), the semantics must involve constraint logics [4, 6]. But since 
this issue is somehow secondary to our approach, and also because constraint logics can be easily 

internalised to any of the institutions constituting the CafeOBJ cube (see [6]), we feel that for the 

purpose of the presentation it is not necessary to add another dimension to the CafeOBJ cube. 
  HOSRWL embedds all other institutions (and therefore all main features of the language), 

hence it can be regarded as the institution underlying CafeOBJ; we devote Appendix B to the 

brief presentation of HOSRWL. However, it is important to consider the CafeOBJ cube in its 
entirety rather than HOSRWL alone. In a sense, HOSRWL represents the flattening of the cube, 

and some subtle information on the relationship between the component features is lost in this 

flattening.3 

3One simple example is given by imports of MSA modules by RWL modules , their denotations should map RWL 
models to algebras by getting rid off the transitions. This process directly uses the embedding of MSA into RWL and 
cannot be explained within HOSRWL alone.
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  For any two vertices of the CafeOBJ cube there is at most one institution embedding in the 

cube, so the embedding relation between the CafeOBJ cube institutions is a partial order, which 

we denote by  C. Least upper bounds and greatest lower bounds in the CafeOBJ cube will be 

denoted by U and n respectively.

4 Programming in the Small

At this level, semantics of CafeOBJ is concerned with the semantics of collections of program 
statements as given by flattening the individual modules, i.e., discarding any module composi-

tion structure. In CafeOBJ we can have several kinds of modules, the basic kinds corresponding 

to the specification/programming paradigms shown in the table of Section 3 (but discarding the 
type component):

  - equational specification modules , 
   - rewriting modules, 

  - behaviour modules, and 

  - behaviour rewriting modules 

The membership of a module to a certain class is determined by the CafeOBJ convention that 

each module should be regarded as implementing the simplest possible combination of paradigms 
resulting form its syntactic content (see [26]). This contrasts with Maude's approach which uses 

keywords for specifying the class of each module. 

  The table of Section 3 also shows the underlying logic corresponding to each class of modules. 
Modules can be regarded as finite sets of sentences in the underlying logic. This observation 

enables us to formulate the principle of semantics of CafeOBJ programming in the small:

(S) We identify between modules and theories generated in the corresponding insti-
tution. The loose denotation of a module T is the class of models of the theory, 
i.e., MoD(T). The tight denotation of the module is the initial model of the theory, 
denoted OT.

A module can have either loose of initial semantics, this is determined by the CafeOBJ con-
ventions or else is directly specified by the user. CafeOBJ does not directly implement final 

semantics, however the loose semantics of behaviour modules uses final models in a crucial way 

(see [18, 8]). 
  Initial model semantics is available only for non-behaviour modules, and is supported by the 

following result:

Theorem 1 

exists. ^

Let T be a theory in either MSA, OSA, RWL, or OSRWL. Then the initial model OT

This very important result appears in various variants and can be regarded as a classic of alge-

braic specification theory. The reader may wish to consult [23] for MSA, [22,15] for OSA, [27] for 
RWL, and although, up to our knowledge, the result has not yet been published, we dont have 

any reasons to discard it for OSRWL. 
  Because of the importance of the construction of the initial model we briefly recall it here. 

Let E be the signature of the theory consisting of a set S of sorts (which is a partial order in 

the order-sorted case) and a ranked (by S*) set of operation symbols (possibly overloaded). The 
S-sorted set TE of E-terms is the least S-sorted set closed under:

- each constant is a E-term (E[1
,3 c TE,,), and
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   -  o(t1... tn) E 71,3 whenever a E Esl...sn,s and ti E TE,si for i E 1, n. 

The operations in E can be interpreted on TT in the obvious manner, thus making it into a E-
algebra OE. If T is equational, then its ground part is a congruence -T on OE. Then OT is the 

quotient OE /=T, whose carriers are equivalence classes of E-terms under -T. If T is a pure 
rewriting theory then OT is a rewriting logic model whose carriers (OT) s are categories with E-
terms as objects and concurrent rewrite sequences (using the rules of T) as arrows. Finally, rewrite 
theories including equations require the combination between the above two constructions. 

  The completeness of the operational semantics (which is mainly based on rewriting) is ob-
tained via the completeness of the proof systems for equational logic [22], in one case, and for 
rewriting logic [27], in the second case.

5 Programming in the Large

In this section we are concerned with the semantics of the module interconnection system. 

CafeOBJ module interconnection system follows the principles of the OBJ module system which 
are inherited from earlier work on Clear [3]. Consequently our semantics is based on institutions 

employing the theory developed in [9]. In the actual case of CafeOBJ this institutional semantics 
is instantiated to the CafeOBJ cube, however its essential core can be presented at the level of 

institutions thus avoiding the particular details of the CafeOBJ cube logics.

5.1 Module Imports 

Module imports constitute the primitive concept underly 
ule interconnection system:

ing the semantics of the CafeOBJ mod-

(Li) A module import is a theory morphism between the imported and the importing 
module, and its denotation is the corresponding functor between the denotations of 

the modules.

In order to make this principle more precise let's consider a module import T a T where T is 

the imported module and T' is the importing module. Let sT and sT' be the institutions of T, 

and T' respectively. Then since T' must inherit the logic underlying T, we have

C sT'

Definition 2 A module import T a T' is a global theory morphism which is also an inclusion .4 

El

Corollary 3 Module imports form a partial order. ^

  The following result defines the denotations of module imports, showing that for each model 
of the importing module we can "extract" the part corresponding to the imported module. So, 

given a module import T a T', this defines a functor _ [T : MOD (T') — MOD (T) in the following 
way:

Proposition 4 Let T a T' be a module import and (4, a,,3) be the institution embedding %r C 
sT'. The any T'-model M' has a reduct to a T-model given by 

'Inclusion" here should be understood in the precise sense given by the inclusion systems of [9] which develops 
a categorical theory (further refined by [29]) generalising the set-theoretic concept of indusion. In this case we deal 
with inclusions in the category of theory morphisms.
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 M'rT = QE' (MI) rE = 4E) (MI r (E) ) 

where E is the signature of T and E' is the si gnature of T'. ^

The reduct of T'-models to T-models is a two step process which can be done in two ways. One 
way is to first reduce the r-model to the "less complex" institution sT, then reduce the resulting 
model to the signature of T. Alternatively, we may first reduce the r-model to the signature of 
T (but mapped to :1'T') and then reduce the resulting model to the asT. These show that when 
reducing models along module imports the two basic steps of reducing to a "simpler" paradigm 
and to a "smaller" signatures can be interchanged. 

  As with OBJ, CafeOBJ distinguishes between 3 basic kinds of imports. The CafeOBJ sys-
tem supports only syntactic declarations for these different kinds of imports (see [261), no other 
support is provided (in fact a full checking is undecidable). So, in order to avoid semantic in-
consistencies (which at the end boil down to faulty specifications/programs) it is important to 
understand precisely at the level of the language semantics what kind of import one uses.

Definition 5 An import T 4 T' is

• protecting iff MoD(T') IT = MoD(T), i.e., for each T-model M there exists a T'-model 
 M'such that M' IT = M, 

• extending iff for each T-model M there exists a T'-model M' and an inclusive model mor-

 phism M y M' IT, and 
• using otherwise.

0

This definition applies to both loose and initial semantics. In the case of initial semantics one has 

to consider the class of models of the theory consisting only of one model, i.e., the initial model. 
This can be achieved rigorously by using the initial data constraints of [14], which give an elegant 

way to restrict the class of models of a theory to only the initial model.

5.2 Parameterised Modules

Parameterised specification/programming is a very important feature of all languages in the OBJ 
family. The semantics of parameterised modules is based on the semantics of module imports 

since at the semantics level a parameterised module can be regarded as a special kind of module 
import (in which the parameter is imported).

(Lp) A parameterised module T[P], where P is the parameter, is an import P a T. 
A view (instantiating the parameter) is a global theory morphism P --p P'.

Definition 6 Let T[P] be a parameterised module and v : P --> P' be a view. Let:s' be the 
least upper bound of :-ST and .ssp in the CafeOBJ cube. Then the instantiation T[v] is given by 
the following pushout in the category of Y-theories Th(') (or, equivalently, in the category of 
global theory morphisms):

a P-->-T 

v P' --0-T[v]
0
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This construction is supported by fundamental results showing that pushouts in the category of 
theories of an institution always exist provided pushouts for signatures exist  [14,  9]. All CafeOBJ 

cube institutions have pushouts for signatures, however for the order-sorted case this can be 
non-trivial (see [25]). 

  The following result (see [9]) constitute the foundation for the semantics of parameter instan-

tiation:

Theorem 7 

module im

Let T[P] be a parameterised module and v : P —* P' be a view. Then P' —4 T[v] is a 
port and P' a T[v] is protecting if P a T is protecting. ^

5.3 Module Sum 

Shared sum of modules (denoted as +) is one of the basic operations on modules. 

Definition 8 Given two modules T and T', T + T' is the smallest theory such that T a T + T' 

and Ti 4T +T'. ^ 

Corollary 9 ST +T' = sT U sT' • ^ 

  This says that the institution of the sum unifies the paradigms of the institution of the com-

ponents. 
  We can extend the basic result from [9] on sums of modules to: 

Proposition 10 Let T and T' be two modules. Then we have the following pushout-pullback 

square (in sT U sT' ) 

T—T+T' 

aI a 
TnT'—a T' 

where T n T' is the shared part (i.e., the intersection) of T and T'. ^ 

  In [9] this result is used for deriving various properties of +, such that associativity, commu-

tativity, etc. 
  The following result describes the semantics of + by showing that any two consistent imple-

mentations of the components of the sum can be put together as an implementation of the sum 
of modules.

Corollary 11 For any model M of T and any model M' of T' such that M FTnT' = M' ITnT' there 
exists a unique model M ®M' of T + T' such that (M ® M') rT = M and (M ® M') rT' = M'. ^

5.4 Module Expressions 

Module expressions are formed as iterations of the following basic constructs: 

  • imports, 

  • renamings, 

   • sum, 

  • (instantiations of) parameterised modules. 

The evaluation of the module expressions results into a module that can be calculated as a col-
imit of theories in the style of Clear [3] in the least upper bound of the institutions of the basic 

constructs.
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Proposition 12 The denotation of the evaluation of a module expression is a limit of the  denota-

tions of the basic constructs. ^

This result relies on a basic property of the CafeOBJ institutions called exactness (see [9]) for 
more detalis.

6 Programming in the Huge

Programming in the huge in CafeOBJ is based on Goguen's "hyperprogramming" approach 

[121, which is a semnatic based technique for the integration of diverse features of programming 
environments. This involves clusters of related text centered around a specification, plus module 
expressions which tell how to combine and transform such module clusters. 

  Technically, hyperprogramming employs techniques from programming in the large, such 

as evaluation of module expressions as co-limits (in this case in a suitable category of module 
clusters).

7 The Environment

The principal aim of the Cafe environment (an environment for CafeOBJ language) is to support 

the specification documents with formal contents. The emphasis is on "with formal contents". 

Specifically, a specification document contains (1) codes in formal specification in CafeOBJ (2) 
instructions of formal verification (execution via TRSs, theorem proving, etc.), and (3) the results 

of such verification. These contents ensure the rigour of specification, and allow the reviewer, 
inspector, browser, etc., to be convinced of its reliability. 

  But we would also like not to be fanatics. We would like to allow the user to insert informal 
explanations, in charts, in tables, in diagrams, and in native languages, as he so wishes. These 

explanations enhance legibility and usefulness of the documents. 
  To make the system friendly and to make system architecture modular and flexible, we take 

note of the overwhelming tide of networking practices. In particular, we observe that WWW 

browsers as front-ends enable the user to manipulate informations smoothly, and take advantage 
of network infrastructures fully. Specification documents should be available on networks, and 

be amenable to such manipulation. 
  The environment consists of roughly four parts:

CafeOBJ interpreter. In isolation, this part acts very much like the OBJ interpreter. It checks 
syntax and evaluates (reduces) terms. In fact, we already have a good interpreter. In this project, 
we shall enhance its performance. In particular, we construct an abstract TRS machine and a 
compiler, and incorporate them into the interpreter.

Proof assistence system. An interpreter may be well used as a theorem prover, but more pow-

erful, dedicated provers are desirable. As proof engines, at least two kinds of inductive provers 

are considered. One is based on completion procedures, and the other on explicit structural in-
duction. On top of these engines, we shall construct a proof assistence system that takes into 

account the particulars of CafeOBJ.

Document manipulator. This part takes care of every kinds of processing of specification doc-

uments over network. For one thing, it analyses specification documents to show the contents 
to the user (via WWW browsers, editors etc.), to extract instructions of evaluations and proofs,
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and to search for suitable documents in the libraries. For another, 

networks, retrieving, storing, caching them as requested.

it manages documents on

Specification libraries. This part does not constitute the system per  se, but is enhancing its 
usability. We do not intend to provide a comprehensive set of libraries, which is unrealistic. 
Rather, we are focusing on a couple of specific problem domains. We are now planning to estab-
lish libraries for object-oriented programming, database management systems, and interactive 
system.

8 Conclusions

We provide 

are:

d CafeOBJ with logical semantics based on institutions. Some of its main features

  • simplicity and effectiveness via appropriate abstractness, 

   • cohesiveness, 

  • flexibility, 

  • provides support for multi-paradigm integration, 

  • provides support for the development of specification methodologies, and 

  • uses state-of-art methods in algebraic specification research. 

The logical semantics constitute the mathematical basis of the CafeOBJ project, and it will play a 

guiding role in the future design decisions for CafeOBJ and in developing specification method-
ologies in Cafe. The planned "CafeOBJ Report" will synthesize the role played by this logical 
semantics for the CafeOBJ language.
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A Institutions

In this appendix we review some of the basic concepts and results on institutions, but also intro-
duce some novel concepts dealing with the semantics of the multi-paradigm systems. A good 
introduction to institutions is [14], and [9] contains many results about institutions with direct 
application to modularisation. 

  From a logic perspective, institutions are much more abstract than  Tarski's model theory, and 
also have another basic ingredient, namely signatures and the possibility of translating sentences 
and models across signature morphisms. A special case of this translation is familiar in first order 
model theory: if E —p E' is an inclusion of first order signatures and M is a E'-model, then we 
can form the reduct of M to E, denoted M [E. Similarly, if e is a E-sentence, we can always 
view it as a E'-sentence (but there is no standard notation for this). The key axiom, called the 
satisfaction condition, says that truth is invariant under change of notation, which is surely a very 
basic intuition for traditional logic.

Definition 13 An institution s = (Sign, Sen, MOD, ) consists of

1. a category Sign, whose objects are called signatures, 

2. a functor Sen : Sign —p Set, giving for each signature a set whose elements are called sen-
  tences over that signature,

3. a functor MOD : Sign --> Cat°1' giving for each signature E a category whose objects are 
  called E-models, and whose arrows are called E-(model) morphisms, and

4. a relation E C IMOD(E)I

such that for each morphism co :

x Sen(E) for each E E 'Sign', called E-satisfaction, 

E —> E' in Sign, the satisfaction condition

M' I=E' Sen(So) (e) if MOD(p) (M') E e

holds for each M' E IMOD(E')I and e E Sen(E). We may denote the reduct functor MoD (w) by 
-6 and the sentence translation Sen(co) by co(-). ̂

  The following table shows the software engineering meaning of institution concepts for the 

case of specification languages.

INSTITUTIONS

signatures

sentences

models

model morphisms

satisfaction relation

signature morphism

sentence translation

model reduct

SPECIFICATION LANGUAGES

syntactic declarations in modules

axioms in modules

(possible) implementations of modules
refinement between implementations

the implementation satisfies the axioms of the module

module import

importing the module axioms

restricting the implementation of the importing 

module to an implemantation of the imported module

Definition 14 A theory (E, E) in an institution s = (Sign, Sen, MOD, =) consists of a signature 
E and a set E of E-sentences closed under semantic entailment, i.e., e E E if E JE e.5 

  A theory morphism cc : (E, E) —> (E', E') is a signature morphism co : E —+ E' such that 
co(E) C E'. Let Th(a) denote the category of all theories in as. ̂  

'Meaning that M E e for any E -model M that satisfies all sentences in E.

13



  For any institution  (a, the model functor MOD extends to Th(.rs), by mapping a theory (E, E) 
to the full subcategory MOD(E, E) of MOD(E) formed by the E-models that satisfy E. 

  Theories and theory morphisms have the following meaning in specification languages:

INSTITUTIONS

theory

theory morphism

SPECIFICATION LANGUAGES

module

module import

Definition 15 A theory morphism Sc : (E, E) — (E', E') is liberal iff the reduct functor 
: MOD(E', E') MOD(E, E) has a left-adjoint (_)(P.

M =E E M (MP) 6 M`° 

h h' 
ere exists a unique h^ 

M' E' M' 1p M' 

The institution (a is liberal iff each theory morphism is liberal. ^ 

Liberality is a desirable property expressing the possibility of free constructions generalising the 

principle of "initial algebra semantics". General results [30] show that liberality is equivalent to 
the power of Horn axiomatisability. 

  Another very important property is related to the possibility of amalgamation of consistent 
implementations for different modules (for more details see [9]): 

Definition 16 An institutionrs is exact iff the model functor MOD: Sign --> Cat°P preserves 
co-limits. is semi-exact iff MOD preserves only pushouts. ^ 

  Semantics of some multi-paradigm systems might involve several different institutions which 
may be linked together by using the following concept: 

Definition 17 Let .`1 and .94  be institutions. Then an institution morphism —> consists of 

  1. a functor 4 : Sigri Sign, 

  2. a natural transformation a : (1.; Sen = Sen', and 

  3. a natural transformation ,Q : MOD' 43; MOD 

such that the following satisfaction condition holds

M' fE^ aE^(e) iff )3E^(M,) HD(v) e

for any E'-model M' from .~s' and any 4)(E')-sentence e from .~s. 
  If 4 admits a left-inverse left-adjoint (denoted as T) then we say that the institution morphism 

.~s .~s' is an embedding. ^ 

In the case of specification languages the components of instituion embeddings have the follow-
ing meaning:

INST.

a

SPECIFICATION LANGUAGES

reduces the syntax of modules to syntax in a simpler paradigm

regards the syntax of modules as (degenerated) syntax in a more complex paradigm

translates module axioms to axioms in a more complex paradigm

extracts a simpler paradigm implementation from a module implementation

  The semantics of module imports for multi-paradigm systems requires a notion of morphism 

between theories belonging to different institutions. Such theory morphisms generalise the or-
dinary concept of theory morphism (Definition 14) in that it is "global" as opposed to "local".
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Definition 18 Let  (4), a03): £ - ' be an institution morphism, and T = (E, E) and T' = 
(E', E') be theories in a and & respectively. A global theory morphism T .— T' is an ca-signature 
morphism co : E 4)(E') such that ay, (40(E)) C E'. ^

  However in the case of institution embeddings we have an equivalent simpler formulation 
for global theory morphims. Recall from [14] that any institution embedding (4, a, /3) ::s' —+ & 

gives rise to a functor 4) : T h(s) —> T h(q) defined by

43(E, E) = (4), aT(z) (Er)

Proposition 19 Let (4., a, /3) : .~s —> ̀ss' be an institution embedding and let T E ThP) and 7' E 
T h(&).  Then a global theory morphism T ---> T' is the same with a a'-theory morphism 4)(T) -* 
T'. ^

For readers familiar with indexed categories [31], the previous results just says that global theory 
morphisms are the arrows in the flattening (i.e., the Grothendick construction) of the indexed (by 
the category of institutions) category T h.

B Hidden Order Sorted Rewriting Logic

We devote this appendix to the (rather informal) presentation in some detail of HOSRWL (first 

introduced in [8] in the many sorted version) which embedds all CafeOBJ cube institutions. 
However, the deep understanding of HOSRWL requires further reading on its main components 

([27] for RWL and [16, 18] for HSA) as well as their integration [8]. We assume familiarity with 
basic many sorted algebra which constitute the underlying level of all algebraic specification 

developments (relevant background can be found in [13, 23, 28]), but also with order sorted 

algebra [22, 15].

Signatures 

Let D be a rewrite model for an order sorted signature (o.s. signature for short) (V, <, P) 6 A 
hidden signature (over (V, <, W)) is a pair (H,<, E), where (H, <) is a partially ordered set of 
hidden sorts, disjoint from V, and E is a (H UV, <)-o.s. signature, such that

(S1) each a E Ew,s with w E V* and s E V lies in 11/w,s, and 

(S2) each a E Ew,,g has at most one element of H in w.

If w contains a hidden sort, the a E Ew,s is called a method if s E H and an attribute if s E V. 
Condition (S1) is a data encapsulation condition, and (S2) says that methods and attributes act 
on (states of) single objects. 

  A hidden rewrite signature is given by (H,<, E, E) where (H,<, E) is a hidden o.s. signature 
over (V, <, W), and E is a collection of E-equations. 

  A hidden sorted rewrite signature morphism 0 : (H,<, E, E) --> (H', <, E', E') is an o.s. 
signature morphism (H U V, <, E) — (H' U V, <, E') such that

(M1) 0(v) = v for all v E V and 0(a) = a for all a E W, 

(M2) 0(H) C H' (i.e., hidden sorts are mapped to hidden sorts), 

(M3) if o' E El.,,,, and some sort in w' lies in H', then a' = 0(a) for some a E E, 

(M4) if 0(h) < 0(h') for any hidden sorts h, h' E H, then h < h', and 
'This is refered as the signature of data

, while D is called the model of data.
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(M5)  0(E) l= ' E'. 

The first two conditions say that hidden sorted signature morphisms preserve visibility and in-
visibility for both sorts and operations, the third and fourth conditions express the encapsulation 
of classes and subclassesm (in the sense that no new methods or attributes can be defined on an 
imported class), while the fifth expresses the encapulation of structural axioms.

Sentences

Given a signature (H, <, E, E), a sentence is either a (possibly conditional) equation (modulo E) 
or else a (possibly conditional) rule (modulo E). Since equations are very traditional to algebraic 
specification, we concentrate here on rules. A conditional rule is written as 

    (VX) [t] -+ [t'] if [ui] - [vi] ... [uk] - [vk] 

where t, t', u2, vi are E-terms with variables X and modulo the equations in E (i.e., equivalence 
classes of E-terms modulo the congruence determined by E). The left-hand side of if is the head 
of the rule and the right-hand side is the condition of the rule. 

  Given a signature morphism : (H, <, E, E) -* (H', <, E', E') the translation of sentences is 
defined by the translation of E-terms (modulo E) to E'-terms modulo E' along 0 by replacing 
all symbols in E-terms with the corresponding symbols for V. Condition (M5) enforces the 
correctness of this definition. For a full rigorous treatment of this issue the reader is advised to 
consult [4, 71.

Models

Given an algebraic theory (E, E), a rewrite model for (E, E) is given by the interpretation of the 
algebraic theory into Cat. More concretely, a model M interprets each sort s as a category M„ 
and each operation o E Ew,9 as a functor am: Mu, -p M3, where Mu, stands for M31 x ... x M3n 
for w = si ... sn. Each E-term t : w -* s gets a functor tM : Mw -p M8 by evaluating it for 
each assignment of the variables occuring in t with arrows from the corresponding carriers of 
M. The satisfaction of an equation t = t' by M is given by tM = tM;7 in particular all structural 
equations should be satisfied by M. A model morphism is a family of functors indexed by the 
sorts commuting the interpretations of the operations in E. 

  This algebra "enriched" over Cat is a special case of category-based equational logic (see [4, 5, 
17]) when letting the category Aof models to be the interpretations of E into Cat as abovely 
described, the category X of domains to be the category of many sorted sets, and the forgetful 
functor Ll : A-> X forgetting the interpretations of the operations and the composition between 
the arrows, i.e., mapping each category to its set of arrows. This enables the use of the machinery 
of category-based equational logic as a technical aide to the model theory of RWL. 

  A hidden sorted rewrite model M for a hidden sorted rewrite signature (H, E, E) over 

(V, ', D) is just a (E, E)-rewrite model for such that M [w = D.

Satisfaction

Let (H, <, E, E) be a hidden sorted signature, [p] be a sentence ,8 and M be a model for this sig-
nature. Satisfaction in RWL of ordinary equations was explained in the paragraph on sentences, 
so we concentrate on the satisfaction of rules. 

  The satisfaction of a rewrite rule (VX) [t] -> [t] if [ui] -+ [vi] ... [uk] -p [vk] by M has a rather 
sophisticated definition using the concept of subequaliser. Let w be the string of sorts associated 
to the collection of variables X. Then 

7This definition extends without difficulty to conditional equations. 
8We extend the equivalence dass notation from terms to sentences in the obvious way.
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   M  = (VX) [t] — [t'] if [ui] [vi] ... [uk] .--> [vk] 

if there exists a natural transformation JM; tM = JM; tM where JM : Subeq((uiM, viM)iEl,k) — 
Mu, is the subequaliser functor, i.e., the functor component of the final object in the category hav-

ing pairs (Dom(S) Mw, (S; uiM ., S; viM)ZE1—k) as objects and functors H such that H; S' = S 
and H a' = a as arrows. 

  The satisfaction in HOSRWL is behavioural (denoted by ) and is defined as 

M [P] iff M [P] 

where M is the behaviour image9 of M obtained by factoring the unique homomorphism from 
M to the final model.10 Informally, M identifies all elements and transitions that are "observa-
tionally the same", but also adds new "observational transitions". 

  A proof of the following result (but for the many sorted case) can be found in [81:

Theorem 20 [SATISFACTION CONDITION FOR HOSRWL] Let 0 : (H, <, E, E) --* (H', <,E' , E') 
be a morphism of hidden sorted rewrite signatures, M' be a (H', <, E', E')-rewrite model, and p 
be a E-rule or a E-equation. Then 

    M' (H',<,E',E') q5([1)]) iff M' I ¢ ~(H,<,E,E) [P]

  9See [8] for the formal definition . 
'However However in case of operations with visible arguments and hidden sort , the final modle might not exist, but we 

can instead use the final model in the signature without these operations. For more details see [8].
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