
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
The equivalence of the reductions with the E-

strategy with and without marks

Author(s)
Nagaya, Takashi; Matsumoto, Michihiro; Ogata,

Kazuhiro; Futatsugi, Kokichi

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-97-0034F: 1-9

Issue Date 1997-08-13

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8376

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

The equivalence of the reductions with

 E-strategy with and without marks

 Takashi Nagaya t, Michihiro Matsumoto if
 Kazuhiro Ogata t, and Kokichi Futatsugi t

 IS-RR-97-0034F

the

tGraduate School of Information Science,
 Japan Advanced Institute of Science and Technology

tReseach Center of PFU Limited.

(C)T. Nagaya, M. Matsumoto, K. Ogata, and K. Futatsugi, 1997

 ISSN 0918-7553

 August 13, 1997

Abstract

The E-strategy is the evaluation strategy which is adopted by OBJ2, OBJ3, and CafeOBJ.

OBJ2, OBJ3, and CafeOBJ also adopt the reduction with the E-strategy with marks. In

this paper, we show the result of the reduction with marks coincides with the result of

the reduction without marks if the E-strategies satisfy the conditions that the E-strategy

list do not include 0, or the last element of the E-strategy list is 0. In the most of the

practical usage, the above conditions are satisfied.

1 Introduction

The E-strategy [2, 3, 5] is the evaluation strategy which is adopted by OBJ2, OBJ3, and
CafeOBJ, in the following referred to as the OBJs. The OBJs are algebraic specification

languages which have an underlying formal semantics that is based on equational logic,

and an operational semantics that is based on rewrite rules. The equations of the spec-

ification may be used to rewrite rules from left hands to right hands. Therefore, static

properties of the specification are verified by the rewriting rule engine which is controlled
by the E-strategies.

 To verify the practical problem, the rewriting rule engine must have a good termination

behavior and be implemented efficiently. The outermost strategy (lazy evaluation) often
has a good termination behavior, but is implemented inefficiently. On the other hand,

the innermost strategy(eager evaluation) can be implemented efficiently, but has a bad
termination behavior. The E-strategy can specify the argument which is evaluated lazily.

Therefore, the E-strategy can have a good termination behavior, and by eliminating

rewriting of outermost redexes, the reduction become efficient.

 Consequently, we think the E-strategy is suitable to control the rewriting rule engines

which verify the practical problem.

 The OBJs adopt the reduction with E-strategy with marks which is more efficient than

the reduction without marks.

 But, until now, the behavior of the reduction with marks have not been clear.

 Therefore, in this paper, we show the result of the reduction with marks coincides with

the result of the reduction without marks if the E-strategies satisfy the conditions that

the E-strategy list do not include 0, or the last element of the E-strategy list is 0. In the

most of the practical usage, the above conditions are satisfied.

 We give terminology and notation in section 2, the explanation of the E-strategy in

section 3, and the proof of the equivalence of the reductions with the E-strategy with and

without marks in section 4. We end with a discussion of related work and conclusion.

2 Terminology and Notation

We assume that the reader is familiar with the basic concepts of rewriting. We introduce

the notations used later and refer to [1, 4].
 Let V be a set of variables and let F be a set of function symbols where FnV = 0. Each

function symbol equips with an arity (a natural number), i.e. the number of arguments
it is supported to have. Let T(F, V) be the set of terms which are constructed by F and
V. T(.F, V) may be abbreviated to T. V(t) stands for the set of all variables appearing
in t. If t E V, top(t) = t and if t = f (t1, ... , tn), top(t) = f . If t = f (t1i ... , tn), then
subterm(t, i) = ti and replace(t, i, s) denotes the term that is obtained from t by replacing
ti with s.

 Substitution o is a map from V to T, extended to a map from T to T in such a way

that a(f (t1i ... , tn)) = f (Q(t1), ... , o (tn)), for each f (of arity n) E F and for all terms
ti E T. We also write to instead of o (t).

 A context is a term of T(F U {01, V) containing one occurrence of a special symbol 0,
denoting an empty place and is denoted by C[]. C[t] denotes the term that is obtained
by replacing ̂ with t. If there is a context C[] which satisfies t = C[s], s is called a
subterm of t.

1

 A rewrite rule is a pair (1, r) of terms in T which satisfies 1 0 V and V(r) C V(1). It
will be written as 1 — r. A term rewriting system (TRS for short) is a pair (F, 7Z) of a
set .T' of function symbols and a set 7Z of rewrite rules. A TRS may be denoted by 7Z,

ignoring T.

 We define the reduction relation —>R on T(F, V) using the set of rewrite rules of TRS
(F,1Z), as follows. If there are 1 --> r E R., o, and C[] which satisfy t = C[lr] and
s = C[ror], we decide t —>R s. At this time, to is called a redex and rcr is called the
contractum of la. We generally omit R from —>R when it is clear from context. The

transitive reflexive closure of --+R is written as -+R. If t R s, s is a reduct of t.

 We say that t is a normal form if there is no s E T such that t —R s. Further, t E T

has a normal form if t ~R s for some normal form s E T and s is called a normal form

of t.

3 The E-strategy

The E-strategy [2, 3, 5] is an evaluation strategy of a function symbol, which specify the
evaluation order of arguments. Evaluation order is specified by the list of integers. This

list is called the E-strategy list. Each positive integer in the E-strategy list represents an

argument. 1 represents the first argument, 2 represents the second argument, and so on.

0 represents the whole term.

 If we omit a given argument number from the E-strategy list, this argument get lazy

evaluation, i.e. this argument is not evaluated unless some rewrite exposes it from under-

neath the given operation. For example, the conditional is declared as follows.

 op if _then_else_f i : Bool Int Int — > Int {strat : (1 0)}

First, the first argument (conditional part) is evaluated. Then the whole argument is
evaluated. Therefore, the second and third arguments (then and else parts) are not
evaluated, if they are not arguments after the whole argument is evaluated.

 In the rest of this paper, we assume that each function symbol has own E-strategy list
and each variable has the empty E-strategy list.

 The reduction with the E-strategy without marks is presented by eval as follows.

Definition 1 Let eval : T —4 T be a function, such that

 eval(t) = reduce(t, topElist(t))

reduce(t, nil) = t

reduce(t, cons(0, l)) =eval(contract(t)) if t is a redex reduce(t, l) otherwise
 reduce(t, cons(n + 1,1)) = reduce(replace(t, n + 1, s), 1) (n > 0)

 where s = eval(subterm(t, n + 1))

topElist(t) denotes the E-strategy list of top(t) and contract(t) denotes the function which
returns the contractum of t if t is a redex.

 First, eval(t) calls reduce with t and the E-strategy list of top(t). After that, reduce
evaluates arguments of top(t) along this list. Especially, when the element of this list is 0, if
t is a redex, t is reduced and the contractum of t is evaluated by eval. Consequently, if the

2

E-strategy of the function symbol of arity n is (1 2 • • • n 0), the E-strategy coincides with
the leftmost innermost strategy. This means the E-strategy can simulate the innermost

strategy without any cost.

 E-strategy supports lazy evaluation. Therefore, termination behavior of the E-strategy

can be better than it of the leftmost innermost strategy.

Example 1 Let

 in f (x) --* cons(x, in f (s(x)))
R. = nth(0, cons(x, y)) —4 x

nth(s(x), cons(y, z)) nth(x, z).

nth(s(0), in f (0)) has a normal form, but has an infinite reduction sequence of the leftmost
innermost strategy.

nth(s(0), in f (0)) —+ nth(s(0), cons(0, in f (s(0))))
 nth(s(0), cons(0, cons(s(0), in f (s(s(0))))))

•••

If the E-strategy list of cons is (0) and the E-strategy lists of other functional symbols (of
arity n) are (1 2 • • • n 0), the reduction sequence of these E-strategies is finite.

nth(s(0), in1(0)) nth(s(0), cons(0, in f (s(0))))
—+ nth(0, in f (s(0)))
-4 nth(0, cons(s(0), in f (s(s(0)))))
—4 s(0)

4 The equivalence of the reductions with the E-

strategy with and without marks

The OBJs adopt the reduction with the E-strategy with marks. Because, it is more

efficient than the reduction without marks.

Example 2 Let

R, f(x) —* h(x)
a—>b

 Let the E-strategy lists of f, g, and h be (1 0). Then, the reduction sequence of f(g(a))
is as follows.

f (g(a)) -4 f (g(b))
 h(g(b))

 In the reduction without marks, g(b) of h(g(b)) is evaluated. But, in the reduction with
marks, g(b) of h(g(b)) is not evaluated, because, g(b) has evaluated at f(g(b)). Most of the
cases, the subterm which have moved from left hand to right hand of a rewrite rule is not
needed to evaluate again. For these cases, the reduction with marks is more efficient than
the reduction without marks.

3

 Let .F* be a set of marked function symbols, i.e. F = { f* I f E .F }, such that f
and f* have the same arity, the same E-strategy list, and corresponding rewrite rules,
and F* fl .F = 0. Let T* = T (.F U .F*, V) be a set of marked terms. Let mark :
T* --> V be a function which marks top(t), i.e. mark(f (t1, ... , tn)) = f *(t1, ... , tn). Let
erase : T* V be a function which eliminates all marks, i.e. erase(f *(t1, ... , tn)) =
erase(f (t1, ... , tn)) = f (erase(t1), ... , erase(tn)). Let contract' : T* -> T* be a marked
version of contract which preserves marks of substituted subterms.

Definition 2 Given a term t E V, if erase(t) is a redex, contract(erase(t)) is the
contractum by rewriting rule 1 —* r E 1Z, and Q : T* —> V is the substitution which

satisfies t = l'o and erase(l') = 1, then

contract'(t) = ra.

From the definition, given an arbitrary term t E T*, such that erase(t) is a redex, then

erase(contract'(t)) = contract(erase(t)).

Example 3 Let R = { f (a, x) --> g(x, b) }

contract' (f (a*, b*)) = g(b*, b).

 Next, we define the marked version of eval.

Definition 3 Let eval' : T* —> V be a function, such that

 ftif top(t)E V U F* eval'(t) = reduce'(t, topElist(t)) otherwise

reduce'(t, nil) = mark(t)
eval'(contract'(t))

reduce' (t, cons(0, l)) =if erase(t) is a redex reduce'(t, l)
 otherwise

reduce'(t, cons(n + 1,1)) = reduce'(replace(t, n + 1, s), 1) (n > 0)
 where s = eval'(subterm(t, n + 1))

First, eval' analyzes whether top(t) is marked or not. If top(t) is marked, eval'(t) returns
t. Otherwise, eval' evaluates t along the E-strategy list and finally, marks down top(t).
 However, there is a case that the evaluation result of non marked term by eval differs

from it by eval'.

Example 4 Let

f (x) — x (1)
 1Z= g(b)--> c(2)

a -+ b(3)

 Let the E-strategy lists of f, g, and a be (1 0), (0 1), and (0) respectively. Lett = f (g(a)),
then eval(t) = c, but eval'(t) = g*(b*).

 In eval(t), first, the first argument g(a) is rewritten to g(b). Then f(g(b)) is rewritten
to g(b) by (1). Finally, g(b) is rewritten to c. Therefore, eval(t) = c.

 But, in eval'(t), after f(g*(b*)) is rewritten to g*(b*), g*(b*) is not rewritten to c because
top(g*(b*)) E .F*. Therefore, eval'(t) = g*(b*).

4

 The problem of this case is that the result of the one step rewriting of the whole term

t by eval (which we call t') differ from the result of the one step rewriting of the whole
term t' by eval (In above example, t = g(b)).
 Consequently, we can predict that if the E-strategy lists of all function symbols is

restricted to the conditions as follows, this problem is avoided.

 Condition 1 The E-strategy list do not include 0. or

 Condition 2 The last element of the E-strategy list is 0.

 In the rest of this paper, we assume that the E-strategy lists of all function symbols

satisfy Condition 1 or Condition 2,

and show eval(t) = erase(eval'(t)) for an arbitrary term t E T.
 To simplify the proof, we define eval2 and eval2'.

Definition 4 Let eval2 :T -+ T be a function, such that

 eval2(t) = reduce2(t, topElist(t))

 reduce2(t, nil) = t
reduce2(contract(t), topElist(contract(t)))

 reduce2(t, cons(0,1)) =if t is a redex reduce2(t, l)
 otherwise

 reduce2(t, cons(n + 1, 1)) = reduce2(replace(t, n + 1, s),1) (n > 0)
 where s = reduce2(subterm(t, n + 1), topElist(subterm(t, n + 1)))

eval = eval2 is trivial.

Definition 5 Let eval2' : T* —> T* be a function, such that

eval2'(t) = reduce2'(t, topElist(t))

 tif top(t) E V U.F*reduce2'(t, l)-- reduce2„(t, l) otherwise

reduce2"(t, nil) = mark(t)
reduce2' (contract' (t), topElist(contract'(t)))

reduce2"(t, cons(0, l)) =if erase(t) is a redex reduce2'(t, l)
 otherwise

 reduce2"(t, cons(n + 1, 1)) = reduce2'(replace(t, n + 1, s), 1) (n > 0)
 where s = reduce2'(subterm(t, n + 1), topElist(subterm(t, n + 1)))

 The difference between eval' and eval2' is that eval2' checks marks at
reduce2'. Therefore, it is easy to prove eval' = eval2'.

Definition 6 We define the well-marked term as follows.

 - x E V is a well-marked term,

 - If t1,... ,t,,, E T* are well-marked terms, then f (t1, ... , t,z) is a well-marked
 term.

 - f *(ti, ... , tn) is a well-marked term if it satisfies the following conditions.

 5

 1. t1,... , to E T* are well-marked terms,
 2. Given an arbitrary element i of the E-strategy list of f* ,

 if i 0 0, then top(ti) E V U F*,
 3. If the last element of the E-strategy list of f* is 0, then

erase(f *(t1, ... , tn)) is not a redex.

Lemma 1 Let t E T* be a well-marked term, such that erase(t) is a redex, then

contract'(t) is a well — marked term.

Proof There are 1 —f r E 1Z, a, and 1' which satisfy t = l'o, contract'(t) = ro, and
erase(P) = 1. Because a subterm of a well-marked term is a well-marked term, xa is a
well-marked term for all x E V(P). Because V(r) C V(P) and r do not have a marked
function symbol, contract'(t) is a well-marked term.^

Lemma 2 Let t E T* be a well-marked term, such that top(t) E V U F* and 1 be a list
constructed by the elements of topElist(t), then

reduce2(erase(t),1) = erase(t).

Proof We show this lemma by induction over the lexicographic ordering of pairs of the size

of t and the length of 1. When 1 is the empty list, it is trivial. Therefore, we show the cases

of 1 = cons(i,1'). First, we show the case of i = 0. Because topElist(t) satisfies Condition
2 and t is a well-marked term, erase(t) is not a redex. Because the induction hypothesis is
reduce2(erase(t),1') = erase(t), reduce2(erase(t),1) = reduce2(erase(t),1') = erase(t).
Next, we show the case of i � 0. We may write t = f *(t1i ... , tn). Because ti is a well-
marked term which top(ti) E V U .F* and top(t) E .F*, the induction hypotheses are
reduce2(erase(ti), topElist(erase(ti))) = erase(ti) and reduce2(erase(t), P) = erase(t).
Because erase(t) = f ..(erase(ti),. , erase(tn)), replace(erase(t), i,
erase(ti)) = erase(t).Therefore,

reduce2(erase(t),1) = reduce2(replace(erase(t), i, erase(ti)),1')
 = reduce2(erase(t),1')

 = erase(t)

 0

 Let 1 and 1' be lists. If 1 is a suffix of 1', i.e. 3l".l' = rl, we write l'/l = 1".

Lemma 3 Let t be a well-marked term and 1 be a suffix of topElist(t),
such that

 (a) Given an arbitrary i E topElist(t)/l, if i # 0, then
 top(subterm(t, i)) E V U .F*,

 (b) If the last element of topElist(t)/l is 0, then erase(t) is not a redex.
If reduce2'(t, l) = s, then

 (i) s is a well-marked term and top(s) E V U F*,
 (ii) reduce2(erase(t),1) = erase(s).

Proof We show this lemma by induction on the number that reduce2' is called by

reduce2'(t,1). If top(t) E V U .T*, (i) holds because s = t. And (ii) holds because
reduce2(erase(t), 1) = erase(t) by Lemma 2.
Next, we show the cases of top(t) E F.

6

Case 1. Suppose that

hold, (i) holds. Because
(ii) holds.

 1

 s

nil. Because topElist(t) = topElist(t)/nil,
mark(t), reduce2(erase(t), nil) = erase(t)

and (a) and
= erase(s),

(b)
i.e.

Case 2. Suppose that 1 = cons(0,1'). If erase(t) is a redex, contract'(t) is a well-marked
term by Lemma 1 and reduce2'(t, l) = reduce2'(contract'(t),
topElist(contract'(t))) = s. Also contract'(t) and topElist(contract'(t)) satisfy the con-
ditions (a) and (b). By the induction hypothesis for
reduce2'(contract'(t), topElist(contract'(t))) = s,

 (1) s is a well-marked term and top(s) E V U .F*,

 (2) reduce2(erase(contract'(t)), topElist(contract'(t))) = erase(s)

By (1), (i) holds. By (2),

reduce2(erase(t), l) = reduce2(contract(erase(t)),
topElist(contract(erase(t))))

 = reduce2(erase(contract'(t)), topElist(contract'(t)))
 = erase(s)

Therefore, (ii) holds.
If erase(t) is not a redex, reduce2'(t, l) = reduce2'(t, l') = s. Also t and P satisfy the
condition (a) and (b). By the induction hypothesis for reduce2'(t, l') = s,

 (3) s is a well-marked term and top(s) E V U J,

 (4) reduce2(erase(t), l') = erase(s)

By (3), (i) holds. By (4), reduce2(erase(t), l) = reduce2(erase(t), l') = erase(s), i.e. (ii)
holds.

Case 3. Suppose that 1 = cons(i, l') (i � 0). Let ti = subterm(t, i) and s' = reduce2'(ti,
topElist(ti)), then reduce2'(t, l) = reduce2'(replace(t, i, s'), l') = s. Also ti and
topElist(ti) satisfy the condition (a) and (b). By the induction hypothesis for reduce2'(ti,
topElist(ti)) = s',

 (1) s' is a well-marked term and top(s') E V U .Pk

 (2) reduce2(erase(ti), topElist(ti)) = erase(s')

By (1), replace(t, i, s') and P satisfy the condition (a) and (b). By the induction hypothesis
for reduce2'(replace(t, i, s'), l') = s,

 (3) s is a well-marked term and top(s) E V U F*,

 (4) reduce2(erase(replace(t, i, s')), P) = erase(s)

By (3), (i) holds. By (2) and subterm(erase(t),i) = erase(ti),

reduce2(subterm(erase(t), i), topElist(subterm(erase(t), i)))
 = reduce2(erase(ti), topElist(ti))

 = erase(d)

7

By this and (4),

 reduce2(erase(t), l) = reduce2(replace(erase(t), i, erase(s')), l')
 = reduce2(erase(replace(t, i, s')),1')

 = erase(s)

i.e. (ii) holds.0

Lemma 4 Let t E T* be a well-marked term, 1 be a suffix of topElist(t). If reduce2(
erase(t), l) = s, then there is the s' which satisfies reduce2'(t, l) = s' and erase(s') = s.

Proof We can prove this lemma as in Lemma 3.^

Theorem 1 Let t E T. eval2(t) terminates iff eval2'(t) terminates. And this time,
eval2(t) = erase(eval2'(t)).

Proof By Lemma 3 and Lemma 4.^

Corollary 1 Let t E T. eval(t) terminates iff eval'(t) terminates. And this time,
eval(t) = erase(eval'(t)).

 Therefore, we can adopt the reduction with marks, if we can assure the E-strategy lists

of all function symbols satisfy Condition 1 or Condition 2.

5 Related Work

The idea of the well-marked term is originally from [6]. In [6], the occurrences of subterms
which are known to be in strong head-normal form are marked and this marks are used

for future searches of indexes.

6 Conclusion

In this paper, we showed that the result of the reduction with marks coincides with the

result of the reduction without marks if the E-strategies satisfy the following conditions,

 Condition 1 The E-strategy list do not include 0. or

 Condition 2 The last element of the E-strategy list is 0.

In the most of the practical usage, the above conditions are satisfied.

7 Acknowledgements

We are specially grateful to Prof. Yoshihito Toyama for his valuable comments and helpful

suggestions on previous versions of this paper.

8

 Bibliograph

[1]

[2]

[3]

[4]

[5]

[6]

y

N. Dershowitz and J.-P. Jouannaud, Rewrite systems, Handbook of Theoretical Com-

puter Science, vol.B, p243-320, North-Holland, 1990.

K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer, Principles of OBJ2,

Proc. of 12th ACM Symposium on Principles of Programming Languages, p52-66,

1985.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud, Intro-

ducing OBJ, Technical Report SRI-CSL-93-03, SRI International, 1992.

J.W. Klop, Term rewriting systems, Handbook of Logic in Computer Science, vol.2,

p1-116, Oxford University Press, 1992.

A. Nakagawa, R. Diaconescu, K. Futatsugi, and T. Sawada, CafeOBJ User's Manual,

ftp://ftp.ipa.go.jp/pub/Cafe/manual-en.ps

Y. Toyama, S. Smetsers, M.v. Eekelen, and R. Plasmeijer, The Functional Strat-
egy and Transitive Term Rewriting Systems, Term Graph Rewriting: Theory and
Practice, p61-75, John Wiley & Sons, 1993.

9

