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Abstract

The E-strategy is the evaluation strategy which is adopted by OBJ2, OBJ3, and CafeOBJ. 

OBJ2, OBJ3, and CafeOBJ also adopt the reduction with the E-strategy with marks. In 

this paper, we show the result of the reduction with marks coincides with the result of 

the reduction without marks if the E-strategies satisfy the conditions that the E-strategy 

list do not include 0, or the last element of the E-strategy list is 0. In the most of the 

practical usage, the above conditions are satisfied.



1 Introduction

The E-strategy [2, 3, 5] is the evaluation strategy which is adopted by OBJ2, OBJ3, and 
CafeOBJ, in the following referred to as the OBJs. The OBJs are algebraic specification 

languages which have an underlying formal semantics that is based on equational logic, 

and an operational semantics that is based on rewrite rules. The equations of the spec-

ification may be used to rewrite rules from left hands to right hands. Therefore, static 

properties of the specification are verified by the rewriting rule engine which is controlled 
by the E-strategies. 

 To verify the practical problem, the rewriting rule engine must have a good termination 

behavior and be implemented efficiently. The outermost strategy (lazy evaluation) often 
has a good termination behavior, but is implemented inefficiently. On the other hand, 

the innermost strategy(eager evaluation) can be implemented efficiently, but has a bad 
termination behavior. The E-strategy can specify the argument which is evaluated lazily. 

Therefore, the E-strategy can have a good termination behavior, and by eliminating 

rewriting of outermost redexes, the reduction become efficient. 

 Consequently, we think the E-strategy is suitable to control the rewriting rule engines 

which verify the practical problem. 

 The OBJs adopt the reduction with E-strategy with marks which is more efficient than 

the reduction without marks. 

  But, until now, the behavior of the reduction with marks have not been clear. 

 Therefore, in this paper, we show the result of the reduction with marks coincides with 

the result of the reduction without marks if the E-strategies satisfy the conditions that 

the E-strategy list do not include 0, or the last element of the E-strategy list is 0. In the 

most of the practical usage, the above conditions are satisfied. 

 We give terminology and notation in section 2, the explanation of the E-strategy in 

section 3, and the proof of the equivalence of the reductions with the E-strategy with and 

without marks in section 4. We end with a discussion of related work and conclusion.

2 Terminology and Notation

We assume that the reader is familiar with the basic concepts of rewriting. We introduce 

the notations used later and refer to [1, 4]. 
 Let V be a set of variables and let F be a set of function symbols where  FnV = 0. Each 

function symbol equips with an arity (a natural number), i.e. the number of arguments 
it is supported to have. Let T(F, V) be the set of terms which are constructed by F and 
V. T(.F, V) may be abbreviated to T. V(t) stands for the set of all variables appearing 
in t. If t E V, top(t) = t and if t = f (t1, ... , tn), top(t) = f . If t = f (t1i ... , tn), then 
subterm(t, i) = ti and replace(t, i, s) denotes the term that is obtained from t by replacing 
ti with s. 

 Substitution o is a map from V to T, extended to a map from T to T in such a way 

that a(f (t1i ... , tn)) = f (Q(t1), ... , o (tn)), for each f (of arity n) E F and for all terms 
ti E T. We also write to instead of o (t). 

 A context is a term of T(F U {01, V) containing one occurrence of a special symbol 0, 
denoting an empty place and is denoted by C[ ]. C[t] denotes the term that is obtained 
by replacing ̂  with t. If there is a context C[ ] which satisfies t = C[s], s is called a 
subterm of t.
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 A rewrite rule is a pair  (1,  r) of terms in T which satisfies 1 0 V and V(r) C V(1). It 
will be written as 1 — r. A term rewriting system (TRS for short) is a pair (F, 7Z) of a 
set .T' of function symbols and a set 7Z of rewrite rules. A TRS may be denoted by 7Z, 

ignoring T. 

 We define the reduction relation —>R on T(F, V) using the set of rewrite rules of TRS 
(F,1Z), as follows. If there are 1 --> r E R., o, and C[ ] which satisfy t = C[lr] and 
s = C[ror], we decide t —>R s. At this time, to is called a redex and rcr is called the 
contractum of la. We generally omit R from —>R when it is clear from context. The 

transitive reflexive closure of --+R is written as -+R. If t R s, s is a reduct of t. 

 We say that t is a normal form if there is no s E T such that t —R s. Further, t E T 

has a normal form if t ~R s for some normal form s E T and s is called a normal form 

of t.

3 The E-strategy 

The E-strategy [2, 3, 5] is an evaluation strategy of a function symbol, which specify the 
evaluation order of arguments. Evaluation order is specified by the list of integers. This 

list is called the E-strategy list. Each positive integer in the E-strategy list represents an 

argument. 1 represents the first argument, 2 represents the second argument, and so on. 

0 represents the whole term. 

 If we omit a given argument number from the E-strategy list, this argument get lazy 

evaluation, i.e. this argument is not evaluated unless some rewrite exposes it from under-

neath the given operation. For example, the conditional is declared as follows. 

          op if _then_else_f i : Bool Int Int — > Int {strat : (1 0)} 

First, the first argument (conditional part) is evaluated. Then the whole argument is 
evaluated. Therefore, the second and third arguments (then and else parts) are not 
evaluated, if they are not arguments after the whole argument is evaluated. 

 In the rest of this paper, we assume that each function symbol has own E-strategy list 
and each variable has the empty E-strategy list. 

 The reduction with the E-strategy without marks is presented by eval as follows. 

Definition 1 Let eval : T —4 T be a function, such that 

      eval(t) = reduce(t, topElist(t)) 

reduce(t, nil) = t 

reduce(t, cons(0, l)) =eval(contract(t)) if t is a redex reduce(t, l) otherwise 
      reduce(t, cons(n + 1,1)) = reduce(replace(t, n + 1, s), 1) (n > 0) 

              where s = eval(subterm(t, n + 1)) 

topElist(t) denotes the E-strategy list of top(t) and contract(t) denotes the function which 
returns the contractum of t if t is a redex. 

 First, eval(t) calls reduce with t and the E-strategy list of top(t). After that, reduce 
evaluates arguments of top(t) along this list. Especially, when the element of this list is 0, if 
t is a redex, t is reduced and the contractum of t is evaluated by eval. Consequently, if the
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E-strategy of the function symbol of arity n is (1 2  •  •  • n 0), the E-strategy coincides with 
the leftmost innermost strategy. This means the E-strategy can simulate the innermost 

strategy without any cost. 

 E-strategy supports lazy evaluation. Therefore, termination behavior of the E-strategy 

can be better than it of the leftmost innermost strategy.

Example 1 Let 

                    in f (x) --* cons(x, in f (s(x))) 
R. = nth(0, cons(x, y)) —4 x 

nth(s(x), cons(y, z)) nth(x, z). 

nth(s(0), in f (0)) has a normal form, but has an infinite reduction sequence of the leftmost 
innermost strategy.

nth(s(0), in f (0)) —+ nth(s(0), cons(0, in f (s(0)))) 
             nth(s(0), cons(0, cons(s(0), in f (s(s(0)))))) 

•••

If the E-strategy list of cons is (0) and the E-strategy lists of other functional symbols (of 
arity n) are (1 2 • • • n 0), the reduction sequence of these E-strategies is finite.

nth(s(0), in1(0)) nth(s(0), cons(0, in f (s(0))))
—+ nth(0, in f (s(0)))
-4 nth(0, cons(s(0), in f (s(s(0)))))
—4 s(0)

4 The equivalence of the reductions with the E-

strategy with and without marks

The OBJs adopt the reduction with the E-strategy with marks. Because, it is more 

efficient than the reduction without marks.

Example 2 Let

R, f(x) —* h(x) 
a—>b

 Let the E-strategy lists of f, g, and h be (1 0). Then, the reduction sequence of f(g(a)) 
is as follows.

f (g(a)) -4 f (g(b)) 
      h(g(b))

 In the reduction without marks, g(b) of h(g(b)) is evaluated. But, in the reduction with 
marks, g(b) of h(g(b)) is not evaluated, because, g(b) has evaluated at f(g(b)). Most of the 
cases, the subterm which have moved from left hand to right hand of a rewrite rule is not 
needed to evaluate again. For these cases, the reduction with marks is more efficient than 
the reduction without marks.
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 Let .F* be a set of marked function symbols, i.e. F  = {  f* I f E .F }, such that f 
and f* have the same arity, the same E-strategy list, and corresponding rewrite rules, 
and F* fl .F = 0. Let T* = T (.F U .F*, V) be a set of marked terms. Let mark : 
T* --> V be a function which marks top(t), i.e. mark(f (t1, ... , tn)) = f *(t1, ... , tn). Let 
erase : T* V be a function which eliminates all marks, i.e. erase(f *(t1, ... , tn)) = 
erase(f (t1, ... , tn)) = f (erase(t1), ... , erase(tn)). Let contract' : T* -> T* be a marked 
version of contract which preserves marks of substituted subterms. 

Definition 2 Given a term t E V, if erase(t) is a redex, contract(erase(t)) is the 
contractum by rewriting rule 1 —* r E 1Z, and Q : T* —> V is the substitution which 

satisfies t = l'o and erase(l') = 1, then 

contract'(t) = ra. 

From the definition, given an arbitrary term t E T*, such that erase(t) is a redex, then 

erase(contract'(t)) = contract(erase(t)). 

Example 3 Let R = { f (a, x) --> g(x, b) } 

contract' (f (a*, b*)) = g(b*, b). 

 Next, we define the marked version of eval. 

Definition 3 Let eval' : T* —> V be a function, such that 

           ftif top(t)E V U F*       eval'(t) = reduce'(t, topElist(t)) otherwise 

reduce'(t, nil) = mark(t) 
eval'(contract'(t)) 

reduce' (t, cons(0, l)) =if erase(t) is a redex reduce'(t, l) 
                                 otherwise 

reduce'(t, cons(n + 1,1)) = reduce'(replace(t, n + 1, s), 1) (n > 0) 
              where s = eval'(subterm(t, n + 1)) 

First, eval' analyzes whether top(t) is marked or not. If top(t) is marked, eval'(t) returns 
t. Otherwise, eval' evaluates t along the E-strategy list and finally, marks down top(t). 
  However, there is a case that the evaluation result of non marked term by eval differs 

from it by eval'. 

Example 4 Let 

f (x) — x (1) 
                    1Z= g(b)--> c(2) 

a -+ b(3) 

 Let the E-strategy lists of f, g, and a be (1 0), (0 1), and (0) respectively. Lett = f (g(a)), 
then eval(t) = c, but eval'(t) = g*(b*). 

 In eval(t), first, the first argument g(a) is rewritten to g(b). Then f(g(b)) is rewritten 
to g(b) by (1). Finally, g(b) is rewritten to c. Therefore, eval(t) = c. 

 But, in eval'(t), after f(g*(b*)) is rewritten to g*(b*), g*(b*) is not rewritten to c because 
top(g*(b*)) E .F*. Therefore, eval'(t) = g*(b*).
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 The problem of this case is that the result of the one step rewriting of the whole term 

t by eval (which we call t') differ from the result of the one step rewriting of the whole 
term t' by eval (In above example, t = g(b)). 
 Consequently, we can predict that if the E-strategy lists of all function symbols is 

restricted to the conditions as follows, this problem is avoided. 

   Condition 1 The E-strategy list do not include 0. or 

    Condition 2 The last element of the E-strategy list is 0. 

 In the rest of this paper, we assume that the E-strategy lists of all function symbols 

satisfy Condition 1 or Condition 2, 

and show eval(t) =  erase(eval'(t)) for an arbitrary term t E T. 
 To simplify the proof, we define eval2 and eval2'. 

Definition 4 Let eval2 :T -+ T be a function, such that 

     eval2(t) = reduce2(t, topElist(t)) 

     reduce2(t, nil) = t 
reduce2(contract(t), topElist(contract(t))) 

     reduce2(t, cons(0,1)) =if t is a redex reduce2(t, l ) 
                               otherwise 

     reduce2(t, cons(n + 1, 1)) = reduce2(replace(t, n + 1, s),1) (n > 0) 
          where s = reduce2(subterm(t, n + 1), topElist(subterm(t, n + 1))) 

eval = eval2 is trivial. 

Definition 5 Let eval2' : T* —> T* be a function, such that 

eval2'(t) = reduce2'(t, topElist(t)) 

                  tif top(t) E V U.F*reduce2'(t, l)--                reduce2„(t, l) otherwise 

reduce2"(t, nil) = mark(t) 
reduce2' (contract' (t), topElist(contract'(t))) 

reduce2"(t, cons(0, l)) =if erase(t) is a redex reduce2'(t, l) 
                               otherwise 

    reduce2"(t, cons(n + 1, 1)) = reduce2'(replace(t, n + 1, s), 1) (n > 0) 
         where s = reduce2'(subterm(t, n + 1), topElist(subterm(t, n + 1))) 

 The difference between eval' and eval2' is that eval2' checks marks at 
reduce2'. Therefore, it is easy to prove eval' = eval2'. 

Definition 6 We define the well-marked term as follows. 

    - x E V is a well-marked term, 

     - If t1,... ,t,,, E T* are well-marked terms, then f (t1, ... , t,z) is a well-marked 
     term. 

    - f *(ti, ... , tn) is a well-marked term if it satisfies the following conditions. 

                           5



         1.  t1,... , to E T* are well-marked terms, 
        2. Given an arbitrary element i of the E-strategy list of f* , 

                                              if i 0 0, then top(ti) E V U F*, 
       3. If the last element of the E-strategy list of f* is 0, then 

erase(f *(t1, ... , tn)) is not a redex. 

Lemma 1 Let t E T* be a well-marked term, such that erase(t) is a redex, then 

contract'(t) is a well — marked term. 

Proof There are 1 —f r E 1Z, a, and 1' which satisfy t = l'o, contract'(t) = ro, and 
erase(P) = 1. Because a subterm of a well-marked term is a well-marked term, xa is a 
well-marked term for all x E V(P). Because V(r) C V(P) and r do not have a marked 
function symbol, contract'(t) is a well-marked term.^ 

Lemma 2 Let t E T* be a well-marked term, such that top(t) E V U F* and 1 be a list 
constructed by the elements of topElist(t), then 

reduce2(erase(t),1) = erase(t). 

Proof We show this lemma by induction over the lexicographic ordering of pairs of the size 

of t and the length of 1. When 1 is the empty list, it is trivial. Therefore, we show the cases 

of 1 = cons(i,1'). First, we show the case of i = 0. Because topElist(t) satisfies Condition 
2 and t is a well-marked term, erase(t) is not a redex. Because the induction hypothesis is 
reduce2(erase(t),1') = erase(t), reduce2(erase(t),1) = reduce2(erase(t),1') = erase(t). 
Next, we show the case of i � 0. We may write t = f *(t1i ... , tn). Because ti is a well-
marked term which top(ti) E V U .F* and top(t) E .F*, the induction hypotheses are 
reduce2(erase(ti), topElist(erase(ti))) = erase(ti) and reduce2(erase(t), P) = erase(t). 
Because erase(t) = f ..(erase(ti),. , erase(tn)), replace(erase(t), i, 
erase(ti)) = erase(t).Therefore, 

reduce2(erase(t),1) = reduce2(replace(erase(t), i, erase(ti)),1') 
                       = reduce2(erase(t),1') 

                       = erase(t) 

                                                          0 

 Let 1 and 1' be lists. If 1 is a suffix of 1', i.e. 3l".l' = rl, we write l'/l = 1". 

Lemma 3 Let t be a well-marked term and 1 be a suffix of topElist(t), 
such that 

    (a) Given an arbitrary i E topElist(t)/l, if i # 0, then 
    top(subterm(t, i)) E V U .F*, 

    (b) If the last element of topElist(t)/l is 0, then erase(t) is not a redex. 
If reduce2'(t, l) = s, then 

    (i) s is a well-marked term and top(s) E V U F*, 
    (ii) reduce2(erase(t),1) = erase(s). 

Proof We show this lemma by induction on the number that reduce2' is called by 

reduce2'(t,1). If top(t) E V U .T*, (i) holds because s = t. And (ii) holds because 
reduce2(erase(t), 1) = erase(t) by Lemma 2. 
Next, we show the cases of top(t) E F.
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Case 1. Suppose that 

hold, (i) holds. Because 
(ii) holds.

 1 

 s

nil. Because topElist(t) = topElist(t)/nil, 
mark(t), reduce2(erase(t), nil) = erase(t)

and (a) and 
= erase(s),

(b) 
i.e.

Case 2. Suppose that 1 = cons(0,1'). If erase(t) is a redex, contract'(t) is a well-marked 
term by Lemma 1 and reduce2'(t, l) = reduce2'(contract'(t), 
topElist(contract'(t))) = s. Also contract'(t) and topElist(contract'(t)) satisfy the con-
ditions (a) and (b). By the induction hypothesis for 
reduce2'(contract'(t), topElist(contract'(t))) = s, 

    (1) s is a well-marked term and top(s) E V U .F*, 

    (2) reduce2(erase(contract'(t)), topElist(contract'(t))) = erase(s) 

By (1), (i) holds. By (2), 

reduce2(erase(t), l) = reduce2(contract(erase(t)), 
topElist(contract(erase(t))) ) 

                   = reduce2(erase(contract'(t)), topElist(contract'(t))) 
                     = erase(s) 

Therefore, (ii) holds. 
If erase(t) is not a redex, reduce2'(t, l) = reduce2'(t, l') = s. Also t and P satisfy the 
condition (a) and (b). By the induction hypothesis for reduce2'(t, l') = s, 

    (3) s is a well-marked term and top(s) E V U J, 

   (4) reduce2(erase(t), l') = erase(s) 

By (3), (i) holds. By (4), reduce2(erase(t), l) = reduce2(erase(t), l') = erase(s), i.e. (ii) 
holds.

Case 3. Suppose that 1 = cons(i, l') (i � 0). Let ti = subterm(t, i) and s' = reduce2'(ti, 
topElist(ti)), then reduce2'(t, l) = reduce2'(replace(t, i, s'), l') = s. Also ti and 
topElist(ti) satisfy the condition (a) and (b). By the induction hypothesis for reduce2'(ti, 
topElist(ti)) = s', 

    (1) s' is a well-marked term and top(s') E V U .Pk 

   (2) reduce2(erase(ti), topElist(ti)) = erase(s') 

By (1), replace(t, i, s') and P satisfy the condition (a) and (b). By the induction hypothesis 
for reduce2'(replace(t, i, s'), l') = s, 

    (3) s is a well-marked term and top(s) E V U F*, 

    (4) reduce2(erase(replace(t, i, s')), P) = erase(s) 

By (3), (i) holds. By (2) and subterm(erase(t),i) = erase(ti), 

reduce2(subterm(erase(t), i), topElist(subterm(erase(t), i))) 
                       = reduce2(erase(ti), topElist(ti)) 

                       = erase(d)
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By this and (4), 

 reduce2(erase(t),  l) = reduce2(replace(erase(t), i, erase(s')), l') 
                       = reduce2(erase(replace(t, i, s')),1') 

                        = erase(s) 

i.e. (ii) holds.0 

Lemma 4 Let t E T* be a well-marked term, 1 be a suffix of topElist(t). If reduce2( 
erase(t), l) = s, then there is the s' which satisfies reduce2'(t, l) = s' and erase(s') = s. 

Proof We can prove this lemma as in Lemma 3.^ 

Theorem 1 Let t E T. eval2(t) terminates iff eval2'(t) terminates. And this time, 
eval2(t) = erase(eval2'(t)). 

Proof By Lemma 3 and Lemma 4.^ 

Corollary 1 Let t E T. eval(t) terminates iff eval'(t) terminates. And this time, 
eval(t) = erase(eval'(t)). 

 Therefore, we can adopt the reduction with marks, if we can assure the E-strategy lists 

of all function symbols satisfy Condition 1 or Condition 2.

5 Related Work 

The idea of the well-marked term is originally from [6]. In [6], the occurrences of subterms 
which are known to be in strong head-normal form are marked and this marks are used 

for future searches of indexes.

6 Conclusion 

In this paper, we showed that the result of the reduction with marks coincides with the 

result of the reduction without marks if the E-strategies satisfy the following conditions, 

   Condition 1 The E-strategy list do not include 0. or 

   Condition 2 The last element of the E-strategy list is 0. 

In the most of the practical usage, the above conditions are satisfied.
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