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                          Abstract 

  A new method is introduced to concurrently compose an object from already verified 
objects. The most important new feature of our method is that the verification of the 
composed object can be done by re-using the verifications of component objects. That 
is, the verification of composed object is also composable. This is not always true. We 
can show this can be achieved under some practically reasonable restrictions. 

  These can be made possible by using a new algebraic specification language CafeOBJ 
which has clear and precise algebraic semantics.

1 Introduction

The principle of "divide and conquer" seems to be the only effective principle in the devel-
opment of large and complex systems. A system is divided into several independent com-

ponents and each component is developed independently, after that the system is composed 
from the already developed components. In general this "divide and conquer" principle is 
applied recursively. Object-oriented modelling is widely used to support this compositional 
approach for system development. We also need methods which allow us to analyze and 
formally verify systems in the development of complex and critical systems; formal methods 
seem to suit this requirement. It is not so difficult to conclude that formal methods enhanced 
by object-oriented techniques can be used for the development of big, complex and critical 
systems which are the trend of current systems. There are several trials for this issue, for ex-
ample, Object-Z[4] , FOOPS [11,  etc. In this paper, we are going to introduce a new method 
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for enhancing formal method with object-oriented techniques and show how to specify and 
verify systems in our method by using examples. We mainly focus on the modularity and 
the reusability power in object-oriented techniques. We use CafeOBJ [7, 19, 3, 5] as formal 
specification language. 

  Objects in CafeOBJ are treated with the hidden algebra formalism [11, 10], and the 
modularity is supported by the CafeOBJ module system. CafeOBJ handles module im-

ports, parameterized modules, and general module expressions. By using hidden algebra, 
we can specify encapsulated objects and can handle highly abstracted specifications called 
behavioural specifications. We can prove system properties which are independent from the 
implementation of the system; we call these behavioural properties. We briefly explain 
hidden algebra in section 3. 

  Reusability is the main issue of this paper. Generally, in object-oriented techniques, 
reusability is confined mainly to the reusability of source code. In this paper, we introduce a 
new notion of reusability that is reusability of proofs. We adopt object composition which 
supports both reusability of specification code and proofs. By using our method, we can 
start from valid small specifications which are relatively easy to handle and incrementally 
combine them to build the complete specification of the whole system. Proofs we can reuse 
in our method are behavioural equivalence proofs which are used for proving behavioural 

properties. For example, assume that we compose two objects to get an object for a system, 
and want to prove a behavioural property of the system. We need to define the behavioural 
equivalence for the composed object (the system) and need to prove that it is a really be-
havioural equivalence. How can we define the behavioural equivalence for the composed 
object? Do we need to prove a behavioural equivalence for the composed object each time 
we get a new object by composition? In this paper, we answer these question by showing 
that we can reuse the behavioural equivalence already proved for the composing objects. 

  In this paper, we firstly present CafeOBJ and hidden algebra, and then we present our 
method in section 4. After that we present some examples showing how to deal with dynamic 
and client-server systems in our method.

2  CafeOBJ

CafeOBJ [7, 19, 3, 5] is a multi-paradigm algebraic specification language which is a suc-
cessor of OBJ[6, 13]. CafeOBJ is based on the combination of several logics consisting 
of many sorted algebra, order sorted algebra [9, 12], hidden algebra[ 11] and rewrit-
ing logic[16]. This combination is handled by institutions[8], as shown by the CafeOBJ 
cube[2] (see the figure). The arrows of the CafeOBJ cube correspond to institution embed-
dings. (M for many, S for sorted, A for algebra, 0 for order, H for hidden and RWL for 
rewriting logic.) 

  According to its semantics [2, 5], CafeOBJ can fit in several specification(and program-
ming) paradigms such as equational specifications(and programmings), rewriting logic spec-
ification, behavioural concurrent specifications. Object orientation is a derived feature of 
CafeOBJ which can be treated both in behavioural specification and rewriting logic[15]; in 
this paper we consider only the behavioural specification approach. CafeOBJ has a power-
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ful module system: several kinds of module imports, parameterized modules, and for each 
module one can choose between loose and tight (initial) semantics. 

  CafeOBJ is executable which means it can be used for rapid prototyping and theorem 

proving. Its operational semantics is based on term rewriting, and the proof calculi are 
equational and rewriting logic proof calculi. For confluent and terminating specification, 
two terms are equal when their normal forms are identical.

2.1 Syntax of CafeOBJ 

Here, we briefly describe some basic syntax of CafeOBJ which is needed in this paper (we 
use hidden order sorted algebra but not rewriting logic). In this section we deal with some 
syntax related to order sorted algebra. The syntax related to hidden algebra can be found in 
section 3. The complete syntax of CafeOBJ can be found in [17]. Consider the following 
example, which specifies natural numbers:

mod! NAT { 
-- declarations of sorts 

 [ NzNat < Nat  ] 

-- declarations of operators 
  op 0 : -> Nat 

  op s : Nat -> NzNat 
  op _+_ : Nat Nat -> Nat 

-- declarations of variables 
  vars N N' : Nat

-- declarations of equations 

  eq 0 + N = N . 
  eq s(N) + N' = s(N + N') . 

}

  The name of this module is NAT specified after the keyword mod! which is an abbre-
viation of module!. In CafeOBJ, the modules with tight (initial) semantics are declared 
by module ! , and the modules with loose semantics are declared by module*. Sorts are 
declared within [ ] and the ordering of sorts are specified by using <. In this example, we 
have two sorts NzNat and Nat, and NzNat is a subsort of Nat. The lines beginning with
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the keyword  -  - are comments. Operators are declared by the keyword op (ops for several 
operators with the same rank). The arity (a list of arguments) of an operator is specified be-
fore -> and the sort (coarity) of an operator is specified after -> (the pair of arity and coarity 
is called rank). Variables are declared by the keyword var (vars for several variables). 
Equations are declared by the keyword eq and conditional equations by ceq. 

  Modules can be imported by using protecting, extending, or using. 

protecting imports do not collapse elements or add new elements to the models of the 
imported module, but extending imports may add new elements but not collapse ele-
ments. In the folklore of algebraic specification these conditions are known under the name 
of "no junk and no confusion" and, respectively, "no confusion" condition. Us ing im-

ports provide no guaranty, so they might even collapse elements. Every module implicitly 
imports the system module BOOL handling the Boolean data type. For confluent and ter-
minating specifications, we can prove that two term are equal (that means two terms have 
the same normal form) by using the predicate == and system command red (abbreviation 
of reduce). For example, we can check the terms s (s ( 0 ) ) and s (0) + s ( 0 ) are the 
equal in the specification NAT in the following way: 

NAT> red s(s(0)) == s(0) + s(0) . 
-- reduce in NAT : s(s(0)) == s(0) + s(0) 
true : Bool 
(0.000 sec for parse, 3 rewrites(0.017 sec), 4 match attempts)

2.1.1 Some mathematical semantics: 

A many sorted signature (S, E) consists of a set of sorts S and a set of S sorted operators 
E. An operator 6 is denoted as 6 : w -* s where w E S* is its arity and s E S is its sort 

(coarity). The rank of an operator consists of its arity and its sort. The set of operators of 
rank ws is denoted as E,,,s. Constants are operations whose arity are empty, i.e., 6 : —* s. 
In order sorted algebra, a signature is defined as (5, <, E), where (S, <) is a partial order 
set. A signature gives vocabularies for the sentences of a given specification. An equational 

specification SP is a pair consisting of signature and equations E for the signature. Signatures 

are sometimes denoted just as E, so equational specifications can be denoted as (E,E). A 
model (implementation) of a signature E is called s-algebra (we omit E when there is no 
confusion). Given a signature (S, <, E), an algebra A interprets

• each sort s E S as a set AS(called the carrier of A of sort s), 

• each subsort relation s < s' as an inclusion As C As', and

• each operator 6 E ES, ...Sns as a function Aa : As1 x ... x Asn -+ As.

  Specifications and models are related by a satisfaction relation = . An equation "(VX) t = 
t' if C" is satisfied by a E-algebra M, denoted as:

M =(VX)t=t'ifC
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 if 0(t) = 0(t') whenever 0(C) = Mtrue (the interpretation of the constant true in M) for all 
valuations 0 : X -4 M, where X is a set of variables, t and t` are terms, C is the condition, 
and 0 is an interpretation (homomorphism) which interprets terms to values of the model. 

  Given CafeOBJ signatures (S, <, E) and (S', <,r), then a signature morphism 4) : (S, < 
, E) -4 (S', <, E') consist of 

  • a mapping of sorts f : S -4 S' such that f (s) < f (s') if s < s', and 

  • an indexed family of mappings on operations, i.e., 

(gsl ...sns • Esl ...sns —' Ef(sl )... f (sn)f(s) )s1 i...,sn,sES,n>0 

  For more details on the mathematical semantics of CafeOBJ see [3].

3 Hidden algebra

Specifications based on hidden algebra are called behavioural specifications[11, 10] and 
they can naturally handle states of encapsulated objects. The space of the states of an object 
is represented as a hidden sort which should be regarded as a kind of black box in the sense 
that we can observe the state of an object by using some operators called attributes. 

  In hidden algebra, there are two kind of sorts: visible and hidden. Visible sorts represent 
the data part of the specification and hidden sorts represent the states of objects. Given a 
signature (S, <, E) with a subset H C S of hidden sorts, a hidden model M (which can be 
either an algebra or rewriting model) interprets the visible sorts V and the operations 1F of 
the visible sorts as a fixed model D (called the model of data), that is M ry q' = D (where [ is 
the model reduct). Signature morphism g : (S, H, <, E) —+ (S', H', <, E') preserve the visible 
and hidden parts of the signatures, and obey the following conditions:

• g maps each behavioural operation to a behavioural operation, 

• if f (h) < f (h') for any hidden sorts h, h', then h < h', and 

• if a' E Ew,s, is a behavioural operation and some sort in w' is hidden, then a' = g(a) 
 for some behavioural operation a in E.

The last two conditions corresponding to object encapsulation conditions (see [10] for more 
details). 
  The following is an example of the behavioural specification of a counter of integers.

mod* COUNTER { 
protecting(INT) 

  *[ Counter ]* 

  op init : -> Counter 
  bop add : Int Counter -> Counter 

  bop read : Counter -> Int 

  var I : Int 
  var C : Counter

-- initial state 
-- method 
-- attribute
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eq 

eq

read(init) = 
read(add(I,

 0  . 
C)) = I + read(C) .

}

  The data of this behavioural specification is INT which is a built-in module of the system. 
It is imported in the specification by protecting ( INT) . Hidden sorts are declared with 
* [ ] *. The keyword bop is used for behavioural operators. Behavioural operators have 
exactly a hidden sort in their arity, and when their sort is hidden they are called methods and 
when it is visible they are called attributes. In the above example, add is method and read 
is attribute. 

  Each sequence of methods determines an object state. In the above example, we can 
observe the state of Counter with reduce command (red) by using the attribute read:

COUNTER> red read(add(4 
-- reduce in COUNTER : 

10 : NzNat 
(0.017 sec for parse, 5

, add(6, init))) 
read(add(4,add(6,

rewrites(0. 250

init)))

sec), 8 match attempts)

  Behavioural specifications are based on loose semantics that means there exists several 
models (implementations) for them. For example, in COUNTER we can consider a model 
that keeps every history of methods applied (let's call this the history model) or a model that 
keeps just one integer value that is the result of the last applied method (let's call this the cell 
model). The following is the specification of the history model based on initial semantics 

(meaning that we only consider the initial model for the specification):

mod! COUNTER-HISTORY { 
protecting(INT) 

[ Counter ]

op 

op 
op 

op 

op

init 

add . 
read

. -> Counter 
Counter Counter -> Counter { 
Int Counter -> Counter 

Int Counter -> Counter 
: Counter -> Int

assoc id: init}

vars I I' : Int 
var C : Counter

eq 
eq 

eq

add(I, C) = I C . 
read(init) = 0 . 
read(I C) = I + read(C) .

}

The following is the specification of the cell model based on initial semantics:

mod! COUNTER-CELL { 
protecting(INT)

[ Counter ]

op 

op 

op 

op

init . 
[_] : 
add : 
read :

 -> Counter 

Int -> Counter 
Int Counter -> 

 Counter -> Int

Counter
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vars I I' :  Int 
var C : Counter 

eq add(I, init) = [ I ] . 
eq add(I, [ I' ]) = [ I + I' ] . 
eq read(init) = 0 . 
eq read([ I ]) = I .

}

We can easily prove that models of above specifications are models of COUNTER too.

3.1 Behavioural properties 

We want (all possible implementations of) counters to satisfy the following commutativity 

property of add (where ` n : Int represent a term ` n of sort Int): 

add(`n:Int, add(`m:Int, init)) = add(`m, add(`n, init)) 

  But this property does not hold in the history model within ordinary equational satisfac-
tion (but in the cell model it does). These can be checked by using COUNTER-HISTORY 
and COUNTER-CELL. 

COUNTER-HISTORY> red add(`n:Int, add('m:Int, init)) == add('m, add('n, init) 
-- reduce in COUNTER-HISTORY : add(`n:Int,add(`m:Int,init)) == add( 

`m:Int ,add(`n:Int,init)) 
false : Bool 
(0.000 sec for parse, 5 rewrites(0.017 sec), 5 match attempts) 

COUNTER-CELL> red add(`n:Int, add(`m:Int, init)) == add('m, add('n, init)) . 
-- reduce in COUNTER-CELL : add(`n:Int,add(`m:Int,init)) == add(`m:Int, 

add('n:Int,init)) 
true : Bool 
(0.033 sec for parse, 5 rewrites(0.000 sec), 19 match attempts) 

  We therefore need the commutativity of add as behavioural equivalence rather than 
strict equivalence. The intuitive understanding of behavioural equivalence is that two states 
are behavioural equivalent when they cannot be distinguished under all the observations (by 
using all the attributes) after applying any method. 

  The behavioural equivalence denoted as - can be defined as follows [11]: 

  • when s E V: 

a-a'iffa=a' 

  • when s E H: 

    a - a' if c(a) = c(a') for all v E V and for all visible contexts c. 

where a, a' e As, V is the set of visible sorts, H is the set of hidden sorts, a context is a term 
which is a sequence of behavioural operators, and a visible context is a context of visible 
sort. In CafeOBJ behavioural equivalence is denoted by the special keyword beq (bceq 
for the conditional case).
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  Proving behavioural equivalence by directly using its definition means a proof by induc-
tion on the structure of contexts; this is called context  induction[14]. For large specification, 
context induction can lead to very complex proofs. The coinduction method [11] avoids such 

problems. Correctness of coinduction is based on the following theorem[ 11 ]: 

Theorem 1 Behavioural equivalence is the largest hidden congruence (congruence with re-
spect to behavioural operations). ^ 

  A proof by coinduction consists of the following steps: 

  1. give a candidate hidden congruence relation R 

  2. prove that R is a hidden congruence for all the behavioural operators, 

  3. prove the behavioural property by using R. 

  The following is a coinduction proof for the behavioural commutativity of add for the 
specification COUNTER: 
open COUNTER 
op _R_ : Counter Counter -> Bool . 

-- give a candidate of hidden congruence relation 
vars Cl C2 : Counter 
eq C1 R C2 = read(C1) == read(C2) . 

-- hypothesis 
ops c1 c2 : -> Counter . 
eq read(C1) = read(C2) . 

-- prove the R is a congruence 
op i : -> Int . 
red add(i, cl) R add(i, c2) . 

-- prove beg add(n:Int, add(m:Int, init)) = add(m, add(n, init)) . 
red add(n:Int, add(m:Int, init)) R add(m, add(n, init)) . 
close 

  In many cases the following relation: 

t=*=t' iff A a(t) == a(t') for all the attributes a 

a where t, t' are terms of (the same) hidden sort, is a hidden congruence, therefore it can be 
used as the candidate hidden congruence relation. CafeOBJ adopts this as a default coin-
duction relation and the system provides automatic support for proving it is a congruence. 
In the case of COUNTER, this mechanism succeeds so the proof of commutativity of add 
consists of just the following reduction: 

CafeOBJ> in counter 
-- processing input : ./counter.mod 
-- defining module* COUNTER.......... _* 
** system already proved =*= is a congruence of COUNTER done. 

COUNTER> red add(`n:Int, add(`m:Int, init)) =*= add(`m, add('n, init)) . 
-- reduce in COUNTER : add V n:Int,add(`m:Int,init)) =*= add(`m:Int, 

add(`n:Int,init)) 
true : Bool 
(0.033 sec for parse, 8 rewrites(0.067 sec), 48 match attempts)
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4 Reusability

One of the most important issue in object-oriented techniques is reusability. In object-
oriented programming, reusability of the source code is important. But, in object-oriented 
specification, reusability of the proofs is also very important because of the verification pro-
cess. In this section, we are going to present a new method to reuse both specification code 
and proofs. 

  There seems to be two different techniques to reuse code: composition and inheritance. 
Our method belongs more to the object composition side. This paper promotes the view that 
composition is more effective than inheritance as reusability techniques. We will first present 
our composition method and afterwards we will compare it with the inheritance method in 

 CafeOBJ  .

4.1 Object composition 

The following figure represents the structure of object compositions by using OMT[18] like 
notation to represent relations between objects.

base level objects

  Reusing specifications is done by the projection operators. Projection operators are 
defined for each composing objects to get their states from the state of composed object. All 
methods of the composed object are related to the methods of the composing objects using 
these projection operators.

Definition 1 An operator  1Ln : h -* hn is a projection operator if: 

  1. h is a hidden sort of the composed object 0, 

  2. hn are hidden sorts of the composing objects On,

9



3. for each attribute a of  0, there exists a composing object On, an operator f : vn1...vnm -4 
v (vnm is a data for On and v is a visible sort), and a visible On-context cn such that: 1 
a= (irni;Cni,...)itnm;Cnm)f, 

4. for each method m : h --0 i of 0, for all composing object On, there exists a sequence 
  of methods mn such that: 

m; nn = nn; mn,

5. for each constant const :-* h of 0, for all composing objects On, there exists a constant 
constn :---+ /in such that: 
const; nn = const

El

This definition is for static systems (i.e., configuration of the system is unchanged when it is 
running), see section 5 for dynamic systems. 

  Notice that the equalities defining the attributes and methods for the composed objects are 
strict (i.e., not behavioural) equations and that projection operators can be either ordinary or 
behavioural. Using non-behavioural projections has the advantage to enable a user controlled 
selection of the attributes on the composed object, but they have the disadvantage of possibly 
restricting the computations involving behavioural equations. 2 

Definition 2 As shown in the above figure, the structure of such a composition is a DAG 
(directed acyclic graph). A base level object is an object without projection operators. ^ 

Definition 3 Two methods of a composed object are in the same method group when they 
are related to the same composing object. ^ 

If a method in a composed object relate to several method in different composing objects 
then there is a overlapping among the method groups. 

  Object composition can be classified with respect to how the composing objects are con-
nected: concurrent connection and synchronized concurrent connection. We are going to 
discuss both cases in the following subsections.

4.1.1 Concurrent connection:

In the case of concurrent connection, we have full concurrency between all the composing 
objects. This means that if two methods are in the different method groups then all states 
containing these methods (i.e. possibly in different order) are behavioural equivalent. 

  For example, assume that we want to compose two counters, Counterl and Counter2 
and get 2 Counter. Both the composing objects are equal to COUNTER we showed previ-
ously, just the sort name is renamed to Counterl and Counter2, respectively. 2 Counter 
has two methods addl and add2 to count up Counterl and Counter2, respectively. So, 
there is no intersection between Counterl and Counter2. The following is the specifi-
cation of 2Counter: 

1We use the diagrammatic notation for the composition of functions. 
  2See [3] for details on reductions involving behavioural equations. However, the projections are be-

havioural coherent [3] we have the same computational power as in the case of behavioural projections.
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mod*  2COUNTER { 
protecting(COUNTER *{ 

  protecting(COUNTER *{

hsort Counter -> 
op init -> initl 
hsort Counter -> 
op init -> init2

Counterl, 
)) 
Counter2, 
))

*[ 2Counter ]*

op 
bop 
bop 
bop 
bop

init : -> 2Counter
addl : Int 
add2 : Int 
counterl : 
counter2 .

var I 

var TC

2Counter 
2Counter 
2Counter 
2Counter

: Int 

: 2Counter

-> 2Counter 
-> 2Counter 
-> Counterl 
-> Counter2

initial state 
method 
method 

projection 
projection

eq [cl-1] 
eq [cl-2] 
eq [cl-3]

eq [c2-1] 
eq [c2-2] 
eq [c2-3]

counterl(init) 
counterl(addl(I, 
counterl(add2(I,

counter2(init) 
counter2(addl(I, 
counter2(add2(I,

TC)) = 
TC)) =

TC)) = 
TC)) =

initl . 
add(I, counterl(TC)) . 
counterl(TC) .

init2 . 
counter2(TC) . 
add(I, counter2(TC)) .

)

  Firstly, we have to import twice COUNTER by renaming its hidden sort so that each of 
them have a different sort name. Secondly, we define a new hidden sort and operators for the 
composed object. Finally, we define projection operators and equations for them. CafeOBJ 
syntax allows us to put labels to equations, like [ c 1-1] for the first equation in the above 
specification. Equation [ c 1- 3 ] and [ c 2 -21  express the concurrency of the composing 
counters. 
  There are two method groups with respect to the two composing objects: Counterl 

and Counter2. Methods addl and add2 are in the different method group, so addl and 
add2 can be operated concurrently. For example, we can prove the following behavioural 

property:

beq addl(il, add2(i2 , init)) = add2(i2, addl(il, init)) .

We are going to present the details of this proof in section 4.2.

4.1.2 Synchronized concurrent connection:

In the case of synchronized concurrent connection, 
objects is partial (i.e. some synchronizations happens)

the concurrency between composing 

. Synchronization happens when:

1. the projected state of the composed object (via a projection operator) depends on the 
  state of a different (from the object corresponding to the projection operator) compos-

  ing object,

2. methods of the composed object change simultaneously states of several composing 
  objects

I1



These conditions amount to refining Definition 1 by considering conditions for the projection 
operator of the composed object.

Definition 4 The conditions for these (conditional) equations should fulfill the following: 

  • each condition is a finite conjunction of equalities between terms of the  form 1tn; cn 

    (where itn is a projection operator and cn is an On-context) and terms in the data 
    signature, and 

  • disjunction of all the conditions corresponding to a given left hand side is always true.

  Here, we consider a special counter with switch, which has a method put to add or 
subtract a natural number to (or from) the counter. We, again, reuse the specification of 
the counter we used before. Note that the interface of counter and counter with switch is 
different (method add in COUNTER takes an integer number but here put takes a natural 
number). The composing objects are: Switch and Counter. The method put in the 
composed object counts up the counter if the switch is on and count down if the switch is 
off. 
  Firstly, we specify a switch as follows: 

mod! ON-OFF { 
[ Value ] 

  ops on off : -> Value 
}

mod* SWITCH { 
protecting(ON-OFF) 

*[ Switch ]* 

  op init : -> Switch 
  bop on_ : Switch -> Switch 

  bop off_ : Switch -> Switch 
  bop state_ : Switch -> Value 

  var S : Switch 

  eq state(init) = off . 
  eq state(on(S)) = on . 
  eq state(off(S)) = off . 

)

method 
method 
attribute

The following is the specification of the counter which switch:

mod* COUNTER-WITH-SWITCH { 
  protecting(COUNTER + SWITCH) 

  *[ Cws ]* 

  op init-cws : -> Cws 
  bop add : Cws -> Cws 
  bop sub : Cws -> Cws 
  bop put : Nat Cws -> Cws

-- initial state 
-- method 
-- method 
-- method

12



bop 
bop 
bop

var 

var

read : Cws 
counter_  : 
switch  .

N 

C

: Nat 
: Cws

 -> Int 

 Cws -> 

Cws ->

 Counter 
Switch

attribute 
projection 
projection

eq read(C)

eq 
eq 

eq 

eq

eq

ceq

ceq

eq 

eq

[s-1] 
[s-2] 
[s-3] 
[s-4]

[c-1] 
[c-2]

[c-3]

[c-4] 
[c-5]

= read(counter(C)) .

switch(init-cws) 
switch(put(N, C)) 
switch(add(C)) = 
switch(sub(C)) =

= init . 
 = switch(C) . 

on(switch(C)) . 
off(switch(C)) .

: counter(init-cws) = init . 
: counter(put(N, C)) = add(N, counter(C)) 

 if state(switch(C)) == on . 
: counter(put(N, C)) = add(-(N), counter(C)) 

 if state(switch(C)) == off . 
: counter(add(C)) = counter(C) . 
: counter(sub(C)) = counter(C) .

  Synchronization can be seen in [ c -2 ] and [ c -3 ] which corresponds to the first syn-
chronization case (i.e., the definition of the counter depends on the state of the switch).

4.2 Verification of a composed object

As we described in section 3, our concern is mainly with behavioural properties. Behavioural 
properties for base level objects can be proved by using coinduction. In many cases, base 
level objects are simple and small so it is easy to prove the behavioural equivalence for 
them. Behavioural equivalence in composed objects is a conjunction of all the behavioural 
equivalence of composing objects.

Theorem 2 Given the states s and s of a composed object, then:

(s=S)if A 
nECOb j

(nn (s) nn(SI))

where - is the behavioural equivalence in the composed object, COb j is a set of compos-
ing objects, =n is the behavioural equivalence of the composing object On, and nn is the 

projection operator to the composing object On. ^

The proof of this theorem is in appendix A.

Corollary 1 If a ll projection operators are behavioural then 

      (s = s') = A (nn(s) =n nn(d)) 
                  nECObj

  In the counter with switch example, the behavioural equivalence of composing objects 
is just the default coinduction relation and automatically provided by the CafeOBJ system. 
So, from the above theorem, we can reuse the proofs of behavioural equivalence of the 
composing objects and get the behavioural equivalence of counter with switch.

13



op _R_ : Cws Cws -> Bool  . 
vars Cl C2  : Cws 
eq C1 R C2 = switch(C1) _*= switch(C2) and counter(C1) _*= counter(C2) . 

  For example, by using this behavioural equivalence, we can prove the following be-
havioural property: 

-- reduce in % : put(m,add(put(n,sub(init-cws)))) R add(put(n,sub( 
    put(m,add(init-cws))))) 

true : Bool 
(0.033 sec for parse, 68 rewrites(0.050 sec), 198 match attempts) 

  Notice that crucial role played by the add at the top of the right hand side of the previ-
ous property, since without it the SWITCH object would be in behaviourally non-equivalent 
states. 

  It is also easy to prove the behavioural property explained in section 4.1.1 by reusing 

the proof of behavioural equivalence =*= in COUNTER. The following is the proof score for 

this: 

op _R_ : 2Counter 2Counter -> Bool . 
vars C1 C2 : 2Counter 
eq C1 R C2 = counterl(C1) _*= counterl(C2) and counter2(C1) _*= counter2(C2) 

ops i1 i2 : -> Int . 
red addl(i1, add2(i2, init)) R add2(i2, addl(il, init)) .

4.3 Correctness proof for composition 

This is based on the idea that a composition is correct when the composed object is the 
refinement of its components and for the concurrent part the commutativity equations corre-
sponding to the concurrency of methods/attributes belonging to different components hold. 
This follows some early work on concurrent composition of [10]. 

  For example, we can show that the COUNTER-WITH- SWITH is a correct composition 
of COUNTER and SWITCH as follows. In order to express properly the morphisms used in 
the refinement proof, we need the following "derived" method: 

  bop addc : Int Cws -> Cws 

  ceq addc(I, C) = put(I, C) if state(switch C) == on . 
  ceq addc(I, C) = put(-(I), C) if state(switch C) == off . 

  For proving that counter with switch is a correct composition of SWITCH and COUNTER, 
we define the following "synchronization morphism": 3 

  • y!1 : SWITCH -* COUNTER-WITH-SWITCH such that: 

vi(init) = init-cws 
(on) = add 

VI(off) = sub 
vi (state) = switch; state 

  3see [10] for the mathematical definition of synchronization morphism . 
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•  W2 : COUNTER --)COUNTER-WITH-SWITCH such that:

t412(init) = init-cws 
112(add) = addc 

V2(read) = read

  We prove that COUNTER-WITH-SWITCH refines SWITCH via 1111: 

red state switch add(c) == on . 
red state switch sub(c) == off .

We prove that COUNTER-WITH-SWITCH refines COUNTER via 1112:

--> case 1: 

eq state(switch c) = on . 
red read addc(i, c) == i + read c . 
--> case 2: 

eq state(switch c) = off . 
red read addc(i, c) == i + read c . 

  We prove the commutativity equations corresponding to the methods.

--> case 1: 
eq state(switch c) = on . 
red add(addc(i, c)) R addc(i, add(c)) . 
red sub(addc(i, c)) R addc(i, sub(c)) . 
--> case 2: 

eq state(switch c) = off . 
red add(addc(i, c)) R addc(i, add(c)) . 
red sub(addc(i, c)) R addc(i, sub(c)) . 

  Finally, we have commutativity equations corresponding to the attributes. 

red state(switch put(i, c)) == state(switch c) . 
red read(counter add(c)) == read(counter c) . 
red read(counter sub(c)) == read(counter c) .

4.4 Inheritance

In hidden algebra, inheritance is modelled via subsort relations [10] (we only consider a 
single inheritance case). This means that the space of states of the inheriting object is in-
cluded in the space of states of the inherited object; this enables the inherited methods to 
act on the states of the inheriting object. Let's consider the counter with switch example we 
used before. We can build it differently by inheriting Switch (add and sub being just 
the renamings of on and off and using essentially the same names for operators as in the 
previous specification).
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mod* COUNTER—WITH—SWITCH  {

 protecting(INT) 
protecting(SWITCH *{ bop on _ -> add_, 

bop off _ -> sub_ })

*{ Cws < Switch ]*

op init-cws : -> Cws 
bop add_ : Cws -> Cws 
bop sub_ : Cws -> Cws 
bop put : Nat Cws -> Cws 
bop read : Cws -> Int

var C : Cws 

var N : Nat

-- initial state 
-- method 
-- method 
-- method 
-- attribute

  eq state(init-cws) = state(init) . 
  eq state(put(N, C)) = state(C) . 

  eq read(init-cws) = 0 . 
  eq read(add(C)) = read(C) . 

  eq read(sub(C)) = read(C) . 
  ceq read(put(N, C)) = N + read(C) 
      if state(C) == on . 

  ceq read(put(N, C)) = -(N) + read(C) 
      if state(C) == off . 

} 

  Notice that in the inheritance approach we can reuse the proofs of the coinduction rela-
tions for the inherited sorts since no new methods/attributes can be added on the inherited 
object. In this example, any coinduction relation R has two components Rcws and Rswitch 
satisfying Rcvs C Rswitch PcwsxCvs• The congruence proof for R is therefore necessary only 
for RNs. However, in this example, behavioural equivalence is again the default coinduction 
relation = * =. 4 

  If we compare the composition and inheritance approaches, we notice that (single) in-
heritance can be regarded as "sequential composition". This would be more obvious if one 
thinks of an example composing three objects, then in the inheritance approach one need two 
inheritance levels.

5 Specification of dynamic systems

Dynamic systems are different from static systems in that the configuration of the system 
changes when the system is running. The key point is that we need some kind of identifiers 
to manage object creation and deletion. 

Definition 5 An dynamic object can be created or deleted in a composed object and its 
initialization is done with appropriate data playing the role of object identifier. ̂  

  The definition of projection operators for dynamic objects are the same as Definition 1 
except that a projection operator for a dynamic object has an object identifier and a composed 
object as its arity as follows: 

  4The current CafeOBJ implementation does not have a mechanism to reuse the "inherited" components of
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Definition 6 An operator  itn : IDnh —f hn is a projection operator if 

  1. h is a hidden sort of the composed object 0, 

  2. hn are hidden sorts of the composing objects (the index n corresponding to the same 
    class of objects), 

  3. ID, is the set of identifiers for the objects of class n, and 

 4. fulfill the last three conditions(3, 4, 5) of Definition 1. 

0 Static systems appear as dynamic systems in which classes have a fixed number of objects. 
For example, the counter with switch example has two classes (for the composing objects) 
with one object each. The following example, has only one class (for the composing objects) 
but with a dynamic numbers of objects. 

  For an example of dynamic systems specification, we use a specification of a bank ac-
count system. A bank account system consists of several individual accounts of customers. 
It has methods: add for adding a new account, del for deleting an existing account, 
deposit, withdraw, and an attribute balance.

  We again reuse the specification of counter for Account with the difference that the 
initial state of the counter is indexed by the user identifiers. User identifiers which are used 
for the object identifier of the new Counter are specified as follows: 

mod! USER-ID { 
  extending(NAT *{ sort Nat ->  UId }) 

  op unidentified-user : -> UId 
} 

  The module COUNTER and COUNTER* (which contains an error value) can be specified 
as follows: 

mod* COUNTER { 
  protecting(USER-ID + INT) 

*[ Counter ]* 

  -- initialize counter with user ID 
  op init-counter : UId -> Counter 

  -- add a value to the counter (method) 
  bop add : Int Counter -> Counter 
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  -- read the value of the counter (attribute) 
  bop read_ : Counter ->  Int 

  var I : Int 
  var C : Counter 
  var U : UId 

  eq read(init-counter(U)) = 0 . 
  eq read(add(I, C)) = I + read(C) . 

} 

mod* COUNTER* { 
protecting(COUNTER) 
  -- error value 

  op counter-not-exist : -> Counter -- error 
} 

  The following is the specification of a bank account system (Account can be obtained 
by renaming COUNTER*): 

mod* ACCOUNT-SYSTEM { 
  protecting(COUNTER* *{ hsort Counter -> Account, 

                               op init-counter -> init-account, 
                             op no-counter -> no-account }) 

*[ AccountSys ]* 

 op init-account-sys : -> AccountSys-- initial state 
  bop add : UId Nat AccountSys -> AccountSys -- method 

 bop del : UId AccountSys -> AccountSys-- method 
  bop deposit : UId Nat AccountSys -> AccountSys -- method 
  bop withdraw : UId Nat AccountSys -> AccountSys -- method 
 bop balance : UId AccountSys -> Nat-- attribute 
  bop account : UId AccountSys -> Account-- projection 

  vars U U' : UId 
  var A : AccountSys 

  var N : Nat 

  eq account(U, init-account-sys) = no-account . 
  ceq account(U, add(U', N, A)) = add(N, init-account(U)) 

if U == U' . 
  ceq account(U, add(U', N, A)) = account(U, A) 

       if U =/= U' 
  ceq account(U, del(U', A)) = no-account 

if U == U' . 
  ceq account(U, del(U', A)) = account(U, A) 

       if U =/= U' 
  ceq account(U, deposit(U', N, A)) = add(N, account(U, A)) 

if U == U' . 
  ceq account(U, deposit(U', N, A)) = account(U, A) 

       if U =/= U' 
  ceq account(U, withdraw(U', N, A)) = add(-(N), account(U, A)) 

if U == U' . 
  ceq account(U, withdraw(U', N, A)) = account(U, A) 

       if U =/= U' . 

  eq balance(U, A) = read(account(U, A)) . 
} 

  We can get the state of an individual account by using the projection operator account 
by specifying a user identifier. User identifiers work as object identifiers. The attribute
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balance is just a abbreviation of read of an individual account. Let's consider the fol-
lowing example. We make a new account with user identifier  ̀   u and initial balance 10 and 
deposit 4 then withdraw 2 and observe the balance of the account.

red balance(`u:UId, withdraw(2, deposit(4, add(`u, 10, init-account-
sys)))) .

The following is the result of the above reduction:

-- reduce in ACCOUNT-SYSTEM : balance(`u:UId,withdraw(`u:UId,2,deposit( 
`u:UId ,4,add(`u:UId,10,init-account-sys)))) 

12 : NzNat 
(0.010 sec for parse, 19 rewrites(0.020 sec), 54 match attempts)

5.1 Verification of dynamic systems 

The behavioural equivalence of a composed object is a conjunction of all the behavioural 
equivalence of the composing objects. This refines Theorem 2 for the case of dynamic 
systems, thus giving the possibility to reuse the behavioural equivalence of the composing 
objects.

Corollary 2 Given the states s and s' of a composed object, then:

(s - s') if A ( n (ltn(l,^) =n nn(lls ))) 
nECClass iEID„

where - is the behavioural equivalence of the composed object, CClass is the set of classes 
of objects, —n is the behavioural equivalence for the class n, and IDn and ?Ln have the 
same meaning as in Definition 1. If all projection operators are behavioural then the other 
implication holds too. ^

6 Specification of client-server systems

In this section, we consider an ATM system which consists of several ATM clients and a bank 
account (a complete specification of the ATM system can be found in Appendix B). An ATM 
client can be specified by composing a switch (buttons for selecting deposit or withdraw) and 
four cells to hold card information, request for withdraw, input money, and output money (all 
the objects are composed by concurrent connection). We omit the CafeOBJ ATM specifi-
cation and just show it in the following figure (the renamings of objects are represented by 
dotted arrows):
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  Now we have all objects needed to specify an ATM system. ATM clients and the bank 
account are composed into an ATM system by synchronized concurrent connection. The 
following figure shows the ATM system:
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  The following is the signature part of an ATM system in CafeOBJ . Two projection 
operators are defined: account-sys for getting the state of a bank account and atm for 
individual atm clients.

mod* ATM-SYSTEM { 
protecting(ACCOUNT-SYSTEM + ATM-CLIENT)

*[ System ]*

op 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop

init-sys : -> System 
 add-atm : AId System -> System 

 del-atm : AId System -> System 
 add-user : UId Nat System -> System 

put-card : AId UId System -> System 
 request : AId Nat System -> System 

put-money : AId Nat System -> System 
 take-money : AId System -> System 

 deposit : AId System -> System 
 withdraw : AId System -> System 

 ok : AId System -> System 
 cancel : AId System -> System 

 balance : UId System -> Nat 
 account-sys : System -> AccountSys 
 atm : AId System -> Atm

-- initial state 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- method 
-- attribute 
-- projection 
-- projection
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  In the case of client-server system, we need a communication mechanism between the 
clients and the server. This can be achieved by using a server method having attributes of 
client objects as arguments. Assume that a customer pushed an ok button (i.e. the method 
ok is applied). Then informations in the ATM clients are sent to the server and the state of 
a bank account changes accordingly to these informations and the state of a bank account. 
This can be specified in CafeOBJ as follows: 

  1. card is inputed and  depos  i  t button is pushed: 

       ceq account-sys(ok(A, S)) = 
            deposit(user-id(atm(A, S)), 

                     get-input(atm(A, S)), 
account-sys(S)) 
             if button-status(atm(A, S)) == deposit and 

                user-id(atm(A, S)) =/= unidentified-user and 
                get-input(atm(A, S)) =1= 0 . 

  2. card is inputed, withdraw button is pushed, and the request for withdraw is less or 
    equal than the balance of the user: 

       ceq account-sys(ok(A, S)) = 
            withdraw(user-id(atm(A, S)), 

                       get-request(atm(A, S)), 
account-sys(S)) 
            if button-status(atm(A, S)) == withdraw and 

                user-id(atm(A, S)) =/= unidentified-user and 
               get-request(atm(A, S)) =/= 0 and 

                get-request(atm(A, S)) <= 
                        balance(user-id(atm(A, S)), 

                                    account-sys(S)) . 

  3. card is inputed, withdraw button is pushed, and the request for withdraw is greater 
    than the balance of the user:

ceq account-sys(ok(A, S)) = account-sys(S) 
 if user-id(atm(A, S)) == unidentified-user or 

    (button-status(atm(A, S)) == deposit and 
        get-input(atm(A, S)) == 0) or 

    (button-status(atm(A, S)) == withdraw and 
         (get-request(atm(A, S)) == 0 or 

        get-request(atm(A, S)) >                    b
alance(user-id(atm(A, S)), 

account-sys(S)))) .

  For example, in the second case of above equation, the user identifier held (recorded) 
in the ATM client (user - id (atm (A, S ) )) and the amount of requested money (get-
request (atm (A, S ) )) are both sent to the bank account by the method withdraw if 
all conditions are satisfied. If conditions are not satisfied then the data is not sent to the server 

(see the third equation above).

7 Verification of ATM system

In this section, we are going to prove a bihavioural property of ATM system. First, we define 

a module called ATM- SYSTEM-TOPLEVEL which provides basic interface of ATM system 

like wi thdraw or depos i t.
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mod* ATM-SYSTEM-TOPLEVEL 
 protecting(ATM-SYSTEM)

*[ TopLevel ]*

op 
bop 
bop 
bop 
bop 
bop 
bop 
bop 
bop

var 

var 

var 

var

init-tl . 
 add-atm : 

 del-atm : 
 add-user 

 del-user 
deposit : 
withdraw 
balance : 

 system :

U : 

A : 

N : 

TL

-> TopLevel 

 AId TopLevel -> TopLevel 
 AId TopLevel -> TopLevel 

: UId Nat TopLevel -> TopLevel 
: UId TopLevel -> TopLevel 
UId AId Nat TopLevel -> TopLevel 

: UId AId Nat TopLevel -> TopLevel 
UId TopLevel -> Nat 

TopLevel -> System

UId 
AId 
Nat 

: TopLevel

eq balance(U, 
balance(U,

TL) = 
account-sys(system(TL))) .

initial state 
method 
method 
method 
method 
method 
method 
attribute 
projection

eq system(init-tl) = init-sys . 
eq system(add-atm(A, TL)) = add-atm(A, system(TL)) . 
eq system(del-atm(A, TL)) = del-atm(A, system(TL)) . 
eq system(add-user(U,N,TL)) = add-user(U,N,system(TL)) . 
eq system(del-user(U, TL)) = del-user(U, system(TL)) . 
eq system(deposit(U, A, N, TL)) = 

   ok(A, put-money(A, N, 
     deposit(A, put-card(A, U, system(TL))))) . 

eq system(withdraw(U, A, N, TL)) = 
   take-money(A, ok(A, request(A, N, withdraw(A, 

               put-card(A, U, system(TL)))))) .
}

  The following module defines the behavioural equivalence for the whole system by using 
the results about the reusability of behavioural equivalence of the composing objects and the 
CafeOBJ default coinduction relation for the base level objects since for all these the default 
coinduction checking succeeds.

mod COINDUCTION-REL { 
protecting(ATM-SYSTEM-TOPLEVEL)

  The following is the behavioural equivalence relation for 

ACCOUNT-SYSTEM which is parameterized by the user identifiers; and which reuses the 

behavioural equivalence on COUNTER* which is the default coinduction relation = * _.

op _R[_]_ :

vars 

var

AS1 
U :

AccountSys

 AS2 : 
UId

UId

AccountSys

AccountSys -> Bool {coherent}

eq AS1 MU] AS2 = account(U, AS1) account(U, AS2) .

  The behavioural equivalence on the ATM-CLIENT is the conjunction of the behavioural 
equivalences of its composing objects; all of these are the default coinduction relations = * _.
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op _R_ : Atm 

vars Al A2  .

Atm ->  Bool {coherent)

Atm

eq Al R A2 = button(Al) =*= button(A2) and 
card(A1) =*= card(A2) and 
request(A1) =*= request(A2) and 
input(A1) =*= input(A2) and 
output(A1) =*= output(A2) .

  The behavioural equivalence for ATM- SYSTEM is the conjunction of the behavioural 
equivalences for ACCOUNT-SYSTEM and the conjunction of behavioural equivalences for 
all ATM clients 
(ATM- C L I ENT).

op _R[_,_]_ : System UId AId System -> Bool {coherent} 

vars S1 S2 : System 
var A : AId

eq S1 R[U, A] S2 = account-sys(S1) R[U] account-sys(S2) 
                   and atm(A, S1) R atm(A, S2) .

  Finally, the behavioural equivalence at the top level is just the behavioural equivalence 
of the system.

op _R[_,_]_ : TopLevel UId AId TopLevel 
                                       -> Bool {coherent}

vars T1 T2 : TopLevel 

eq T1 R[U, A] T2 = system(T1) R[U, A] system(T2) .
}

  Now, we can proceed to do the proof of a behavioural property stating the true concur-

rency of cash withdrawals by different users without respect of the ATM machines involved 

or the amount of cash requested. At the top level this property can be expressed as: 

withdraw(ul,A1,Nl,withdraw(u2,A2,N2,state)) ti 
withdraw (u2,A2, N2, withdraw(ui,Ai,N1, state)) 

where u, are users (identifiers), Ai are ATM machines (identifiers), and Ni are amounts of 
cash requested for withdrawal, for i E { 1, 2}. Other parameters for this proof are the bal-
ance Mt of the accounts of the users uj, for i E 11, 2}. The relationship between all these 
parameters amounts to a complex case analysis involving 108 cases. Fortunately, these can 
be automatically generated by CafeOBJ via a suitable meta-level encoding:

mod PROOF { 
protecting(COINDUCTION-REL) 

  ops a al a2 : -> AId 
  op t : -> TopLevel 

  ops u ul u2 : -> UId 
  ops nl n2 n01 n02 ml ml' m2 m2' : -> Nat

Case analysis with respect to balances of accounts and requested amounts:
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eq  n1 =/= 0 = 
eq n2 =/= 0 = 
eq n01 == 0 = 
eq n02 == 0 = 
eq n1 <= ml = 
eq n01 <= ml = 
eq n1 > ml' = 
eq n2 <= m2 = 
eq n02 <= m2 = 
eq n2 > m2' =

true . 

true . 

true . 

true . 

true . 

 true . 
true . 

true . 

 true . 
true .

  The following operations and equations generate the final proof term (RESULT) which 
includes all cases generated by the case analysis:

op 

ops 

op 

op 

op 

op 

op

state-of-system : Nat Nat -> TopLevel 
wlw2 w2w1 : AId AId Nat Nat Nat Nat -> 

TERM : UId AId AId AId Nat Nat Nat Nat 
TERM1 : UId AId AId AId Nat Nat -> Bool 
TERM2 : UId AId AId AId -> Bool 
TERM' : AId AId AId -> Bool 
RESULT : -> Bool

vars 

var 

vars

 A Al A2 : AId 
U : UId 

N1 N2 M1 M2 : Nat

TopLeve1 
-> Bool

eq state-of-system(Ml , M2) = add-user(ul, 
add-user(u2, M2, t))

Ml,

eq wlw2(Al, A2, 
   withdraw(ul, 

   withdraw(u2,

N1 
Al 
A2

N2 

Ni 

N2

Ml, M2) =

state-of-system(Ml, M2))) .

eq w2w1(A1, A2, 
   withdraw(u2, 

   withdraw(ul,

N1 

A2 

Al

N2 

N2 

N1

Ml, M2) =

state-of-system(M1, M2))) .

  Notice that the balances of the accounts are specified via the method add-user; this 

trick does not affect the generality of the proof. 

  The following sequence of equations gradually eliminates the parameters by instantiating 

them to constants describing the case analysis:

eq TERM(U, A, 
wlw2(A1, 
w2w1(A1,

Al 
A2, 
A2,

eq TERM1(U, A, 
TERM(U, 
TERM(U, 
TERM(U,

N1 

N1

Al, 
A, 
A, 
A,

A2, 

,N2, 
,N2,

A2 
Al, 
Al, 
Al,

N1 
M1 

M1

 N2, 
M2) 
M2)

, N2, 
A2, 
A2, 
A2,

 Ml, 
R[U,

M2) 
n1, 
nl, 
n01,

N2, 

N2, 

 N2

M2) = 
A]

m1, 

m1' 

 ml

M2) 
M2) 
M2)

and 
 and

eq TERM2 (U, A, 
TERM1(U, 
TERM1(U, 
TERM1(U,

Al 

A, 

A, 

A,

, A2) 
Al, 
Al, 
Al,

A2 
A2 
A2

n2, 
n2, 
n02

m2) 
m2') 

, m2)

and 
 and

eq TERM' (A, Al, A2) =

eq RESULT = TERM'(a,

TERM2(u, 
TERM2 (ul 
TERM2(u2 
al, a2)

  A, 

, A, 

, A, 
and

Al 

Al 
Al

A2) 
A2) 
A2)

and 
and
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 TERM' 

TERM' 
TERM'

(a, 
(a, 
(al,

al, 
a, 
al,

al) 
a) 
a2)

 and 
and

The CafeOBJ system performs nearly 600,000 reductions for RESULT and gives true.

8 Conclusion and future work

We have presented a new method of object composition in the algebraic specification lan-

guage CafeOBJ . Our method can reuse not only specification code but also the proofs 
of behavioural equivalence. If we have objects which are already proved as valid then we 
can reuse them to build incrementally the specification of the target system. We think that 
the reusability of proofs is the key technique to reduce the cost of verification especially in 
the specification languages having a support mechanism for proofs (theorem provers, proof 
checkers, etc). Also, our method supports class libraries for algebraic specification lan-

guages. 
  We have also made a comparison between our object composition approach and the in-
heritance approach (also in CafeOBJ ). Proofs for behavioural equivalences can reuse in 
both composition and inheritance approach, but reusability is higher when in the composi-
tion approach. 

  In this paper, we have used OMT like notation to represent relations of objects. We plan 
to study further the relationship between the OMT-style specification and CafeOBJ-style 
specifications and study other object-oriented concepts within the CafeOBJ framework. 
Also, we plan to build a class library for CafeOBJ. We think that tools capable of han-
dling our method, some graphical notations (such as OMT), and class libraries in an uniform 
environment are an important future research topic too.
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A Proof of Theorem 6

Proof 1 Consider two states s and s' such that for all composing objects  On, 7rn (s) =n in (s') 
Consider a visible context c for O. We have to prove that c(s) = c(s'). We have two cases:

1. c = m; Itn; cn for some object n, a sequence 
  havioural and cn is a visible context for n.

m of On-methods, such that 1tn is be-

  2. c = m; a for some sequence m of 0-methods and an 0-attribute a. 

Let's concentrate first on the case 1. If m is empty (i.e., empty sequence) then we can apply 
directly the hypothesis. Therefore we may assume m is a single "atomic" method (the other 
case can be proved by iterating the "atomic" case). Because, all conditions cond of the 
equations having m; nn as the left hand side are equalities of terms which are either of the 
form ltk; ck (where 0 is a composing object and ck is visible Ok-context) or terms in the 
signature of the data, we have cond(s) = cond(s') for all these conditions. Therefore we 
pick the condition cond for which both cond(s) and cond(s') are true, and let nn; mn be the 
right hand side of the corresponding equation. Then

c(s) = c(S)lff 
       if

(m;nn;Cn)(S) = (m;Ttn;Cn)(s ) 
(nn; mn; Cn) (S) = (nn; inn; COGS" )

which holds because mn; cn is a visible On-context and 7tn (s) =n 1tn (s'). 
  Finally, case 2 can be reduced to case 1 by a similar argument with the above, with the 

difference that nn is not necessarily behavioural. ^
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B Whole structure of the ATM system

 AccountSys

Account

read

on 

off

TopLevel

balance

withdraw 

deposit

System

Card

get

put

Atm

user-id 

get-input 

get-output 

get-request 

button-status

put-money 

take-money

get

put

Out

get

put

get

put

uest
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 C A specification of the ATM system

-- Values of SWITCH 

mod! ON-OFF { 
 [ Value ]

ops on off . -> Value
}

-- SWITCH 

mod* SWITCH { 
protecting(ON-OFF)

*[ Switch ]*

op 

bop 

bop 

bop

init-sw : -> Switch 
switch on 

 on _ : Switch -> Switch 
switch off 

off_ : Switch -> Switch 
observe the state of 

 status : Switch ->

-- initial

-- method

-- method

                      the switch 
Value --

state

attribute

var S : Switch

eq status(init-sw) 
eq status(on(S)) = 
eq status(off(S)) =

= off . 
on . 

 off .

}

-- User identification 

mod! USER-ID { 
protecting(NAT) 
[ Nat < UId ]

op unidentified-user . -> UId

}

-- Counter 

mod* COUNTER { 
  protecting(USER-ID + INT)

*[ Counter ]*

op 

bop 

bop

initialize counter with user ID 
init-counter : UId -> Counter 
add a value to the counter 

 add : Int Counter -> Counter 
read the value of the counter 

 read : Counter -> Int

-- initial

-- method

state

-- attribute

var I : Int 
var C : Counter 
var U : UId
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  eq read(init-counter(U)) = 0  . 
  eq read(add(I, C)) = I + read(C)  . 

 } 

-- Counter with error 

mod* COUNTER* { 
protecting(COUNTER) 

  -- error value 
  op counter-not-exist : -> Counter -- error 

} 

-- Account system 

mod* ACCOUNT-SYSTEM { 
  protecting(COUNTER* *{ hsort Counter -> Account, 

                               op init-counter -> init-account, 
                             op counter-not-exist -> no-account })

*[ AccountSys ]* 

op init-account-sys : -> AccountSys 
-- add a user account with user ID 

bop add : UId Nat AccountSys -> AccountSys 
-- delete a user account 

bop del : UId AccountSys -> AccountSys 
-- deposit operation 

bop deposit : UId Nat AccountSys -> AccountSys 
-- withdraw operation 

bop withdraw : UId Nat AccountSys -> AccountSys 
-- calculate the balance of an user account 

bop balance : UId AccountSys -> Nat 
-- get the state of a counter from the state of 
bop account : UId AccountSys -> Account 

vars U U' : UId 
var A : AccountSys 
var N : Nat 

eq account(U, init-account-sys) = no-account . 
ceq account(U, add(U', N, A)) = add(N, 

      if U == U' 
ceq account(U, add(U', N, A)) = account(U, A) 

     if U =/= U' 
ceq account(U, del(U', A)) = no-account 

      if U == U' 
ceq account(U, del(U', A)) = account(U, A) 

      if U =/= U' . 
ceq account(U, deposit(U', N, A)) = add(N, 

      if U == U' 
ceq account(U, deposit(U', N, A)) = account 

     if U =1= U' 
ceq account(U, withdraw(U', N, A)) = add(-(N), 

      if U == U' 
ceq account(U, withdraw(U', N, A)) = account(U, 

      if U =/= U' . 

eq balance(U, A) = read(account(U, A)) .

-- initial state 

 -- method 

 -- method 

 -- method 

 -- method 

 -- attribute 
an account 

 -- projection

init-account(U))

account(U, A)) 

                                            A) 

account(U, 

                                           A)

A))

}
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-- Trivial module with an element (undefined) 

mod* TRIV+  { 
 [ Elt ] 

  op undefined : -> Elt 
 } 

-- Cell 

mod* CELL(X :: TRIV+) { 
  *[ Cell ]* 

  op init-cell : -> Cell -- initial state 
  -- put the element to the cell 

  bop put : Elt Cell -> Cell -- method 
  -- get the element from the cell 

 bop get : Cell -> Elt -- attribute 

  var E : Elt 
  var C : Cell 

  eq get(init-cell) = undefined . 
  eq get(put(E, C)) = E . 

} 

-- ATM identifier 

mod! ATM-ID { 
  protecting(NAT *{ sort Nat -> AId }) 

} 

-- Button 

mod* BUTTON { 
  protecting(SWITCH *{ hsort Switch -> Button, 

                           sort Value -> Operation, 
                            op init-sw -> init-button, 
                           op on -> deposit, 

                         op off -> withdraw }) 
} 

-- Cell for card information 

mod* CARD { 
  protecting(CELL(X <= view to USER-ID 

                     { sort Elt -> UId, 
                       op undefined -> unidentified-user }) 

                     *{ hsort Cell -> Card , 
                        op init-cell -> init-card }) 

} 

-- Cell for input 

mod* INPUT { 
  protecting(CELL(X <= view to NAT 

                      { sort Elt -> Nat,
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                     op undefined -> 0  )) 
                     *{ hsort Cell -> Input , 

                       op init-cell -> init-input }) 
} 

-- Cell for output 

mod* OUTPUT { 
  protecting(CELL(X <= view to NAT 

                    { sort Elt -> Nat, 
                     op undefined -> 0 }) 

                    *{ hsort Cell -> Output , 
                       op init-cell -> init-output }) 

} 

-- Cell for request 

mod* REQUEST { 
  protecting(CELL(X <= view to NAT                     { 

sort Elt -> Nat, 
                     op undefined -> 0 }) 

                    *{ hsort Cell -> Request , 
                        op init-cell -> init-request }) 

} 

-- ATM client 

mod* ATM-CLIENT { 
-- importing data and the composing objects 

  protecting(ATM-ID + BUTTON + CARD + INPUT + OUTPUT + REQUEST) 

  *[ Atm ]*

op init-atm : AId -> Atm 
op no-atm : -> Atm 
op invalid-operation : -> Atm 
-- push the deposit button 
bop deposit : Atm -> Atm 
-- push the withdraw button 
bop withdraw : Atm -> Atm 
-- input the request for withdraw 
bop request : Nat Atm -> Atm 
-- put money 
bop put-money : Nat Atm -> Atm 
-- take money 
bop take-money : Atm -> Atm 
-- set money for output (system 
bop set-money : Nat Atm -> Atm 
-- put the bank card 
bop put-card : UId Atm -> Atm 
-- clear all the informations kept 
bop clear : Atm -> Atm 
-- get the user ID 

bop user-id : Atm -> UId 
-- get the money that user input 

bop get-input : Atm -> Nat 
-- get the outputed money 

bop get-output : Atm -> Nat 
-- get the request 

bop get-request : Atm -> Nat

operation)

in the

initial state 
error 
error 

method 

method 

method 

method 

method 

method 

method 
 atm 
method 

attribute 

attribute 

attribute 

attribute
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bop

bop 
bop 
 bop 
bop 
bop

get the state of the button 
 button-status : Atm -> Operation --

button : Atm -> Button 
card : Atm -> Card 
request : Atm -> Request 
input : Atm -> Input 
output : Atm -> Output

attribute

projection 
projection 
projection 
projection 
projection

var 

var 

var 

var

ATM : Atm 
N : Nat 
U : UId 
A : AId

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq

eq 

eq 

eq 
eq 

eq 

eq 

eq 
eq 

eq 

eq

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq

eq 

eq 

eq 

eq 

eq

button(init-atm(A)) = init-button . 
button(invalid-operation) = init-button . 
button(deposit(ATM)) = on(button(ATM)) . 
button(withdraw(ATM)) = off(button(ATM)) . 
button(request(N, ATM)) = button(ATM) . 
button(put-money(N, ATM)) = button(ATM) . 
button(take-money(ATM)) = button(ATM) . 
button(set-money(N, ATM)) = button(ATM) . 
button(put-card(U, ATM)) = button(ATM) . 
button(clear(ATM)) = init-button .

card(init-atm(A)) = init-card . 
card(invalid-operation) = init-card . 
card(deposit(ATM)) = card(ATM) . 
card(withdraw(ATM)) = card(ATM) . 
card(request(N, ATM)) = card(ATM) . 
card(put-money(N, ATM)) = card(ATM) . 
card(take-money(ATM)) = card(ATM) . 
card(set-money(N, ATM)) = card(ATM) . 
card(put-card(U, ATM)) = put(U, card(ATM)) . 
card(clear(ATM)) = init-card .

request(init-atm(A)) = init-request . 
request(invalid-operation) = init-request . 
request(deposit(ATM)) = request(ATM) . 
request(withdraw(ATM)) = request(ATM) . 
request(request(N, ATM)) = put(N, request(ATM)) . 
request(put-money(N, ATM)) = request(ATM) . 
request(take-money(ATM)) = request(ATM) 
request(set-money(N, ATM)) = request(ATM) . 
request(put-card(U, ATM)) = request(ATM) . 
request(clear(ATM)) = init-request .

input(init-atm(A)) = init-input . 
input(invalid-operation) = init-input . 
input(deposit(ATM)) = input(ATM) . 
input(withdraw(ATM)) = input(ATM) . 
input(request(N, ATM)) = input(ATM) . 
input(put-money(N, ATM)) = put(N, input(ATM)) . 
input(take-money(ATM)) = input(ATM) . 
input(set-money(N, ATM)) = input(ATM) . 
input(put-card(U, ATM)) = input(ATM) . 
input(clear(ATM)) = init-input .

output(init-atm(A)) = init-output . 
output(invalid-operation) = init-output . 
output(deposit(ATM)) = output(ATM) . 
output(withdraw(ATM)) = output(ATM) . 
output(request(N, ATM)) = output(ATM) .
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eq 

eq 

eq 

eq 

eq

eq 

eq 

eq 

eq 

eq

output(put-money(N, ATM)) = output(ATM)  . 
output(take-money(ATM)) =  init-output . 
output(set-money(N, ATM)) = put(N, output(ATM)) . 
output(put-card(U, ATM)) = output(ATM) . 
output(clear(ATM)) = output(ATM) .

user-id(ATM) = get(card(ATM)) . 
get-input(ATM) = get(input(ATM)) . 
get-output(ATM) = get(output(ATM)) . 
get-request(ATM) = get(request(ATM)) . 
button-status(ATM) = status(button(ATM)) .

}

-- ATM system 

mod* ATM-SYSTEM ( 
protecting(ACCOUNT-SYSTEM + ATM-CLIENT)

*[ System ]*

op init-sys : -> System 
-- add an atm to the system 

bop add-atm : AId System -> System 
-- delete an atm from the system 

bop del-atm : AId System -> System 
-- add an user account 

bop add-user : UId Nat System -> System 
-- delete an user account 

bop del-user : UId System -> System 
-- put the bank card 

bop put-card : AId UId System -> System 
-- request for withdraw 

bop request : AId Nat System -> System 
-- put money 

bop put-money : AId Nat System -> System 
-- take money 

bop take-money : AId System -> System 
-- deposit operation 

bop deposit : AId System -> System 
-- withdraw operation 

bop withdraw : AId System -> System 
-- push the ok button on atm to complete

bop 

bop 

bop 

bop 

bop

 ok : AId System -> System 
cancel the operation of ATM 

 cancel : AId System -> System 
get the balance of specified user 

 balance : UId System -> Nat 
projection operator for AccountSys 

 account-sys : System -> AccountSys 
projection operator for Atm 

 atm : AId System -> Atm

-- initial

-- method

-- method

-- method

-- method

-- method

-- method

-- method

-- method

-- method

state

 -- method 

the operation 
 -- method

-- method

-- attribute

-- projection

-- projection

var 

vars 

var 

var

S : System 
 A A' : AId 

U : UId 
N : Nat

eq balance(U,

eq 

eq 

eq

S) = balance(U,

account-sys(init-sys) 
account-sys(add-atm(A, 
account-sys(del-atm(A,

account-sys(S)) .

= init-account-sys . 
 S)) = account-sys(S) . 

S)) = account-sys(S) .
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eq 

eq 

eq 

eq 

eq 

eq 

eq 

eq 

ceq

ceq

account-sys(add-user(U, N,  S)) = add(U, N, account-sys(S)) . 
account-sys(del-user(U, S)) = del(U, account-sys(S)) . 
account-sys(put-card(A, U, S)) = account-sys(S) . 
account-sys(request(A, N, S)) = account-sys(S) . 
account-sys(put-money(A, N, S)) = account-sys(S) . 
account-sys(take-money(A, S)) = account-sys(S) . 
account-sys(deposit(A, S)) = account-sys(S) . 
account-sys(withdraw(A, S)) = account-sys(S) . 

 account-sys(ok(A, S)) = 
  deposit(user-id(atm(A, S)), get-input(atm(A, S)), account-sys(S)) 

  if button-status(atm(A, S)) == deposit and 
     user-id(atm(A, S)) =/= unidentified-user and 

     get-input(atm(A, S)) =/= 0 . 
 account-sys(ok(A, S)) = 

  withdraw(user-id(atm(A, S)), get-request(atm(A, S)), account-
sys(S))

ceq

eq

  if button-status(atm(A, S)) == withdraw and 
     user-id(atm(A, S)) =/= unidentified-user and 

     get-request(atm(A, S)) =/= 0 and 
     get-request(atm(A, S)) <_ 

             balance(user-id(atm(A, S)), account-sys(S)) . 
 account-sys(ok(A, S)) = account-sys(S) 

  if user-id(atm(A, S)) == unidentified-user or 
     (button-status(atm(A, S)) == deposit and 

         get-input(atm(A, S)) == 0) or 
      (button-status(atm(A, S)) == withdraw and 

          (get-request(atm(A, S)) == 0 or 
          get-request(atm(A, S)) > 

                    balance(user-id(atm(A, S)), account-sys(S)))) . 
account-sys(cancel(A, S)) = account-sys(S) .

eq atm(A, 
ceq atm(A, 

     if A 
ceq atm(A, 

     if A 
ceq atm(A, 

    if A 
ceq atm(A, 

    if A 
eq atm(A, 
eq atm(A, 
ceq atm(A, 

    if A 
ceq atm(A, 

     if A 
ceq atm(A, 

    if A 
ceq atm(A, 

    if A 
ceq atm(A, 

    if A 
ceq atm(A, 

     if A 
ceq atm(A, 

    if A 
ceq atm(A, 

     if A 
ceq atm(A, 

     if A 
ceq atm(A, 

    if A 
ceq atm(A,

init-sys) = no-atm . 
 add-atm(A', S)) = init-atm(A) 

== A' . 
 add-atm(A', S)) = atm(A, S) 

=/= A' . 
 del-atm(A', S)) = no-atm 

== A . 
 del-atm(A', S)) = atm(A, S) 

=/= A . 
add-user(U, N, S)) = atm(A, S) . 
del-user(U, S)) = atm(A, S) . 

 put-card(A', U, S)) = put-card(U, atm(A, S)) 
== A' 

 put-card(A', U, S)) = atm(A, S) 
=/= A' . 

 request(A', N, S)) = request(N, atm(A, S)) 
== A' . 

 request(A', N, S)) = atm(A, S) 
=1= A' . 

 put-money(A', N, S)) = put-money(N, atm(A, S)) 
== A' . 

 put-money(A', N, S)) = atm(A, S) 
=/= A' . 

 take-money(A', S)) = take-money(atm(A, S)) 
== A' . 

 take-money(A', S)) = atm(A, S) 
=/= A' . 

 deposit(A', S)) = deposit(atm(A, S)) 
== A' 

 deposit(A', S)) = atm(A, S) 
=/= A' . 

 withdraw(A', S)) = withdraw(atm(A, S))
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 if A == A' . 
  ceq atm(A, withdraw(A', S)) = atm(A, S) 

        if A =/= A' . 
  ceq atm(A, ok(A', S)) = clear(atm(A, S)) 

        if A == A' and 
           user-id(atm(A, S)) =/= unidentified-user and 

           button-status(atm(A, S)) == deposit . 
  ceq atm(A, ok(A', S)) = set-money(get-request(atm(A, S)), clear(atm(A, 

        if A == A' and 
           user-id(atm(A, S)) =1= unidentified-user and 

           button-status(atm(A, S)) == withdraw and 
           get-request(atm(A, S)) <= 

                      balance(user-id(atm(A, S)), account-sys(S)) . 
  ceq atm(A, ok(A', S)) = invalid-operation 

       if A == A' and 
           (user-id(atm(A, S)) == unidentified-user or 

           (button-status(atm(A, S)) == withdraw and 
               (get-request(atm(A, S)) > 

                     balance(user-id(atm(A, S)), account-sys(S))))) . 
  ceq atm(A, ok(A', S)) = atm(A, S) 

        if A =/= A' . 
  ceq atm(A, cancel(A', S)) = init-atm(A) 

        if A == A' . 
  ceq atm(A, cancel(A', S)) = atm(A, S) 

        if A =/= A' . 

-- The toplevel of ATM system 

mod* ATM-SYSTEM-TOPLEVEL { 
protecting(ATM-SYSTEM) 

  *[ TopLevel ]*

op 

bop 

bop 

bop 

bop 

bop 

bop 

bop 

bop 

var 
var 
var 
var 

eq 

eq 
eq 
eq

init-tl : -> TopLevel 
add a new atm 

 add-atm : AId TopLevel -> TopLevel 
delete an atm 

 del-atm : AId TopLevel -> TopLevel 
create an user account with initial balance 

 add-user : UId Nat TopLevel -> TopLevel 
delete an user account 

 del-user : UId TopLevel -> TopLevel 
user "UId" goes to an ATM "AId" and deposit 

 deposit : UId AId Nat TopLevel -> TopLevel 
user "UId" goes to an ATM "AId" and withdraw 

 withdraw : UId AId Nat TopLevel -> TopLevel 
get a balance for the user 

 balance : UId TopLevel -> Nat 
projection operator for System 

 system : TopLevel -> System 

 U : UId 
 A : AId 
 N : Nat 
 TL : TopLevel 

balance(U, TL) = balance(U, _ 

system(init-tl) = init-sys . 
system(add-atm(A, TL)) = add-atm(A, 
system(del-atm(A, TL)) = del-atm(A,

  -- initial state 

  -- method 

  -- method 

  -- method 

  -- method 
"Nat" 
  -- method 

 "Nat" 
  -- method 

  -- attribute 

  -- projection

em(TL))) .

system(TL)) . 
system(TL)) .
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eq  system(add-user(U, N, TL)) = add-user(U, N, system(TL)) . 
eq system(del-user(U, TL)) = del-user(U, system(TL)) . 
eq system(deposit(U, A, N, TL)) = 

   ok(A, put-money(A, N, deposit(A, put-card(A, U, system(TL))))) . 
eq system(withdraw(U, A, N, TL)) _ 

   take-money(A, ok(A, request(A, N, withdraw(A, 
               put-card(A, U, system(TL)))))) .

-- test for ATM-SYSTEM-TOPLEVEL 

open ATM-SYSTEM-TOPLEVEL

ops 

ops 

ops

nl 
ul 
ail

n2 n3 
u2 . 

 ai2

. -> Nat . 
-> UId . 
. -> AId .

red balance(ul, deposit(ul, 
add-user(u1, 100 

red balance(ul, withdraw(ul, 
              add-user(ul, 100 

close

ail, 20, 
, add-atm(ai1, init-t1)))) . 

 ail, 20, withdraw(u2, ail, 30, 
, add-user(u2, 100, add-atm(ail, init-ti)))))) .

-- module for behavioural equivalences 

mod COINDUCTION-REL { 
protecting(ATM-SYSTEM-TOPLEVEL)

-- behavioural 
  op _R[_]_ :

 equivalence for AccountSys 
AccountSys UId AccountSys -> Bool {coherent)

vars 

var

AS1 
U :

AS2 : 
UId

AccountSys

eq AS1 R[U]

-- behavioural 

  op _R_ : Atm

AS2 = account(U,

equivalence 
Atm -> Bool

AS1) =*=

for Atm 
{coherent)

account(U, AS2) .

vars Al A2 : Atm

eq Al R A2 =

-- behavioural 

  op _R[_,_]_ :

button(A1) _*= button(A2) and 
card(A1) _*= card(A2) and 
request(A1) _*= request(A2) and 
input(A1) _*= input(A2) and 
output(A1) _*= output(A2) .

equivalence 
 System UId

for System 
AId System -> Bool {coherent)

vars 

var

S1 
A :

S2 
AId

System

eq S1 R[U, A] S2 =

-- behavioural 
  op _R[_,_]_

vars

account-sys(Si) R[U] 
atm(A, S1) R atm(A,

account-sys(S2) 
S2) .

equivalence for TopLevel 
: TopLevel UId AId TopLevel ->

T1 T2 : TopLevel

and

Bool {coherent)

38



eq  T1 R[U, A] T2 = system(T1) R[U, A] system(T2) .
}

mod PROOF { 
protecting(COINDUCTION-REL)

ops 

op 

ops 

ops

a al 

t : -> 

u ul 
nl n2

a2 : -> AId 
TopLevel 

u2 : -> UId 
n01 n02 ml ml m2 m2' : -> Nat

eq 

eq 

eq 

eq 

eq 

eq 

eq 
eq 

eq 

eq

op 

ops 

op 

op 

op 

op 

op

nl 
n2 
n01 
n02 
nl 
n01 
nl 
n2 
n02 
n2

_/= 0 = 
=/= 0 = 

== 0 = 
== 0 = 

<= ml = 
 <= ml = 

> ml' = 
<= m2 = 

 <= m2 = 
> m2' =

true . 

true . 

true . 

true . 

true . 

 true . 

true . 

true . 

 true . 

true .

state-of-system : Nat Nat -> TopLevel 
wlw2 w2w1 : AId AId Nat Nat Nat Nat -> 

TERM : UId AId AId AId Nat Nat Nat Nat 
TERM1 : UId AId AId AId Nat Nat -> Bool 
TERM2 : UId AId AId AId -> Bool 
TERM' : AId AId AId -> Bool 
RESULT : -> Bool

vars 

var 

vars

 A Al A2 : AId 

U : UId 
N1 N2 M1 M2 : Nat

TopLevel 
-> Bool

eq state-of-system(M1, M2) = add-user(ul, Ml, 
                          add-user(u2, M2, 

                       add-atm(a, t))) .

eq wlw2 (Al , A2, N1, N2 
withdraw(ul 
withdraw(u2

, Ml, 
, Al, 
, A2,

M2) = 
N1, 
N2, state-of-system(M1, M2))) .

eq w2w1(Al , A2, N1, N2 
withdraw(u2 
withdraw(ul

, Ml, 
, A2, 
, Al,

M2) = 
N2, 
N1, state-of-system(M1 , M2))) .

eq TERM(U, A, 
wlw2(A1,

 Al, 
A2,N1

A2, 

,N2

N1, N2, 
,M1,M2)

M1, 
R[U,

M2) 
A] w2w1(A1,A2,N1,N2,M1,M2) .

 eq TERM1(U, A, 
TERM(U, 

TERM(U, A, Al, 
TERM(U, A, Al,

Al 

 A, 

A2, 

A2,

, A2 
Al, 
n1, 
n01

, N2, M2) 
A2, nl, 
N2, ml', 

, N2, ml,

N2, 
M2) 
M2)

ml, M2) 
 and

and

 eq TERM2 (U, A, 
TERM1(U, 

TERM1(U, A, Al, 
TERM1(U, A, Al,

eq TERM'(A,

TERM2 (u2 , A,

Al 
 A, 

A2, 
A2,

, A2) 
Al, 
n2, 
n02,

A2, 
m2') 

m2)

n2, m2) 
 and

 Al, A2) = TERM2 (u, 
TERM2(ul 

Al, A2) .

and

 A, Al, A2) and 
, A, Al, A2) and
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eq RESULT =  TERM'(a,

} 
select PROOF 
red RESULT .

TERM'(a, 
TERM'(a, 
TERM'(al,

al, 
al, 
a, 
al,

a2) and 
al) and 
a) and 
a2) .
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