
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Concurrent object composition in CafeOBJ

Author(s)
Iida, Shusaku; Matsumoto, Michihiro; Diaconescu,

Razvan; Futatsugi, Kokichi; Lucanu, Dorel

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-98-0009S: 1-40

Issue Date 1998-02-20

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8381

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Concurrent Object Composition
 CafeOBJ

 Shusaku Iida, Michihiro Matsumoto,1

Razvan Diaconescu,2 Kokichi Futatsugi,

 and Dorel Lucanu3
 February 20, 1998

 IS-RR-98-0009S

in

 Graduate School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST).

 3Faculty of Computer Science ,
 University "A1.I. Cuza" Iasi, Romania.

10n leave from the Research Center of PFU Limited .
20n leave from the Institute of Mathematics of the Romanian Academy .

Concurrent Object Composition in
 CafeOBJ

Shusaku Iida, Michihiro Matsumoto,1 Razvan Diaconescu,2

 Kokichi Futatsugi, and Dorel Lucanu3

 Graduate School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST).

 3Faculty of Computer Science ,
 University "A1.I. Cuza" Iasi, Romania.

 Abstract

 A new method is introduced to concurrently compose an object from already verified
objects. The most important new feature of our method is that the verification of the
composed object can be done by re-using the verifications of component objects. That
is, the verification of composed object is also composable. This is not always true. We
can show this can be achieved under some practically reasonable restrictions.

 These can be made possible by using a new algebraic specification language CafeOBJ
which has clear and precise algebraic semantics.

1 Introduction

The principle of "divide and conquer" seems to be the only effective principle in the devel-
opment of large and complex systems. A system is divided into several independent com-

ponents and each component is developed independently, after that the system is composed
from the already developed components. In general this "divide and conquer" principle is
applied recursively. Object-oriented modelling is widely used to support this compositional
approach for system development. We also need methods which allow us to analyze and
formally verify systems in the development of complex and critical systems; formal methods
seem to suit this requirement. It is not so difficult to conclude that formal methods enhanced
by object-oriented techniques can be used for the development of big, complex and critical
systems which are the trend of current systems. There are several trials for this issue, for ex-
ample, Object-Z[4] , FOOPS [11, etc. In this paper, we are going to introduce a new method

•

 10n leave from the Research Center of PFU Limited .
 20n leave from the Institute of Mathematics of the Romanian Academy .

1

for enhancing formal method with object-oriented techniques and show how to specify and
verify systems in our method by using examples. We mainly focus on the modularity and
the reusability power in object-oriented techniques. We use CafeOBJ [7, 19, 3, 5] as formal
specification language.

 Objects in CafeOBJ are treated with the hidden algebra formalism [11, 10], and the
modularity is supported by the CafeOBJ module system. CafeOBJ handles module im-

ports, parameterized modules, and general module expressions. By using hidden algebra,
we can specify encapsulated objects and can handle highly abstracted specifications called
behavioural specifications. We can prove system properties which are independent from the
implementation of the system; we call these behavioural properties. We briefly explain
hidden algebra in section 3.

 Reusability is the main issue of this paper. Generally, in object-oriented techniques,
reusability is confined mainly to the reusability of source code. In this paper, we introduce a
new notion of reusability that is reusability of proofs. We adopt object composition which
supports both reusability of specification code and proofs. By using our method, we can
start from valid small specifications which are relatively easy to handle and incrementally
combine them to build the complete specification of the whole system. Proofs we can reuse
in our method are behavioural equivalence proofs which are used for proving behavioural

properties. For example, assume that we compose two objects to get an object for a system,
and want to prove a behavioural property of the system. We need to define the behavioural
equivalence for the composed object (the system) and need to prove that it is a really be-
havioural equivalence. How can we define the behavioural equivalence for the composed
object? Do we need to prove a behavioural equivalence for the composed object each time
we get a new object by composition? In this paper, we answer these question by showing
that we can reuse the behavioural equivalence already proved for the composing objects.

 In this paper, we firstly present CafeOBJ and hidden algebra, and then we present our
method in section 4. After that we present some examples showing how to deal with dynamic
and client-server systems in our method.

2 CafeOBJ

CafeOBJ [7, 19, 3, 5] is a multi-paradigm algebraic specification language which is a suc-
cessor of OBJ[6, 13]. CafeOBJ is based on the combination of several logics consisting
of many sorted algebra, order sorted algebra [9, 12], hidden algebra[11] and rewrit-
ing logic[16]. This combination is handled by institutions[8], as shown by the CafeOBJ
cube[2] (see the figure). The arrows of the CafeOBJ cube correspond to institution embed-
dings. (M for many, S for sorted, A for algebra, 0 for order, H for hidden and RWL for
rewriting logic.)

 According to its semantics [2, 5], CafeOBJ can fit in several specification(and program-
ming) paradigms such as equational specifications(and programmings), rewriting logic spec-
ification, behavioural concurrent specifications. Object orientation is a derived feature of
CafeOBJ which can be treated both in behavioural specification and rewriting logic[15]; in
this paper we consider only the behavioural specification approach. CafeOBJ has a power-

2

 HOSA^HOSRWL

HSA------------t i• HSRWL

 OSAI• OSRWL
I/ /

MSARWL

ful module system: several kinds of module imports, parameterized modules, and for each
module one can choose between loose and tight (initial) semantics.

 CafeOBJ is executable which means it can be used for rapid prototyping and theorem

proving. Its operational semantics is based on term rewriting, and the proof calculi are
equational and rewriting logic proof calculi. For confluent and terminating specification,
two terms are equal when their normal forms are identical.

2.1 Syntax of CafeOBJ

Here, we briefly describe some basic syntax of CafeOBJ which is needed in this paper (we
use hidden order sorted algebra but not rewriting logic). In this section we deal with some
syntax related to order sorted algebra. The syntax related to hidden algebra can be found in
section 3. The complete syntax of CafeOBJ can be found in [17]. Consider the following
example, which specifies natural numbers:

mod! NAT {
-- declarations of sorts

 [NzNat < Nat]

-- declarations of operators
 op 0 : -> Nat

 op s : Nat -> NzNat
 op _+_ : Nat Nat -> Nat

-- declarations of variables
 vars N N' : Nat

-- declarations of equations

 eq 0 + N = N .
 eq s(N) + N' = s(N + N') .

}

 The name of this module is NAT specified after the keyword mod! which is an abbre-
viation of module!. In CafeOBJ, the modules with tight (initial) semantics are declared
by module ! , and the modules with loose semantics are declared by module*. Sorts are
declared within [] and the ordering of sorts are specified by using <. In this example, we
have two sorts NzNat and Nat, and NzNat is a subsort of Nat. The lines beginning with

3

the keyword - - are comments. Operators are declared by the keyword op (ops for several
operators with the same rank). The arity (a list of arguments) of an operator is specified be-
fore -> and the sort (coarity) of an operator is specified after -> (the pair of arity and coarity
is called rank). Variables are declared by the keyword var (vars for several variables).
Equations are declared by the keyword eq and conditional equations by ceq.

 Modules can be imported by using protecting, extending, or using.

protecting imports do not collapse elements or add new elements to the models of the
imported module, but extending imports may add new elements but not collapse ele-
ments. In the folklore of algebraic specification these conditions are known under the name
of "no junk and no confusion" and, respectively, "no confusion" condition. Us ing im-

ports provide no guaranty, so they might even collapse elements. Every module implicitly
imports the system module BOOL handling the Boolean data type. For confluent and ter-
minating specifications, we can prove that two term are equal (that means two terms have
the same normal form) by using the predicate == and system command red (abbreviation
of reduce). For example, we can check the terms s (s (0)) and s (0) + s (0) are the
equal in the specification NAT in the following way:

NAT> red s(s(0)) == s(0) + s(0) .
-- reduce in NAT : s(s(0)) == s(0) + s(0)
true : Bool
(0.000 sec for parse, 3 rewrites(0.017 sec), 4 match attempts)

2.1.1 Some mathematical semantics:

A many sorted signature (S, E) consists of a set of sorts S and a set of S sorted operators
E. An operator 6 is denoted as 6 : w -* s where w E S* is its arity and s E S is its sort

(coarity). The rank of an operator consists of its arity and its sort. The set of operators of
rank ws is denoted as E,,,s. Constants are operations whose arity are empty, i.e., 6 : —* s.
In order sorted algebra, a signature is defined as (5, <, E), where (S, <) is a partial order
set. A signature gives vocabularies for the sentences of a given specification. An equational

specification SP is a pair consisting of signature and equations E for the signature. Signatures

are sometimes denoted just as E, so equational specifications can be denoted as (E,E). A
model (implementation) of a signature E is called s-algebra (we omit E when there is no
confusion). Given a signature (S, <, E), an algebra A interprets

• each sort s E S as a set AS(called the carrier of A of sort s),

• each subsort relation s < s' as an inclusion As C As', and

• each operator 6 E ES, ...Sns as a function Aa : As1 x ... x Asn -+ As.

 Specifications and models are related by a satisfaction relation = . An equation "(VX) t =
t' if C" is satisfied by a E-algebra M, denoted as:

M =(VX)t=t'ifC

4

 if 0(t) = 0(t') whenever 0(C) = Mtrue (the interpretation of the constant true in M) for all
valuations 0 : X -4 M, where X is a set of variables, t and t` are terms, C is the condition,
and 0 is an interpretation (homomorphism) which interprets terms to values of the model.

 Given CafeOBJ signatures (S, <, E) and (S', <,r), then a signature morphism 4) : (S, <
, E) -4 (S', <, E') consist of

 • a mapping of sorts f : S -4 S' such that f (s) < f (s') if s < s', and

 • an indexed family of mappings on operations, i.e.,

(gsl ...sns • Esl ...sns —' Ef(sl)... f (sn)f(s))s1 i...,sn,sES,n>0

 For more details on the mathematical semantics of CafeOBJ see [3].

3 Hidden algebra

Specifications based on hidden algebra are called behavioural specifications[11, 10] and
they can naturally handle states of encapsulated objects. The space of the states of an object
is represented as a hidden sort which should be regarded as a kind of black box in the sense
that we can observe the state of an object by using some operators called attributes.

 In hidden algebra, there are two kind of sorts: visible and hidden. Visible sorts represent
the data part of the specification and hidden sorts represent the states of objects. Given a
signature (S, <, E) with a subset H C S of hidden sorts, a hidden model M (which can be
either an algebra or rewriting model) interprets the visible sorts V and the operations 1F of
the visible sorts as a fixed model D (called the model of data), that is M ry q' = D (where [is
the model reduct). Signature morphism g : (S, H, <, E) —+ (S', H', <, E') preserve the visible
and hidden parts of the signatures, and obey the following conditions:

• g maps each behavioural operation to a behavioural operation,

• if f (h) < f (h') for any hidden sorts h, h', then h < h', and

• if a' E Ew,s, is a behavioural operation and some sort in w' is hidden, then a' = g(a)
 for some behavioural operation a in E.

The last two conditions corresponding to object encapsulation conditions (see [10] for more
details).
 The following is an example of the behavioural specification of a counter of integers.

mod* COUNTER {
protecting(INT)

 [Counter]

 op init : -> Counter
 bop add : Int Counter -> Counter

 bop read : Counter -> Int

 var I : Int
 var C : Counter

-- initial state
-- method
-- attribute

5

eq

eq

read(init) =
read(add(I,

 0 .
C)) = I + read(C) .

}

 The data of this behavioural specification is INT which is a built-in module of the system.
It is imported in the specification by protecting (INT) . Hidden sorts are declared with
* [] *. The keyword bop is used for behavioural operators. Behavioural operators have
exactly a hidden sort in their arity, and when their sort is hidden they are called methods and
when it is visible they are called attributes. In the above example, add is method and read
is attribute.

 Each sequence of methods determines an object state. In the above example, we can
observe the state of Counter with reduce command (red) by using the attribute read:

COUNTER> red read(add(4
-- reduce in COUNTER :

10 : NzNat
(0.017 sec for parse, 5

, add(6, init)))
read(add(4,add(6,

rewrites(0. 250

init)))

sec), 8 match attempts)

 Behavioural specifications are based on loose semantics that means there exists several
models (implementations) for them. For example, in COUNTER we can consider a model
that keeps every history of methods applied (let's call this the history model) or a model that
keeps just one integer value that is the result of the last applied method (let's call this the cell
model). The following is the specification of the history model based on initial semantics

(meaning that we only consider the initial model for the specification):

mod! COUNTER-HISTORY {
protecting(INT)

[Counter]

op

op
op

op

op

init

add .
read

. -> Counter
Counter Counter -> Counter {
Int Counter -> Counter

Int Counter -> Counter
: Counter -> Int

assoc id: init}

vars I I' : Int
var C : Counter

eq
eq

eq

add(I, C) = I C .
read(init) = 0 .
read(I C) = I + read(C) .

}

The following is the specification of the cell model based on initial semantics:

mod! COUNTER-CELL {
protecting(INT)

[Counter]

op

op

op

op

init .
[_] :
add :
read :

 -> Counter

Int -> Counter
Int Counter ->

 Counter -> Int

Counter

6

vars I I' : Int
var C : Counter

eq add(I, init) = [I] .
eq add(I, [I']) = [I + I'] .
eq read(init) = 0 .
eq read([I]) = I .

}

We can easily prove that models of above specifications are models of COUNTER too.

3.1 Behavioural properties

We want (all possible implementations of) counters to satisfy the following commutativity

property of add (where ` n : Int represent a term ` n of sort Int):

add(`n:Int, add(`m:Int, init)) = add(`m, add(`n, init))

 But this property does not hold in the history model within ordinary equational satisfac-
tion (but in the cell model it does). These can be checked by using COUNTER-HISTORY
and COUNTER-CELL.

COUNTER-HISTORY> red add(`n:Int, add('m:Int, init)) == add('m, add('n, init)
-- reduce in COUNTER-HISTORY : add(`n:Int,add(`m:Int,init)) == add(

`m:Int ,add(`n:Int,init))
false : Bool
(0.000 sec for parse, 5 rewrites(0.017 sec), 5 match attempts)

COUNTER-CELL> red add(`n:Int, add(`m:Int, init)) == add('m, add('n, init)) .
-- reduce in COUNTER-CELL : add(`n:Int,add(`m:Int,init)) == add(`m:Int,

add('n:Int,init))
true : Bool
(0.033 sec for parse, 5 rewrites(0.000 sec), 19 match attempts)

 We therefore need the commutativity of add as behavioural equivalence rather than
strict equivalence. The intuitive understanding of behavioural equivalence is that two states
are behavioural equivalent when they cannot be distinguished under all the observations (by
using all the attributes) after applying any method.

 The behavioural equivalence denoted as - can be defined as follows [11]:

 • when s E V:

a-a'iffa=a'

 • when s E H:

 a - a' if c(a) = c(a') for all v E V and for all visible contexts c.

where a, a' e As, V is the set of visible sorts, H is the set of hidden sorts, a context is a term
which is a sequence of behavioural operators, and a visible context is a context of visible
sort. In CafeOBJ behavioural equivalence is denoted by the special keyword beq (bceq
for the conditional case).

7

 Proving behavioural equivalence by directly using its definition means a proof by induc-
tion on the structure of contexts; this is called context induction[14]. For large specification,
context induction can lead to very complex proofs. The coinduction method [11] avoids such

problems. Correctness of coinduction is based on the following theorem[11]:

Theorem 1 Behavioural equivalence is the largest hidden congruence (congruence with re-
spect to behavioural operations). ^

 A proof by coinduction consists of the following steps:

 1. give a candidate hidden congruence relation R

 2. prove that R is a hidden congruence for all the behavioural operators,

 3. prove the behavioural property by using R.

 The following is a coinduction proof for the behavioural commutativity of add for the
specification COUNTER:
open COUNTER
op _R_ : Counter Counter -> Bool .

-- give a candidate of hidden congruence relation
vars Cl C2 : Counter
eq C1 R C2 = read(C1) == read(C2) .

-- hypothesis
ops c1 c2 : -> Counter .
eq read(C1) = read(C2) .

-- prove the R is a congruence
op i : -> Int .
red add(i, cl) R add(i, c2) .

-- prove beg add(n:Int, add(m:Int, init)) = add(m, add(n, init)) .
red add(n:Int, add(m:Int, init)) R add(m, add(n, init)) .
close

 In many cases the following relation:

t=*=t' iff A a(t) == a(t') for all the attributes a

a where t, t' are terms of (the same) hidden sort, is a hidden congruence, therefore it can be
used as the candidate hidden congruence relation. CafeOBJ adopts this as a default coin-
duction relation and the system provides automatic support for proving it is a congruence.
In the case of COUNTER, this mechanism succeeds so the proof of commutativity of add
consists of just the following reduction:

CafeOBJ> in counter
-- processing input : ./counter.mod
-- defining module* COUNTER.......... _*
** system already proved =*= is a congruence of COUNTER done.

COUNTER> red add(`n:Int, add(`m:Int, init)) =*= add(`m, add('n, init)) .
-- reduce in COUNTER : add V n:Int,add(`m:Int,init)) =*= add(`m:Int,

add(`n:Int,init))
true : Bool
(0.033 sec for parse, 8 rewrites(0.067 sec), 48 match attempts)

8

4 Reusability

One of the most important issue in object-oriented techniques is reusability. In object-
oriented programming, reusability of the source code is important. But, in object-oriented
specification, reusability of the proofs is also very important because of the verification pro-
cess. In this section, we are going to present a new method to reuse both specification code
and proofs.

 There seems to be two different techniques to reuse code: composition and inheritance.
Our method belongs more to the object composition side. This paper promotes the view that
composition is more effective than inheritance as reusability techniques. We will first present
our composition method and afterwards we will compare it with the inheritance method in

 CafeOBJ .

4.1 Object composition

The following figure represents the structure of object compositions by using OMT[18] like
notation to represent relations between objects.

base level objects

 Reusing specifications is done by the projection operators. Projection operators are
defined for each composing objects to get their states from the state of composed object. All
methods of the composed object are related to the methods of the composing objects using
these projection operators.

Definition 1 An operator 1Ln : h -* hn is a projection operator if:

 1. h is a hidden sort of the composed object 0,

 2. hn are hidden sorts of the composing objects On,

9

3. for each attribute a of 0, there exists a composing object On, an operator f : vn1...vnm -4
v (vnm is a data for On and v is a visible sort), and a visible On-context cn such that: 1
a= (irni;Cni,...)itnm;Cnm)f,

4. for each method m : h --0 i of 0, for all composing object On, there exists a sequence
 of methods mn such that:

m; nn = nn; mn,

5. for each constant const :-* h of 0, for all composing objects On, there exists a constant
constn :---+ /in such that:
const; nn = const

El

This definition is for static systems (i.e., configuration of the system is unchanged when it is
running), see section 5 for dynamic systems.

 Notice that the equalities defining the attributes and methods for the composed objects are
strict (i.e., not behavioural) equations and that projection operators can be either ordinary or
behavioural. Using non-behavioural projections has the advantage to enable a user controlled
selection of the attributes on the composed object, but they have the disadvantage of possibly
restricting the computations involving behavioural equations. 2

Definition 2 As shown in the above figure, the structure of such a composition is a DAG
(directed acyclic graph). A base level object is an object without projection operators. ^

Definition 3 Two methods of a composed object are in the same method group when they
are related to the same composing object. ^

If a method in a composed object relate to several method in different composing objects
then there is a overlapping among the method groups.

 Object composition can be classified with respect to how the composing objects are con-
nected: concurrent connection and synchronized concurrent connection. We are going to
discuss both cases in the following subsections.

4.1.1 Concurrent connection:

In the case of concurrent connection, we have full concurrency between all the composing
objects. This means that if two methods are in the different method groups then all states
containing these methods (i.e. possibly in different order) are behavioural equivalent.

 For example, assume that we want to compose two counters, Counterl and Counter2
and get 2 Counter. Both the composing objects are equal to COUNTER we showed previ-
ously, just the sort name is renamed to Counterl and Counter2, respectively. 2 Counter
has two methods addl and add2 to count up Counterl and Counter2, respectively. So,
there is no intersection between Counterl and Counter2. The following is the specifi-
cation of 2Counter:

1We use the diagrammatic notation for the composition of functions.
 2See [3] for details on reductions involving behavioural equations. However, the projections are be-

havioural coherent [3] we have the same computational power as in the case of behavioural projections.

10

mod* 2COUNTER {
protecting(COUNTER *{

 protecting(COUNTER *{

hsort Counter ->
op init -> initl
hsort Counter ->
op init -> init2

Counterl,
))
Counter2,
))

[2Counter]

op
bop
bop
bop
bop

init : -> 2Counter
addl : Int
add2 : Int
counterl :
counter2 .

var I

var TC

2Counter
2Counter
2Counter
2Counter

: Int

: 2Counter

-> 2Counter
-> 2Counter
-> Counterl
-> Counter2

initial state
method
method

projection
projection

eq [cl-1]
eq [cl-2]
eq [cl-3]

eq [c2-1]
eq [c2-2]
eq [c2-3]

counterl(init)
counterl(addl(I,
counterl(add2(I,

counter2(init)
counter2(addl(I,
counter2(add2(I,

TC)) =
TC)) =

TC)) =
TC)) =

initl .
add(I, counterl(TC)) .
counterl(TC) .

init2 .
counter2(TC) .
add(I, counter2(TC)) .

)

 Firstly, we have to import twice COUNTER by renaming its hidden sort so that each of
them have a different sort name. Secondly, we define a new hidden sort and operators for the
composed object. Finally, we define projection operators and equations for them. CafeOBJ
syntax allows us to put labels to equations, like [c 1-1] for the first equation in the above
specification. Equation [c 1- 3] and [c 2 -21 express the concurrency of the composing
counters.
 There are two method groups with respect to the two composing objects: Counterl

and Counter2. Methods addl and add2 are in the different method group, so addl and
add2 can be operated concurrently. For example, we can prove the following behavioural

property:

beq addl(il, add2(i2 , init)) = add2(i2, addl(il, init)) .

We are going to present the details of this proof in section 4.2.

4.1.2 Synchronized concurrent connection:

In the case of synchronized concurrent connection,
objects is partial (i.e. some synchronizations happens)

the concurrency between composing

. Synchronization happens when:

1. the projected state of the composed object (via a projection operator) depends on the
 state of a different (from the object corresponding to the projection operator) compos-

 ing object,

2. methods of the composed object change simultaneously states of several composing
 objects

I1

These conditions amount to refining Definition 1 by considering conditions for the projection
operator of the composed object.

Definition 4 The conditions for these (conditional) equations should fulfill the following:

 • each condition is a finite conjunction of equalities between terms of the form 1tn; cn

 (where itn is a projection operator and cn is an On-context) and terms in the data
 signature, and

 • disjunction of all the conditions corresponding to a given left hand side is always true.

 Here, we consider a special counter with switch, which has a method put to add or
subtract a natural number to (or from) the counter. We, again, reuse the specification of
the counter we used before. Note that the interface of counter and counter with switch is
different (method add in COUNTER takes an integer number but here put takes a natural
number). The composing objects are: Switch and Counter. The method put in the
composed object counts up the counter if the switch is on and count down if the switch is
off.
 Firstly, we specify a switch as follows:

mod! ON-OFF {
[Value]

 ops on off : -> Value
}

mod* SWITCH {
protecting(ON-OFF)

[Switch]

 op init : -> Switch
 bop on_ : Switch -> Switch

 bop off_ : Switch -> Switch
 bop state_ : Switch -> Value

 var S : Switch

 eq state(init) = off .
 eq state(on(S)) = on .
 eq state(off(S)) = off .

)

method
method
attribute

The following is the specification of the counter which switch:

mod* COUNTER-WITH-SWITCH {
 protecting(COUNTER + SWITCH)

 [Cws]

 op init-cws : -> Cws
 bop add : Cws -> Cws
 bop sub : Cws -> Cws
 bop put : Nat Cws -> Cws

-- initial state
-- method
-- method
-- method

12

bop
bop
bop

var

var

read : Cws
counter_ :
switch .

N

C

: Nat
: Cws

 -> Int

 Cws ->

Cws ->

 Counter
Switch

attribute
projection
projection

eq read(C)

eq
eq

eq

eq

eq

ceq

ceq

eq

eq

[s-1]
[s-2]
[s-3]
[s-4]

[c-1]
[c-2]

[c-3]

[c-4]
[c-5]

= read(counter(C)) .

switch(init-cws)
switch(put(N, C))
switch(add(C)) =
switch(sub(C)) =

= init .
 = switch(C) .

on(switch(C)) .
off(switch(C)) .

: counter(init-cws) = init .
: counter(put(N, C)) = add(N, counter(C))

 if state(switch(C)) == on .
: counter(put(N, C)) = add(-(N), counter(C))

 if state(switch(C)) == off .
: counter(add(C)) = counter(C) .
: counter(sub(C)) = counter(C) .

 Synchronization can be seen in [c -2] and [c -3] which corresponds to the first syn-
chronization case (i.e., the definition of the counter depends on the state of the switch).

4.2 Verification of a composed object

As we described in section 3, our concern is mainly with behavioural properties. Behavioural
properties for base level objects can be proved by using coinduction. In many cases, base
level objects are simple and small so it is easy to prove the behavioural equivalence for
them. Behavioural equivalence in composed objects is a conjunction of all the behavioural
equivalence of composing objects.

Theorem 2 Given the states s and s of a composed object, then:

(s=S)if A
nECOb j

(nn (s) nn(SI))

where - is the behavioural equivalence in the composed object, COb j is a set of compos-
ing objects, =n is the behavioural equivalence of the composing object On, and nn is the

projection operator to the composing object On. ^

The proof of this theorem is in appendix A.

Corollary 1 If a ll projection operators are behavioural then

 (s = s') = A (nn(s) =n nn(d))
 nECObj

 In the counter with switch example, the behavioural equivalence of composing objects
is just the default coinduction relation and automatically provided by the CafeOBJ system.
So, from the above theorem, we can reuse the proofs of behavioural equivalence of the
composing objects and get the behavioural equivalence of counter with switch.

13

op _R_ : Cws Cws -> Bool .
vars Cl C2 : Cws
eq C1 R C2 = switch(C1) _*= switch(C2) and counter(C1) _*= counter(C2) .

 For example, by using this behavioural equivalence, we can prove the following be-
havioural property:

-- reduce in % : put(m,add(put(n,sub(init-cws)))) R add(put(n,sub(
 put(m,add(init-cws)))))

true : Bool
(0.033 sec for parse, 68 rewrites(0.050 sec), 198 match attempts)

 Notice that crucial role played by the add at the top of the right hand side of the previ-
ous property, since without it the SWITCH object would be in behaviourally non-equivalent
states.

 It is also easy to prove the behavioural property explained in section 4.1.1 by reusing

the proof of behavioural equivalence =*= in COUNTER. The following is the proof score for

this:

op _R_ : 2Counter 2Counter -> Bool .
vars C1 C2 : 2Counter
eq C1 R C2 = counterl(C1) _*= counterl(C2) and counter2(C1) _*= counter2(C2)

ops i1 i2 : -> Int .
red addl(i1, add2(i2, init)) R add2(i2, addl(il, init)) .

4.3 Correctness proof for composition

This is based on the idea that a composition is correct when the composed object is the
refinement of its components and for the concurrent part the commutativity equations corre-
sponding to the concurrency of methods/attributes belonging to different components hold.
This follows some early work on concurrent composition of [10].

 For example, we can show that the COUNTER-WITH- SWITH is a correct composition
of COUNTER and SWITCH as follows. In order to express properly the morphisms used in
the refinement proof, we need the following "derived" method:

 bop addc : Int Cws -> Cws

 ceq addc(I, C) = put(I, C) if state(switch C) == on .
 ceq addc(I, C) = put(-(I), C) if state(switch C) == off .

 For proving that counter with switch is a correct composition of SWITCH and COUNTER,
we define the following "synchronization morphism": 3

 • y!1 : SWITCH -* COUNTER-WITH-SWITCH such that:

vi(init) = init-cws
(on) = add

VI(off) = sub
vi (state) = switch; state

 3see [10] for the mathematical definition of synchronization morphism .

 14

• W2 : COUNTER --)COUNTER-WITH-SWITCH such that:

t412(init) = init-cws
112(add) = addc

V2(read) = read

 We prove that COUNTER-WITH-SWITCH refines SWITCH via 1111:

red state switch add(c) == on .
red state switch sub(c) == off .

We prove that COUNTER-WITH-SWITCH refines COUNTER via 1112:

--> case 1:

eq state(switch c) = on .
red read addc(i, c) == i + read c .
--> case 2:

eq state(switch c) = off .
red read addc(i, c) == i + read c .

 We prove the commutativity equations corresponding to the methods.

--> case 1:
eq state(switch c) = on .
red add(addc(i, c)) R addc(i, add(c)) .
red sub(addc(i, c)) R addc(i, sub(c)) .
--> case 2:

eq state(switch c) = off .
red add(addc(i, c)) R addc(i, add(c)) .
red sub(addc(i, c)) R addc(i, sub(c)) .

 Finally, we have commutativity equations corresponding to the attributes.

red state(switch put(i, c)) == state(switch c) .
red read(counter add(c)) == read(counter c) .
red read(counter sub(c)) == read(counter c) .

4.4 Inheritance

In hidden algebra, inheritance is modelled via subsort relations [10] (we only consider a
single inheritance case). This means that the space of states of the inheriting object is in-
cluded in the space of states of the inherited object; this enables the inherited methods to
act on the states of the inheriting object. Let's consider the counter with switch example we
used before. We can build it differently by inheriting Switch (add and sub being just
the renamings of on and off and using essentially the same names for operators as in the
previous specification).

15

mod* COUNTER—WITH—SWITCH {

 protecting(INT)
protecting(SWITCH *{ bop on _ -> add_,

bop off _ -> sub_ })

{ Cws < Switch]

op init-cws : -> Cws
bop add_ : Cws -> Cws
bop sub_ : Cws -> Cws
bop put : Nat Cws -> Cws
bop read : Cws -> Int

var C : Cws

var N : Nat

-- initial state
-- method
-- method
-- method
-- attribute

 eq state(init-cws) = state(init) .
 eq state(put(N, C)) = state(C) .

 eq read(init-cws) = 0 .
 eq read(add(C)) = read(C) .

 eq read(sub(C)) = read(C) .
 ceq read(put(N, C)) = N + read(C)
 if state(C) == on .

 ceq read(put(N, C)) = -(N) + read(C)
 if state(C) == off .

}

 Notice that in the inheritance approach we can reuse the proofs of the coinduction rela-
tions for the inherited sorts since no new methods/attributes can be added on the inherited
object. In this example, any coinduction relation R has two components Rcws and Rswitch
satisfying Rcvs C Rswitch PcwsxCvs• The congruence proof for R is therefore necessary only
for RNs. However, in this example, behavioural equivalence is again the default coinduction
relation = * =. 4

 If we compare the composition and inheritance approaches, we notice that (single) in-
heritance can be regarded as "sequential composition". This would be more obvious if one
thinks of an example composing three objects, then in the inheritance approach one need two
inheritance levels.

5 Specification of dynamic systems

Dynamic systems are different from static systems in that the configuration of the system
changes when the system is running. The key point is that we need some kind of identifiers
to manage object creation and deletion.

Definition 5 An dynamic object can be created or deleted in a composed object and its
initialization is done with appropriate data playing the role of object identifier. ̂

 The definition of projection operators for dynamic objects are the same as Definition 1
except that a projection operator for a dynamic object has an object identifier and a composed
object as its arity as follows:

 4The current CafeOBJ implementation does not have a mechanism to reuse the "inherited" components of

16

Definition 6 An operator itn : IDnh —f hn is a projection operator if

 1. h is a hidden sort of the composed object 0,

 2. hn are hidden sorts of the composing objects (the index n corresponding to the same
 class of objects),

 3. ID, is the set of identifiers for the objects of class n, and

 4. fulfill the last three conditions(3, 4, 5) of Definition 1.

0 Static systems appear as dynamic systems in which classes have a fixed number of objects.
For example, the counter with switch example has two classes (for the composing objects)
with one object each. The following example, has only one class (for the composing objects)
but with a dynamic numbers of objects.

 For an example of dynamic systems specification, we use a specification of a bank ac-
count system. A bank account system consists of several individual accounts of customers.
It has methods: add for adding a new account, del for deleting an existing account,
deposit, withdraw, and an attribute balance.

 We again reuse the specification of counter for Account with the difference that the
initial state of the counter is indexed by the user identifiers. User identifiers which are used
for the object identifier of the new Counter are specified as follows:

mod! USER-ID {
 extending(NAT *{ sort Nat -> UId })

 op unidentified-user : -> UId
}

 The module COUNTER and COUNTER* (which contains an error value) can be specified
as follows:

mod* COUNTER {
 protecting(USER-ID + INT)

[Counter]

 -- initialize counter with user ID
 op init-counter : UId -> Counter

 -- add a value to the counter (method)
 bop add : Int Counter -> Counter

 17

 -- read the value of the counter (attribute)
 bop read_ : Counter -> Int

 var I : Int
 var C : Counter
 var U : UId

 eq read(init-counter(U)) = 0 .
 eq read(add(I, C)) = I + read(C) .

}

mod* COUNTER* {
protecting(COUNTER)
 -- error value

 op counter-not-exist : -> Counter -- error
}

 The following is the specification of a bank account system (Account can be obtained
by renaming COUNTER*):

mod* ACCOUNT-SYSTEM {
 protecting(COUNTER* *{ hsort Counter -> Account,

 op init-counter -> init-account,
 op no-counter -> no-account })

[AccountSys]

 op init-account-sys : -> AccountSys-- initial state
 bop add : UId Nat AccountSys -> AccountSys -- method

 bop del : UId AccountSys -> AccountSys-- method
 bop deposit : UId Nat AccountSys -> AccountSys -- method
 bop withdraw : UId Nat AccountSys -> AccountSys -- method
 bop balance : UId AccountSys -> Nat-- attribute
 bop account : UId AccountSys -> Account-- projection

 vars U U' : UId
 var A : AccountSys

 var N : Nat

 eq account(U, init-account-sys) = no-account .
 ceq account(U, add(U', N, A)) = add(N, init-account(U))

if U == U' .
 ceq account(U, add(U', N, A)) = account(U, A)

 if U =/= U'
 ceq account(U, del(U', A)) = no-account

if U == U' .
 ceq account(U, del(U', A)) = account(U, A)

 if U =/= U'
 ceq account(U, deposit(U', N, A)) = add(N, account(U, A))

if U == U' .
 ceq account(U, deposit(U', N, A)) = account(U, A)

 if U =/= U'
 ceq account(U, withdraw(U', N, A)) = add(-(N), account(U, A))

if U == U' .
 ceq account(U, withdraw(U', N, A)) = account(U, A)

 if U =/= U' .

 eq balance(U, A) = read(account(U, A)) .
}

 We can get the state of an individual account by using the projection operator account
by specifying a user identifier. User identifiers work as object identifiers. The attribute

18

balance is just a abbreviation of read of an individual account. Let's consider the fol-
lowing example. We make a new account with user identifier ̀ u and initial balance 10 and
deposit 4 then withdraw 2 and observe the balance of the account.

red balance(`u:UId, withdraw(2, deposit(4, add(`u, 10, init-account-
sys)))) .

The following is the result of the above reduction:

-- reduce in ACCOUNT-SYSTEM : balance(`u:UId,withdraw(`u:UId,2,deposit(
`u:UId ,4,add(`u:UId,10,init-account-sys))))

12 : NzNat
(0.010 sec for parse, 19 rewrites(0.020 sec), 54 match attempts)

5.1 Verification of dynamic systems

The behavioural equivalence of a composed object is a conjunction of all the behavioural
equivalence of the composing objects. This refines Theorem 2 for the case of dynamic
systems, thus giving the possibility to reuse the behavioural equivalence of the composing
objects.

Corollary 2 Given the states s and s' of a composed object, then:

(s - s') if A (n (ltn(l,^) =n nn(lls)))
nECClass iEID„

where - is the behavioural equivalence of the composed object, CClass is the set of classes
of objects, —n is the behavioural equivalence for the class n, and IDn and ?Ln have the
same meaning as in Definition 1. If all projection operators are behavioural then the other
implication holds too. ^

6 Specification of client-server systems

In this section, we consider an ATM system which consists of several ATM clients and a bank
account (a complete specification of the ATM system can be found in Appendix B). An ATM
client can be specified by composing a switch (buttons for selecting deposit or withdraw) and
four cells to hold card information, request for withdraw, input money, and output money (all
the objects are composed by concurrent connection). We omit the CafeOBJ ATM specifi-
cation and just show it in the following figure (the renamings of objects are represented by
dotted arrows):

19

..

.

. ,

.

Switch

 state

on

off

•

Cell

put

 get

 Now we have all objects needed to specify an ATM system. ATM clients and the bank
account are composed into an ATM system by synchronized concurrent connection. The
following figure shows the ATM system:

20

Atm

user-id

 get-input

get-output

get-request
button-status

deposit

withdraw

request

put-money
take-money

set-money

put-card

clear

AtmSys

add-atm

del-atm

add-user

put-card
request

put-money

take-money

deposit

withdraw

cancel

ok

AccountSys

add
del

deposit
withdraw

 The following is the signature part of an ATM system in CafeOBJ . Two projection
operators are defined: account-sys for getting the state of a bank account and atm for
individual atm clients.

mod* ATM-SYSTEM {
protecting(ACCOUNT-SYSTEM + ATM-CLIENT)

[System]

op
bop
bop
bop
bop
bop
bop
bop
bop
bop
bop
bop
bop
bop
bop

init-sys : -> System
 add-atm : AId System -> System

 del-atm : AId System -> System
 add-user : UId Nat System -> System

put-card : AId UId System -> System
 request : AId Nat System -> System

put-money : AId Nat System -> System
 take-money : AId System -> System

 deposit : AId System -> System
 withdraw : AId System -> System

 ok : AId System -> System
 cancel : AId System -> System

 balance : UId System -> Nat
 account-sys : System -> AccountSys
 atm : AId System -> Atm

-- initial state
-- method
-- method
-- method
-- method
-- method
-- method
-- method
-- method
-- method
-- method
-- method
-- attribute
-- projection
-- projection

21

 In the case of client-server system, we need a communication mechanism between the
clients and the server. This can be achieved by using a server method having attributes of
client objects as arguments. Assume that a customer pushed an ok button (i.e. the method
ok is applied). Then informations in the ATM clients are sent to the server and the state of
a bank account changes accordingly to these informations and the state of a bank account.
This can be specified in CafeOBJ as follows:

 1. card is inputed and depos i t button is pushed:

 ceq account-sys(ok(A, S)) =
 deposit(user-id(atm(A, S)),

 get-input(atm(A, S)),
account-sys(S))
 if button-status(atm(A, S)) == deposit and

 user-id(atm(A, S)) =/= unidentified-user and
 get-input(atm(A, S)) =1= 0 .

 2. card is inputed, withdraw button is pushed, and the request for withdraw is less or
 equal than the balance of the user:

 ceq account-sys(ok(A, S)) =
 withdraw(user-id(atm(A, S)),

 get-request(atm(A, S)),
account-sys(S))
 if button-status(atm(A, S)) == withdraw and

 user-id(atm(A, S)) =/= unidentified-user and
 get-request(atm(A, S)) =/= 0 and

 get-request(atm(A, S)) <=
 balance(user-id(atm(A, S)),

 account-sys(S)) .

 3. card is inputed, withdraw button is pushed, and the request for withdraw is greater
 than the balance of the user:

ceq account-sys(ok(A, S)) = account-sys(S)
 if user-id(atm(A, S)) == unidentified-user or

 (button-status(atm(A, S)) == deposit and
 get-input(atm(A, S)) == 0) or

 (button-status(atm(A, S)) == withdraw and
 (get-request(atm(A, S)) == 0 or

 get-request(atm(A, S)) > b
alance(user-id(atm(A, S)),

account-sys(S)))) .

 For example, in the second case of above equation, the user identifier held (recorded)
in the ATM client (user - id (atm (A, S))) and the amount of requested money (get-
request (atm (A, S))) are both sent to the bank account by the method withdraw if
all conditions are satisfied. If conditions are not satisfied then the data is not sent to the server

(see the third equation above).

7 Verification of ATM system

In this section, we are going to prove a bihavioural property of ATM system. First, we define

a module called ATM- SYSTEM-TOPLEVEL which provides basic interface of ATM system

like wi thdraw or depos i t.

22

mod* ATM-SYSTEM-TOPLEVEL
 protecting(ATM-SYSTEM)

[TopLevel]

op
bop
bop
bop
bop
bop
bop
bop
bop

var

var

var

var

init-tl .
 add-atm :

 del-atm :
 add-user

 del-user
deposit :
withdraw
balance :

 system :

U :

A :

N :

TL

-> TopLevel

 AId TopLevel -> TopLevel
 AId TopLevel -> TopLevel

: UId Nat TopLevel -> TopLevel
: UId TopLevel -> TopLevel
UId AId Nat TopLevel -> TopLevel

: UId AId Nat TopLevel -> TopLevel
UId TopLevel -> Nat

TopLevel -> System

UId
AId
Nat

: TopLevel

eq balance(U,
balance(U,

TL) =
account-sys(system(TL))) .

initial state
method
method
method
method
method
method
attribute
projection

eq system(init-tl) = init-sys .
eq system(add-atm(A, TL)) = add-atm(A, system(TL)) .
eq system(del-atm(A, TL)) = del-atm(A, system(TL)) .
eq system(add-user(U,N,TL)) = add-user(U,N,system(TL)) .
eq system(del-user(U, TL)) = del-user(U, system(TL)) .
eq system(deposit(U, A, N, TL)) =

 ok(A, put-money(A, N,
 deposit(A, put-card(A, U, system(TL))))) .

eq system(withdraw(U, A, N, TL)) =
 take-money(A, ok(A, request(A, N, withdraw(A,

 put-card(A, U, system(TL)))))) .
}

 The following module defines the behavioural equivalence for the whole system by using
the results about the reusability of behavioural equivalence of the composing objects and the
CafeOBJ default coinduction relation for the base level objects since for all these the default
coinduction checking succeeds.

mod COINDUCTION-REL {
protecting(ATM-SYSTEM-TOPLEVEL)

 The following is the behavioural equivalence relation for

ACCOUNT-SYSTEM which is parameterized by the user identifiers; and which reuses the

behavioural equivalence on COUNTER* which is the default coinduction relation = * _.

op _R[_]_ :

vars

var

AS1
U :

AccountSys

 AS2 :
UId

UId

AccountSys

AccountSys -> Bool {coherent}

eq AS1 MU] AS2 = account(U, AS1) account(U, AS2) .

 The behavioural equivalence on the ATM-CLIENT is the conjunction of the behavioural
equivalences of its composing objects; all of these are the default coinduction relations = * _.

23

op _R_ : Atm

vars Al A2 .

Atm -> Bool {coherent)

Atm

eq Al R A2 = button(Al) =*= button(A2) and
card(A1) =*= card(A2) and
request(A1) =*= request(A2) and
input(A1) =*= input(A2) and
output(A1) =*= output(A2) .

 The behavioural equivalence for ATM- SYSTEM is the conjunction of the behavioural
equivalences for ACCOUNT-SYSTEM and the conjunction of behavioural equivalences for
all ATM clients
(ATM- C L I ENT).

op _R[_,_]_ : System UId AId System -> Bool {coherent}

vars S1 S2 : System
var A : AId

eq S1 R[U, A] S2 = account-sys(S1) R[U] account-sys(S2)
 and atm(A, S1) R atm(A, S2) .

 Finally, the behavioural equivalence at the top level is just the behavioural equivalence
of the system.

op _R[_,_]_ : TopLevel UId AId TopLevel
 -> Bool {coherent}

vars T1 T2 : TopLevel

eq T1 R[U, A] T2 = system(T1) R[U, A] system(T2) .
}

 Now, we can proceed to do the proof of a behavioural property stating the true concur-

rency of cash withdrawals by different users without respect of the ATM machines involved

or the amount of cash requested. At the top level this property can be expressed as:

withdraw(ul,A1,Nl,withdraw(u2,A2,N2,state)) ti
withdraw (u2,A2, N2, withdraw(ui,Ai,N1, state))

where u, are users (identifiers), Ai are ATM machines (identifiers), and Ni are amounts of
cash requested for withdrawal, for i E { 1, 2}. Other parameters for this proof are the bal-
ance Mt of the accounts of the users uj, for i E 11, 2}. The relationship between all these
parameters amounts to a complex case analysis involving 108 cases. Fortunately, these can
be automatically generated by CafeOBJ via a suitable meta-level encoding:

mod PROOF {
protecting(COINDUCTION-REL)

 ops a al a2 : -> AId
 op t : -> TopLevel

 ops u ul u2 : -> UId
 ops nl n2 n01 n02 ml ml' m2 m2' : -> Nat

Case analysis with respect to balances of accounts and requested amounts:

24

eq n1 =/= 0 =
eq n2 =/= 0 =
eq n01 == 0 =
eq n02 == 0 =
eq n1 <= ml =
eq n01 <= ml =
eq n1 > ml' =
eq n2 <= m2 =
eq n02 <= m2 =
eq n2 > m2' =

true .

true .

true .

true .

true .

 true .
true .

true .

 true .
true .

 The following operations and equations generate the final proof term (RESULT) which
includes all cases generated by the case analysis:

op

ops

op

op

op

op

op

state-of-system : Nat Nat -> TopLevel
wlw2 w2w1 : AId AId Nat Nat Nat Nat ->

TERM : UId AId AId AId Nat Nat Nat Nat
TERM1 : UId AId AId AId Nat Nat -> Bool
TERM2 : UId AId AId AId -> Bool
TERM' : AId AId AId -> Bool
RESULT : -> Bool

vars

var

vars

 A Al A2 : AId
U : UId

N1 N2 M1 M2 : Nat

TopLeve1
-> Bool

eq state-of-system(Ml , M2) = add-user(ul,
add-user(u2, M2, t))

Ml,

eq wlw2(Al, A2,
 withdraw(ul,

 withdraw(u2,

N1
Al
A2

N2

Ni

N2

Ml, M2) =

state-of-system(Ml, M2))) .

eq w2w1(A1, A2,
 withdraw(u2,

 withdraw(ul,

N1

A2

Al

N2

N2

N1

Ml, M2) =

state-of-system(M1, M2))) .

 Notice that the balances of the accounts are specified via the method add-user; this

trick does not affect the generality of the proof.

 The following sequence of equations gradually eliminates the parameters by instantiating

them to constants describing the case analysis:

eq TERM(U, A,
wlw2(A1,
w2w1(A1,

Al
A2,
A2,

eq TERM1(U, A,
TERM(U,
TERM(U,
TERM(U,

N1

N1

Al,
A,
A,
A,

A2,

,N2,
,N2,

A2
Al,
Al,
Al,

N1
M1

M1

 N2,
M2)
M2)

, N2,
A2,
A2,
A2,

 Ml,
R[U,

M2)
n1,
nl,
n01,

N2,

N2,

 N2

M2) =
A]

m1,

m1'

 ml

M2)
M2)
M2)

and
 and

eq TERM2 (U, A,
TERM1(U,
TERM1(U,
TERM1(U,

Al

A,

A,

A,

, A2)
Al,
Al,
Al,

A2
A2
A2

n2,
n2,
n02

m2)
m2')

, m2)

and
 and

eq TERM' (A, Al, A2) =

eq RESULT = TERM'(a,

TERM2(u,
TERM2 (ul
TERM2(u2
al, a2)

 A,

, A,

, A,
and

Al

Al
Al

A2)
A2)
A2)

and
and

25

 TERM'

TERM'
TERM'

(a,
(a,
(al,

al,
a,
al,

al)
a)
a2)

 and
and

The CafeOBJ system performs nearly 600,000 reductions for RESULT and gives true.

8 Conclusion and future work

We have presented a new method of object composition in the algebraic specification lan-

guage CafeOBJ . Our method can reuse not only specification code but also the proofs
of behavioural equivalence. If we have objects which are already proved as valid then we
can reuse them to build incrementally the specification of the target system. We think that
the reusability of proofs is the key technique to reduce the cost of verification especially in
the specification languages having a support mechanism for proofs (theorem provers, proof
checkers, etc). Also, our method supports class libraries for algebraic specification lan-

guages.
 We have also made a comparison between our object composition approach and the in-
heritance approach (also in CafeOBJ). Proofs for behavioural equivalences can reuse in
both composition and inheritance approach, but reusability is higher when in the composi-
tion approach.

 In this paper, we have used OMT like notation to represent relations of objects. We plan
to study further the relationship between the OMT-style specification and CafeOBJ-style
specifications and study other object-oriented concepts within the CafeOBJ framework.
Also, we plan to build a class library for CafeOBJ. We think that tools capable of han-
dling our method, some graphical notations (such as OMT), and class libraries in an uniform
environment are an important future research topic too.

References

[1] P. Borba and J.A. Goguen. Refinement of concurrent object-oriented programs. In S.J.
Goldsack and S.J.H. Kent, editors, Formal Methods and Object Technology. Springer-

 Verlag, 1996.

[2] Rzzvan Diaconescu and Kokichi Futatsugi. Logical semantics for CafeOBJ. Tech-
 nical Report IS-RR-96-0024S, Japan Advanced Institute of Science and Technology

 (JAIST), 1996.

[3] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. AMAST. World Scien-
 tific, 1998. To appear.

[4] Roger Duke, Paul King, and Graeme Smith Gordon Rose. The Object-Z specification
 language: Version 1. Technical Report 91-1, Software Verification Research Center,

 Department of Computer Science, The University of Queensland, April 1991.

26

[5] Kokichi Futatsugi. An overview of cafe specification environment — an algebraic
 approach for creating, verifying and maintaining formal specifications over the net —.

 In First IEEE International Conference on Formal Engineering Methods. IEEE, 1997.

[6] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Princi-
 ples of OBJ2. In Proceedings of the 12th ACM Symposium on Principles of Program-

 ming Languages, pages 52-66. ACM, 1985.

[7] Kokichi Futatsugi and Toshimi Sawada. Design considerations for Cafe specification
 environment. In The 10th Anniversary of OBJ2, October 1995.

[8] Joseph Goguen and Rod Burstall. Abstract model theory for specification and program-
 ming. Journal of the Association for Computing Machinery, 39(1), 1992.

[9] Joseph Goguen and Razvan Diaconescu. An Oxford survey of order sorted algebra.
 Mathematical Structures in Computer Science, 4(4), 1994.

[10] Joseph Goguen and Razvan Diaconescu. Towards an algebraic semantics for the object
 paradigm. In Harmut Ehrig and Fernando Orejas, editors, Recent Trends in Data Type

 Specification, volume 785 of Lecture Notes in Computer Science. Springer, 1994.

[11] Joseph Goguen and Grant Malcolm. A hidden agenda. Technical Re-
 port CS97-538, UCSD Technical Report, April 1997. http://www-

 cse.ucsd.edu/users/goguen/pubs/index.html.

[12] Joseph Goguen and Jose Meseguer. Order-sorted algebra I: Equational deduction for
 multiple inheritance, overloading, exceptions and partial operations. Theoretical Com-

 puter Science, 105(2), 1992.

[13] Joseph Goguen, Timothy Winkler, Jose Mesegure, Kokichi Futatsugi, and Jean-Pierre
 Jouannaud. Introducing OBJ. Technical report, SRI International, Computer Science

 Laboratory, 1993.

[14] R. Hennicker. Context induction: a proof principle for behavioural abstractions. In
 A. Miola, editor, Design and Implementation of Symbolic Computation Systems. Inter-

 national Symposium DISCO 1990, number 429 in LNCS. Springer-Verlag, 1990.

[15] Shusaku Iida, Kokichi Futatsugi, and Takuo Watanabe. Algebraic specification of dis-
 tributed systems based on concurrent object-oriented modeling. In Elie Najm and Jean-

 Bernard Stefani, editors, Formal Methods for Open Object-based Distributed Systems.
 Chapman & Hall, 1996.

[16] Jose Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
 retical Computer Science, 93:pp.73-155, 1992.

[17] Ataru. T. Nakagawa, Toshimi Sawada, and Kokichi Futatsugi. CafeOBJ user's manual,
 1997. http://ldl.jaist.ac.jp:8080/cafeobj.

27

[18] James Rumbaugh and et al.

1991.

Object-Oriented Modeling and Design. Prentice Hall,

[19] Toshimi Sawada and Kokichi Futatsugi. Basic features of CHAOS specification kernel
language. In The 10th Anniversary of OBJ2, October 1995.

A Proof of Theorem 6

Proof 1 Consider two states s and s' such that for all composing objects On, 7rn (s) =n in (s')
Consider a visible context c for O. We have to prove that c(s) = c(s'). We have two cases:

1. c = m; Itn; cn for some object n, a sequence
 havioural and cn is a visible context for n.

m of On-methods, such that 1tn is be-

 2. c = m; a for some sequence m of 0-methods and an 0-attribute a.

Let's concentrate first on the case 1. If m is empty (i.e., empty sequence) then we can apply
directly the hypothesis. Therefore we may assume m is a single "atomic" method (the other
case can be proved by iterating the "atomic" case). Because, all conditions cond of the
equations having m; nn as the left hand side are equalities of terms which are either of the
form ltk; ck (where 0 is a composing object and ck is visible Ok-context) or terms in the
signature of the data, we have cond(s) = cond(s') for all these conditions. Therefore we
pick the condition cond for which both cond(s) and cond(s') are true, and let nn; mn be the
right hand side of the corresponding equation. Then

c(s) = c(S)lff
 if

(m;nn;Cn)(S) = (m;Ttn;Cn)(s)
(nn; mn; Cn) (S) = (nn; inn; COGS")

which holds because mn; cn is a visible On-context and 7tn (s) =n 1tn (s').
 Finally, case 2 can be reduced to case 1 by a similar argument with the above, with the

difference that nn is not necessarily behavioural. ^

28

B Whole structure of the ATM system

 AccountSys

Account

read

on

off

TopLevel

balance

withdraw

deposit

System

Card

get

put

Atm

user-id

get-input

get-output

get-request

button-status

put-money

take-money

get

put

Out

get

put

get

put

uest

29

 C A specification of the ATM system

-- Values of SWITCH

mod! ON-OFF {
 [Value]

ops on off . -> Value
}

-- SWITCH

mod* SWITCH {
protecting(ON-OFF)

[Switch]

op

bop

bop

bop

init-sw : -> Switch
switch on

 on _ : Switch -> Switch
switch off

off_ : Switch -> Switch
observe the state of

 status : Switch ->

-- initial

-- method

-- method

 the switch
Value --

state

attribute

var S : Switch

eq status(init-sw)
eq status(on(S)) =
eq status(off(S)) =

= off .
on .

 off .

}

-- User identification

mod! USER-ID {
protecting(NAT)
[Nat < UId]

op unidentified-user . -> UId

}

-- Counter

mod* COUNTER {
 protecting(USER-ID + INT)

[Counter]

op

bop

bop

initialize counter with user ID
init-counter : UId -> Counter
add a value to the counter

 add : Int Counter -> Counter
read the value of the counter

 read : Counter -> Int

-- initial

-- method

state

-- attribute

var I : Int
var C : Counter
var U : UId

30

 eq read(init-counter(U)) = 0 .
 eq read(add(I, C)) = I + read(C) .

 }

-- Counter with error

mod* COUNTER* {
protecting(COUNTER)

 -- error value
 op counter-not-exist : -> Counter -- error

}

-- Account system

mod* ACCOUNT-SYSTEM {
 protecting(COUNTER* *{ hsort Counter -> Account,

 op init-counter -> init-account,
 op counter-not-exist -> no-account })

[AccountSys]

op init-account-sys : -> AccountSys
-- add a user account with user ID

bop add : UId Nat AccountSys -> AccountSys
-- delete a user account

bop del : UId AccountSys -> AccountSys
-- deposit operation

bop deposit : UId Nat AccountSys -> AccountSys
-- withdraw operation

bop withdraw : UId Nat AccountSys -> AccountSys
-- calculate the balance of an user account

bop balance : UId AccountSys -> Nat
-- get the state of a counter from the state of
bop account : UId AccountSys -> Account

vars U U' : UId
var A : AccountSys
var N : Nat

eq account(U, init-account-sys) = no-account .
ceq account(U, add(U', N, A)) = add(N,

 if U == U'
ceq account(U, add(U', N, A)) = account(U, A)

 if U =/= U'
ceq account(U, del(U', A)) = no-account

 if U == U'
ceq account(U, del(U', A)) = account(U, A)

 if U =/= U' .
ceq account(U, deposit(U', N, A)) = add(N,

 if U == U'
ceq account(U, deposit(U', N, A)) = account

 if U =1= U'
ceq account(U, withdraw(U', N, A)) = add(-(N),

 if U == U'
ceq account(U, withdraw(U', N, A)) = account(U,

 if U =/= U' .

eq balance(U, A) = read(account(U, A)) .

-- initial state

 -- method

 -- method

 -- method

 -- method

 -- attribute
an account

 -- projection

init-account(U))

account(U, A))

 A)

account(U,

 A)

A))

}

31

-- Trivial module with an element (undefined)

mod* TRIV+ {
 [Elt]

 op undefined : -> Elt
 }

-- Cell

mod* CELL(X :: TRIV+) {
 [Cell]

 op init-cell : -> Cell -- initial state
 -- put the element to the cell

 bop put : Elt Cell -> Cell -- method
 -- get the element from the cell

 bop get : Cell -> Elt -- attribute

 var E : Elt
 var C : Cell

 eq get(init-cell) = undefined .
 eq get(put(E, C)) = E .

}

-- ATM identifier

mod! ATM-ID {
 protecting(NAT *{ sort Nat -> AId })

}

-- Button

mod* BUTTON {
 protecting(SWITCH *{ hsort Switch -> Button,

 sort Value -> Operation,
 op init-sw -> init-button,
 op on -> deposit,

 op off -> withdraw })
}

-- Cell for card information

mod* CARD {
 protecting(CELL(X <= view to USER-ID

 { sort Elt -> UId,
 op undefined -> unidentified-user })

 *{ hsort Cell -> Card ,
 op init-cell -> init-card })

}

-- Cell for input

mod* INPUT {
 protecting(CELL(X <= view to NAT

 { sort Elt -> Nat,

32

 op undefined -> 0))
 *{ hsort Cell -> Input ,

 op init-cell -> init-input })
}

-- Cell for output

mod* OUTPUT {
 protecting(CELL(X <= view to NAT

 { sort Elt -> Nat,
 op undefined -> 0 })

 *{ hsort Cell -> Output ,
 op init-cell -> init-output })

}

-- Cell for request

mod* REQUEST {
 protecting(CELL(X <= view to NAT {

sort Elt -> Nat,
 op undefined -> 0 })

 *{ hsort Cell -> Request ,
 op init-cell -> init-request })

}

-- ATM client

mod* ATM-CLIENT {
-- importing data and the composing objects

 protecting(ATM-ID + BUTTON + CARD + INPUT + OUTPUT + REQUEST)

 [Atm]

op init-atm : AId -> Atm
op no-atm : -> Atm
op invalid-operation : -> Atm
-- push the deposit button
bop deposit : Atm -> Atm
-- push the withdraw button
bop withdraw : Atm -> Atm
-- input the request for withdraw
bop request : Nat Atm -> Atm
-- put money
bop put-money : Nat Atm -> Atm
-- take money
bop take-money : Atm -> Atm
-- set money for output (system
bop set-money : Nat Atm -> Atm
-- put the bank card
bop put-card : UId Atm -> Atm
-- clear all the informations kept
bop clear : Atm -> Atm
-- get the user ID

bop user-id : Atm -> UId
-- get the money that user input

bop get-input : Atm -> Nat
-- get the outputed money

bop get-output : Atm -> Nat
-- get the request

bop get-request : Atm -> Nat

operation)

in the

initial state
error
error

method

method

method

method

method

method

method
 atm
method

attribute

attribute

attribute

attribute

33

bop

bop
bop
 bop
bop
bop

get the state of the button
 button-status : Atm -> Operation --

button : Atm -> Button
card : Atm -> Card
request : Atm -> Request
input : Atm -> Input
output : Atm -> Output

attribute

projection
projection
projection
projection
projection

var

var

var

var

ATM : Atm
N : Nat
U : UId
A : AId

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq
eq

eq

eq

eq
eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

button(init-atm(A)) = init-button .
button(invalid-operation) = init-button .
button(deposit(ATM)) = on(button(ATM)) .
button(withdraw(ATM)) = off(button(ATM)) .
button(request(N, ATM)) = button(ATM) .
button(put-money(N, ATM)) = button(ATM) .
button(take-money(ATM)) = button(ATM) .
button(set-money(N, ATM)) = button(ATM) .
button(put-card(U, ATM)) = button(ATM) .
button(clear(ATM)) = init-button .

card(init-atm(A)) = init-card .
card(invalid-operation) = init-card .
card(deposit(ATM)) = card(ATM) .
card(withdraw(ATM)) = card(ATM) .
card(request(N, ATM)) = card(ATM) .
card(put-money(N, ATM)) = card(ATM) .
card(take-money(ATM)) = card(ATM) .
card(set-money(N, ATM)) = card(ATM) .
card(put-card(U, ATM)) = put(U, card(ATM)) .
card(clear(ATM)) = init-card .

request(init-atm(A)) = init-request .
request(invalid-operation) = init-request .
request(deposit(ATM)) = request(ATM) .
request(withdraw(ATM)) = request(ATM) .
request(request(N, ATM)) = put(N, request(ATM)) .
request(put-money(N, ATM)) = request(ATM) .
request(take-money(ATM)) = request(ATM)
request(set-money(N, ATM)) = request(ATM) .
request(put-card(U, ATM)) = request(ATM) .
request(clear(ATM)) = init-request .

input(init-atm(A)) = init-input .
input(invalid-operation) = init-input .
input(deposit(ATM)) = input(ATM) .
input(withdraw(ATM)) = input(ATM) .
input(request(N, ATM)) = input(ATM) .
input(put-money(N, ATM)) = put(N, input(ATM)) .
input(take-money(ATM)) = input(ATM) .
input(set-money(N, ATM)) = input(ATM) .
input(put-card(U, ATM)) = input(ATM) .
input(clear(ATM)) = init-input .

output(init-atm(A)) = init-output .
output(invalid-operation) = init-output .
output(deposit(ATM)) = output(ATM) .
output(withdraw(ATM)) = output(ATM) .
output(request(N, ATM)) = output(ATM) .

34

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

output(put-money(N, ATM)) = output(ATM) .
output(take-money(ATM)) = init-output .
output(set-money(N, ATM)) = put(N, output(ATM)) .
output(put-card(U, ATM)) = output(ATM) .
output(clear(ATM)) = output(ATM) .

user-id(ATM) = get(card(ATM)) .
get-input(ATM) = get(input(ATM)) .
get-output(ATM) = get(output(ATM)) .
get-request(ATM) = get(request(ATM)) .
button-status(ATM) = status(button(ATM)) .

}

-- ATM system

mod* ATM-SYSTEM (
protecting(ACCOUNT-SYSTEM + ATM-CLIENT)

[System]

op init-sys : -> System
-- add an atm to the system

bop add-atm : AId System -> System
-- delete an atm from the system

bop del-atm : AId System -> System
-- add an user account

bop add-user : UId Nat System -> System
-- delete an user account

bop del-user : UId System -> System
-- put the bank card

bop put-card : AId UId System -> System
-- request for withdraw

bop request : AId Nat System -> System
-- put money

bop put-money : AId Nat System -> System
-- take money

bop take-money : AId System -> System
-- deposit operation

bop deposit : AId System -> System
-- withdraw operation

bop withdraw : AId System -> System
-- push the ok button on atm to complete

bop

bop

bop

bop

bop

 ok : AId System -> System
cancel the operation of ATM

 cancel : AId System -> System
get the balance of specified user

 balance : UId System -> Nat
projection operator for AccountSys

 account-sys : System -> AccountSys
projection operator for Atm

 atm : AId System -> Atm

-- initial

-- method

-- method

-- method

-- method

-- method

-- method

-- method

-- method

-- method

state

 -- method

the operation
 -- method

-- method

-- attribute

-- projection

-- projection

var

vars

var

var

S : System
 A A' : AId

U : UId
N : Nat

eq balance(U,

eq

eq

eq

S) = balance(U,

account-sys(init-sys)
account-sys(add-atm(A,
account-sys(del-atm(A,

account-sys(S)) .

= init-account-sys .
 S)) = account-sys(S) .

S)) = account-sys(S) .

35

eq

eq

eq

eq

eq

eq

eq

eq

ceq

ceq

account-sys(add-user(U, N, S)) = add(U, N, account-sys(S)) .
account-sys(del-user(U, S)) = del(U, account-sys(S)) .
account-sys(put-card(A, U, S)) = account-sys(S) .
account-sys(request(A, N, S)) = account-sys(S) .
account-sys(put-money(A, N, S)) = account-sys(S) .
account-sys(take-money(A, S)) = account-sys(S) .
account-sys(deposit(A, S)) = account-sys(S) .
account-sys(withdraw(A, S)) = account-sys(S) .

 account-sys(ok(A, S)) =
 deposit(user-id(atm(A, S)), get-input(atm(A, S)), account-sys(S))

 if button-status(atm(A, S)) == deposit and
 user-id(atm(A, S)) =/= unidentified-user and

 get-input(atm(A, S)) =/= 0 .
 account-sys(ok(A, S)) =

 withdraw(user-id(atm(A, S)), get-request(atm(A, S)), account-
sys(S))

ceq

eq

 if button-status(atm(A, S)) == withdraw and
 user-id(atm(A, S)) =/= unidentified-user and

 get-request(atm(A, S)) =/= 0 and
 get-request(atm(A, S)) <_

 balance(user-id(atm(A, S)), account-sys(S)) .
 account-sys(ok(A, S)) = account-sys(S)

 if user-id(atm(A, S)) == unidentified-user or
 (button-status(atm(A, S)) == deposit and

 get-input(atm(A, S)) == 0) or
 (button-status(atm(A, S)) == withdraw and

 (get-request(atm(A, S)) == 0 or
 get-request(atm(A, S)) >

 balance(user-id(atm(A, S)), account-sys(S)))) .
account-sys(cancel(A, S)) = account-sys(S) .

eq atm(A,
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
eq atm(A,
eq atm(A,
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

 if A
ceq atm(A,

init-sys) = no-atm .
 add-atm(A', S)) = init-atm(A)

== A' .
 add-atm(A', S)) = atm(A, S)

=/= A' .
 del-atm(A', S)) = no-atm

== A .
 del-atm(A', S)) = atm(A, S)

=/= A .
add-user(U, N, S)) = atm(A, S) .
del-user(U, S)) = atm(A, S) .

 put-card(A', U, S)) = put-card(U, atm(A, S))
== A'

 put-card(A', U, S)) = atm(A, S)
=/= A' .

 request(A', N, S)) = request(N, atm(A, S))
== A' .

 request(A', N, S)) = atm(A, S)
=1= A' .

 put-money(A', N, S)) = put-money(N, atm(A, S))
== A' .

 put-money(A', N, S)) = atm(A, S)
=/= A' .

 take-money(A', S)) = take-money(atm(A, S))
== A' .

 take-money(A', S)) = atm(A, S)
=/= A' .

 deposit(A', S)) = deposit(atm(A, S))
== A'

 deposit(A', S)) = atm(A, S)
=/= A' .

 withdraw(A', S)) = withdraw(atm(A, S))

36

 if A == A' .
 ceq atm(A, withdraw(A', S)) = atm(A, S)

 if A =/= A' .
 ceq atm(A, ok(A', S)) = clear(atm(A, S))

 if A == A' and
 user-id(atm(A, S)) =/= unidentified-user and

 button-status(atm(A, S)) == deposit .
 ceq atm(A, ok(A', S)) = set-money(get-request(atm(A, S)), clear(atm(A,

 if A == A' and
 user-id(atm(A, S)) =1= unidentified-user and

 button-status(atm(A, S)) == withdraw and
 get-request(atm(A, S)) <=

 balance(user-id(atm(A, S)), account-sys(S)) .
 ceq atm(A, ok(A', S)) = invalid-operation

 if A == A' and
 (user-id(atm(A, S)) == unidentified-user or

 (button-status(atm(A, S)) == withdraw and
 (get-request(atm(A, S)) >

 balance(user-id(atm(A, S)), account-sys(S))))) .
 ceq atm(A, ok(A', S)) = atm(A, S)

 if A =/= A' .
 ceq atm(A, cancel(A', S)) = init-atm(A)

 if A == A' .
 ceq atm(A, cancel(A', S)) = atm(A, S)

 if A =/= A' .

-- The toplevel of ATM system

mod* ATM-SYSTEM-TOPLEVEL {
protecting(ATM-SYSTEM)

 [TopLevel]

op

bop

bop

bop

bop

bop

bop

bop

bop

var
var
var
var

eq

eq
eq
eq

init-tl : -> TopLevel
add a new atm

 add-atm : AId TopLevel -> TopLevel
delete an atm

 del-atm : AId TopLevel -> TopLevel
create an user account with initial balance

 add-user : UId Nat TopLevel -> TopLevel
delete an user account

 del-user : UId TopLevel -> TopLevel
user "UId" goes to an ATM "AId" and deposit

 deposit : UId AId Nat TopLevel -> TopLevel
user "UId" goes to an ATM "AId" and withdraw

 withdraw : UId AId Nat TopLevel -> TopLevel
get a balance for the user

 balance : UId TopLevel -> Nat
projection operator for System

 system : TopLevel -> System

 U : UId
 A : AId
 N : Nat
 TL : TopLevel

balance(U, TL) = balance(U, _

system(init-tl) = init-sys .
system(add-atm(A, TL)) = add-atm(A,
system(del-atm(A, TL)) = del-atm(A,

 -- initial state

 -- method

 -- method

 -- method

 -- method
"Nat"
 -- method

 "Nat"
 -- method

 -- attribute

 -- projection

em(TL))) .

system(TL)) .
system(TL)) .

37

S))

eq system(add-user(U, N, TL)) = add-user(U, N, system(TL)) .
eq system(del-user(U, TL)) = del-user(U, system(TL)) .
eq system(deposit(U, A, N, TL)) =

 ok(A, put-money(A, N, deposit(A, put-card(A, U, system(TL))))) .
eq system(withdraw(U, A, N, TL)) _

 take-money(A, ok(A, request(A, N, withdraw(A,
 put-card(A, U, system(TL)))))) .

-- test for ATM-SYSTEM-TOPLEVEL

open ATM-SYSTEM-TOPLEVEL

ops

ops

ops

nl
ul
ail

n2 n3
u2 .

 ai2

. -> Nat .
-> UId .
. -> AId .

red balance(ul, deposit(ul,
add-user(u1, 100

red balance(ul, withdraw(ul,
 add-user(ul, 100

close

ail, 20,
, add-atm(ai1, init-t1)))) .

 ail, 20, withdraw(u2, ail, 30,
, add-user(u2, 100, add-atm(ail, init-ti)))))) .

-- module for behavioural equivalences

mod COINDUCTION-REL {
protecting(ATM-SYSTEM-TOPLEVEL)

-- behavioural
 op _R[_]_ :

 equivalence for AccountSys
AccountSys UId AccountSys -> Bool {coherent)

vars

var

AS1
U :

AS2 :
UId

AccountSys

eq AS1 R[U]

-- behavioural

 op _R_ : Atm

AS2 = account(U,

equivalence
Atm -> Bool

AS1) =*=

for Atm
{coherent)

account(U, AS2) .

vars Al A2 : Atm

eq Al R A2 =

-- behavioural

 op _R[_,_]_ :

button(A1) _*= button(A2) and
card(A1) _*= card(A2) and
request(A1) _*= request(A2) and
input(A1) _*= input(A2) and
output(A1) _*= output(A2) .

equivalence
 System UId

for System
AId System -> Bool {coherent)

vars

var

S1
A :

S2
AId

System

eq S1 R[U, A] S2 =

-- behavioural
 op _R[_,_]_

vars

account-sys(Si) R[U]
atm(A, S1) R atm(A,

account-sys(S2)
S2) .

equivalence for TopLevel
: TopLevel UId AId TopLevel ->

T1 T2 : TopLevel

and

Bool {coherent)

38

eq T1 R[U, A] T2 = system(T1) R[U, A] system(T2) .
}

mod PROOF {
protecting(COINDUCTION-REL)

ops

op

ops

ops

a al

t : ->

u ul
nl n2

a2 : -> AId
TopLevel

u2 : -> UId
n01 n02 ml ml m2 m2' : -> Nat

eq

eq

eq

eq

eq

eq

eq
eq

eq

eq

op

ops

op

op

op

op

op

nl
n2
n01
n02
nl
n01
nl
n2
n02
n2

_/= 0 =
=/= 0 =

== 0 =
== 0 =

<= ml =
 <= ml =

> ml' =
<= m2 =

 <= m2 =
> m2' =

true .

true .

true .

true .

true .

 true .

true .

true .

 true .

true .

state-of-system : Nat Nat -> TopLevel
wlw2 w2w1 : AId AId Nat Nat Nat Nat ->

TERM : UId AId AId AId Nat Nat Nat Nat
TERM1 : UId AId AId AId Nat Nat -> Bool
TERM2 : UId AId AId AId -> Bool
TERM' : AId AId AId -> Bool
RESULT : -> Bool

vars

var

vars

 A Al A2 : AId

U : UId
N1 N2 M1 M2 : Nat

TopLevel
-> Bool

eq state-of-system(M1, M2) = add-user(ul, Ml,
 add-user(u2, M2,

 add-atm(a, t))) .

eq wlw2 (Al , A2, N1, N2
withdraw(ul
withdraw(u2

, Ml,
, Al,
, A2,

M2) =
N1,
N2, state-of-system(M1, M2))) .

eq w2w1(Al , A2, N1, N2
withdraw(u2
withdraw(ul

, Ml,
, A2,
, Al,

M2) =
N2,
N1, state-of-system(M1 , M2))) .

eq TERM(U, A,
wlw2(A1,

 Al,
A2,N1

A2,

,N2

N1, N2,
,M1,M2)

M1,
R[U,

M2)
A] w2w1(A1,A2,N1,N2,M1,M2) .

 eq TERM1(U, A,
TERM(U,

TERM(U, A, Al,
TERM(U, A, Al,

Al

 A,

A2,

A2,

, A2
Al,
n1,
n01

, N2, M2)
A2, nl,
N2, ml',

, N2, ml,

N2,
M2)
M2)

ml, M2)
 and

and

 eq TERM2 (U, A,
TERM1(U,

TERM1(U, A, Al,
TERM1(U, A, Al,

eq TERM'(A,

TERM2 (u2 , A,

Al
 A,

A2,
A2,

, A2)
Al,
n2,
n02,

A2,
m2')

m2)

n2, m2)
 and

 Al, A2) = TERM2 (u,
TERM2(ul

Al, A2) .

and

 A, Al, A2) and
, A, Al, A2) and

39

eq RESULT = TERM'(a,

}
select PROOF
red RESULT .

TERM'(a,
TERM'(a,
TERM'(al,

al,
al,
a,
al,

a2) and
al) and
a) and
a2) .

40

