
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Extending inductive generalization with abduction

Author(s) Kanai, Takashi; Kunifuji, Susumu

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-99-0010: 1-15

Issue Date 1999-03-29

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8384

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Extending Inductive Generalization

 Abduction

with

Takashi Kanai, Susumu Kunifuji
 March 29, 1999

 IS-RR-99-0010

 School of Information Science
Japan Advanced Institute of Science and Technology, Hokuriku

 Asahidai 1-1, Tatsunokuchi
 Nomi, Ishikawa, 923-12, JAPAN

kanai@jaist.ac.jp, kuni@jaist.ac.jp

©Takashi Kanai, 1999

ISSN 0918-7553

VIM

Abstract

We proposes an integrated framework of inductive generalization and abductive reasoning.

In this framework, inductive hypotheses can be generated even if the background knowledge

is not sufficient to generate hypotheses in an usual manner. The main issue of inductive

generalization is to construct definitions of given examples when examples and relevant
background knowledge are given. While most inductive generalization systems presuppose

that the background knowledge is enough to induce definitions of given examples, the as-

sumption is not usually met in real-world situation. In order to overcome this difficulty, we

propose a framework of inductive generalization extended with abductive reasoning. This
approach uses abduction when inductive generalization needs more items of background

knowledge. Our approach is an integration of Inductive Logic programming and Abductive

Logic Programming.

1 Introduction

The main concern of inductive generalization is to construct definitions of given examples

in the situations where examples and relevant background knowledge are given. Inductive

Logic Programming(ILP) studies inductive generalization in logic programming framework
[Muggleton and Raedt1994]. While most inductive generalization systems assume that
the given background knowledge is enough to induce definitions of given examples, the

assumption is not usually satisfied in real-world.

 Abductive Logic Programming(ALP) [Kakas et al.1992] is another research that deals
with hypothesis in logic programming. ALP is a hypothetical reasoning framework where

hypothetical language is a set of ground atoms and the representation language is a logic

program. ALP has a remarkable property such that it can be viewed as an inductive
inference not categorized as inductive generalization. One of the difficulties of ALP is that

the explanation of a given example must be a set of ground atoms which means that ALP

cannot deal with general Horn clauses. ALP therefore cannot deal with the general concept

of inductive generalization.

 In order to overcome the difficulty, we propose an extended framework of inductive gen-

eralization(e.g., Inductive Logic Programming) which uses the abductive reasoning (e.g.,
Abductive Logic Programming). We use abduction when inductive generalization requires
more items of the background knowledge. In our approach items of the background knowl-

edge are generated dynamically by abductive reasoning. In the following, we present an in-

ductive generalization method with abduction, and compare our method with other frame-

works integrating inductive generalization and abduction.

 The paper is organized as follows: in Section 2 we introduce Abductive Logic Program-

ming and Inductive Logic Programming, then discuss the difference between ALP and

ILP. Section 3 describes our problem setting and outline of our approach. In Section 4

we introduce our extension of FOIL's heuristics and illustrate how our approach works.

Comparison to other integration of ALP and ILP are discussed in Section 5. Section 6

concludes and presents directions for future works.

2 Background

In this section, we explain about ALP and ILP an

between these inference schema.

d discuss the similarities and differences

2.1 Abductive Logic Programming

Abductive Logic Programming introduces the abductive reasoning into logic programming
framework. Abduction is regarded as a process of finding `missing facts', which will com-

1

plete the explanations of given facts. In contrast to inductive generalization, abduction
can be invoked by giving only one observation.

 The main objective of ALP is to find explanations that are consistent with observation.
ALP finds the set of ground atoms 0 satisfying the following conditions:

• PVG

• PUOF-G

 • P U A is consistent i.e. P U O= I

where P is a theory(logic program), G an observation(a goal), I an integrity constraint, A
an explanation.

 In the above formulae, the concept of integrity constraint is used to check the con-

sistency of explanation under the given theory. Integrity constraints are usually used to

exclude the unintended combination of missing facts, which can be thought of as contra-

dicted hypotheses. In addition to the restriction, ALP restricts explanations to abducibles,

a subset of pre-specified class of atoms. Abducibles are also used to exclude explanations

with unintended facts.

 Eshghi and Kowalski[Eshghi and Kowalskil989] propose an original abductive proof pro-
cedure for ALP in the context of the relation of Negation As Failure and abduction. Kakas

and Mancarella[Kakas and Mancarella1990] extends Eshghi-Kowalski's procedure to allow
for not only negative literals but also arbitrary literals as abducibles. Our system adopts

a variant of Kakas and Mancarella's procedure.

2.2 Inductive Logic Programming

Inductive Logic Programming is generally regarded as the intersection of logic programming
and machine learning because ILP borrows the logical theory from logic programming and
adopts inductive reasoning methods from machine learning. ILP deals with the hypotheses
encoded as a set of Horn clauses. ILP aims to find the rules `generalizing examples'.
The objective of ILP is defined as the process of finding the hypotheses H satisfying the
following conditions:

 • BUE- K ^

 • B K E+

 • BUH E+

 • BUHUE- K ^

2

where B is the background knowledge, E± (E-) a set of positive(negative) examples.
 One of the successful ILP systems is Quinlan's FOIL[Quinlan1990], which uses top-down

search to specialize the current hypotheses incrementally. When specialization is needed,

FOIL adds the most gainful literal one by one to partial clauses. Information heuristics is

employed to choose the most gainful literal. In later section, we will show how heuristics

employed in FOIL is extended to cope with problems due to the insufficient background

knowledge.

2.3 The relation between ALP and ILP

ALP can be seen as a special case of ILP. ALP is an ILP where the hypothesis language is

a set of ground atom(called abducibles) and the example is the single positive atom(called
observation or goal) . But the above observation is not enough to capture the difference
between the two frameworks because the problem settings of ALP and ILP are both too

general. In order to discover the difference between abduction and induction, we need
to compare their goals. ALP differs from ILP in terms of what to learn. ILP focuses on

generating clauses to characterize some given examples. The given background knowledge is
also not modified in the process of induction. In ALP's view, the generated hypotheses are

not considered as a characterization of the given examples, but are possible `missing facts'.

Abductive hypothesis can be seen as supplementing the given background knowledge. ILP

therefore generates the knowledge(i.e., a set of Horn clauses) of the given examples, while
ALP generates facts(i.e., a set of ground atoms) to supplement the given background
knowledge. The goals are represented as logical consequence both in ALP and ILP.

3 Induction with Abductive Reasoning

3.1 The Problem setting

As described in the previous section, ALP and ILP have different goals i.e, ALP focuses
on finding possible missing facts while ILP's goal is to characterize the given examples.

 Although ALP and ILP settings are slightly different, the usual ALP and ILP settings
do not capture these differences. Therefore, a common problem setting needs to integrate
the two frameworks of ALP and ILP.

 Since the inductive generalization is our main objective, the problem setting is a variant
of problem setting for ILP extended for the ALP problem setting.

 The problem setting is formalized as follows:

Given:

• The (insufficient) background knowledge P

3

• Abducibles Ab

• A set of integrity constraints I

• The oracle Q

• A set of positive and negative examples E

E+ (E-) represents positive (negative) examples

Find

A set of logic program H that can be seen as a generalization of examples, i.e, the

heads of the clause in H, must be unifiable to at least one positive examples. A set

of ground atoms, A C Ab, should satisfy the following conditions:

 • PUE- I a

 • PVE+

 • PUHUO =E+

 • PUHUAUI UE- is consistent

3.2 Abduction as Example Generation

In our approach, there are two processes, one of which is to generalize examples and the
other is to find missing facts of background knowledge. Those two process use difference
methods. The former uses ILP approach and the latter uses ALP approach to produce ex-
amples. Induction generalizes examples while abduction supplements the given background
knowledge. Induction focuses on generating clauses to explain some given examples, while
ALP generates missing facts to explain the given examples. Since we extend inductive

generalization with abduction, it is natural to invoke abductive inference in the process of
inductive generalization. When the insufficient part of background knowledge is needed
to check whether the hypotheses imply the given examples, abductive process is dynam-
ically used to supplement the given background knowledge. In addition, we also use our
abductive procedure to check the truth of generated hypotheses.

 If abductive inference is not invoked in the above situation, usual inductive techniques
do not work properly because heuristics usually needs the validation of whether the given
examples are explained by the current hypotheses. In the above situation, abduction is

provoked to supplement the background knowledge and the generated explanations are
stored as examples. This behavior can be recognized as example generation. In order to
use abduction as example generation, the insufficient part of background knowledge should
be declared as abducibles. The needs to supplement the insufficient part of background
knowledge are recognized in advance.

4

4 Incorporating Abduction into top-down search

In this section, we illustrate our approach of induction with abduction.

 In order to explore the hypothesis space, two typical search methods are employed in

inductive generalization: top-down and bottom-up searches. In our problem setting, top-

down search method is preferred to bottom-up search because the bottom-up search usually

demands the sufficient background knowledge to generate appropriate hypotheses. That is,

the bottom-up search firstly generates the most specific hypothesis by using the background

knowledge. However the given background knowledge needs not be sufficient in our problem

setting. The most specific hypothesis therefore cannot be created in our problem setting.

 We will thus extend top-down search to deal with our problem setting. Our top-down

search method uses FOIL-like heuristics and a greedy searching approach.

 Since our approach is a variant of FOIL, the problem solving process is outlined as

follows.

1. Create the most general hypothesis.

2. Until the hypothesis covers only positive examples:

(a) Compute the gains of candidate literals like FOIL.
 In this process, abduction is invoked if background knowledge is not sufficient

 to prove examples. The explanations generated in this process do not presented

 to the user since the goal of this process is to estimate the goodness of candidate

 hypothesis.

(b) Choose the most gainful literal
 In contrast to the above process, the explanations generated by the new hypoth-

 esis are shown to the user. There are two reasons why explanation is presented

 to the user, one reason is that the system needs to know how well the new hy-

 pothesis is. The other reason is that the explanations must be correct w.r.t.
 user's intention since the queried explanations are used in later induction pro-

 cess. If the explanations are not queried, the later induction process cannot use

 the correct examples.

(c) Add the most gainful literal to current hypothesis.

4.1 Evaluation of hypotheses using abduction

Heuristics is used to estimate the goodness of hypotheses generated by inductive gener-
alization. Heuristics that are usually employed implicitly assume that the background
knowledge is sufficient to explain the given examples. If this assumption is not satisfied,
the usual heuristics cannot estimate the goodness of a hypothesis because the background

5

knowledge is required to check whether the hypothesis implies the given examples. In
fact, heuristics may lead to a wrong hypothesis in our problem setting. In addition, the
insufficient part of background knowledge should not be asked to the user indiscriminate-
ly because the number of oracles becomes too many. Therefore, the heuristics should be
modified to cope with the insufficient background knowledge.

 In FOIL, we face the problem when choosing the most gainful literal in terms of the
current hypothesis(called partial clause). Information heuristics is employed in this step
to find the most gainful literal in FOIL. Literals are evaluated as follows. Let the number

of + (-) bindings of a partial clause be n+ (n-) . The average information that one of the
bindings has label +, is

I (n+, n-) = — log2 n+/ (n+ + n-) bits

If a literal L is added to the partial clause, let k be the n+ bindings which are not excluded

by L , the numbers of bindings of the new partial clause be m+ (m-) . Then the total
information gained by adding L can be represented as

 k x (I (n+, n-) — I (m+, m)) bits

 FOIL's heuristics uses the number of positive (negative) examples which are explained
by a current hypothesis. However when the background knowledge is not sufficient, the

number of positive(negative) examples cannot be computed correctly because the added
literal L requires the incomplete part of background knowledge to be checked whether L

holds or not.

 To extend FOIL's heuristics we count the sum of minimum cost of examples instead of

the number of positive(negative) examples. The following function is used instead of the
number of positive(negative) literals.

2—cost(e) n+ = E
eEE+

where cost(x) is the cost function that returns the minimum cost to explain x. The cost(x)
equals to zero if an explanation of x is is empty set, and cost(x) is oo if x cannot be
explained. Other part of evaluation process remains unchanged. This evaluation is com-

patible to FOIL's evaluation method when e has an empty explanation set therefore this
modification extends induction with abductive framework. This modification is also ap-

plied to the evaluation of negative assumptions because our abductive procedure deals with
negative literals as abduction.

 In the above definition, the cost of explanation (which is generated by an abductive
procedure) is used to calculate the minimum cost of the explanation of given examples.
ALP proof procedure does not take account of the cost of explanations. In order to represent

the cost of explanation, a built-in predicate costly 11 is introduced. The procedural meaning

6

of costly 11 is that costly(X) is true if `current cost' — X is less than 0. costly/1 is usually
used for the addition of cost to the current proof in integrity constraints. For example,the

integrity constraint F— abd*, costly(3) means that the abducibles abd* cost 3.
 In addition, the procedure to find the minimum cost explanation is required. Our system

uses an iterative deepening search method to find the minimum cost explanation. In order

to implement the search method for finding the minimum cost explanation, to represent

the cost of the proof and limited cost search method is needed. We omit the detail of these

algorithms because these procedures are trivial.

4.2 An Example: The lamp diagnosis problem

In this section, we show that how our system works in a situation which sufficient back-

ground knowledge is not given. Consider the following fault diagnosis problem of lamp.
This problem is taken from [Ade and Denecker1995] . We modified the original problem to
take cost of explanation into account.

• Let ll, 12, 13i 15 be lamps, 14 be not a lamp.

• Let 14 be something else, not a lamp.

• Each device {ll, ... , l5} is connected to batteries {b1, ... , b5} .

• Each battery is empty except for 12. It is known that the cord of l3 is unlikely to

 break.

Problem: Generate the programs to explain the trouble of the lamps 11, ... , 15 .

 The following are the background knowledge and integrity constraints of this problem.

lamp (11). lamp (12). lamp (13). lamp (15).

conn_to_battery(11,b1). conn_to_battery(12,b2).

conn_to_battery(13,b3). conn_to_battery(14,b4).

conn_to_battery(15,b5).

empty(b1). empty(b3). empty(b4). empty(b5).
<-- break _cord(13),costly(3).

 every abduced atom cost 1
<-- _, costly(1).

Note that the abducible break _cord(13) costs 4 because if
break_cord(13) is assumed to be true, costly(3) and costly(1) are invoked simultaneously.
Other abducibles (including negative literals) costs 1.

 Examples can be described as following. Note that —p(x) represents a negative example.

7

IIMIEw

 faulty_lamp(11) . -faulty_lamp(12) .

faulty_lamp(13) . -faulty_lamp(14) .

faulty_lamp (15) .

 The structure of the correct programs are shown in Figure 1 . Our system first generates

faulty lamn/1

lamp/1 conn to mot atte

empty/1

Figure 1

conn _to_battery/2

: The structure of expected programs

the hypothesis of f ailty_lamp/1. In the process of induction, the explanations about
conn_empty_battery/2 are generated. The generated explanations are stored as examples,
and then generated examples are used to generate the hypothesis about conn_to_empty_

battery/2.
 The details of the behavior of our system are as follows:

 Inducing faulty _lamp I 1

 1. Make initialization and a user controls the system to induce the definition of faulty_
lamp/1.

 2. System generates the most general hypothesis as initial hypothesis.

 clause: faultylamp(A) :- true

 3. lamp(A) is added to the partial clause because the addition of lamp(A) to the partial
 clause excludes the negative example f aulty_lamp(l4) only. Therefore the literal
 lamp(A) is the most gainful literal.

 clause: faultylamp(A) :- true, lamp(A)

 4. At this time, conn_to_empty_battery(A, B) is most gainful literal because the cost of
 assuming break_cord(l3) is 4, but the cost of assuming conn_to_empty_battery(l3, B)

 is 1, and the literal empty (A) excludes all examples, and the gain of adding the literal
conn_to_battery(A, B) is 0 (see below) .

 The system selects the literal and asks for the truth values of all abductive explana-

 tions such as conn_to _empty _battery(l1, B) and conn_to_empty_battery(l3, B). The
 user answers, for example, conn_to_empty_battery(l, bl) and conn_to_empty_battery(

8

 ...=

13, b3) are true. The system also asks for the value of conn_to_empty_battery(12, B),
 the user indicates that conn_to_empty_battery(12, b2) is false.

 Then conn_to_empty_battery(A, B) is added to the partial clause.

 clause: faultylamp(A) :- true, lamp(A),
conn_to_empty_battery(A, B).

In step 4, The cost of explanations are computed as follows:

 • empty (A)

 Although the argument of the empty/1 must be battery(i.e. bl ... b5), the variable
 'A' represents lamps(i.e. 11 ... 15). Therefore this candidate excludes all positive and

 negative examples.

 • conn_to_battery(A, B)

 Since all /1, 12 ... l5 have connection to batteries(bl, b2, ... b5), there is no information
 gain to add this atom to hypothesis.

Gain =3*(I(3,1)—I(3,1)) =0

 • break_cord(A)

 In this candidate, the generated explanation is as follows:

 The explanation of faultylamp(11) is {break_cord(ll)}
cost (faulty_lamp (11)) = 1.

 The explanation of \+faulty_lamp(12) is {\ + break _cord(l2)}
 cost(\ + f aulty_lamp(l2)) = 1.

 The explanation of faulty_lamp(13) is {break_cord(l3)}
cost(f aulty_lamp(l3)) = 4.

 The explanation of faulty_lamp(15) is {break_cord(l5)}
cost(f aulty_lamp(l4)) = 1.

 The information gain w.r.t. break_cord(A) is:

(2-1 * 2 + 2-4) * (/(3, 1) —1(2-1 * 2 + 2-4,2-1)) = 1.063* (0.415 — 0.556)

 = —0.150

• conn_to _empty _battery(A, B)

 In this candidate, the generated explanation is as follows:

9

The explanation of faultylamp(11) is

{conn_to_empty _battery (11, bl) }
cost (faulty_lamp (11)) = 1.

The explanation of \+faultylamp(12) is

 {\ + conn_to_empty_battery(12, b2)}
cost (faulty_lamp (12)) = 1.

The explanation of faultylamp(13) is

{conn_to_empty_battery(13, b3) }
cost(faultylamp(13)) = 1.

The explanation of faulty_lamp(15) is

{ conn_to_empty_battery (15, b5) }
cost (faultylamp (15)) = 1.

Therefore the information gain w.r.t. conn_to_empty_battery(A, B) is:

(2-1* 3) * (I(3,1) —1(2-1* 3, 2-1)) = 1.5 * (0.415 — 0.415) = 0

There are two maximum gained literal, that are `conn_to_battery(A, BY and `conn_to
_empty_battery(A, B)'.

 In the above situation, usual FOIL system selects one of the two literals nondeter-

ministically. In this example, the system can choose either to construct the hypothesis

of faulty_lamp/1. If the system choose ̀ conn_to_battery(A, B)', the hypothesis might be
`faulty_lamp(A) :- lamp(A), conn_to_battery(A,B), empty(B).'. Although this hypothesis
is correct definition of `faulty_lamp/1', it is not an intended definition of faulty_lamp/1. It
is preferable to choose ̀ conn_to_empty_battery(A, B)' since the system knows the existence
of the concept ̀ conn_to_empty_ battery(A, B)'. Therefore we assume that `conn_to_empty_
battery(A, B)' is selected in this step.

 Note that the system generates two different hypotheses, one is the definition of f aulty_la
mp/1 and the other is the example of conn_to_empty_battery/2. The generated explanation-
s are used as examples to induce the definition of conn_to_empty_battery/2. The following
is the induction process about conn_to_empty_battery/2.

 Inducing conn_to_empty_battery/2

 1. The user indicates the system to create the definition of conn_to_empty_battery/2

2. The system finds that conn_to_empty_battery(A, B) is the most gainful literal.
 the system adds the literal to the partial clause.

 clause: conn_to_empty_battery(A, B) :- true, conn_to_battery(A, B)

Then

10

 3. The system finds that empty(B) is the gainful literal. Then it adds the literal to the
 partial clause.

 clause: conn_to_empty_battery(A, B) :- true, conn_to_battery(A, B), empty(B).

 4. The system asks the user whether or not the generated clause is correct or not.

 5. The generated clause is a correct definition, and the user answers `yes' , then all

 examples are explained by the generated hypotheses.

In the above process, the system creates the definition of conn_to_empty _battery/2. This
process can be seen as producing the rule of the abduced atoms which are generated by
applying generalization to the obtained explanations. Therefore, this process supplement

the insufficient part of the given background knowledge.

5 Comparison to other researches

In this section, we compare our method with other integrated frameworks of ALP and ILP

such as SLDNFAI, abductive concept learning, [Lamma et al.1998] and [Mooneyl997].
 In the following comparisons, we focus on two issues: the problem settings and the

relation between abduction and induction. These issues characterize the differences between

various ways for integration of induction and abduction.

 SLDNFAI [Ade and Deneckerl995] is an abductive and inductive procedure adopted in
the abductive proof procedure called SLDNFA [Denecker and Danny1992].
 The basic idea of SLDNFAI is as follows:

 1. SLDNFAI first produces an explanation of the given goal. This process is same as

 SLDNFAI's abductive procedure. An abductive explanation(including positive and
 negative literal) is generated in this process.

 2. Generates a set of clauses by using abductive explanations.

 SLDNFAI deal with positive abductive explanations as positive examples, and neg-

 ative abductive explanations as negative examples. In this process, the methods of

 ILP are used to produce inductive hypothesis.

 The differences between our framework and SLDNFAI are:

• Problem setting:

 There are two major differences in generating examples and the plausibility of expla-
 nation.

11

1. SLDNFAI firstly produces the explanation of an abductive goal, then executes

 their inductive generalization using generated explanation as its example. There-

 fore SLDNFAI first generates an abductive explanation in term of one observa-

 tion, then the generated explanation is used as examples in induction process.

 In our approach, the abductive explanations of all examples are produced in

 induction process, then inductive generalization wrt. generated explanations

 is invoked. Therefore our approach can retain more examples than SLDNFAI

 approach.

2. Our approach uses a cost based abduction in the process of specializing hy-

 potheses. SLDNFAI does not deal with the plausibility of explanation. In our
 approach, costs of abductive explanations are used to choose an appropriate

 literal which is added to the current hypothesis. This mechanism can lead to

 the plausible hypothesis.

• The relation between abduction and induction

 SLDNFAI calls induction procedure in abductive procedure, i.e. induction is included

 in abductive reasoning. In contrast to SLDNFAI, our approach executes the process

 of abduction in induction process, i.e. abduction is included in inductive reasoning.

 Dimopoulos and Kakas propose an integrated framework of abduction and machine learn-

ing, called abductive concept learning(ACL) [Dimopoulos and Kakas1996] . In ACL, two
types of input are needed, one is examples and the other is relevant observations. The ter-

m `relevant observations' represents that the abductive explanation of given observations

can supplement the background knowledge so that the given examples can be generalized.

ACL first generates abductive explanations of the given observations to supplement the

background knowledge, then produces hypothesis of the given examples. In later process,

the abductive explanation is also treated as background knowledge.

 The outline of ACL can be summarized as follows.

Input: •

• O

E: an example of the concept to be learned

: a set of relevant observations

Procedure:

1.

2.

3.

4.

Explain the observations for each example

Construct the explanation sets which are not subsumed by other explanations.

Choose a subset of the previous explanation sets.

Find the conclusions under the chosen subset of explanation sets and the given

background knowledge.

12

5. Apply an inductive generalization algorithm with the background knowledge to

 the conclusion generated in step (4)

 In this approach, abduction and induction are invoked sequentially. Step 1-3 represent

the abductive process which explains the given observations O. Step 4 and 5 express

the inductive generalization using the chosen subset of explanation sets and background

knowledge.

• Problem setting:

 In ACL, the input is constituted from examples and relevant observations. The ACL

 procedure can supplement the insufficient part of background knowledge with relevant
 observations. But in our problem setting, the relevant observation 0 is not given.

 Therefore, the explanations for the observations 0, cannot be generated and the

 skeptical abductive conclusions cannot be calculated, either. In our problem setting,

 abductive concept learning needs to be modified to cope with the lack of observations.

 • The relation between abduction and induction:

 ACL has a problem in finding relevant observations. Our approach can be viewed as

 searching the relevant observations of examples in the process of refining a hypothesis.

 Our approach specializes a hypothesis by adding the most gainful literal. The literals,

 which can be added to a hypothesis, are evaluated by the heuristics that can deal with

 the cost of explanations. This literal evaluation process is similar to the steps 1-3

 in abductive concept learning. But unlike ACL, our method generates explanations

 from examples directly, and abduction is used when needed.

 In addition, the observations are true statements and given as input in ACL, but

 explanations are searched in the process of evaluating literals in our approach.

In [Lamma et al.1998], their approach can also generate the hypotheses from insufficient
background knowledge. In addition, They show that their approach can generate examples

from integrity constraint. The difference between [Lamma et al.1998] and our approach
is that our approach can deal with the plausibility of hypotheses by extending FOIL's

heuristics. But Lamma's approach does not consider this kind of plausibility, and their

approach does not consider the risk that the generated explanation is not correct under

the intended interpretation.

 LAB algorithm[Mooneyl997] also have relation to our approach. LAB and our approach
use hill-climbing inductive algorithm and the accuracy(or plausibility) of generated rules is
also considered in inductive process. They apply LAB algorithm to brain damage diagnosis

problem and show their approach is more accurate than ID3 and PFOIL.

13

WNW

6 Conclusion

We proposed an integrated framework of abductive and inductive logic programming. Our

approach can deal with hypotheses even if the background knowledge is incomplete. This

is achieved by supplementing the insufficient background knowledge using abductive rea-

soning. We also extend the framework to search hypothesis space effectively by considering

the cost of explanations. The heuristics is an extended FOIL's heuristics which can cope

with the insufficient background knowledge when evaluating hypotheses. We have imple-

mented a prototype of the abductive and inductive procedure in Prolog and confirmed that

our system can deal with several examples including the one mentioned in the above. We

compared our method with SLDNFAI and the abductive concept learning. We showed

that our method can deal with the plausibility of hypotheses by considering the cost of

explanation.

 The similarity and difference among our method and other integrated frameworks should

be studied further because each approach should be applied to different domains. Our

method should also be tested against more practical tasks.

References

[Ade and Denecker1995] Hilde Ade and Marc Denecker, "AILP: Abductive Inductive Log-
 ic Programming" , Proceedings of 14th International Joint Conference on Artificial

 Intelligence (IJCAI), 1201-1207(1995)

[Denecker and Dannyl992] Marc Denecker and De Schreye Danny, "SLDNFA: An Abduc-
 tive Procedure for Normal Abductive Programs" , Proceedings of the Joint Interna-

 tional Conference and Symposium on Logic Programming, 686-700(1992)

[Dimopoulos and Kakas1996] Yannis Dimopoulos and Antonis Kakas, Abduction and
 Learning, Advances in Inductive Logic Programming, Luc De Raedt(ed.), IOS

Press(1996)

[Eshghi and Kowalskil989] K. Eshghi and Kowalski R. A., "Abduction Compared with
 Negation by Failure" , Proceedings of the Sixth International Conference on Logic

 Programming, 234-254(1989)

[Kakas and Mancarella1990] A. C. Kakas and P. Mancarella, "On the relation between
 Truth Maintenance and Abduction, " Proceedings of 1st Pacific Rim International

 Conference on Artificial Intelligence, (1990) .

[Kakas et al.1992] A.C. Kakas and R.A. Kowalski and F. Toni, "Abductive Logic Program-
 ming" , Journal of Logic and Computation, 2-6,719-770(1992).

14

[Lamma et al.1998] F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi
 and G. Semeraro, "Learning abductive logic programs", ECAI'96 Workshop on Ab-

 ductive and Inductive Reasoning, 1996

[Muggleton and Buntinel988] S. Muggleton and W. Buntine, "Machine invention of first-
 order predicates by inverting resolution", Proceedings of the Fifth International Con-

 ference on Machine Learning, 339-352(1988)

[Muggleton and Raedt1994] Stephen Muggleton and Luc de Raedt, "Inductive Logic Pro-
 gramming: Theory and Methods", Journal of Logic Programming,vol.19-20,629-
 679(1994)

[Mooney1997] Raymond J. Mooney, "Integrating Abduction and Induction in Machine
Learning", Workshop on Abduction and Induction, International Joint Conference on

 Artificial Intelligence (1997)

[Peircel931] Peirce, C.S.,
 Press, (1931-1958).

"Collected papers of Charles Sanders Peirce "
, Harvard University

[Quinlan1990] R. Quinlan, "Learning Logical Definitions from Relations" , Machine Learn-
 ing, vol.5, 239-266(1990)

[Shapiro1983] E. Y. Shapiro, "Algorithmic Program Debugging", MIT Press, Cambridge,
 MA, 1983

15

