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We present a formal method for component-based system specification and verification which is 
based on the new algebraic specification language CafeOBJ, which is a modern successor of OBJ 
incorporating several new developments in algebraic specification theory and practice. 
We first give an overview of the origins and of the main features of CafeOBJ, including its logical 
foundations, and then we focus on the behavioural specification paradigm in CafeOBJ, surveying 
the object-oriented CafeOBJ specification and verification methodology based on behavioural. 
abstraction. 

The last part of this paper further focuses on a component-based behavioural specification and 
verification methodology which features high reusability of both specification code and verification 

proof scores. This methodology constitutes the basis for an industrial strength formal method 
around CafeOBJ.

1. Introduction

In this introduction we will give a brief overview of CafeOBJ, including its origins, its main 
features, and its logical foundations.

1.1. Origins of CafeOBJ 

CafeOBJ (whose definition is given by (DF98b))is a modern successor of the OBJ language 
incorporating several new major developments in algebraic specification theory and practice. It 
is aimed to be an industrial strength language, suitable both for researchers and for practitioners. 

 The origins of OBJ can be traced back to Goguen's gradual realization, around 1970, that 
Lawvere's characterization of the natural numbers as a certain initial algebra (Law64) could be 
extended to other data structures of interest for Computing Science. The influence of Saunders 
Mac Lane was also important during that period, leading to the beginning of the famous ADJ 

group (Gog89) led by Goguen. During the ADJ group period, a mathematical theory of abstract 
data types as initial algebras was developed. Together with considering term rewriting as the 
computational side of abstract data types, this constitutes the pillar of the OBJ basic specifica-
tions level. It is important to mention that from the very beginning the design of OBJ had been

t On leave from the Institute of Mathematics of the Romanian Academy , PO Box 1-764, Bucharest 70700, ROMANIA.
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emerging directly from clean and elegant mathematical theories, this process being (rather subtle) 
reflected as one of the main strength of the language. 

 Another major step in the development of OBJ was the relativization of algebraic specification 
over any logic due to Goguen and Burstall's institutions (GB92) (categorical abstract model 
theory for specification and programming). This pushed the theory of algebraic specification into 
a modern age. At the beginning institutions provided support for developing advanced structuring 
specification techniques (i.e., module composition systems) independently of the actual logical 
formalism, as emerging from the research on Clear (BG80). However, today, after nearly two 
decades, their significance has been widely expanded. For example, institutions support in an 
essential way the design of multi-paradigm (declarative) systems. 

 It could be said that initial algebra semantics, rewriting, and institutions, are the conceptual 
pillars of the OBJ world. Their development and refinement can be easily noticed if one takes a 
close look at the chain of successive versions of OBJ, culminating with OBJ3 (GWM ). 

 Following the vitally important idea of module composition of Clear, several attempts of im-
plementing modularized algebraic specification languages were done including the early pio-
neering design and implementation of HISP language (F080). After these experiences, the sta-
bilization of the OBJ design (and its most prominent implementation at SRI) started after the 
design and prototype implementation of OBJ2 at SRI in 1984 (FGJM85). It coincides with 
several attempts to extend OBJ towards other paradigms, most notably constraint logic pro-
gramming (GM86, Dia94), object-oriented programming (GM87). Although, due to the indis-
putable strength of algebraic specification, all these attempts were successful, the interest of the 
OBJ community has been recently shifting towards a new language generation focusing more 
on the recent internal developments in algebraic specification rather than in integrating power-
ful paradigms from the outside world. Two such examples are CafeOBJ (DF98b) and Maude 
(CELM96). With respect to CafeOBJ, although some experimental design and implementation 
were done in the past (FS92), (DF98b) is the first definitive definition of the language.

1.2. CafeOBJ main features 

1.2.1. Equational Specification and Programming. This is inherited from OBJ (GWM , FGJM85) 
and constitutes the basis of the language, the other features being somehow built on top of it. As 
with OBJ, CafeOBJ is executable (by term rewriting), which gives an elegant declarative way of 
functional programming, often referred as algebraic programming.' As with OBJ, CafeOBJ also 

permits equational specification modulo several equational theories such as associativity, com-
mutativity, identity, idempotence, and combinations between all these. This feature is reflected 
at the execution level by term rewriting modulo such equational theories.

1.2.2. Behavioural Specification. Behavioural specification (GD94b, GM97, Dia98a) provides 
another novel generalization of ordinary algebraic specification but in a different direction. Be-
havioural specification characterizes how objects (and systems) behave, not how they are imple-
mented. This new form of abstraction can be very powerful in the specification and verification of

I Please notice that although this paradigm may be used as programming , this aspect is still secondary to its specification 

 side.
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software systems since it naturally embeds other useful paradigms such as concurrency, object-
orientation, constraints, nondeterminism, etc. (see (GM97) for details). Behavioural abstraction 

is achieved by using specification with hidden sorts and a behavioural concept of satisfaction 
based on the idea of indistinguishability of states that are observationally the same, which also 

generalizes process algebra and transition systems (see (GM97)). 
 CafeOBJ directly supports behavioural specification and its proof theory through special lan-

guage constructs, such as 
— hidden sorts (for states of systems), 
— behavioural operations (for direct "actions" and "observations" on states of systems), 
— behavioural coherence declarations for (non-behavioural) operations (which might be either 

   derived (indirect) "observations" or "constructors" on states of systems), and 
— behavioural axioms (stating behavioural satisfaction). 

 The advanced coinduction proof method receives support in CafeOBJ via a default (candi-
date) coinduction relation (denoted = * =). In CafeOBJ, coinduction can be used either in the 
classical HSA sense (GM97) for proving behavioural equivalence of states of objects, or for 

proving behavioural transitions (which appear when applying behavioural abstraction to RWL).2 
 Besides language constructs, CafeOBJ supports behavioural specification and verification 

by several methodologies.3 CafeOBJ currently highlights a methodology for concurrent object 
composition which features high reusability not only of specification code but also of verifica-
tions (DF98b, IMD 98). Behavioural specification in CafeOBJ might also be effectively used as 
an object-oriented (state-oriented) alternative for traditional ADT specifications. Several cases 
seem to indicate that an object-oriented style of specification even of basic data types (such as 
sets, lists, etc.) might lead to higher simplicity of code and drastic simplification of verification 

process (DFI98). 
 Behavioural specification is reflected at the execution level by the concept of behavioural 

rewriting (DF98b, Dia98a) which refines ordinary rewriting with a condition ensuring the cor-
rectness of the use of behavioural equations in proving strict equalities.

1.2.3. Rewriting Logic Specification. Rewriting logic specification in CafeOBJ is based on a 
simplified version of Meseguer's rewriting logic (Mes92) specification framework for concur-
rent systems which gives a non-trivial extension of traditional algebraic specification towards 
concurrency. RWL incorporates many different models of concurrency in a natural, simple, and 
elegant way, thus giving CafeOBJ a wide range of applications. Unlike Maude (CELM96), the 
current CafeOBJ design does not fully support labeled RWL which permits full reasoning about 
multiple transitions between states (or system configurations), but provides proof support for rea-
soning about the existence of transitions between states (or configurations) of concurrent systems 
via a built-in predicate (denoted ==>) with dynamic definition encoding both the proof theory of 
RWL and the user defined transitions (rules) into equational logic. 

 From a methodological perspective, CafeOBJ develops the use of RWL transitions for speci-

2 However
, until the time this paper was written, the latter has not been yet explored sufficiently, especially practically. 

3 This is still an open research topic
, the current methodologies might be developed further and new methodologies 

 might be added in the future.
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fying and verifying the properties of declarative encoding of algorithms (see (DFI98)) as well as 
for specifying and verifying transition systems.

1.2.4. Module System. The principles of the CafeOBJ module system are inherited from OBJ 

which builds on ideas first realized in the language Clear (BG80). CafeOBJ module system 

features 

— several kinds of imports, 
— sharing for multiple imports, 

— parameterized programming allowing 

  — multiple parameters, 

   — views for parameter instantiation, 

  — integration of CafeOBJ specifications with executable code in a lower level language 

— module expressions . 

However, the theory supporting the CafeOBJ module system represents an updating of the orig-

inal Clear/OBJ concepts to the more sophisticated situation of multi-paradigm systems involving 

theory morphisms across institution embeddings (Dia98b), and the concrete design of the lan-

guage revise the OBJ view on importation modes and parameters (DF98b).

1.2.5. Type System and Partiality. CafeOBJ has a type system that allows subtypes based on 
order sorted algebra (abbreviated OSA) (GM92, GD94a). This provides a mathematically rig-
orous form of runtime type checking and error handling, giving CafeOBJ a syntactic flexibility 
comparable to that of untyped languages, while preserving all the advantages of strong typing. 

 Since at this moment there are many order sortedness formalisms, many of them very little dif-
ferent from others, and each of them having its own technical advantages and disadvantages and 
being most appropriate for a certain class of applications, we decided to keep the concrete order 
sortedness formalism open at least at the level of the language definition. Instead we formulate 
some basic simple conditions which any concrete CafeOBJ order sorted formalism should obey. 
These conditions come close to Meseguer's OSAR (Mes98) which is a revised version of other 
versions of order sortedness existing in the literature, most notably Goguen's OSA (GD94a). 

 CafeOBJ does not directly do partial operations but rather handles them by using error sorts 

and a sort membership predicate in the style of membership equational logic (abbreviated MEL) 

(Mes98). The semantics of specifications with partial operations is given by MEL.

1.3. The CafeOBJ specification and verification environment 

Although this is rather a feature of the current system rather than of the language, due to its 
importance for the effective use of the current CafeOBJ system, we briefly survey it here. 

 The CafeOBJ system includes an environment supporting specification documents with for-
mal contents over networks and enabling formal verifications of specifications. The CafeOBJ 
environment takes advantage of current InterNet technologies and can be thought as consisting 

of four parts: 

— The interpreter in isolation acts very much like the OBJ3 interpreter by checking syntax and
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  evaluating (reducing) terms. In addition, the CafeOBJ interpreter incorporates an abstract 
  TRS machine and a compiler. 

— The proof assistant extends the theorem proving capabilities of the interpreter with more 

   powerful, dedicated provers. A proof assistant taking into account the particulars of CafeOBJ 
  is considered; this incorporates two kinds of inductive theorem provers, one based on com-

  pletion procedures, and the other on explicit structural induction. 
— The document manager takes care of processing of specification documents over networks 

  by analyzing specification documents for showing contents to the user (via browsers, editors, 
  etc.) by extracting instructions of evaluations and proofs, by searching for suitable documents 

  in libraries, and by managing documents over networks, retrieving, storing, caching them as 
   requested. 

— Specification libraries focus on several specific problem domains, such as object-oriented 

  programming, database management, interactive systems, etc.

1.4. CafeOBJ Logical Foundations 

CafeOBJ is a declarative language with firm mathematical and logical foundations in the same 
way as other OBJ-family languages (OBJ, Eglog (GM86, Dia94), FOOPS (GM87), Maude (Mes92)) 
are. The reference paper for the CafeOBJ mathematical foundations is (DF98a), while the book 

(DF98b) gives a somehow less mathematical easy-to-read (including many examples) presenta-
tion of the semantics of CafeOBJ. In this section we give a very brief overview of the CafeOBJ 
logical and mathematical foundations, for a full understanding of this aspect of CafeOBJ the 
reader is referred to (DF98a) and (DF98b). 

 The mathematical semantics of CafeOBJ is based on state-of-the-art algebraic specification 
concepts and results, and is strongly based on category theory and the theory of institutions 

(GB92, Dia98b, DGS93). The following are the principles governing the logical and mathemati-
cal foundations of CafeOBJ: 

P1 .there is an underlying logic4 in which all basic constructs and features of the lan-

  guage can be rigorously explained. 
P2.provide an integrated, cohesive, and unitary approach to the semantics of specifica-

  tion in-the-small and in-the-large. 

P3.develop all ingredients (concepts, results, etc.) at the highest appropriate level of 
  abstraction.

The CafeOBJ cube. CafeOBJ is a multi-paradigm language. Each of the main paradigms im-

plemented in CafeOBJ is rigorously based on some underlying logic; the paradigms resulting 
from various combinations are based on the combination of logics. The following table shows 

the correspondence between specification/programming paradigms and logics as they appear in 

the actual version of CafeOBJ, also pointing to some basic references.

4 Here "logic" should be understood in the modern relativistic sense of "instit
ution" which provides a mathematical 

 definition for a logic (see (GB92)) rather than in the more classical sense.
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ABBREVIATION LOGIC  SPEC/PGM PARADIGM BASIC REF.

MSA many sorted 

algebra

algebraic specification (Gogar)

OSA order sorted 

algebra

algebraic specification 

with subtypes
(Gogar, GM92, GD94a)

HSA hidden sorted 

algebra

behavioural concurrent 

specification
(Dia98a, GM97, GD94b)

HOSA hidden order sorted 

algebra

behavioural specification 

with subtypes

(GD94b, BD94)

RWL rewriting logic rewriting logic 

specification

(Mes92)

OSRWL order sorted 

rewriting logic

rewriting logic 

specification 

with subtypes

HSRWL hidden sorted 

rewriting logic

behavioural rewriting 

logic specification

(Dia96b)

HOSRWL hidden order sorted 

rewriting logic

behavioural rewriting 

logic specification 

with subtypes

(DF98a)

 There are some embedding relations between these logics, which correspond to institution 

embeddings (i.e., a strong form of institution morphisms of (GB92, DGS93)) and which are 

shown by the following CafeOBJ cube (the orientation of arrows correspond to embedding 
"less complex" into "more complex" logics) .

HOSA

HSA HSRWL

HOSRWL

   OSA

MSA

OSRWL

         RWL

H = hidden 

A = algebra 

0 = order 

S = sorted 

M = many 

RWL = rewriting logic

 The mathematical structure represented by this cube is that of a lattice of institution embed-
dings (Dia98b, DF98a). By employing other logical-based paradigms the CafeOBJ cube may 

be thought as a hyper-cube (see (DF98a, DF98b) for details). It is important to understand that 
th CafeOBJ logical foundations are based on the CafeOBJ cube rather than on its flattening 
represented by HOSRWL.5

5 The reason for this is explained in (DF98a , DF98b).
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2. Behavioural Specification in CafeOBJ 

Behavioural specification might be the most distinctive feature of CafeOBJ within the broad 
family of algebraic specification languages. As mentioned above, behavioural specification pa-
radigm is incorporated into the design of the language in a rather direct way. Also, this para-
digm constitutes the core of the current CafeOBJ object-oriented specification and verification 
methodologies. We devote this section to a methodological presentation of the behavioural spec-
ification paradigm in CafeOBJ, trying also to explain the main concepts behind this paradigm.

2.1. Basic behavioural specification 

Basic behavioural specification is the simplest level of behavioural specification in which the 
operations are either actions or observations on the states of the objects. Let us consider an 
object-oriented (or "state-oriented") CafeOBJ specification for lists: 

 mod! TRIV+ (X :: TRIV) { 
   op err : -> ?Elt 

} 
  mod* LIST { 
protecting(TRIV+)   *[ List ]* 

op nil : -> List 
   bop cons: EIt List-> List -- action 

   bop car : List -> ?EIt -- observation 
   bop cdr : List -> List -- action 

vars E E' : Elt 
varL: List 

  eq car(nil) = err . 
  eq car(cons(E, L)) = E . 

  beq cdr(nil) = nil . 
  beq cdr(cons(E, L)) = L . 

} 
This is quite different from the usual data-oriented specification of lists. In our behavioural spec-
ification, lists are treated as objects with states (the sort of states is the hidden sort List), and the 
usual list operations (cons and cdr) act on the states of the list object or (car) observe the states. 
Actions and observations are specified as behavioural operations. In general, a behavioural op-
eration is called action iff its sort is hidden (i.e., state type), and is called observation iff its sort 
is visible (i.e., data type). Behavioural operations are restricted to have exactly one hidden sort in 
their arity, this monadicity property being characteristic to behavioural operations (either actions 
or observations). Behavioural operations define the behavioural equivalence relation between the 
states of the object, denoted as —: 

                        s s' iff c(s) = c(s') 

for all visible behavioural contexts c. A behavioural context c is any string of behavioural oper-
ations (this makes sense because of the monadicity property on hidden sorts of the behavioural 
operations). c is visible iff its sort is visible; this is the same as saying that c has an observation 
at the top. It is important to notice that behavioural equivalence is a semantic notion; this means
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that whenever we consider a behavioural equivalence relation we need to consider a model (i.e., 
an implementation) for the specification6. 

 CafeOBJ methodologies introduce a graphical notation extending the classical ADJ-diagram 
notation for data types for behavioural specification in which 

G1 .Sorts are represented by elipsoidal disks with visible (data) sorts represented in white and 
  hidden (state) sorts represented in grey, and with subsort inclusion represented by disk inclu-

  sion, and 
G2.Operations are represented by multi-source arrows with the monadic part from the hidden 

  sort thickenned in case of behavioural operations. 

The list specification can be therefore vizualised as follows:

nil

cdr car(n11) = err 
car(cons(E,L)) = E 
cdr(nil) - nil 
cdr(cons(E,L)) - L

cons

err

?Eh

car

Elt

 Several other aspects of this specifications need special attention. The first one concerns the 
data of this specification and the error handling aspect of this methodology. LIST specifies a list 
object over any set of elements. "Any set of elements" is specified by the built-in module TRIV 
which specifies one sort (Elt) with loose denotation (hence its denotation is given by all sets); 
this is used as a parameter of the specification LIST and can be instantiated to any concrete data 
type. The error handling aspect arises because of the partiality of car. TRIV+ just introduces a 
new error element (err). The error supersort ?EIt is built-in7 and err is the only new element be-
longing to [the denotation of] ?EIt; this is ensured by the free extension of [the loose denotation 
of] TRIV which is specified by giving TRIV+ initial denotation (mod!). Notice that this style of 
error handling contrasts the more complex data-oriented approach which uses a subsort for the 
non-empty lists and overloads the list operations on this subsort. This methodological simplifi-
cation is mainly possible because of the loose denotation of behavioural specification (with the 
adequate "loose" behavioural equality) which avoids the strictness of the initial denotation of the 

data-oriented approach. 
 Another aspect is given by the use of behavioural equations in the specification LIST. Be-

havioural equations represent behvioural equivalence relations between states rather than strict 
equalities. Therefore each model (implementation) of LIST does not need to interpret cdr(cons(e,l))

6 Which needs not to be a concrete one . 
7 It is provided by the system .
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as 1, where e is an element and l is a list8, but rather as a state behavioural equivalent to 1. For ex-
ample, if one implements the list object as an array with pointer, in this model (implementation) 
this equality does not hold strictly, but it holds behaviourally. Generally speaking, behavioural 
equality is the meaningful equality on hidden sorts, while the strict equality is the meaningful 
equality for the visible (data) sorts. However, there are situations when the strict equality on 
hidden sorts is also necessary. Behavioural abstraction also provides a nice way of error han-
dling for hidden sorts, as shown by the other behavioural equation. Thus instead of introducing 
a (hidden) error for cdr(nil), we rather shift the error handling to the data type by saying this is 
behaviourally equivalent to niL9 A finer analysis of the behavioural equivalence on the list object 

(see the section below) tells us that the behavioural equality between cdr(nil) and nil is exactly 
the same with saying that car(cdrn(nil)) = err for all natural numbers n, which is the natural 
minimal condition for the behaviour of nil.

2.2. Behavioural specification with hidden constructors

Behavioural specification with hidden constructors is a more advanced level of behavioural spec-

ification which relies on the important novel concept of behavioural coherence first defined and 

studied in (DF98b, Dia98a) and which was first realized by the CafeOBJ language (DF98b). 

 At the general level, a hidden constructor is an operation on hidden sorts10 whose sort is also 

hidden and which is not declared behavioural. This means that such operation does not take part 

in the definition of the behavioural equivalence relation. Also (and related to the above), a hidden 

constructor need not be monadic on the hidden sorts, thus it may admit several hidden sorts in 

the arity. 

 In the data-oriented specification of lists there is a difference in nature between cons and cdr, 

in that cons is a "constructor" and cdr is a "destructor". This different nature of cons and cdr 

reflects in the behavioural specification too and is formally supported by the fact that one may 

prove (from the specification LIST) that for all lists 1 and l',

l N l' iff car(cdr"(l)) = car(cdr"(l'))

for all natural numbers n. Technically this means that for the purpose of defining the appropriate 

behavioural equivalence for lists, cons does not play any role, therefore it may be specified as an 

ordinary operation, hence cons is a hidden constructor. Consequently, the only real behavioural 

operations are the observation car and the action cdr. This new specification for lists can be 

visualized by the following CafeOBJ diagram:

8 Better said, a state of the list object. 
9 Recall that in LISP cdr(nil) is also equal to nil but under a LISP concept of equality; it may be worthwhile trying to 

 think LISP equality in behavioural abstraction terms. 
to Which may also have visible sorts in the arity.
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cdr

nil

cons

err

?Elt

car

Elt

 This "neutrality" of cons with respect to the behavioural equivalence may be understood by 
the fact that cons preserves the behavioural equivalence defined by cdr and car only. This basic 

property of hidden constructors is called coherence (DF98b, Dia98a), which in general means 
the preservation of the behavioural equivalence relation by the hidden constructors. In CafeOBJ 
the coherence property is user specified as an operation attribute: 

  op cons : Elt List -> List {coherent} 
 The semantic meaning of a coherence declaration is that the corresponding specification ad-

mits only models for which the operation is coherent (i.e., it preserves the behavioural equiva-
lence). For methodological reasons CafeOBJ admits potentially non-coherent operations (in the 
absence of the coherence declaration), however in the final version of the specification all hidden 
constructors should be declare coherent both for semantical and operational reasons.

2.3. Behavioural coherence methodologies 

In the above list example the coherence of cons can be proved as a formal property of the 

specification 11. This means that in any model of this specification the interpretation of cons 

automatically preserves the behavioural equivalence, so the class of models (implementations) 

of the specification with cons not specified as coherent coincides with its subclass of models 

for the case when cons is specified as coherent. Such constructors, which occurs frequently and 

which are practically desirable are called the conservative. 

 The opposite case is represented by the non-conservative constructors, which corresponds to 

the situation when the class of models for the case when the operation is specified as coherent 

is a strict subclass of the class of models when the operation is not specified as coherent. Proof-

theoretically, this means the coherence property of the operation cannot be formally proved as 

a consequence property of the [rest of the] specification. Because of its semantical aspect, the 

methodology of non-conservative constructors is more advanced and sophisticated than the con-

servative one. However it might be very useful in dealing with non-terminating computations12.

1 I The CafeOBJ proof score for this is rather simple; we leave it as exercise for the reader. 

12 This is very similar to the use of commutativity attribute for operations in classical algebraic specification, a good 

 example of non-conservative methodology is given in (Dia98a).
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Proving behavioural coherence. We now concentrate to an example illustrating the behavioural 

coherence methodology of conservative constructors. Consider the following behavioural speci-

fication of sets:

empty

neg In
Bool

E In empty = false 
E In add(E',S) = (E = E') or (E in S) 
E In (Si U S2) _ (E in Si) or (E In S2) 
E in (S1 & S2) = (E in S1) and (E In S2) 
E in neg(S) = not(E In S)

add

U,&

Elt

This specification has only one behavioural operation, namely the observation _in_. The hidden 
constructors add, _U_, _&_, and neg can be proved coherent by the following CafeOBJ proof 
score: 

open. 
   ops s1 s2 sl's2' : -> Set . -- arbitrary sets as temporary constants 

   ops e e' : -> Elt . -- arbitrary elements as temporary constants 
  ceq Si =*= 52 = true if (e in S1) == (e in S2) . -- definition of behavioural equivalence 

   beq s 1= s 1 ' . -- hypothesis 
   beq s2 = s2' . -- hypothesis 
  red add(e, 81) =*= add(e, si9 . -- beh coherence of add(_) for variable clash at Elt 

  red add(e', S 1) =*= add(e', s19 . -- beh coherence of add(_) for no variable clash at Elt 
  red (s 1 U s2) =*= (s 1' U s2') . -- beh coherence of _U_ 

  red (si & s2)=*. (s11 & s2') . -- beh coherence of _&_ 
  red neg(s 1) =*= neg(s 1') . -- beh coherence of neg_ 
  close 

 Notice the simplicity of this proof score which uses the built-in default coinduction relation 
_*= which in practice is oftenly the behavioural equivalence. Once the coherence of the hidden 
constructors is formally proved, their coherence declarations are added to the specification, thus 
obtaining the final version of the specification under the methodology of conservative hidden 
constructors.

2.4. Behavioural Verification 

One of the great advantages of behavioural specification lies in the simplicity of the verifica-
tion stage which sometimes contrasts sharply with the complexity of corresponding data type 
verifications. Sets are one of the examples showing clearly the greater simplicity of behavioural 
verifications. While the verification of set-theoretic properties in the data approach gets into a 
very complex induction process, behavioural properties of sets can be proved almost immedi-

ately. The following is the very simple CafeOBJ proof score for one of De Morgan laws: 
open .
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op e : -> Elt . 
ops s 1 s2 s3 : -> Set . 
ceq Si:Set =*= S2:Set = true if (e in S1) == (e in S2) . -- definition of behavioural equivalence 

red neg(s1 U s2)=*. (neg(s1) & neg(s2)) . -- proof of de Morgan law 
close

Behavioural rewriting. The execution of behavioural specifications is done by behavioural rewrit-
ing, which is a refinement of ordinary (term) rewriting that ensures the correctness of rewriting 
when using behavioural equations as rewrite rules. The basic condition of behavioural rewriting 
requires the existence of a path formed by behavioural or coherent operations on top of the redex. 
When inferring strict equalities, it is required in addition that the top of such path is of visible 
sort. For example, when proving the behavioural coherence of add, 

 red add(e, Si) =*= add(e, s19. 
means a strict equality reduction. In this case the first behavioural equation of the corresponding 

proof score cannot be used as a first rewriting step since the condition of behavioural rewriting 
is not fulfilled. This triggers the use of the conditional equation instead as a first rewriting step, 

and only after this the use of behavioural equations of the proof score fall under the required 
condition.

2.5. Behavioural refinement 

Object refinement in behavioural specification is a relax form of behavioural specification mor-

phism (see (DF98b) for more details). As an example we show how behavioural lists refine 
behavioural sets, which corresponds to the basic intuition of sets implemented as lists:

/cdr

empty/nil In/...
Bool

E In L I---> (E — car(L)) or-else 
          (car(L) =/= err) and-also (E In cdr(L)))

add/cons 

   --/err 
•?Eit ~ .

\ /car 

 For simplicity of presentation we considered here only the case of basic sets, without union, 

intersection, and negation13. The refinement of behavioural basic sets to lists was represented 
above by extending the graphical notation previously introduced with: 

G3.Refinement of sorts and operations is written by ../_ and sharing the same figure (disk or 

  arrow) in the diagram.

13 Our example can be easily extended to union and intersection, but not so easily to negation.
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G4.Newly introduced sorts and operations are represented by dotted lines. 

 In this refinement, the hidden sort Set is refined to the hidden sort List (this means that any 

state of the set object and be implemented by a state of the list object), add is refined to cons. 
The list object has the observation car and the action cdr as new behavioural operations and 
also adds the error handling. The set object observation  _in_ is refined to a derived observation 

(using some operational versions of the Boolean connectives). This refinement can be encoded 
in CafeOBJ by the following module import: 

 mod* LIST' { protecting(LIST) 
  op _in_: Elt List -> Bool {coherent} -- coherence provable from the rest of spec 

vars E E' : Elt 
  var L : List 

  eq E in L = (E == car(L)) or-else (car(L) =1= err and-also E in cdr(L)) . } 
 The following is the proof score for the fact that the mapping defined above is indeed a refine-

ment, i.e., the property of add holds for cons:14 
 open LIST' . 

  ops e el e2 : -> Eft . -- arbitrary elements as temporary constants 
  op / : -> List . -- arbitrary list as temporary constant 

  eq e 1 in I = true . -- the basic case when the element does belong to the list 
  eq e2 in I = false . -- the basic case when the element does not belong to the list 

 red e in nil == false . -- the nil case 
 red el in cons(e,l) == true . 

 red e2 in cons(e,l) == false . 
 red e in cons(e,l) == true . -- the element clash case 

 close

3. Concurrent Object Composition in CafeOBJ 

In this section we present the object composition method of CafeOBJ based on the behavioural 
specification paradigm. We present here a simplified method which does not use behavioural 
coherence. We use UML to represent object composition: 

I Object A I

Object B

Object D Object E Object C

base level objects

14 This involves a small case analysis
.
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 In the above UML figure, B is composed of D and E, A of B and C, and non-compound objects 

(i.e., objects with no components) are called base level objects. A composition in UML is repre-
sented by line tipped by a diamond, and if necessary, qualified by the numbers of components (1 
for one and * for many). 

 Projection operations from the hidden sort of the states of the compound object to the hidden 
sorts of the states of the component objects constitute the main technical concept underlying the 
CafeOBJ composition method; projection operations are related to the lines of UML figures. 
Projection operations are subject to some precise mathematical conditions (see (IMD 98, DF98b) 
for details), which can be informally summarized as follows: 

— all actions of the compound object are related via the projection operations to actions in each 

  of the component, and 
— each observation of the compound object is related via the projection operations to an obser-

  vation of some component. 

In the compound objects we only define communication between the components; this means 

that the only equations at the level of the specification of the compound objects are the ones 
relating the actions and observations of the compound objects to those of the components as 
described above.

3.1. Parallel connection

The components of a composite object are connected (unsynchronized) in parallel if there is no 
synchronization between them. In order to define the concept of synchronization, we have to 
introduce the concept of action group. Two actions of a compound object are in the same action 

group when they change the state  of  ,  the same component object via a projection operation. 
Synchronization appears when: 

— there exists an overlapping between some action groups, or 
— the projected state of the compound object (via a projection operation) depends on the state 

  of a different (from the object corresponding to the projection operation) component. 

The first case is sometimes called broadcasting and the second case is sometimes called client-
server computing. In the unsynchronized case, we have full concurrency between all the com-

ponents, which means that all the actions of the compound object can be applied concurrently, 
therefore the components can be implemented as distributed processes or concurrent processes 
with multi-thread which are based on asynchronous communications. 

 For unsynchronized parallel connection, we consider a bank account system example. Firstly, 
we consider a very simple bank account system which consists of a fixed numbers of individual 

accounts, lets actually consider the case of just two account. The specification of an account can 
be obtained just by renaming the specification COUNTER1 of a counter object with integers as 

follows 
 mod* ACCOUNT1 { protecting(COUNTER1 *{ hsort Counter -> Accountl, 

                                 op init-counter -> init-accountl })} 
 mod* ACCOUNT2 { protecting(COUNTER1 *{ hsort Counter -> Account2, 

                                  op init-counter -> init-account2 })} 

where COUNTER1 is represented in CafeOBJ graphical notation as follows:
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init-counter

add

                    amount 
amount(init-counterl) = 0 

amount(add(l, C)) =1 + amount(C) Int

 We then compose these two account objects as in the following double figure containing both 
the UML and the CafeOBJ graphicalls representation of this composition:

AccountSys

depositl 

deposit2 

withdrawl 

withdraw2

1

1

1

Accountl

add

account,

'nit-account-eye

depeait 1 
deposit2 
withennel 
withdraw2

balancel 
balance2

1

Account2

add

Int

account2

Nal

where depositl and withdrawl are the actions for the first account, balancel is the observation 
for the first account, accountl is the projection operation for the first account, and deposit2, 
withdraw2, balance2, and account2 are the corresponding actions, observation, and projection 
operation for the second account. The equations for this parallel connection (composition) are as 
follows: 

  eq balancel (AS) = amount(accounti (AS)). 
  eq balance2(AS) = amount(account2(AS)) . 

  eq accountl (init-account-sys) = init-account 1. 
  eq accountl (depositl (N, AS)) = add(N, accountl (AS)) . 

  eq accountl (deposit2(N, AS)) = accountl (AS) . 
  eq accountl (withdrawl (N, AS)) = add(-(N), accountl (AS)) . 

  eq accountl(withdraw2(N, AS)) = accountl(AS). 
  eq account2(init-account-sys) = init-account2 

  eq account2(depositl (N, AS)) = account2(AS) . 
  eq account2(deposit2(N, AS)) = add(N, account2(AS)) . 

  eq account2(withdrawl (N, AS)) = account2(AS) . 
  eq account2(withdraw2(N, AS)) = add(-(N), account2(AS)) . 

 Notice that besides the first two equations relating the observations on the compound object 
to those on the components, the other equations relate the actions of the account system to the 
actions of the components. Remark that the actions corresponding to one component do not

15 The CafeOBJ graphical representation corresponds to the module defining this object composition rather than to the 
 "flattened" specification

, hence the operations of the components are not included in the figure.
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change the state of the second component (via the projection operation), hence this composi-
tion is unsynchronized. In fact these equations expressing the concurrency of composition need 
not be specified by the user, in their absence they may be generated internally by the system, 
thus reducing the specification of the composition to the essential information which should be 

provided by the user.

3.2. Dynamic connection 

In this subsection, we extend the previous bank account system example to support an arbitrary 
number of accounts. The accounts are created or deleted dynamically, so we call such architecture 

pattern dynamic connection and we call the objects connected dynamically as dynamic objects. A 
dynamic object has an object identifier type as the arity of its initial state (which is quite a natural 
idea that in object-oriented programming languages, language systems automatically providing a 

pointer for each object when created). We therefore firstly extend the specification of the counter 
to a dynamic object 

  op  init-counter  : Uld -> Counter 
where Uld is a sort for user identifiers. The structure of the new bank account system can be 
represented in UML and CafeOBJ graphical notation as follows: 

                                                             no-account                                                                          d
eposit 

........... 

                                                                                         ;:::::;•::::•::•:::•:••..wlthdraw 

 AccountSys:i........ 

.................. 
add-account 

del-account 
     deposit 
withdrawaccount

add-account 
del-account Uld

Account

add

where the actions add-account and del-account maintain the user accounts. add-account cre-
ates accounts with some initial balance while del-account deletes the accounts; both of them are 

parameterized by the user identifiers Uld. Each of deposit and withdraw is also parameterized 
by the user identifiers. Most notably, the projection operation for Account is also parameterized 
by UId. The initial state of AccountSys has no account, so it is mapped to the error state called 
no-account. Finally, the equations relate the actions of AccountSys to those of Account via 
the projection operation only when they correspond to the specified user account. Here is the 
essential part of the CafeOBJ code for the dynamic system of accounts specification: 

  eq account(U, init-account-sys) = no-account . 
  ceq account(U, add-account(U; N, A)). add(N, init-account(U)) if U == U' . 

  ceq account(U, add-account(U, N, A)) = account(U, A) if U =1= U' . 
  ceq account(U, del-account(U', A)) = no-account if U == U' . 

  ceq account(U, del-account(U; A)) = account(U, A) if U =1= U' . 
  ceq account(U, deposit(U, N, A)) = add(N, account(U, A)) if U == U' . 

  ceq account(U, deposit(U, N, A)) = account(U, A) if U =1= U' .
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ceq account(U, withdraw(U', N, A)) = add(-(N), account(U, A)) if U == U' . 
ceq account(U, withdraw(U', N, A)). account(U, A) if U =1= U' .

3.3. Synchronized parallel connection 

In this subsection, we add a user database (UserDB) to the bank account system example for 
having a more sophisticated user management mechanism. This enables querying whether an 
user already has an account in the bank account system. The following is the UML and CafeOBJ 

graphical representation of this: 
AccountSys

edd-account 

del-account 

depoeit 

withdraw

UserDB

edd 

-it-
neg

user-so

Mll-account-sye

Account

add

ti oR

account

add-account 
del-account

AccountSys::;

deposit 
withdraw

^coount

Uld Nat

where the users data base is obtained just by reusing (renaming) the set object of Section 2.3. The 
new account system compound object contains both synchronization patterns: broadcasting and 
client-server computing. add-account is related to add of Account by the projection operation 

for Account and it is also related to add of UserDB by the projection operation for UserDB. 
So, there is an overlapping of action groups (broadcasting). Also, add-account is related to add 
of Account by the projection operation for Account using the information of UserDB (client-
server computing). The same holds for del-account. 

 The following CafeOBJ code represents the equations for the projection operation for UserDB: 
   eq user-db(init-account-sys) = empty . 

  eq user-db(add-account(U, AS)) = add(U, user-db(AS)) . 
  eq user-db(del-account(U, AS)) = neg(add(U, empty)) & user-db(AS) . 

  eq user-db(deposit(U, N, AS)) = user-db(AS) . 
  eq user-db(withdraw(U, N, AS)) = user-db(AS) . 

The following is the CafeOBJ code for the equations for the projection operation for Account, 
we skip here the equations of deposit and withdraw which are the same as in the previous 

example, and we also skip the equation for del-account which is similar to that of add-account: 
   eq account(U, init-account-sys) = no-account . 

  ceq account(U, add-account(U', N, AS)) = add(N, init-account(U)) 
               if U == U' and not(U in user-db(AS)) . 

  ceq account(U, add-account(U; N, AS)) = account(U, AS) if U =1= U' or U in user-db(AS) . 

For add-account, we check whether the user is already registered and if not map it to add. If 
the user is already registered in UserDB, then skip. 

 It is interesting to mention that the same test 
red balance('u:Uld, add-account('u, 100, deposit('u, 30, add-account('u, 100, init-account-sys))))

-



Diaconescu, Futatsugi, lida 18

gets different results in the previous account system example and in the current synchronized 
example due to the finer user management in the synchronized case.

3.4.  Compositionality of verifications 

In object-oriented programming, reusability of the source code is important, but in object-oriented 
specification, reusability of the proofs is also very important because of the verification process. 
We call this compositionality of verifications of components. In the CafeOBJ object composi-
tion method this is achieved by the fact that the behavioural equivalence on the compound object 
is the conjunction of the behavioural equivalences of the component objects (this is a Theorem 
which can be found in (IMD 98)). Therefore, in the case of a hierarchic object composition, the 
behavioural equivalence for the whole system is just the conjunction of the behavioural equiva-
lences of the base level objects, which are generally rather simple. 

 For example, the behavioural equivalence for the bank account system is a conjunction of the 
behavioural equivalence Account (indexed by the user identifiers) and UserDB, and these two 
are checked automatically by the CafeOBJ system. This means that behavioural proofs for the 
bank account system are almost automatic, without having to go through the usual coinduction 
process. Therefore, the behavioural equivalence _R[_]_ of AccountSys can be defined by the 
following CafeOBJ code: 

 mod BEQ-ACCOUNT SYSTEM { protecting(ACCOUNT-SYSTEM) 
  op _Rf ]_ : AccountSys Uld AccountSys -> Bool 

  vars AS1 AS2: AccountSys 
var U : Uld 

  eq AS1 R[U]AS2 = account(U, AS1) =*= account(U, AS2) and 
user-db(AS1) =*= user-db(AS2) . } 

Notice the use of the parameterized relation for handling the conjunction indexed by the user 
identifiers. 
 Now, we will prove the true concurrency of withdrawals of two different users, which can be 

considered as a safety property for this system of bank accounts and which is formulated as the 
following commutativity behavioural property: 

withdraw (u 1, n1 ,  withdraw(u2, n2, as)) N withdraw(u2, n2, withdraw(u 1, n1 ,  as) ) 

The following CafeOBJ code builds the proof tree containing all possible cases formed by or-
thogonal combinations of atomic cases for the users with respect to their membership to the 
user accounts data base. The basic proof term is TERM. The automatic generation of the proof 
tree (RESULT)is done by a meta-level encoding in CafeOBJ by using its rewrite engine for 
one-directional construction of the proof tree (this process uses the rewriting logic feature of 
CafeOBJ, hence the use of transitions (trans) rather than equations). 
mod PROOF-TREE { protecting(BEQ-ACCOUNT SYSTEM) 

 ops n1 n2 : -> Nat -- arbitrary amounts for withdrawal 
 ops u ul ul' u2 u2' : -> Uld -- arbitrary user identifiers 

 op as : -> AccountSys -- arbitrary state of the account system 
 eq u 1 in user-db(as) = true . -- first user is in the data base 
 eq u2 in user-db(as) = true . -- second user is in the data base 

 eq u1' in user-db(as) = false . -- first user is not in the data base
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 eq u2' in user-db(as) = false . -- second user is not in the data base 
vars U U1 U2 : Uld 
op TERM : Uld Uld Uld -> Bool -- basic proof term 
trans TERM(U, U1, U2)=> withdraw(U1, n1, withdraw(U2, n2, as)) R[U] 

                     withdraw(U2, n2, withdraw(U1, n1, as)). 
op TERM1: Uld Uld -> Bool 
trans TERM1(U, U1) => TERM(U, U1, u2) and TERM(U, U1, u2'). 
op TERM2 : Uld -> Bool 
trans TERM2(U) => TERM1(U, u1) and TERM1(U, u1'). 
op RESULT : -> Bool -- final proof term 
trans RESULT => TERM2(u 1) and TERM2(u 1 ) and TERM2(u) . } 

The execution of the proof term RESULT gives true after the system performs 233 rewrites.

4. Conclusions and Future Work

In this paper we presented the CafeOBJ object-oriented methodology for component-based 
specification and verification which is based on the CafeOBJ behavioural abstraction paradigm. 
We also presented the basic behavioural specification methodology in CafeOBJ and gave a brief 
overview of the CafeOBJ language, system and specification environment. 

 Future work in this area will further explore and refine the current CafeOBJ methodologies 
exposed here with the aim of creating an industrial tool around these methodologies containing 
an industrial-oriented tutorial, a GUI interface probably based on the current CafeOBJ graphical 
notation, a graphical proof environment, etc.
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