
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title A new network interface with distributed memory

Author(s)
Okuno, Hiroyuki; Inoguchi, Yasushi; Horiguchi,

Susumu

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2001-018: 1-15

Issue Date 2001-08-02

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8391

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

 A New Network Interface with

 Distributed Memory

Hiroyuki Okunot, Yasushi Inoguchi$, Susumu Horiguchit
 2/Aug/2001

IS-RR-2001-018

tSchool of Information Science $Center for Information Science
 Japan Advanced Institute of Science and Technology

 Asahidai 1-1, Tatsunokuchi
 Ishikawa, 923-1292, JAPAN

hirono@jaist.ac.jp, inoguchi@jaist.ac.jp, hori@jaist.ac.jp

©H. Okuno, Y. Inoguchi, S. Horiguchi 2001

ISSN 0918-7553

Abstract

 In this paper, a new network interface with distributed memory is proposed for cluster-

ing WorkStation (WS) or Personal Computer (PC) to reduce the data transfer within a

node of a cluster. Clustering WS or PC is expected to realize high performance computing

(HPC). However, the limited bandwidth and high network latency restrict the transfer

speed for huge amount of data among nodes in a cluster. Therefore, it is important for

cluster system to reduce data transfer as much as possible. Data transfer speed among

nodes of a cluster has been improved significantly in recent years using giga-bit network

layer. On the other hand, the data transfer speed within each node of a cluster is still

a bottleneck, thus it is important to reduce the data transfer within a node. In order

to reduce the data transfer, out network interface has a memory on the interface. For

effective data storing into the memory on network interface, two functions Put and Back

are also defined and they reduce the data transfer between main memory and network

interface. The simulation results of matrix multiplication indicate that data transfer of

message communication can be reduced dramatically by using our new network interface.

1 Introduction

Clustering WS or PC is an effective approach to realize high performance computing[1][2].

Compare to massively parallel computers which are very expensive, clusters can be built

using thousands of very cheap PC to achieve comparable computing performance. How-

ever, clusters have a problem of data transfer. The data transfer problem is twofold:

inter-node and intra-node. Inter-node data transfer speed is improved by giga-bit net-

works such as Myrinet and Gigabit Ethernet[3]. On the other hand, intra-node data

transfer still has no effective improvement.

 There are several remarkable works about this problem. In [4], Minnich proposed

an ATM network interface integrating into SIMM memory slot. By combine the net-

work interface with higher-bandwidth memory slots, the interface achieved around 1Gbit

throughput. Since SIMM is declining now, so it is not likely that the ATM network inter-

face will become popular in the future. In [5], Tanabe proposed a network interface similar

to MINI[4], but he used DIMM memory instead of SIMM memory in his new structure.

Although he could reduce bus-bottleneck on data transfer between main memory and

network interface, it requires particular device that restricted by memory slot specifica-

tion. SCIMA[6] proposed on-chip memory that reduces data transfer between CPU and

memory by including memory within CPU. Although the on-chip memory can reduce

data transfer between CPU and memory, they did not discuss the problem about how

to reduce data transfer between main memory and network interface. There are many

results about how to improve performance of cluster, however, only little results available

on how to reduce data transfer between main memory and network interface. Although

several network interface have been proposed in past studies for this problem [7] [8], these

network interface only have little buffer. Thus they still need to transfer data between

main memory and network interface for every message communication.

 In this paper, we propose a new network interface for distributed memory cluster sys-

tem. The network interface has a memory and CPU in each node an access the memory

as same as the memory on the CPU's board. To use memory on network interface as

extension of main memory and store data for message communication, it can reduce data

 1

T

 T

Ox00000000 Ox07FFFFFF

Main Memory

Read/Write CPU.771Data Path
 Read/Write

oxos00000ON Memory

\ ----------Ox087FFFFF

NIC

Network

 Figure 1: System overview of network interface using distributed memory

transfer between main memory and network interface. To store data into memory of

network interface effectively, we propose two data transfering functions Put and Back.

Sending data of message communication using Put, it can reduce data transfer from main

memory to memory of network interface on message communication. The Back function

is used for returning data to main memory, it can reduce data transfer from memory of

network interface to main memory on CPU calculation.

 The rest of this paper is organized as follows. Section 2 describes a new network

interface, data transfer protocol between main memory and memory of network interface

and, its trade-off. In Section 3, the performance of the proposed network interface is

verified by simulation of matrix multiplication. Finally, we summarize the paper and

conclude our remarks in Section 4.

2 Network Interface Using Distributed Memory

2.1 Outline of Network Interface

In this section, we propose a new network interface to reduce data transfer between main

memory and memory of network interface. Fig.1 shows the proposed network interface,

where memory is implemented and is used like main memory. As shown in Fig.1, memory

 2

implemented on network interface is assigned memory address space on the heels of main

memory address. Therefore, memory implemented on network interface can be used as

a part of main memory. Hereafter, we use the term "NIC memory" to refer the memory

implemented on network interface, and "NIC' to the proposed network interface. And

the term "Old-NIC" is used to refer the usual network interface.

 We assume that NIC is equipped on PCI-bus because PCI-bus can provide more widely

usage compared to that of MINI[4] or MEMOnet[5]. When accumulation technology is

considered, it is reasonable to assume that the memory size of NIC under consideration

varies from 2 MB to 64 MB. In this paper, we assume that NIC memory size is 8MB, and

data can be transfered bi-directionally between main memory and NIC memory.

 The merits of our approach are presented as follows. Since we use NIC memory as a

part of main memory, same data will not exist in main memory and NIC memory simul-

taneously. This feature means that we need nor to consider the data coherency problem

between main memory and NIC memory. Moreover, unless process invoke data transfer

between NIC memory and main memory, the data could be exist in NIC memory. That is,

there is no need to transfer data from main memory to NIC memory at message commu-

nication, while the Old-NIC, which uses buffers need to copy the data from main memory

to network interface buffer in every message communication. Therefore our proposed NIC

could be expected to reduce data transfer of message communication. However, to re-

duce data transfer of message communication using proposed NIC, it needs data transfer

functions. In the next part, we describe proposed data transfer protocol.

2.2 Data Transfer Protocol Between Main Memory and NIC

 Memory

To realize our proposed NIC and reduce data transfer of message communication, we

propose two functions Put and Back that enable us to transfer data between main memory

and NIC memory. Fig. 2 illustrate the functions of Put and Back which are described as

follows.

3

ork

 Figure 2: Concept of Put and Back function

2.2.1 Put: Transfering data from main memory to NIC memory

The function Put transfers data from main memory to NIC memory. It is automatically

invoked in message communication if data is not exist on NIC memory. We illustrate

the operation of Put function in Fig.3. In message communication, if data exists on

main memory (B1), then message communication process is interrupted and data are

read from main memory (B2) . After reading memory, the data are transfered to NIC

(B3) and wrote into NIC memory (B4). Finally, message communication is resumed and

a message is sent to destination nodes from NIC memory or received from source nodes

to NIC memory (B5). On the other hand, if data already exists in NIC memory (Al),

a message is immediately sent to destination nodes from NIC memory or received from

source nodes to NIC memory (A2).

2.2.2 Back: Transfering data from NIC memory to main memory

In contrast to Put function as mentioned above, The Back function transfers data from

NIC memory to main memory. The Back function is also invoked automatically at CPU

calculation if data do not exist in main memory. The operation of Back is illustrated in

Fig.4. When CPU is calculating and if data exist in NIC memory (Dl), the calculation

process is then interrupted and data are read from NIC memory (D2) . After NIC memory

4

 MainMemor

B2

ICPU
NIC

B

Al

B3

V
B4 Se

A2/R5

ecv

d Network

Figure 3 Data flow on Put operation

MainMemor

Write

r,"4:
 Read

I
NIC

C2/D5

 C1

 D1

D4'‘:

D3

D2

Network

Figure 4: Data flow on Back operation

5

read data from NIC memory, it will transmit data to main memory (D3) and write data

into main memory (D4). At last, calculation is resumed and accessed to main memory

(D5). If data already exist in main memory (Cl), data is normally read from memory

or write to main memory (C2). Returning data that messaged only one time from NIC

memory to main memory using this Back function, CPU can access to main memory

effectively without accessing from CPU to NIC memory.

 Both Put and Back involve a problem that they cannot cope with the lack of memory.

To perform Put or Back, enough memory space should be ensured to use page replacement

algorithm such as LRU. But our purpose here is to explore data transfering performance

between main memory and NIC using Put and Back. Thus it needs further consideration

including circumstantial specifications.

 To migrate data for message communication into NIC memory using Put, we can send

message to destination nodes from NIC memory directly or receive message from source

nodes to NIC memory directly without transfering data to main memory. However, this

method separates main memory into two and placed in two different places. Therefore

vve need to discuss the trade-off listed bellow.

 • Access speed between CPU and main memory is fast.

H Access speed between CPU and NIC memory is slow.

 • Message communication from NIC memory is fast.

H Message communication from main memory is slow .

In the next section, we examine the proposed NIC in simulation environment and discuss

these two trade-off.

3 Evaluation of NIC Memory in Simulation

3.1 Matrix Multiplication and Conditions of Simulation

To evaluate proposed NIC, we did matrix multiplication in simulation environment. At

first, we describe the multiplication technique of matrix (C = A x B). A node contains

subblocks of matrix C,A, and B. Matrix is partitioned as shown in Fig.5. In Fig.5, size

 6

 node=16,size=256

,./node

7_II 1 • I — 0 12 3

45 6 7

N+.......................
-H 89 10 11

 12 13 14 15

size/ node

Figure 5: Matrix subblock partitioning on 256x256 matrix by 16 nodes

is 256 and node is 16. Therefore, size of subblock is calculated as follows: 256/N/16 x

256/N/16 = 64 x 64. Each node has only partitioned subblock of C, A and B, as mentioned

above, calculation needs to exchange subblock A and B using message communication.

First each diagonal node (in Fig.5, it is 0, 5, 10, 15) multicasts its own subblock A to

other node in same row (if node 0, it multicasts to node 1, 2, 3). After multicasting A,

each node multiplies A and B. Then each node send B to the upper column node, except

top column node send to the bottom column node. Calculation repeats above message

communication in i/node iterations. We did this matrix multiplication in the following

conditions: Matrix size is 256 x 256, the number of executed node is either 4, 16 and 64.

 In our simulation, we recorded memory accesses of data per node. Memory accesses are

recorded in both read and write accesses to main memory or NIC memory. We recorded

the number of accesses in following two cases. One uses only Put function, and the other

uses both Put and Back. Since we recorded memory accesses only in matrix calculation

interval, we didn't take the record of another interval such as initialization of matrix

multiplication. Simulation using only Put function was executed to compare it with using

both Put and Back. In simulation, we assume that main memory has enough size to store

whole data. Therefore we don't consider about page-out and page-in of data.

7

3.2 Definition of Memory Access State

We define memory accesses state to main memory or NIC memory. The memory access

state are classified into four as follows.

 • Accesses to main memory

 — When CPU reads from main memory , data exist on there or not.

 The former is defined as RMH (Read Memory Hit), the latter is defined as

 RMF (Read Memory Failed).

 — When CPU writes to main memory , data exists on there or not.

 The former is defined as WMH (Write Memory Hit), the latter is defined as

 WMF (Write Memory Failed).

 In these accesses, if data exist in NIC memory, then access to main memory is

 interrupted and the Back function is invoked. Then data is transfered from NIC

 memory to main memory. When the Back function is performed, read from main

 memory or write to main memory is resumed. We regard the Back operation of

 transfering data to main memory as WMF and it is performed after accessing the

 main memory as RMH or WMH.

 • Accesses to NIC memory

 — When send a message, it exist in NIC memory or not.

 The former is defined as RNH (Read NIC Hit), the latter is defined as RNF

 (Read NIC Failed).

 — When receive a message , it exist in NIC memory or not.

 The former is defined as WNH (Write NIC Hit), the latter is defined as WNF

 (Write NIC Failed).

 In these accesses, if data exist in main memory, then message communication process

 on NIC is interrupted and Put function is invoked. After Put transfer data from

 main memory to NIC memory, message communication process is resumed. Similar

 8

 100%

 90%

 80%

 70%

 60%
 0

 50%

 40%

 30%

 20%

 10%

 0%

~‘b

Figure 6

 \/\b /b~`bDi/

 Num of nodes

: Access hit/miss ratio to main memory

^rmh

• rmf

^ wmh

^ wmf

 to the Back function, we regard Put operation of transfering data to NIC memory

 as WNF and it is performed after accessing the NIC memory as RNH or WNH.

 To discuss trade-off as described in the previous section, we need to make how memory

accessed clear. From the next section, we describe about it.

3.3 Result of Main Memory Accesses

The result of main memory access is shown in Fig.6. In Fig. 6, each bar chart is separated

in pair by executed number of nodes. In a pair of bar chart, left bar chart shows result of

using only Put and right bar chart shows result of using both Put and Back. Each item

in a bar chart indicates memory access state as we mentioned in previous section 3.2.

From Fig. 6, we found that when use only Put, RMF accounts for more than 50 percent

of memory access. In matrix multiplication, each node have only subblocked matrix and

needs to exchange using message communication. Consequently, matrix A and B have to

read from NIC memory on calculation and result in such highly RMF ratio. On the other

hand, when both Put and Back are used, RMH accounts for 70 percent of memory access.

The reason of this result is that the Back transfers matrix A and B to main memory

 9

 100%

 90%

 80°Ic

 70%

 60°Ic

 SO%

 40%

 30°Ic

 20%

 10%

 O%/c

Figure 7:

 J I--------------I ------------------------------1 I-------I L

 4~,J~

 \~ /~, /~~4b~`~y

 Num of nodes

Access hit /miss ratio to MC memory

• rnh

• rnf

• wnh

^ wnf

before multiplication and lead memory access to RMIH.

 These results indicate that when Put and Back are used together. slow access between

CPU and NIC memory is permuted fast access between CPL and main memory. Thus,

it can reduce data transfer between main memory and NIC memory.

3.4 Result of NIC Memory Accesses

Record of NIC memory accesses is shown in Fig. 7. Each bar chart in Fig. 7 is separated

in pair by executed number of nodes. and each left bar of pair indicates result of using only

Put and each right bar of pair indicates result of using both Put and Back. Each items in

a bar chart indicate access states of NIC memory. Since whole data to be communicated

exist in NIC memory. results of using only Put indicate that the \VNH ratio increased

in proportion to nodes. Because number of message communication per node increase

in proportion to increase number of nodes. On the other hand. results using both Put

and Back function indicates that \VNF ratio is increased compared with results of using

only Put. Since matrix multiplication algorithm mutually execute CPU calculation and

message communication. Put and Back are invoked and transfer data whenever these

10

Table 1: Increased number of Put, Back, RMH in matrix multiplication using Put and

Back and elements of matrix subblock

Num of node

Num of Put

Num of Back

Num of RMH

Elements of a matrix subblock

4 16 64

 +1 +5 +13

 +3 +7 +15

+6,307,840 +1,839,104 +492,544

 16,384 4,096 1,024

process executed. This means that data transfer between main memory and NIC memory

performed many times. Although it is confirmed that using Put can reduce data transfer

between main memory and NIC memory, from above results, Back increases WNF ratio

which induce slow memory access in proportion to nodes. Next we shall discuss about

effectiveness of Back in detail.

3.5 Effectiveness of Back

We proposed the Back function in subsection 2.2. By returning the data to main memory

using the Back function, we can access the data from main memory again. As we have

mentioned earlier, however, there is possibility that repeated data transfer by Put and

Back could lead to bus-bottleneck and results decline in performance. To examine the

amount of data transfered by Put and Back in matrix multiplication and accessed as

RMH in matrix multiplication, respectively, we can see whether utilization of the Back

function leads to bus-bottleneck. In this paragraph, we discuss the effectiveness of the

Back function from the point of view of the amount of data in matrix multiplication.

 First we show an increase in the number of Put, Back and RMH in matrix multiplication

as a result of using only Put in Table 1. As shown in this table, as the number of nodes

is increased, the number of Put and Back are also increased. This causes additional data

transfer between main memory and NIC memory. Since the number of RMH are counted

by elements of matrix subblocks, we can confirm a smaller increase n the number of RMH

as the number of nodes increases in Table 1.

 Assuming the matrix data type is floating point, from Table 1, we can get the amount of

data in matrix multiplication in Table 2. According to Table 2, total data size by Put and

 11

Table 2

: Data size by Put and Back and data size of RMH (unit: KByte)

Num of node

Data size increased by Put

Data size increased by Back

Total data size by Put and Back

Total data size of RMH

4 16 64

64

192

80

112

52

60

 256 192

24,640 7,184

 112

1,924

Figure 8:

cation

 100%-

 90%,
 80%

 70%

 60%

 50%

 40%

 30% — ---I

10%III ---Ill
 Cd

D, 4:$\
~~~b~`~~~ 

                          Num of nodes 

Total access hit/miss ratio to main/NIC memory on 25

• rmh 

^rmf 

^ wmh 

^ wmf 

• rnh 

rnf 

• wnh 

^ wnf

6x 256 matrix multipli-

Back is only 256KByte on 4 nodes. In contrast to total data size by Put and Back, total 

data size of RMH is extremely large. Since the Back returns the data to main memory 

and following data accesses to main memory result in RMH, increased numbers of RMH 

can be obtained using the Back. Therefore, total data size of RMH can be regarded as 

total saved data transfer size between main memory and NIC memory. From Table. 2, 

using both Put and Back can save large amount of data transfer between main memory 

and NIC memory compared to that of Pub and Back. 

 We show Fig.8 as a summary of Fig. 6 and Fig. 7. As shown in Fig.8, newly recorded 

ratio of WMF and WNF are very small compared with the increased ratio of WMH 

obtained using the Back. From Fig.8, we also confirmed that it seems reasonable to 

                           12



 co 

 c 
as 
Q 
x 

its 
E 
0 

Y c 

o 
E a

128MB 

32MB 

 8MB 

 4MB 

 2MB 

 1MB 

512KB 

256KB 

128KB

 4 node -i-

 16 node -0- 

64  node --F-

256 node -)1E-

Figure 9: 

variation

     128 256 512 1024 2048 4096 
                                  Matix size 

Memory size of subblock matrix A and B concerned with node

8192

and matrix size

suppose that the decline in performance by the Back is negligible. From the results 

mentioned above, we confirmed that the Back can save extra data transfer between main 

memory and NIC memory without performance corruption. 

3.6 Discussion About NIC Memory Size 

In the above simulation, we fixed NIC memory size as 8MB. This paragraph discusses 

suitability of NIC memory size. The data which transferred to NIC memory on matrix 

multiplication are subblock of matrix A and B. Consider data type of matrix as floating 

point, total memory size of subblock A and B on each node is calculated as follows: "(the 

elements of matrix subblock) x (size of data type) x 2" (there 2 means two matrix: A and 

B) . For example, the number of node is 16 and matrix size is 256, then memory size is: 

(256/N/16)2 x 4 x 2 = 32, 768 byte. We show these memory sizes variation concerned with 

node and matrix size in Fig.9. According to Fig.9, it shows that even 4 node cluster can 

execute size of 2, 048 x 2, 048 matrix multiplication within 8MB NIC memory. Moreover, 

it indicates that 256 nodes could be executed up to 16, 384 x 16, 384. From this discussion, 

it is clear that 8MB of memory is enough to perform large scale matrix multiplication.

13



4 Conclusion 

In this paper, we proposed a new NIC using distributed memory containing a memory 

referred from  CPU and evaluated its performance by simulation. CPU in each node access 

the memory on NIC as an extension of main memory and stores the data for message 

communication. From the performance evaluation of NIC, it is confirmed that proposed 

NIC could reduce data transfer between main memory and NIC. There was a trade-off 

between an effect of the Back function and extra data transfer with the Back function. As 

the result of simulation, an effect of the Back function was superior to extra data transfer 

with the Back function and NIC could reduce data transfer time. 

References 

 [1] http://now.cs.berkeley.edu/ 

[2] http://www.11nl.gov/asci/ 

 [3] Scott Pakin, Mario Lauria and Andrew Chien "High Performance Messaging on 

   Workstations: Illinois Fast Messages (FM) for Myrinet", Proceedings of Supercom-

   puting '95, San Diego, California (1995). 

 [4] Ron Minnich, Dan Burns and Frank Hady "The Memory Integrated Network Inter-

   face", IEEE Micro, Vol.15, No.1, (1995.2) 

 [5] Noboru Tanabe, Junji Yamamoto and Tomohiro Kudoh "MEMnet : Network in-

   terface attached on memory slot" , In IPSJ SIG Notes 99-ARC-134 (SWoPP'99), 

   pp.73-78 (1999.8) (In Japanese) 

 [6] Hiroshi Nakamura, Masaaki Kondo, Hideki Okawara and Taisuke Boku "SCIMA: 

   A new architecture for High Performance Computing" IPSJ Transactions on High 

   Performance Computing Systems, Vol.41, No.SIG5 (HPS 1), pp.15-27 (2000) (In 

   Japanese)

14



[7] James V.Lawton, John J. Brosnan, Morgan P. Doyle, Seosamh D. ORiordain, Timo-

  thy G. Reddin "Building a High-performance Message-passing System for MEMORY 

  CHANNEL Clusters", Digital Technical journal Vol.8, No.2 (1996) 

[8] M. Fillo, R. B. Gillett "Architecture and Implementation of MEMORY CHANNEL 

 2", Digital Technical Journal, Vol.9, No.1 (1997)

15


