
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Extracting threads from concurrent objects for

the design of embedded systems

Author(s)
Okazaki, Mitsutaka; Aoki, Toshiaki; Katayama,

Takuya

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2002-019: 1-10

Issue Date 2002-08-05

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8398

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Extracting threads from concurrent objects
 for the design of embedded systems

Mitsutaka Okazaki, Toshiaki Aoki and Takuya Katayama
 2002/08/05

IS-RR-2002-019

 ••••

Extracting

 for the

threads from concurrent objects

design of embedded systems

 Mitsutaka Okazaki
m-okaza@jaist.ac.jp

Japan Advanced Institute of
 Science and Technology

 Toshiaki Aoki
toshiaki@jaistac.jp

Japan Advanced Institute of
Science and Technology /

PRESTO Japan Science and
 Technology Corporation

 Takuya Katayama
katayama@a jaist.ac.jp

Japan Advanced Institute of

 Science and Technology

Abstract

 As a result of the increasing size and complexity of em-
bedded systems, object-oriented techniques are going to be
adopted in the embedded software development. In em-
bedded software developments, we have to consider non-

functional requirements such as real-time properties and
resource requirements. To deal with these requirements,
some methodologies design the system using a thread-
based approach. In such approach, we need to extract
threads from the concurrent objects defined in the analy-
sis model. However, current methodologies do not provide
enough support to do so. In this paper, we propose a formal
approach to extract threads from concurrent objects. We
also present an experimental application of the proposed
approach to the development of a device driver.

1 Introduction

 Due to the increase in size and complexity of embed-
ded systems, object-oriented techniques are going to be
adopted in embedded software developments. However,
it is still difficult to solve some domain specific problems
in embedded systems. The main problems are to satisfy
non-functional requirements such as real-time and resource
constraints. In the existing object-oriented design, it is hard
to deal with these constraints.

 In object-oriented developments, we analyze the target
system to specify the logical behavior of the system as a set
of concurrent objects. If we consider a system which do not
have severe non-functional constraints, like an enterprise
system, we can directly design and implement objects as
software modules which are performed concurrently. How-
ever, this is not possible in embedded system developments
because of the existence of such constraints. Thus, we need
a design model which is suitable for analyzing severe non-
functional constraints.

 Functions of a system are realized through the coopera-
tion of objects. Objects communicate with each other. The
execution process of a function can be represented as a
sequence of communication between objects as shown in
Figure 1. We call such a sequence a thread. Real-time
constraints are given to threads as deadlines.

 Figure 1 shows the relationship between objects, threads
and real-time constraints.

System

Thread

EMMEN•

Obiect

Obiect

Ojbect

1
 ~•

• • Ob7ect

4

communication

Figure

Realtime constraints.

1: Objects, threads and real-time constraints.

 In the design of embedded systems, threads are modi-
fied frequently to satisfy severe real-time constraints. If we
use an object-based model, the behavior of objects must be
changed to satisfy the constraints. In the worst case, we
have to divide, unify or remove the objects. It causes the
destruction of the logical structure of objects which are de-
fined in the analysis phase.

 There are some development methodologies for embed-
ded systems which design the target system using a thread-
based approach. OCTOPUS[9] and SES approach[2] have
adopted a thread-based design approach. In these meth-

ods, real-time properties are considered after threads are
extracted from an analysis model. However, they do not

provide enough support on how to derive a design model.
 To obtain such design models, we propose in this pa-

per a transformation method from analysis model to design
model. In our approach, both analysis and design mod-
els are defined by Concurrent Regular Expressions[1]. The
design model is derived from the analysis model using an
axiomatic system for equivalent transformation using con-
current regular expressions. The equivalent transformation
is a transformation that changes the representation of the
models but never changes their behavior.

 We also introduce an experimental application of our
method in the development of the PCM t device driver. This
driver supplies 3 channels PCM audio playbacks. Our main
objectives in this experiment are:

- to show that we can derive a design model with our

 method in a real application development, and

- to show that we can implement code based on our de-

 sign model.

 The remainder of this paper is organized as follows.

In Section 2 we introduce concurrent regular expressions.

Section 3 describes how to formalize analysis and design

models on concurrent regular expressions. In Section 4,

we introduce an axiomatic system for equivalent transfor-

mation on concurrent regular expressions. Section 5 de-

scribes an experiment in PCM device driver development.

Section 6 gives some conclusions and the directions of our

future work.

2 Concurrent Regular Expressions

 In this section, we introduce Concurrent Regular Ex-

pressions(CREs) which are used to formalize our analysis
and design models. CREs are used to model concurrent
systems. Vijay K. Garg and M.T. Ragunath proposed it as
algebraic descriptions of the language of Petri nets[1].

 There are many existing algebraic specification meth-
ods for concurrent systems such as process algebra CCS[7],
CSP[6] and ACP[8]. These methods model the states of a
system explicitly. A process is described as actions which
are performed at a state in a system. The system is defined
as a set of such processes and transition relationships be-
tween them. On the other hand, CREs directly model the
behavior of a whole system. States in a system are ignored.

 In our approach, we do not consider the states of a sys-
tem. Therefore, we choose simple CREs as our modeling
method.
 CREs are extension of regular expressions with four
operators: interleaving, interleaving-closure, synchronous

 An abbreviation of Plus Code Modulation

composition and renaming. In this paper, we use only inter-
leaving and synchronous composition operators. We omit
to explain the other operators.

 We model a system with the interleaving operator if the
system consists of threads which are executed concurrently.
If the system consists of objects which communicate with
each other, we use the synchronous composition operator.

 Let E be a finite set of symbols. Concurrent regular ex-
pressions on E consist of symbols in E U {1,E} and op-
erators: choice(+), sequence(.), closure(*), interleaving(1)
and composition([S]). I and € are the special symbols. I
means an empty set and E means an empty sequence. For
any expression P, P.1 = 1.P = 1 and P.6 = 6.P = P hold.

 Expressions which contain no interleaving and syn-
chronous composition operators are the same as regular
expressions as known so far. The syntax of CREs on E
is defined as follows.

Definition 2.1 (Concurrent Regular Expressions)
 1. cisa CRE ifcEEU{1,e}

2. P Q, P.Q and P* are CREs if P and Q are CREs.

3. P IQ is a CRE if P and Q are CREs.

4. P [S] Q is a CRE if P and Q are CREs and S C E.

5. (P) is a CRE if P is a CRE.

 We define the priority of the operators as * > . > + >
 > [s] . We can omit the parentheses in a CRE if it does

not become ambiguous. For example, we can simply write
a* .b -{- c instead of ((a*) .b) + c.

 The meaning of a concurrent regular expression P is de-
fined as a set of sequences of symbols denoted by L(P). We
also call L(P) the language of P. The sequences of symbols
on E are defined as follows.

Definition 2.2 (Sequences)
 1. c is a sequence if c E E U {E }

2. x • y is a sequence if x and y are sequences.

 For example, a b • c is a sequences on E = {a. b, c}.
E in a sequence means the zero length sequence. For any

sequence x, € • x = x • E = x holds.

The definition of L is as follows.

Definition 2.3 (The language of CREs)
Let a,b,c be a symbol in E. Let P, Q be CREs
w. x. y be sequences on E

1. L(1)=(2)

2. L(€) = {€}

onEand

3. L(c) = {c} ifc E E

4. L(P.Q) = {x - yIx E L(P), y E L(Q)}

S. L(P + Q) = L(P) U L(Q)

6. L(P*)=U1-o.1....LOP')
7. L(PII() = L(E1113) = L(P)

8. L(413.Q) = L(a.EIIb.Q), L(a.PIIb) = L(a.PIIb.()

9. L(a.PIIb.Q) = L(a.(PlIb.Q)) UL(b.(a.PMQ))

10. L(PIIQ) = {wIx E L(P). y E L(Q)- w E L(2IIy)}

11. L(P[S]Q) = {wIw E (Ep U Eq)", w/(Ep U S) E
L(P), w/(EQ U S) E L(Q)}

12. L((P)) = L(P)

St is a regular expression which corresponds to a se-

quence x. For example, x = a.b. c for x = a • b - c. Ep is a set
of all symbols which appear on expression P. P i is defined
as the ith sequence of P. For example, P1 = P, P2 = P.P
and P3 = P.P.P, P° is defined as f for any P.

w/E means a restriction of w over E. For instance, a • c -
a•d•a•b/{a,c}=a-c-a•a
 The operator [S] is different from that of original CREs.
We extend the operator [] in the original CREs to [S]. The
original [] is the same as our [S] if S = d. In the remainder
of this paper, we use [] for [o].

 We say that an operator w has the distributive property if
L((A + B)wC) = L((AwC) + (BwC)) always holds. [] does
not have this property. For instance, L((a + c) [1c) = {c}
but L((a[]c) + (c[]c)) = {a.c. c.a, c}

 As a result of extending [] with S, we can give [S] the
distributive property. See the distributive axiom in Section
4.

3 Formalizing Analysis and Design Models

 In this section, we formalize both analysis and design
models with CREs. We define the analysis model as con-
current objects and the design model as concurrent threads.
We describe the behavior of a system with a set of action
sequences. Let us begin with the description of actions.

3.1 Action

 An action means the atomic behavior of the system. We

define the action as an event, a method invocation or a frag-

ment of program code. Syntactically, an action is described

as a string.

Definition 3.1

An action is a string with lower-case character. The

string is sometimes with subscripts. For example, a, b, c,

ao, al . ---, an. open. close. post and get are actions.

3

3.2 Action Sequence

 An action sequence is a set of ordered actions. Actions
are ordered following the time of their occurrence in the
system. If an action a occurs earlier than an action b, a
appears before b in an action sequence.

 Consider a system which performs the actions
login. work and exit in this order. The behavior of the

system is defined as login work exit.

3.3 Behavior

 The whole behavior of a system is defined as a set of

action sequences. We use a concurrent regular expression

to describe the set of action sequences.

sO

open

sl

read

write

close

s2

Figure 2: Automata

s3

 Let us consider a system whose behavior is defined by
the automata shown in Figure 2. This automata starts at
the initial state so. After the action open occurs, its state
changes to s1. Then after the action read or write, the
system reaches the state s2. Finally, the action close oc-
currs and the system reaches the final state s3. We can de-
scribe such behavior with the action sequences open-read.
exit and open-write-exit. The behavior of the system is
defined by the set {open-read-exit, open-write •exit}.

 The behavior of a system could be too large and some-
times defined by an infinite set of action sequences. It is
hard to write such a set directly. However, we can describe
the behavior using a notation that makes loops and switches
explicit. We use CREs as such a notation. CREs allow us
to describe loops with closure operators and switches with
choice operators.

 By mapping actions to symbols on CREs, we can de-
scribe the behavior of a system as the language of a CRE.
Intuitively, we can write P.Q if an action sequence Q occurs
just after P. In the same way, P + Q means P or Q occurs
exclusively. P' means an arbitrary number of loops of se-
quence P. When P and Q execute concurrently, we write
PII Q. If there is communication between concurrent P and
Q, P[]Q is used.

 For example, the behavior of the automata shown in Fig-
ure 2 can be described with the regular expression:
open.(read+ write).close
The behavior corresponding to this expression is its lan-
guage. i.e.

 L(open.(read write).close) =
{open • read • close. open • write • close}

3.4 Formalizing Analysis Model

 An analysis model is defined as a system which consists
of concurrent objects. The objects communicate with each
other. Let 01.02. _On be regular expressions which means
behavior of objects in a system. The analysis model is de-
fined as follows.

O1[]02[]...[]On.

 We omitted the parentheses on the expression above be-
cause the associative law holds on []. There is no 11 opera-
tors in the expression for an analysis model. We call such
expression a concurrent object expression.

3.5 Formalizing Design Model

 A design model is defined as a system which consists
of concurrent threads. There is no communication between
the threads. We formalize the design model with a concur-
rent thread expression. A concurrent thread expression is
a concurrent regular expression without [] operators. For
example, a.b.cHd.c.f and a.(b11c).d are concurrent thread
expressions.

3.6 Formalizing Objects and Threads

 Both objects and threads are defined as regular expres-
sions. In our models, objects and threads have no inter-
nal concurrency. They are modeled in the same way ex-
cept for the communication between them. Objects run
concurrently and communicate with each other. On the
other hand, threads run concurrently without communicat-
ing with each other.

3.7 Concurrency

 Suppose that there is a system which consists of two
threads. P and Q are CREs which define the behavior of
the two threads in the system. These threads are executed
concurrently. Then, the behavior of the system is defined
as PHQ.

 According to the language definition of that is, 7 to
10 in the definition of L, concurrent threads are a set of
interleaved action sequences of the threads. Suppose that
P = a.b and Q - c.d. Then, the behavior of the system
is a.blIc.d. L(a.blIc.d) represents all the interleaved se-

quences of a.b and c.d. Therefore, L(a.blIc.d) =
{a•b•c•d.a•c•b•d.a•c•d•b.c•a•b•d.c•a•d•b.c•d•a•b}

3.8 Communication

 Suppose that there is a system which consists of two
objects. P and Q are CREs which define the behavior of the
two objects in the system. These objects run concurrently

4

and communicate with each other. Then, the behavior of
the system is defined as P[]Q.

P[] Q has the same meanings as P 11Q if there is no com-
munication between P and Q. In P[]Q, the same symbols
appering in both P and Q are called communication sym-
bols. These symbols mean actions for synchronized com-
munication between P and Q. In our approach, all commu-
nication between objects are synchronized communication.
Synchronized communication is a communication between
objects which satisfies the following two rules:

 - Objects block until the end of communication.

- No communication fails.

 Assume that there are two objects defined as a.b and a.c
in a system and these objects run concurrently. If there is
no communication between the objects, the behavior of the
system is the following.

fa. •a•b•c.a•b•a•c.a•b•c a.a•a•c b}
 This behavior contains some sequences which do not

satisfy the synchronized communication rules. a • b • a • c
and a • b • c • a are such sequences. These sequences repre-
sent the behavior where the objects did not block until the
end of the communication. There must be no symbols be-
tween two communication symbols if the communication
succeed. In a • b • a • c, there is the action b between the
communication symbol a. This sequence means that the
object a.b performs the action b before the object a.c fin-
ishes a. In other words, a.b performs b without blocking
and waiting for object a.c to perform the action a. This
behavior violates the synchronized communication rules.

 The [] operator deletes such behavior and leaves:
{a.a•b•c.a•a•c•b}.

 It is clear in the set above that once a occurrs, the next
symbol is also a. So the [] operator reduces a.a to a. Fi-
nally, we can get the set {a • b • c. a • c • b} as the meaning
of L(a.b[]a.c).

 According to the synchronized communication rules,
communication must never fail. However, we can de-
scribe an expression that violates this rule. For example,
in a.b.a[]a.b.c, the second occurrence of a in a.b.a can-
not communicate with a.b.c because a.b.c has only one
occurence of a. If communication fails in a system, the
whole behavior of the system becomes an empty set. Thus,
L(a.b.aHa.b.c) = o

4 Transformation

 We define the transformation from an analysis model
to a design model as the transformation from a concurrent
object expression to a concurrent thread expression. This
transformation will never change the behavior of expres-
sions. In our approach, we achieve this transformation with

an axiomatic system for equivalent transformation on con-
current regular expressions.

4.1 Axiomatic System for Transformation

 The axiomatic system which we propose has two rules
and 12 axioms for the [] operator. Table 1 shows the ax-
ioms. In addition to these axioms, we need some axioms
on regular expressions which are known so far as algebraic
properties of regular expressions. There are 2 rules in this

Reflection

Zero

Identity

Commutative

Associative

Distributive

Synchronous

Confliction

Interleaving

Spining

Optimizing

Threads

A[S]A = A
A[S]1 =
A[S]r = A if S n EA =
A[S]B = B[S]A
(A[]B)[]c = A[](B[]c)
(A + B)[S]C =
(A[S U (EB n Ec)]C) + (B[s U (EA n Ed]C)
(x.B)[S](x.C) = x.(B[S u {x}]C)
x.A[S]y.B = 1
ifx,y ES U (Ex.AnEy.B) and x y
x.A[S]y.B = x.(A[S]y.B) + y.(x.A[S]B)
ifx�yandxVSUEBandy SUEA
(A.x.B)[S](C.y.D) = (A[]C).(x.B)[S](y.D)
if x, y E (Ex.B n Ey.D) U S and
(EA.x.B U S) n Ec = (EC.y.D U 5) n EA =
A[S]B = A[S n (EA U EB) n (EA fl EB)]B
A[]B = AIIB if EA n EB = cp

Table 1: Axioms for equivalent transformation

axiomatic system. One is the rewrite rule and the other is
the reduction rule.

 Let A and B be concurrent regular expressions. A '
B means that A and B are derivable from each other by

applying a rule. A '' B means A and B are derivable from
each other by applying some (more than zero) rules.

Definition 4.1 (Rewrite rule)
Let A, B and P be concurrent regular expressions.

- A B if A = B holds by axioms.

- P G P[A/B] if A B.

Note that P[A/B] is an expression where all A in P are re-
placed with B. For instance, we can obtain a.Y.X, X.Y.a or
a.X.a from X.Y.X[X/a]

Definition 4.2 (Reduction rule)
Let S, A and B be concurrent regular expressions.

SbA*.BifS A.S+B and c L(A)

4.2 Soundness

 Our axiomatic system defined above is
words,

sound. In other

5

VP, P'.L(P) = L(P') if P P'.

 holds. Therefore, two expressions have the same behav-
ior if one is derivable from the other.

4.3 Completeness

 Sometimes, there are some CREs which have the same
behavior as another CRE. We say the axiomatic system is

complete if all equivalent CREs can be derived from an
expression. We define the completeness as follows.

VP.P'.P P' if L(P) = L(P').

5 PCM Device Driver Development

 To evaluate our approach and to apply it in the develop-
ment of a real application, we developed the PCM device
driver using our approach. The driver is a synthesizer of
PCM data streams. It synthesizes some PCM data on the
fly so that some PCM channels can be played through only
one digital to analog converter called a DAC or D/A con-
verter. The PCM channel is an abstraction of a PCM data
stream to control its volume and frequency.

5.1 Target Environment

 We suppose that the target system for this driver has the
following hardware.

 - 1 CPU , 1 hardware clock and 1 DAC.

 In addition, we assume that an operating system which
has at least the following functions are running on the sys-
tem.

- I/O function: It is used to write a value from the driver

 to the DAC.

- Interrupt handler: This function is used to notify an

 event from hardware clock to software.

- Semaphore: It is used to implement the mutual exclu-

 sion of threads in the driver.

We used C language for the implementation.

5.2 Driver Specification

 Let us show the requirement specification for the PCM
driver.

 - Play and stop up to 3 PCM channels concurrently.

 - Frequency is changed for each channel.

 - Volume is changed for each channel.

 - Both frequency and volume are changed on the fly.

 Application Interface (API) of the driver is shown in Ta-
ble 2

Entry

PLAY

STOP

FREQ

VOL

Function

Start playing

Stop playing

Change frequency

Change volume

Arguments

Number of channel,

Top address of PCM data,

End address of PCM data

Number of channel

Number of channel, Frequency

Number of channel, Volume

: Application Interface for the PCM driver.

 D/A is an abstraction of D/A converter.
method for writing a value to D/A converter.

put of D/A follows that value.

5.3.2 Behavior Definition

Table 2

5.3 Analysis Phase

 In the analysis phase, we define classes and behavior
of objects in the system. Then we define the behavior of
objects with a concurrent object expression. Let us start by
defining the classes.

Class Definition

write is a

The real out-

5.3.1

First, we analyzed the system and defined some classes as

follows.

Channel

We defined the behavior of objects as shown in Table 3.
The objects API, SYN, CLK and DAC in the Table 3 are in-
stances of classes API, Synth, Clock and D/A. The
driver plays 3 PCM channels concurrently, so three in-
stances of the class Channel are required. The objects
CH0, CH1andCH2 are these instances.

 The actions play, stop, freq.vol in API correspond
to API entries. pi, si, fi and vi correspond to

play, stop, freq and vol the methods of CH,.
 The action calc is an action which means communi-

cation among CH0, CHi, CH2and SYN. The calc occurrs in
CH0, CH1i CH2 and SYN simultaneously. In this action, the
objects CH0, CH1 and CH2 calculate their output values and
SYN generates an output value for D/A from these 3 out-

put values. clk corresponds to the event from the clock.
write corresponds to the write method of the class D/A.

API

+play

+stop

+freq

+vol

+play

+stcp

+freq

+vol

+calc

Clock

S;nchronize

D/A

+write

Get data

Write

Synth

Object
API

CH0

CH1

CH2

SYN

CLK

DAC

Behavior

(play.(po + pi + P2)+
stop.(so + s1 + s2)-1-
freq.(fo + fi + f2)+
vol.(vo + vi + v2))*

(Po +so+fo+vo+calc)*

(pi + s1 + f1 + v1 + calc)*
(p2+s2+f2+v2+ calc)*

(clk.calc.write)*
clk*

write*

Table 3 : Behavior of objects

Figure 3: Class Diagram

 API is a class which represents the API entries of the
driver. Each method in API directly corresponds to a driver
entry.

 Channel is a class for each channel. The methods

play, stop, freq and vol mean that start playing, stop play-
ing, change frequency and change volume for the corre-
sponding channel. calc is a method for calculating the
output value of the channel. Once calc is invoked, it gen-

erates the output for 1 clock time.
 Synth is a synthesizer for 3 channels and Clock is a

class for hardware clock. Synth is synchronized with
clock signals. Each time it synchronizes, it synthesized
an output value from the output values of all the channels.
Then, it writes the syhthsized value to the D/A converter.

- API invokes an appropriate channel after one of the

 API entries is called. For example, one of the play
 methods of the channel objects (po, P1 or p2) is called
 after the API entry PLAY(play) is called.

- CHo, CH1 and CH2 start playing, stop playing, change
 frequency, change volume or calculate their output
 value repeatedly.

- SYN synchronizes with a clock event (clk) from

 the hardware clock, then calculates the output value

(calc) and sends it to the D/A converter using the
write method.

- CLK generates a clock event repeatedly.

- DAC accepts the write action from SYN repeatedly.

6

5.3.3 Analysis Model

The design model for the PCM device driver is defined as
the following concurrent object expression.

API[]CH0[]CH1[]CH2[]SYN[]CLK[]DAC

 Note that we use the name of object instead of concur-
rent regular expressions. For example, simply CLK[]DAC is
the same as clock*[]write*.

5.4 Design Phase

 In this section, we design the system. We derive con-
current thread expressions from concurrent object expres-
sions using our axiomatic system. If we apply axioms only,
the steps for transformation are too large to complete by
hand. Let us show some theorems to decrease the size of
the transformation steps.

5.4.1 Preparation
Lemma 5.1
P.X[N.Y (P.(X[]Q.Y)) + (Q.(P.X[]Y))
ifP=Un=0a1,Q=U7=0b1,EPnEQ=Q
where Un0dg ai= a0 + a1 + •••an.

Proof

According to the assumptions for P, Q,
P.X[]Q.Y = (U7=0 ai)•X[](Um bi).Y
By distributive law of. and [],
a (U' Uj=o(ai.X[]b,.Y))
G (Un=0 ai.(Uj=0(X[]bj.Y))) +

(Uj=0 bi.(Un=o(a1.X[]Y)))
•(Un=0 ai.(X[](Uj=0 b3).Y)) +
(Uj=o b1.((U7=0 ai)•X[]Y))

(P-(X[]Q.Y)) + (Q.(P.X[]Y))

Theorem 5.2
(P. []Cr) t (P + Q)*
ifP=U°=0 al, Q=Um=0bi and EP(lEq =

 P*[]Li 4 (f + P.P*)[](E + Q.Q*)
By the distributive axiom,
G E + P.P* + Q.Q* + (P.P*[]4.Q*)...(1)
By Lemma 5.1,

(P.P[]Q.Q*) 4 (P.(P[]Q.Q*) + Q.(P.P"[]Q*))
t (P.(E + P.P*[]Q.Q*) + 4.(P.P"[]E + Q.Qr))
G (P.(Q.Q* + (P.P1]Q.Q*)) + Q.(P.P* + (P.P[]Q-4*))

P•Q.Q* + Q•P•P* + (P + Q).(P•PI]Q-Qr)...(2)
By (1) and (2),
E + P.P* + Q-Q + (p-p*[]Q.Q*)

7

G f + (P + 4).(E + P.P* + Q•Q* + (P.P*[]Q-Q*))
By the reduction rule,
E + P.P* + Q.Q* + (P.P*[]Q.Q*) b (P + 4)*
Therefore, (P* []Q*) t (P + Q)*

Theorem 5.3
(a.b + X)*[]b* :4>
ifa�b,b Ex

(a.b + X)'

Proof

(a.b + X)*[]b*
By the distributive axiom,
qE + (a.b + X).(a.b + X)*[]E + b.b"
q E + ((a.b + X).(a.b + X)*[b]E) + (E[b]b.b*) + ((a.b +
X).(a.b + X)*[b]b.b*)
q E+(a.b.(a.b+X)*[b]E)+(X.(a.b+X)*[b]E)+(a.b.(a.b+
X)*[b]b.b*) + (X.(a.b + X)*[b]b.b*)...(1)
By the confliction axiom
a.b.(a.b + X)*[b]E G? a.(b.(a.b + X)*[b]E) b 1
Therefore,
(1) •4=:',E + a.b.((a.b + X)*[b]b*) + X.(((a.b + X)*[b]E)
((a.b + X)*[b]b.b*))...(2)
By the distributive axiom,
((a.b + X)*[b]E) + ((a.b + X)*[b]b.b*)
b (a.b + X)*[b](E + b.b*) b (a.b + X)*[b]b*
Hence,

(2) 4 E + a.b.((a.b [b]b*) + X.((a.b + X)*[b]b*)
q E + (a.b + X).((a.b + X)*[b]b*)
4q E + (a.b + X).((a.b + X)*[]b*)
By the reduction rule,

((a.b + X)*[]b*) G (a.b + X)*

5.5 Transformation

 We can transform the concurrent thread expression:
APIIISYN
from the concurrent object expression:
API[]CH0[]CH1[]CH2[]SYN[]CLK[]DAC

We show the outline of the transformation here.
First, we transform CH0 [] CH1 []CH2. Assume that C C 1
(p1 +- s1 + f i + v1) and by Theorem 5.2,
CH, = (CC, + calc)* 4 CCi[]calc~.
So, CH0 [[CHI, []CH2

CCo[]calc*[]CCi[]calc*[]CC2[]calc*
By associative law of [],
4 CCo[]CCi[]CC;[](calc*[]calc*[]calc*)
q CCo[]CC1[[CC;[]calc*

Next, we transform API[]CC*1.
peatedly,
CC, ' P []si []f i []v

By using theorem 5.2 re-

Suppose that X is an expression which holds (API 4
 (play.pi + X)). By Theorem5.3,

API[]pi G (Play•P1 + X)*[]pi G (Play.Pi + X)*
For API [] s 1, f i or vi, we can transform with the same way
as API[]pi. API[]CCi q API[]pi[]si[]fi[]vi 4 API
Then,
API[]CCo[]CCi []CC;` q API
Therefore,

API[]CH0[]CH1 []CH2[]SYN[]CLK[]DAC
q API[]calc*[]SYN[]CLK[]DAC
a API[]calc*[](clk.calc.write)*
q API[](clk.calc.write)*
q APIHSYN

5.6 Extracting Threads

 In this section, we obtain subthreads from the design
model. An subthread can be directly implemented as a

function of C program code. In the implementation phase,
we implement our PCM driver based on subthreads.

 As a result of the design, the behavior of the system is
defined as the two concurrent threads API and SYN. These
threads are still a little far from their implementation, so we
extract subthreads of API and SYN.

5.6.1 Subthreads

We model a subthread as a thread which has the following

two properties.

 - A subthread is always ignited by an external event.

 - Subthreads run exclusively if they belong to the same

 thread.

The external event is an action which corresponds to an

event from outside of the driver.

 Let us define the rule to obtain the subthreads.

Definition 5.1 (Subthreads)
Assume that T is a CRE and Pi is a regular expression.
Let eo , e i , en (n > 0) be actions which mean external
events.
eo•Po, el .P1, ...en.Pn are the subthreads of T
where T - (eo.Po + ei.Pi + •.• en.Pn)*

5.6.2 Extracting Subthreads

Let us obtain the subthreads of API. In the thread API,

play, stop, freq and vol are the external events. All of
them occur when one of the API entries is called from

a client of the driver. According to the definition of sub-

threads, we extract four subthreads PLAY, STOP, FREQ and

VOL shown in Table 4 from API.

8

Name

PLAY

STOP

FREQ

VOL

CLK

Expression

play.(po + pi + p2)
stop.(so + s1 + s2)
freq.(fo + fi + f2)
vol.(vo -}- v1 + v2)
clk.calc.write

Table 4: The subthreads of API and SYN

 In the thread SYN, the action clk is an external event
because clk corresponds to an event from the hardware

clock. We extract only one subthread CLK shown in Table
4

5.7 Implementation Phase

 We directly implemented the five subthreads of Table 4
as C the functions. See appendix to find the code. The
names of functions in the code are the same as the names
of the subthreads shown in Table 4.

5.7.1 Interface for External Event

A subthread is always invoked when an external event oc-

curs. There must be an interface that receives the external

event at the beginning of the subthread.

 In the subthreads PLAY, STOP, FREQ and VOL, their ex-

ternal events correspond to API invocation from clients

of the driver. We can represent the interface for external

events as C function entries themselves. The arguments of

the functions follow the API specification. For example,

API VOL has two arguments. One is the number of channel

and the other is the amount of volume. The declaration of

the function VOL is as follows.

void VOL(int ch, int value);

 The subthread CLK is synchronized with the hardware

clock. We suppose that the operating system observes the

clock and it invokes the function CLK whenever the clock

event occurs. We registered the address of CLK to the oper-

ating system as an interrupt handler for the hardware clock

when the driver is initialized. 2

5.7.2 Implementing the Body of Subthreads

We implemented the body of the functions taking into con-
sideration the meaning of each action. Each function is
filled with proper code. We also use some external vari-
ables shared across the functions.

 For example, VOL is a thread whose behavior is
vol.(vo + v1 + v2). We implemented the body of the func-
tion as follows.

2This initialization code is omitted on the sample source .

void VOL(int ch, int value)

1

volume[ch]

}

value;

 The variable volume is an array which stores the vol-

ume of three channels. volume [ch] = value is an ab-

breviation of following code.

switch(ch)1

case 0:

volume [0] =

 break;

case 1:

volume[1] =

 break;

case 2:

 volume[2] =

 break;

default:

 /* ERROR */

 break;

}

value;

value;

value;

This code fragment intuitively corresponds with (vo +vi +
v2).

5.8 Implementing the Mutual Exclusion

 According to the result of the design, the threads
PLAY, STOP, FREQ and VOL never run concurrently. How-
ever, we implement these four subthreads as functions.
They run concurrently if the external events come again
before the functions finish their processes. To prevent such
situation, we use a binary semaphore to make the functions
run exclusively.

 We added some code to function PLAY, STOP, FREQ and
VOL. We wrote ENTER (sem) at the beginning of the func-
tions and LEAVE (sem) at the end of the functions. The
variable sem means a binary semaphore. ENTER is a func-
tion which makes the semaphore up. The caller thread of
this function enters the critical section. LEAVE is also a
function which makes the semaphore down and the caller
leaves the critical section. Only one thread can enter the
critical section. The threads are blocked if the semaphore
is up when they enter. Threads wait until the semaphore is
down.
 For instance, the function VOL is implemented as fol-

lows.

void VOL(int ch, int value){

ENTER(sem);

 volume[ch] =

LEAVE(sem);

1

value;

 Similarly, ENTER and LEAVE are added to the

PLAY. STOP and FREQ functions. Thus, PLAY, STOP. FREQ

9

and VOL share one semaphore and they are executed exclu-

sively.

6 Conclusion

 In this paper, we proposed the axiomatic system for the
equivalent transformation on CREs. Using this transfor-
mation we can systematically obtain design models from
an analysis model. We applied our transformation method
to the PCM device driver development. Using our ap-

proach we successfully derived a suitable design model
from the analysis model of the driver and we extracted a set
of threads from the design model and implemented them
using C language.

 As a future work, we are planning to apply our ap-

proach to larger and more complex systems. For the devel-
opment of such systems, the transformation steps become
extremely large. We will implement a system to help the
transformation.

References

[1] Vijay K. Garg, M.T. Ragunath: Concurrent regular
 expressions and their relationship to Petri nets, The-

 oretical Computer Science 96, pp.285-304, 1992.

[2] Toshiaki Aoki and Takuya Katayama: SES Model for
 Object-Oriented Time Critical System Development,

 Proceedings of the IEEE International Conference
 on Artificial Intelligence and Computational Intelli-

 gence for Decision, Control, and Automation in En-
 gineering and Industrial Applications ACIDCA'2000,

pp.19-24, 2000.

[3] Toshiaki Aoki and Takuya Katayama: SES Model
 for Object-Oriented Embedded System Development,

 Japan Society for Software Science and Technol-
 ogy, FOSE'2000 Foundations of Software Engineer-

 ing VII, pp.157-164, 2000.

[4] Toshiaki Aoki, Akira Kawaguchi, Tomoji Kishi and
 Takuya Katayama: Synchronized Execution Sequence

 Based Software Architecture for Object-Oriented Em-
 bedded Systems, First Working IFIP Conference on

 Software Architecture WICSA1, 1999.

[5] Arto Salomma : Two Complete Axiom Systems for
 the Algebra of Regular Events , Journal of the As-
 sociation for Computing Machinery, Vol.13, No. 1,

pp 158-169, 1966.

 [6] C.A.R. Hoare: Communicating Sequential Process,
 Prentice-Hall, Inc., Englewood Cliffs, New Jersey

 1985.

 [7] Robin Milner : Communication and Concurrency,
 Prentice Hall, 1989

 [8] J.C.M. Baeten: Applications of Process Algebra,
 Cambridge Tracts in Theoretical Computer Science
 17, Cambridge University Press, 1990.

[9] Maher Awad, Juha Kuusela and Jurgen Ziegler :
 Object-Oriented Technology for Real-Time Systems ,
 Prentice Hall, 1996.

[10] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy,
 W.Lorenson: Object-Oriented Modeling and Design,
 Prentice Hall, 1991.

Appendix: A part of implementation

/* Clock Frequency (Hz) */
#define INPUT_CLOCK 50000
#define CH_MAX 3
static int f[CH _MAX], v[CH_MAX];
static short *start adr[CH MAX];
static short *current _adr[CH_MAX];
static short *end _adr[CH_MAX];
static double counter[CH _MAX];
static double counterstep[CH_MAX];
static int playflag[CH _MAX];
static SEMAFO sem=0;

/* play.(p_O+p_l+p_2) */
void PLAY(int ch, short *start, short *end){

ENTER(sem);
playflag[ch] = 1;
start _adr [ch] = start;
end _adr[ch] = end;
LEAVE(sem);

}

/* stop.(s_0+sl+s_2) */
void STOP (int ch) {

ENTER(sem);
 playflag[ch] = 0;
LEAVE(sem);

}

/* freq. (f _0+fl+f2) */
void FREQ(int ch, int value){

ENTER(sem);
 f[ch] = value;

 counter[ch] = 0.0;
counter _step[ch] = f[ch]/INPUT_CLOCK;
LEAVE(sem);

}

/* vol. (v O+v l+v 2) */
void VOL(int ch, int value){

ENTER(sem);
 v[ch] = value;
LEAVE(sem);

}

/* clock.calc.write */

void CLK () {

 short mix = 0;

int i;

for (i=0; i<3; i++)

 {
if (playflag[i])

 {
 /* calcurate the address counter */

 counter[i] += counter _step[i];
if(counter[i]>=1.0)

 {

counter[i]-=1.0;

current _adr[i]++;
 }

 /* check the end of data */

if(current _adr[i]==endadr[i])

playf lag [i] = 0;

 mix += (*(current adr[i]) * v[i]) >> 4;

 }

 }

 /* I/O Access */

 DAC WRITE(mix);

}

10

