
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Formal analysis of the iKP electronic payment

protocols

Author(s) Ogata, Kazuhiro; Futatsugi, Kokichi

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2002-020: 1-23

Issue Date 2002-08-20

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8399

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

 Formal Analysis of

the iKP Electronic Payment Protocols

 Kazuhiro Ogata and Kokichi Futatsugi

 August 20, 2002

 IS-RR-2002-020

Formal Analysis of the iKP Electronic Payment Protocols

 Kazuhiro Ogata
 NEC Software Hokuriku, Ltd.

 and
Japan Advanced Institute of Science and Technology (JAIST)

 ogatak@acm.org

 Kokichi Futatsugi
 Graduate School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
 kokichi@jaist.ac.jp

Abstract

 iKP (i-Key-Protocol, i = 1, 2, 3) is a family of electronic

payment protocols, developed in early 1995 by a group of
researchers at the IBM Research labs in Yorktown Heights
and Zurich, and one of the ancestors of well-known SET
standard. In this paper, we analyze iKP with respect that
they have a property that buyer and seller always agreed
on the payment whenever acquirer authorizes it. As the de-
signers of the iKP protocols point out, the 1KP protocol
does not possess the property. We found out, however, that
there exists a counter example to the 2KP and 3KP proto-
cols. Threfore we propose modification of the 2KP and 3KP

protocols so that they can possess the property. We have
formally verified that the modified 2KP and 3KP protocols
possess the property. In this paper, we describe the verifica-
tion that the modified 3KP protocol possesses the property.

Keywords: CafeOBJ, electronic commerce, the iKP elec-

tronic payment protocols, observational transition systems,

proof scores, rewriting, verification.

1. Introduction

 Nobody doubts that security protocols are a key to suc-
cess of sound development of the Internet, especially suc-
cess of electronic commerce. But, they are subject to sub-
tle errors that are especially difficult to reveal by traditional
testing methods and usual operations. Actually Lowe[15]
found out a serious security flaw of the Needham-Schroeder
Public-Key authentication protocol[21], or the NSPK pro-
tocol 17 years later since the protocol had been proposed.
This demonstrates that errors lurked in security protocols

are very subtle, and has motivated many researchers to ap-

ply formal methods to security protocols so as to analyze
them.

 iKP (i-Key-Protocol, i = 1, 2, 3)[4, 3] is a family of
electronic payment protocols, developed in early 1995 by a

group of researchers at the IBM Research labs in Yorktown
Heights and Zurich. They have affected the design of well-
known SET standard[20]. In this paper, we analyze iKP
with respect that they have a property that buyer and seller
always agree on the payment whenever acquirer authorizes
it, which is called agreement property in this paper. As the
designers of the iKP protocols point out, the 1KP protocol
does not have the property. We found out, however, that
there exists a counter example to the 2KP and 3KP proto-
cols. Threfore we propose modification of the 2KP and 3KP

protocols so that they can possess the property. We have
formally verified that the modified 2KP and 3KP protocols

possess the property. In this paper, we describe the verifica-
tion that the modified 3KP protocol possesses the property.

 The verification has been done with CafeOBJ[5, 9].
CafeOBJ is an algebraic specification language in which ab-
stract machines or objects in object-orientation as well as
abstract data types can be described. The verification pro-
cess is roughly as follows. First the modified 2KP and 3KP

protocol have been abstracted to ease the verification, which
are called the AM2KP and AM3KP protocols. Next each of
the AM2KP and AM3KP protocols has been modeled as
an observational transition system (an OTS)[23, 22, 24] and
the OTS has been described in CafeOBJ. Then proof scores
to show that the AM2KP and AM3KP protocols possess
agreement property have been written in CafeOBJ and have

got executed by the CafeOBJ system. Writing proof scores
in algebraic specification languages was first advocated by
Goguen's group and developed for more than 15 years in

OBJ community[11, 13]. This paper also shows that the
approach can be applied to analyzing security protocols.

 The rest of the paper is organized as follows. Section 2

provides a summary of the iKP electronic payment proto-
cols. Section 3 defines agreement property and shows some
counter examples with respect to the property. We propose
modificatoin of the 2KP and 3KP protocols so that they can

possess the property in Sect. 4. In Sect. 5, we describe how
to model the modified 3KP protocol. In the section, we first
abstract the modified iKP protocols to ease the verification,
which are called the AMiKP protocols. We next write ob-

servational transition systems (oTS's) and how to describe
oTS's in CafeOBJ. We finally describe the OTS modeling
the AM3KP protocol and its CafeOBJ document in the sec-
tion. Section 6 describes the verification that the AM3KP

protocol possesses agreement property. Section 7 mentions
the related work, and finally we conclude with Sect. 8.

2. The iKP Electronic Payment Protocols

 iKP (i-Key-Protocol, i = 1, 2, 3)[4, 3] is a family of
electronic payment protocols, developed in early 1995 by
a group of researchers at the IBM Research labs in York-
town Heights and Zurich. Afterward it was incorporated
into the "Secure Electronic Payment Protocols (SEPP)," a
short-lived standardization effort by IBM, MasterCard, Eu-
ropay and Netscape. SEPP, in turn, was a key starting

point for "Secure Electronic Payments (SET)," the joint
VISA/MasterCard standard for credit card payments[20]. In
fact, SET will retains many of the iKP-esque features.

 All iKP protocols are based on the existing credit-card

payment system. The parties in the payment system are
show in Fig. 1. The iKP protocols deal with the payment
transaction only (namely the solid lines in Fig. 1) and there-
fore involve only three parties called B (Buyer), S (Seller)
and A (Acquirer). Note that A is not the acquirer in the fi-
nancial sense, but a gateway to the existing credit card clear-
ing/authorization network.

 The payment system is operated by a payment system

provider who maintains a fixed business relationship with a
number of banks. Banks act as credit card (account) issuer
to buyers, and/or as acquirers of payment records from mer-
chants (sellers). It is assumed that each buyer receives its
credit card from an issuer, and is somehow assigned (or se-
lects) an optional PIN as its common in current credit card
systems. In 1KP and 2KP, payments are authorized only
by means of the credit card number and the optional PIN
(both suitably encrypted), while, in 3KP, a digital signature
is used, in addition to the above. A seller signs up with the

payment system provider and with a specific bank, called
an acquirer, to accept deposits. Clearing between acquirers
and issuers is done using the existing financial networks.

 All iKP protocols are based on public key cryptogra-

2

Payment System Provider

Issuer
Clearing

Acquirer

Buyer
Payment

Seller

Figure 1. Generic model of a payment system

phy, and each acquirer A has a secret key SKA that enables
signing and decryption. In this paper, for brevity, we as-
sume that its public counterpart PKA that enables signa-
ture verification and encryption is securely conveyed to ev-
ery buyer and seller participating the protocols via any of
a number of key distribution mechanisms. Each seller S in
2KP/3KP and each buyer B in 3KP has a secret/public key-

pair (SKS, PKs) and (SKS, PKs), respectively. We also
assume that each seller's public key is securely conveyed to
every acquirer and buyer in 2KP/3KP, and that each buyer's

public key is securely conveyed to every acquirer and seller
in 3KP.

 Cryptographic primitives used in the protocols are as fol-
lows:

• R(•) : A strong collision-resistant one-way hash func-
 tion that returns strong pseudo-random values.

• 9-1k (K, .) : A one-way hash function requiring in ad-
 dition to collision-resistance, no information leakage

 with respect to its other arguments, if the first argu-
 ment K is chosen at random.

 • Sx(•) : Public-key encryption with PKx, performed
 in a way to provide both confidentiality and some kind

 of computational message integrity.

 • Sx(•) : Signature computed with SKx.

 Figure 2 shows the three iKP protocols. Parts enclosed
by [2,3...] and [3...] are ignored for 1KP and 2KP respec-
tively. The main difference between 1, 2 and 3KP is the
increasing use of digital signatures as more of the parties
involved possess a public/secret key pair.

 Quantities occurring in the protocols are as follows:

 • SALTB : Random number generated by B. Used to

 salt DESC and thus ensure privacy of order informa-
 tion (DESC) on the S to A link; also used to provide
 freshness of signatures.

Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sign

AUTHPRICE, IDs, TIDs, DATE, NONCEs, IDB, 71 k (SALTB, DESC) [2,37-1(V), 7-1(VC)]
IDs, TIDE, DATE, NONCEs,'7-l(Common) [2,37-1(V), 7-l(VC)]
AUTHPRICE, 'H (Common) ,BAN, RB, [PIN],EXPIRATION

SA (SLIP)
SA(RESPCODE, 1-1(Common))
Ss (7-1 (Common))
S (EncSlip, 94 (Common)))

Starting information of parties:

B

S

A

DESC, AUTHPRICE, BAN, EXPIRATION, PKA, [PIN] [2,3PKs, [3SKB]]
DESC, AUTHPRICE, PKA, [2,3SKs, [3PKB]]
SKA, PKA, [2,3PKs, [3PKB]]

Protocol flows:

Initiate:

Invoice:

Payment:

Auth-Request:

Auth-Response:

Confirm:

B

S
B

S

A
S

—4

--4

S
B

S
A

S
B

•

•

•

•

•

•

•

•

•

•

•

•

SALTB, IDB
Clear, [2,3Sigs]
EncSlip, [3 Sign]
Clear, 7-1k (SALTB, DESC), EncSlip, [2,3Sigs, [3
RESPC ODE, Sigh
RESPCODE, Sigh, [2,3VIVC]

Sign]]

Figure 2. iKP protocols

• AUTHPRICE : Amount and currency.

• DATE : Seller's date/time stamp, used for coarse-

 grained payment replay protection.

• NONCEs : Seller's nonce (random number) used for
 more fine-grained payment replay protection.

• IDs : Seller ID.

• TIDE : Transaction ID.

• DESC : Description of purchase/goods, and delivery

 address. Includes payment information such as credit
 card name, bank identification number, and currency.

 Defines agreement between buyer and seller as to what
 is being paid for in this payment transaction.

• BAN : Buyer's Account Number such as credit card
 number.

• EXPIRATION : Expiration date associated with

 Buyer's Account Number.

• RB : Random number chosen by buyer to form IDB . It

 must be random in order to serve as proof to the buyer

 that the seller agreed to the payment.

• IDB : A buyer
7-1 (RB , BAN).

pseudo-ID computed as IDB =

• RESPCODE : Response from the clearing network:

 YES/NO or authorization code.

• PIN : Buyer PIN.

• V : Random number generated by seller in 2KP/3KP

 for use as a proof that seller has accepted payment.

• VC : Random number generated by seller in 2KP/3KP

 for use as a proof that seller has not accepted payment.

 We are about to describe how the iKP protocols work.

Before each protocol starts, each party has the information
as shown in Fig. 2. Each buyer B has an account number
BAN and associated EXPIRATION, both known to the

payment system. B may also have a secret PIN that is also
known (possibly under a one-way function image) to the

payment system.

Initiate: Buyer forms IDB by generating a random num-
ber RB and computing IDB = 7-lk(RB, BAN). Buyer gen-
erates another random number SALTB to be used for salt-

3

ing the hash of merchandise description (DESC) in

quent flows. Buyer sends Initiate flow.

subse-

Invoice: Seller retrieves SALTB and IDB from Initi-
ate, and obtains DATE and generates a random quantity
NONCEE. The combination of DATE and NONCEE is
used later by A to uniquely identify this payment. Seller
then chooses a transaction ID TIDE that identifies the
context and computes 7-tk (SALTB, DESC). In 2KP/3KP,
seller also generates two random values V and VC, and
then computes 7-1(V) and 7-1(VC). Seller forms Common
as defined above and computes 3-1(Common). In 2KP/3KP,
seller also computes Sigs (= S(7-l(Common))). Finally
seller sends Invoice.

Payment: Buyer retrieves Clear from Invoice and val-
idates DATE within a pre-defined time skew. Buyer
computes 7-1k (SALTB, DESC) and 7-1(Common), and
checks it matches the corresponding value in Clear. In
2KP/3KP, buyer also validates the signature retrieved from
Invoice using PKs. Next buyer forms SLIP as de-
fined in Fig. 2 and encrypts it using PKA (EncSlip =
EA(SLIP)). In 3KP, buyer also computes Sign (=
SB(EncSlip,7-1(Common))). Finally buyer sends Pay-
ment.

Auth-Request: In 3KP, seller validates the signature
retrieved from Payment using PKB. Seller forwards
EncSlip (and also Sign in 3KP) along with Clear and
?lk (SALTB, DESC) (and also Sigs in 2KP/3KP) as Auth-
Request.

Auth-Response: Acquirer extracts Clear, EncSlip and
7-lk (SALTB, DESC) (and also Sigs in 2KP/3KP and fur-
thermore Sign in 3KP) from Auth-Request. Acquirer then
does the following:

1. Extracts IDs, TIDE, DATE, NONCEE and the value
 h1 presumably corresponding to 7L(Common) from
 Clear. In 2KP/3KP, also extracts 7-1(V) and 7-1(VC).

 Acquirer checks for replays, namely makes sure that
 there is no previously processed request with the same

 quadruple (IDs, TIDE, DATE, NONCEs).

2. Decrypts EncSlip. If decryption fails, acquirer as-
 sumes that EncSlip has been altered and the transac-

 tion is therefore invalid. Otherwise, acquirer obtains
 SLIP and, from it, extracts AUTHPRICE, h2 (cor-

 responding to 7-1(Common)), BAN, EXPIRATION,
 RB and optionally PIN.

3. Checks that h1 and h2 match.

4

 AMINIIMIMME

4. Reconstructs Common, computes 7-i (Common) and
 checks that it matches h1.

5. In 2KP/3KP, validates Sigs using PKs.

6. In 3KP, validates Sign using PKB.

 7. Uses the credit card organization's existing clearing
 and authorization system to obtain on-line authoriza-

 tion of this payment. This entails forwarding BAN,
 EXPIRATION, PIN (if present), price, etc. as dic-

 tated by the authorization system. Upon receipt of a
 response RESPCODE from the authorization system,

 acquirer computes a signature on RESPCODE and
7-1(Common).

Finally acquirer sends Auth-Response to seller.

Confirm: Seller extracts RESPCODE and the acquirer's
signature from Auth-Response. Seller then validates the

signature using PKA and forwards both RESPCODE and
the signature as Confirm. In 2KP/3KP, either V or VC is

also included in Confirm depending on RESPCODE.

3. Agreement Property

 There are several properties that electronic payment pro-

tocols such as the iKP protocols must have. For example

they must make it impossible for intruders or malicious sell-
ers to launch replay attack. The property that we deal with

in this paper is as follows:

Buyer and seller always agreed on the payment

whenever acquirer authorizes it.

The property is called agreement property in this paper.
 In the iKP protocols, acquirer must receive valid Auth-

Request in the sense described in the previous section, no
matter who has generated, so that she/he can have the ex-
isting authorization system check the payment. Moreover
that buyer and seller agreed on the payment (namely the
valid Auth-Request) can be stated as they have generated
Initiate and Payment, and Invoice and Auth-Request cor-
responding to the valid Auth-Request respectively. There-
fore agreement property can be restated as follows:

Involved buyer and seller have always gener-

ated Initiate and Payment, and Invoice and
Auth-Request corresponding to the valid Auth-

Request respectively whenever acquirer receives
valid Auth-Request, no matter who has gener-

ated.

 Do all the iKP protocols have this property? The answer

is NO!

(1) In 1KP Clear' and EncSlip' are Clear and Enc
tively.

Initiate:

Invoice:

Payment:

Auth-Request:

 Auth-Request':

Auth-Response:

IB
S
IB
S
IS(S)
A

S

IB

S

A

A

S

Slip replaced AUTHPRICE with AUTHPRICE

•

•

•

•

•

•

•

SALTIB, ID IB
Clear
EncSlip
Clear, I-1k (SALT/B, DES C), EncSlip
Clear', 7-1k (SALTIB, DESC), EncSlip'
RESP CODE, Sigh

' respec -

(2) In 3KP

 Initiate: IB —* S :SALTIB, IDB
 Invoice:S -- IB :Clear, Sigs

 Auth-Request: IS(S) -- A :Clear, 7-1 (SALT/B, DESC), EncSlip, Sigs, SigJB
 Auth-Response: A --~ S : RESPCODE, Sigh

Suppose that there exists an intruder that is also a legitimate principal. IB and IS stand for the intruder acting as a
buyer and a seller respectively. IS(S) and IB(B) mean that IS and IB impersonate S and B respectively.

Figure 3. Counter examples

 As the designers of the iKP protocols point out, 1KP
does no have the property. Although you can easily gener-
ate counter examples for 1KP, one of the interesting counter
examples is shown in Fig. 3 (1). We assume that there exits
an intruder that can also act as a legitimate principal in the

protocols. The intruder can eavesdrop any message flowing
in the network and, from it, glean any quantity except those
cryptographically processed (namely it is assumed that the
cryptsystem used cannot be broken). In the example shown
in Fig. 3 (1), the intruder impersonates S and sends Auth-
Request' to A before A receives Auth-Request from S.
Since the intruder knows all the quantities to compute Auth-
Request', she/he can generate and send it to A, and then
A receives it as valid. If AUTHPRICE' is smaller than
AUTHPRICE, the payment would be disadvantageous to
S. Although S will notice that this payment transaction
is not valid by checking Sigh against RESPCODE and
7-1(Common) computed by himself/herself, he/she cannot

prove it invalid to others.
 How about 2KP/3KP? They seemingly possess the prop-

erty, but there exists an counter example shown in Fig. 3

(2). What advantage can the intruder get from the counter
example? We can imagine several. S might want to can-
cel IB's payment request due to some reason if S received
Payment from IB, although the cancelation is outside the
scope of the iKP protocols. In the counter example, A ac-
cepts Auth-Request regardless of S's intention.

 The intruder just wants to confuse the payment system.
S receives Confirm from A even if S has never sent the cor-
responding Auth-Request to A, and gets aware that some-
thing, no matter what it is, that does not follow the protocol
has been occurred. S might decide not to use the payment

system because S cannot believe the payment system any

more. Getting worse, the media cover this unexpected be-

havior of the payment system, and more people stop making

use of the payment system. This is clearly disadvantageous

to the payment system.

 If possible, don't you think that electronic payment pro-

tocols must have agreement property? In the following sec-

tions, we propose a modification of the iKP protocols and
formally verify that the modified 3KP protocol possesses

the property.

4. Modification of the iKP Protocols

 We propose two modifications to the iKP protocols.

 The reason why the counter example shown in Fig. 3 (2)
can be occurred is that IB receives Invoice and gains all

the quantities to generate valid Auth-Request. If S newly
makes another signature when it sends Auth-Request, not
reusing Sigs used for sending Invoice, then the counter ex-
ample cannot be occurred. Threfore the first modification
is making a different signature for sending Auth-Request
than that used for sending Invoice.

 The second modification is adding the involved buyer's
ID into Common. This modification is not essential, but
makes it possible to ease the verification described later.

 Figure 4 shows the modified iKP protocols. In the mod-
ified iKP protocols, S is used as seller's ID instead of IDs.
The modification is as follows. B as buyer's ID is added
into Common. Sig2s is newly introduced. It is used for
sending Auth-Request instead of Sigs.

5

Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sig2s

Sign

AUTHPRICE, S, B, TIDE, DATE, NONCEs, IDB, 71,E (SALTB, DESC) [2,3R (v), it (VC)]
IDE, TIDE, DATE, NONCEs, 7-l(Common) [2,37 (V), (VC)]
AUTHPRICE, 7-1(Common),BAN, RB, [PIN],EXPIRATION

EA (SLIP)
SA (RESPCODE, 71 (Common))
Ss (7-1 (Common))
Ss CH (Common) ,EncSlip)
SB (EncSlip, 'l (Common)))

Protocol flows:

Initiate:

Invoice:
Payment:

Auth-Request:

Auth-Response:

Confirm:

B

S

B

S

A

S

S

B

S

A

S
B

•

•

•

•

•

•

•

•

•

•

SALTB, IDB
Clear, [2,3Sigs]
EncSlip, [3SigB]
Clear, 7-1k (SALTB, DESC), EncSlip, [2,3Sig2s, [
RESPCODE, Sigh
RESPCODE, Sigh, [2,3VIVC]

3S1gB]]

Figure 4. Modified iKP protocols

5. Modeling the Modified 3KP Protocol

 First we abstract the modified iKP protocols so that we
can reasonably verify that the modified 3KP protocol has

agreement protocol. Next observational transition systems

used for modeling the protocol and how to describe such

models in CafeOBJ are written. Finally how to model

the abstraction of the modified 3KP protocol as an obser-

vational transition system is written and its description in

CafeOBJ is shown.

BAN is used and the remaining two are deleted. DESC is

deleted because it seems irrelevant to agreement property,

and SALTB is removed because it is primarily used for salt-

ing DESC. Moreover Confirm is irrelevant to agreement

property as well, and Confirm message flow is deleted.
 Figure 5 shows the AMiKP protocols.

 Since the abstraction done is simply deleting some quan-

tities, if we verify that the AM3KP protocol has agreement

property, then we are assured that the modified 3KP proto-
col really does.

5.1. Abstraction of the Modified iKP Protocols 5.2. Observational Transition Systems

 Since the (modified) iKP protocols should have other

properties such as replay attack protection than agreement
property, messages exchanged between principals includes
information that is not directly needed to possess the prop-
erty. Therefore we first abstract the modified iKP protocols
so that we can reasonably verify that the modified 3KP pro-
tocol has the property.The abstraction is called the AMiKP

protocols.
 AUTHPRICE, 71(V) and 7-l(VC) are removed because
they are most likely irrelevant to agreement property. Al-
though TIDs, DATE and NONCEE are also used so that
S can remember which buyer S is communicating with us-
ing Common including these quantities, they are removed
because buyer's ID is included in Common. BAN, PIN
and EXPIRATION are used so that acquirer can check
that the credit card is valid. In the AMiKP protocols, only

Models We assume that there exists a universal state
space called T. You can imagine that an element, called a
state, of T corresponds to a snapshot of the universe. When
we describe a system, the system is basically modeled by
observing only quantities that are relevant to the system and
that interest us from the outside of each state of T. An ob-
servational transition system[23, 24, 251, or an OTS can be
used to model a system in this way.

 An OTS S = (0,1, T) consists of:

• 0 : A set of observations. Each observation o E 0
 is a function o : T —+ D mapping each v E T into

 some typed value in D (D may be different for each
 observation). The value returned by an observation (in

 a state) is called the value of the observation (in the
 state).

6

Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sig2s

Sign

S, B, IDB

7-1(Common)
1-l(Common) , BAN, RB

SA (SLIP)
SA(RESPCODE, 71(Common))
Ss (N(Common))
SsCH(Common) , EncSlip)
SB(EncSlip, 7-1 (Common)))

Protocol flows:

Initiate:

Invoice:

Payment:

Auth-Request:

Auth-Response:

B

S

B

S

A

-- 4

S

B

S

A

S

•

•

•

•

•

•

•

•

IDB

Clear, [2,3Sigs]
EncSlip, [3 Sign]
Clear, EncSlip, [2,3Sig2s, [
RESP CODE, Sigh

3S1gB]]

Figure 5. The AM iKP protocols

Given an OTS S and two states v1, v2 E T, the equality

between two states, denoted by v1 =s v2, with respect

to S is defined as follows:

vl =S 1)2 iff Vo E (7.0(vl) = 00)2)1

where =' in o(vi) = o(v2) is supposed to be well de-
fined for the range of each o E 0. S may be removed
from =s if it is clear from the context.

• I : The initial condition. This condition specifies the

 initial value of each observation that defines initial

 states of the OTS.

• 1: A set of conditional transition rules. Each tran-
 sition rule T E 'T is a relation between states pro-
 vided that, for each state v E T, there exists a state
 v' E T, called a successor state, such that T(v, v') and
 moreover, for each state v1, v2, vi, v2 E T such that
 v1 =S V2, T(V1, el) and T(v2, v2), vi =s v. T can

 be regarded as a function on equivalent classes of T
 with respect to =s. Therefore, we assume that T(v)

 denotes the representative element of the equivalent
 class the successor states of v with respect T belong

 to.

 The condition cT for a transition rule T E T is called
 the effective condition. Given a state, its truth value
 can be determined by only the values of observations in

 the state. Predicates of this kind are called state predi-
 cates. Given a state v E T, c.- is true in v, namely T is

 effective in v, iff v Os T(V).

 Multiple similar observations or transition rules may be
indexed. Generally, observations and transition rules are de-
noted by oi1,...,i and 'r 1 i , respectively, provided that
m, n > 0 and we assume that there exist data types Dk such
that k E Dk (k = il, ... , i„i, jl, ... , jn). For example, an
integer array a possessed by a process p may be denoted by
an observation ap, and the increment of the ith element of
the array may be denoted by a transition rule incap,i.

 An execution starts from one initial state and goes on
forever; in each step of execution some transition rule is se-
lected nondeterministically and executed. Nondeterministic
selection is constrained by the following fairness rule: ev-
ery transition rule is selected infinitely often. Given an OTS,
a set of infinite sequences of states is obtained from execu-
tion, constrained by the fairness rule, of the OTS. Such an
infinite sequence of states is called an execution of the OTS.
More specifically, an execution of an OTS S is an infinite
sequence so, s1, ... of states satisfying:

 • Initiation : For each o E 0, o(so) satisfies I.

 • Consecution: For each i E {0,1, ...}, si+1 =8 T(Si)
 for some T E T.

 • Fairness : For each T E T, there exist an infinite num-
 ber of indexes i E {0, 1, ...} such that si+1 =s T(si).

A state is called reachable with respect to S if it appears in
an execution of the OTS.

Verification Important properties that an OTS may have
are basically classified into two classes: safety and liveness

7

(or progress) properties. Since non-overcharge property is
a safety property, we only describe safety properties and
how to prove that an OTS has a safety property in this pa-

per. Safety properties are defined as follows: a predicate
 p : T -+ {true, false} is a safety property with respect to S
iff p is a state predicate and p(v) holds for every reachable
v E T.

 If we prove that an OTS has a safety property p, the fol-
lowing induction is mainly used:

• Base case: For any state v E T in which each obser-
 vation o E 0 satisfies I, we show that p(v) holds.

• Inductive step: Given any reachable state v E T such
 that p(v) holds, we show that, for any transition rule

T E T, p(r(v)) also holds.

5.3. Observational Transition Systems in CafeOBJ

 CafeOBJ[5, 9] is mainly based on two logical founda-
tions: initial and hidden algebra. Initial algebra is used
to specify abstract data types such as integers, and hidden
algebra[12] to specify abstract machines. There are two
kinds of sorts (corresponding to types in programming lan-

guages) in CafeOBJ. They are visible and hidden sorts. A
visible sort represents an abstract data type, and a hidden
sort the state space of an abstract machine. There are ba-
sically two kinds of operations to hidden sorts. They are
action and observation operations. An action operation can
change a state of an abstract machine. It takes a state of an
abstract machine and zero or more data, and returns another

(possibly the same) state of the abstract machine. Only ob-
servation operations can be used to observe the inside of an
abstract machine. An observation operation takes a state of
an abstract machine and zero or more data, and returns a
value corresponding to the state. An action operation is ba-
sically specified with equations by describing how the value
of each observation operation changes relatively based on
the values of observation operations in a state after execut-
ing the action operation in the state.

 Declarations of visible sorts are enclosed with [and] ,
and those of hidden ones with * [and] *. Declarations of
observation and action operations start with bop or bops,
and those of other operations with op or ops. After bop
or op (or bops or ops), an operator is written (or more
than one operator is written), followed by : and a sequence
of sorts (i.e. sorts of the operators' arguments), and ended
with —> and one sort (i.e. sort of the operators' results).

Definitions of equations start with eq, and those of condi-
tional ones with ceq. After eq, two expressions, or terms
connected by = are written, ended with a full stop. After
ceq, two terms connected by = are written, followed by if
and a term denoting a condition, and ended with a full stop.

8

 The CafeOBJ system, an implementation of CafeOBJ,
rewrites (reduces) a given term by regarding equations as
left-to-right rewrite rules. This executability makes it pos-
sible to simulate described systems and to verify that they

possess some desired properties.
 Basic units of description by CafeOBJ are modules.

Modules may have parameters, and generic lists, etc. can
be described. Attributes such as associativity and commu-
tativity may be given to operations, and sets and bags (mul-
tisets) can be conveniently declared. Each operation can
be given local strategy as its attribute, and rewriting can be
controlled to some extent. We can define the syntax of terms
by declaring mix-fix operators. Thus, CafeOBJ has a lot of
functionalities. We will mention other functionalities we do
not here if we encounter them.

 An OTS S is described in CafeOBJ.
 The universal state space T is denoted by a hidden sort,

say Sys, by declaring * [Sys] *.
 An observation oil,...,im E 0 is denoted by a CafeOBJ

observation operation. We assume that data types Dk (k =
... , a„L) and D are described in initial algebra and there

exist visible sorts Sk (k = il, ... , im) and S correspond-
ing to the data types. The CafeOBJ observation operation
denoting oil is declared as follows:

bop o : Sys Si1 ... Si,n -> S

 The initial condition I, the value of each observation in
any initial state, is described by declaring a constant (an op-
erator without any arguments) denoting any initial state and
specifying the value of each observation in the state with
equations. First, the constant init denoting any initial
state is declared as follows:

op init : -> Sys

Suppose that the initial value of oil ,...,im is f (ii, . . . , i.),
this can be described in CafeOBJ as follows:

eq o (init, Xs1,... , Xi,n) = f(Xt,... , X., (.

where Xk (k = i 1 i ... , ini) is a CafeOBJ variable which
sort is Sk, and f (Xi1 , ... , Xj) means a term (consisting
of Xil, ... , Xi„L) corresponding to f (ii, ... , im).

 A transition rule Tjl E T is denoted by a CafeOBJ
action operation. We assume that data types Dk (k =

... , j,,) are described in initial algebra and there exist
visible sorts Sk (k = ji, ... , jr,) corresponding to the data
types. The CafeOBJ action operation denoting Tj jn is
declared as follows:

bop a : Sys S71 ... SJn -> Sys

 If Tj1 ..., jn is executed in a state in which it is effective,

the value of oil ,,..,i,n may be changed, which can be de-

scribed in CafeOBJ generally as follows:

 ceq o (a (S , X J 1 , ... ,Xj) , Xi 1 , ... , X i m)

 if c-a (S, XJ1 , ... , Xjn) .

where e—a (S, Xj1 , ... , Xjn , Xi1 , ... , Xim) means a term

(consisting of S, Xi, , ... , Xjn , X~1, ... , Xim) correspond-
ing to the value of oi1....,im in the successor state,
and c—a (S, Xj1, ... , Xjn) means a term (consisting of
S, Xj1, ... , Xjn) corresponding to cTj1 jn .

If T~1i,,,~„is executed in a state in which it is not effec-
tive, the value of any observation is not changed. Therefore,
all we have to do is to declare the following equation:

 ceq a(S,Xj1,...,Xj) = Sif not c-a(S,Xj1,...,Xjn) .

 If the value of oil is not affected by executing
 in any state (regardless of the truth value of

c,.jl jn), the following equation is declare:

eqo(a(S,XJ1,...,Xjn),Xi1,...,Xim) =o(S,Xi1,...,Xim) .

5.4. Modeling

 Let us model as an OTS the AM3KP protocol. First data

structures used in the protocol are defined in CafeOBJ.

Data Structures Used to Model Abstract 3KP Module
BAN defines BAN's. The signature (in the context of alge-
braic specification) is as follows:

 [Ban]
 op _=_ : Ban Ban -> Bool {comm}

CafeOBJ provides built-in operator _==_, but it could be
sometimes troublesome especially for verification. There-
fore, for each data structure used to model the AM3KP pro-
tocol, we define operator _=_ that checks if two values are
equal. The operator is given operator attribute comm declar-
ing that the operator is commutative. Necessary equations
for defining operator _ should be described. For visible
sort Ban, we have the following equation:

eq (N:Ban = N) = true .

where N is a CafeOBJ variable which sort is Ban. Such a

equation is called the basic equation for the operator. Every

visible sort corresponding to data structure used to model

the AM3KP protocol has this equation.

 Module RCODE defines RESPCODE's. The signature is as

follows:

 [Rcode]
 ops yes no : -> Rcode
op : Rcode Rcode -> Bool {comm}

 Modules PKEY and SKEY define public and secret keys

respectively. We have visible sorts Pkey and Skey, and

the equality operator for each sort.
 Module BUYER defines buyers. The signature is as fol-

lows:

9

[Buyer]
op b
op ban
op pk
op sk
op =

Ban -> Buyer
Buyer -> Ban
Buyer -> Pkey
Buyer -> Skey
Buyer Buyer -> Bool {comm}

Given a buyer, operators ban, pk and sk return the corre-
sponding BAN, public key and secret key, respectively. On
the other hand, given a BAN, operator b returns the corre-
sponding buyer.

 Module Seller defines sellers. The signature is as fol-
lows:

 [Seller]
 op pk : Seller -> Pkey

 op sk : Seller -> Skey
 op _=_ : Seller Seller -> Bool {comm}

 Module ACQUIRER defines acquirers. The signature is
as follows:

 [Acquirer]
 op pk : Acquirer -> Pkey

 op sk : Acquirer -> Skey
 op _=_ : Acquirer Acquirer -> Bool {comm}

 Module RAND defines random numbers. The signature
is as follows:

 [Rand]
 op nxt : Buyer Rand -> Rand

 op gtr : Rand -> Buyer
 op rnd : Rand -> Rand
 op _=_ : Rand Rand -> Bool {comm}

Operator nxt denotes a perfect random number generator.
The first argument indicates the buyer who has generated
the random number, and the second argument can be re-

garded as something like a seed to generate the random
number. Operators gt r and rnd are projection functions of
a random number, returning the first and second arguments
respectively.
 Module HASHVALUE defines values returned by hash
functions 7-1 and 1-1k. Two visible sorts Hban and Hcom,

 and their equality operators are declared. Hban corre-
sponds to ?tk (RB, BAN), and Hcom to 7-1(Common). The
data constructors for the hash values are defoned after the
definition of module COMMON because undefined symbols
cannot be used in CafeOBJ, or forward reference is prohib-
ited in CafeOBJ.

 Module COMMON defines Common's. The signature is
as follows:

[Common]
 op com : Seller Buyer Hban -> Common

 op s : Common -> Seller
 op b : Common -> Buyer
 op hban : Common -> Hban
 op = : Common Common -> Bool {comm}

Operator com is the data structure, and the following three
operators are the projection functions.

 Module HCOM defines hash values returned by applying
7-1 to Common's. The data constructor h is declared. Mod-
ule HBAN defines hash values returned by applying 7lx to

pairs of random numbers and BAN's. The data constructor

h and the projection function r returning the random num-
ber are declared.

 Module CLEAR defines Clear's. The signature is as fol-
lows:
 [Clear]
 op cl : Hcom -> Clear

 op hcom : Clear -> Hcom
 op = : Clear Clear -> Bool {comm}

Operator c 1 is the data constructor, and the following oper-
ator is the projection function.

 Module SLIP defines SLIP's. The signature is as fol-
lows:

•

 [Slip]
 op slp : Hcom Ban Rand -> Slip

 op hcom : Slip -> Hcom
 op ban : Slip -> Ban
 op rand : Slip -> Rand
 op _=_ : Slip Slip -> Bool {comm}

Operator s1p is the data constructor, and the following
three operators are the projection functions.

 Module ESLP defines the ciphers obtained by encrypting
SLIP's with a public key. The signature is as follows:

[Eslp]
 op enc : Pkey Slip -> Eslp

 op pk : Eslp -> Pkey
 op slip : Eslp -> Slip
 op _=_ : Eslp Eslp -> Bool {comm}

Operator enc is the data constructor, and the following two
operators are the projection functions.

 Module S I GA defines signatures (in the context of cryp-
tography) generated by acquirers. The signature (in the con-
text of algebraic specification) is as follows:

[Siga]
 op sig : Skey Rcode Hcom -> Siga

 op sk : Siga -> Skey
 op rc : Siga -> Rcode
 op hc : Siga -> Hcom
 op _=_ : Siga Siga -> Bool {comm}

Operator sig is the data constructor, and the following
three operators are the projection functions.

 Module S I G S defines signatures (in the context of cryp-
tography) generated by sellers for sending Invoice. The
signature (in the context of algebraic specification) is as fol-
lows:
 [Sigs]
 op sig : Skey Hcom -> Sigs

 op sk : Sigs -> Skey
 op hc : Sips -> Hcom
 op = : Sips Sips -> Bool {comm}

Operator s i g is the data constructor, and the following two
operators are the projection functions.

 Module 51G52 defines signatures (in the context of
cryptography) generated by sellers for sending Auth-
Request. The signature (in the context of algebraic speci-
fication) is as follows:

[Sigs2]
 op sig : Skey Hcom Eslp -> Sigs2

 op sk : Sigs2 -> Skey
 op hc : Sigs2 -> Hcom
 op es : Sigs2 -> Eslp
 op = : Sigs2 Sigs2 -> Bool {comm}

Operator s i g is the data constructor, and the following
three operators are the projection functions.

 Module S I GB defines signatures (in the context of cryp-
tography) generated by buyers. The signature (in the con-
text of algebraic specification) is as follows:

 [Sigb]
 op sig : Skey Eslp Hcom -> Sigb

 op sk : Sigb -> Skey
 op he : Sigh -> Hcom
 op es : Sigb -> Eslp
 op _=_ : Sigb Sigb -> Bool {comm}

Operator s i g is the data constructor, and the following
three operators are the projection functions.

 Module MSG defines messages exchanged by principals
in abstract 3KP protocol. The main part of the signature is
as follows:

[Msg]
 op im : Buyer Buyer Seller Hban -> Msg

 op vm : Seller Seller Buyer Clear Sips -> Msg
 op pm : Buyer Buyer Seller Eslp Sigb -> Msg
 op qm : Seller Seller Acquirer Clear Eslp

Sigs2 Sigb -> Msg
 op sm : Acquirer Acquirer Seller Rcode Siga -> Msg

Operators im, vm, pm, qm and sm are data constructors
for Initiate, Invoice, Payment, Auth-Request and Auth-
Response, respectively. The fist, second and third argu-
ments of each constructor means the generator, the source
and the destination of the corresponding message. The gen-
erator argument is a meta information that indicates who

generates the message. You can understand what any other
arguments of the constructors would be. Other than those
operators, we have operators (im?, vm?, pm?, qm? and
sm?) checking if a given message is a certain type of mes-
sages, and the projection functions. The projection func-
tions are, for a given message, those (ic, vc, pc, qc, sc)
returning the generator, those (is, vs, p, q s , ss) return-
ing the source, those (id, vd, pd, qd, sd) returning the
destination, hb a n returning ID B if any, clear returning
Clear if any, eslip returning EncSlip if any, rcode re-
turning RCODE if any, siga returning Sigh if any, sigs
returning Sigs if any, s i g s 2 returning Sig2s if any, and
s i gb returning Sign if any. We also have the equality op-
erator.
 The network with which messages are exchanged is
modeled as a bag (or multiset) of messages. Module
EQTRIV is needed for defining module BAG. We have visi-
ble sort TRIV and the equality operator in the module.

 Module BAG is a parameterized one with one parameter.
The formal parameter is D : : EQTRIV. The signature is as
follows:

 [Elt.D < Bag]
 op void : -> Bag

 op _,_ : Bag Bag -> Bag { assoc comm id: void }
 op _\in_ : Elt.D Bag -> Bool

CafeOBJ is order-sorted, meaning that you can define par-
tial ordering among sorts. By declaring E 1 t .D < Bag,

10

an element of bags can be regarded as a singleton bag. Op-

erator void denotes the empty bag. Operator _, _ is the
data constructor of bags. Other than comm, the operator is

given two more operator attributes ass o c and id: void.
The former means that the operator is associative, and the

latter that void is the identity of bags. Given an element

and a bag, operator _\ in_ checks if the bag includes the
element.

 Module INTRUDER defines an intruder. The intruder
acts as each of a usual buyer, a usual seller and a usual ac-

quirer. We have the following constants:

op ib

op is

op ia

-> Buyer

-> Seller

-> Acquirer

The intruder behaves basically following the Doleve-Yao

general intruder model[10]. What the intrude can do other
than as a usual principal in the protocol will be described.

 The intruder can eavesdrop any message flowing in the
network and glean information related to the protocol from
the message. Given a snapshot of the network, what in-
formation the intruder has gleaned is represented by the

collection data structure defined in parameterized module
COLLECTION with one parameter. The formal parameter
is D : : TRIV, where TRIV is a built-in module in which

one visible sort Elt is declared. The signature of module
COLLECTION is as follows:

 [Elt.D < Col]
 op _\in_ : Elt.D Col -> Bool

 Module NETWORK defines the network. The module im-

ports several other modules as follows:

pr(INTRUDER)
pr(BAG(MSG)
pr(COLLECTION(HCOM)
pr(COLLECTION(HBAN)
pr(COLLECTION(BAN)
pr(COLLECTION(RAND)
pr(COLLECTION(ESLP)
pr(COLLECTION(RCODE)
pr(COLLECTION(SIGA)
pr(COLLECTION(SIGS)
pr(COLLECTION(SIGS2)
pr(COLLECTION(SIGB)

*{sort Bag -> Network})

*{sort Col -> ColHcoms})
*{sort Col -> ColHbans})
*{sort Col -> ColBans})
*{sort Col -> ColRands})
*{sort Col -> ColEslps})
*{sort Col -> ColRcodes})
*{sort Col -> ColSigas})
*{sort Col -> ColSigss})
*{sort Col -> ColSigs2s})
*{sort Col -> ColSigbs})

CafeOBJ command pr is basically used to import mod-
ules. Other than module INTRUDER, a module is first in-
stantiated, a sort is renamed, and then the instantiated and
renamed module is imported. For example, module BAG
is instantiated with module MSG, creating a module defin-
ing bags of messages, the visible sort Bag in the created
module is renamed to Network, and then it is imported.
Visible sort Network is dedicated to the network with
which messages are exchanged in the protocol. Visible sorts
Co1X (X = Hcoms, Hbans, Bans, Rands, Eslps, Rcodes,
Sigas, Sigss, Sigs2s, Sigbs) correspond to quantities
gleaned by the intruder from the network.

 The signature of module NETWORK is as follows:

op

op

op

op

op

op

op

op

op

op

hcoms

hbans

bans

rands

eslps

rcodes

sigas

sigss

sigs2s

sigbs

Given a network,

hash values

ues obtained by applying 71K to pairs of random num-

bers and a I

RESPCODE's, signatures generated by acquirers, signa-

tures generated

generated by sellers for sending Auth-Request, and signa-
tures by buyers, respectively, gleaned by the intruder from

the network.

 We are about to describe equations defining those opera-

tors because they are a key to modeling the protocol. While

describing the equations, it is assumed that NW, M, HC, HN,

S, B, N, R, EP, C, GA, GS, GT and GB are CafeOBJ variables
which sorts are Network, Msg, Hcom, Hban, Seller,

Buyer, Ban, Rand, Eslp, Rcode, Siga, Sigs, Sigs2

and S i gb, respectively.

 The equations for defining operator hcoms are as fol-
lows:

Network -> ColHcoms
Network -> ColHbans
Network -> ColBans
Network -> ColRands
Network -> ColEslps
Network -> ColRcodes
Network -> ColSigas
Network -> ColSigss

 Network -> ColSigs2s
Network -> ColSigbs

obtained by applying 7-1 to BAN's, hash val-

 by applying 71K to pairs of random num-

E's, signatures generated by acquirers, signa-

Led by sellers for sending Invoice, signatures

 eq HC \in hcoms(void) = false .
 ceq HC \in hcoms(M,NW) = true

 if vm?(M) and HC = hcom(clear(M)) .
 ceq HC \in hcoms(M,NW) = true

 if pm?(M) and pk(ia) = pk(eslip(M)) and
HC = hcom(slip(eslip(M))) .

 ceq HC \in hcoms(M,NW) = true
 if qm?(M) and HC = hcom(clear(M)) .

ceq HC \in hcoms(M,NW) = true
 if qm?(M) and pk(ia) = pk(eslip(M)) and

HC = hcom(slip(eslip(M))) .
 ceq HC \in hcoms(M,NW) = HC \in hcoms(NW)
 if not(vm?(M) and HC = hcom(clear(M))) and

not(pm?(M) and pk(ia) = pk(eslip(M)) and
HC = hcom(slip(eslip(M)))) and

not(gm?(M) and HC = hcom(clear(M))) and
not(gm?(M) and pk(ia) = pk(eslip(M)) and

HC = hcom(slip(eslip(M)))) .

If the network does not have any message, the intruder
has not gleaned any hashed Common's from the network.
If the network includes Initiate or Auth-Request, the in-
truder can glean any hashed Common's in plain text. Be-
sides, if the network includes Payment or Auth-Request,
and EncSlip in the message happens to be encrypted by a

public key (namely pk (ia)) known by the intruder, then
the hashed Common occurring in the EncSlip can also be

gleaned. Otherwise, the intruder cannot glean any hash val-
ues.
 The equations for defining operator hbans are as fol-
lows:

eq HN

ceq HN

 if

ceq HN

 if

\in hbans(void)
\in hbans(M,NW)
im?(M) and HN =
\in hbans(M,NW)
not (im? (M) and

 = false .
 = true

hban(M) .
= HN \in hbans(NW)

HN = hban(M)) .

11

 The equations for defining operator bans are as follows:

 eq ban(ib) \in bans(void) = true .
 ceq N \in bans(void) = false if not (N = ban(ib)) .

 ceq N \in bans(M,NW) = true
 if pm?(M) and pk(ia) = pk(eslip(M)) and

 N = ban (slip (eslip (M))) .
 ceq N \in bans(M,NW) = true

 if qm?(M) and pk(ia) = pk(eslip(M)) and
 N = ban (slip (eslip (M)))

 ceq N \in bans(M,NW) = N \in bans (NW)
 if not(pm?(M) and pk(ia) = pk(eslip(M)) and

 N = ban (slip (eslip (M)))) and
not (gm?(M) and pk (ia) = pk (eslip (M)) and

 N = ban (slip (eslip (M)))) .

In any situation, the intruder knows his/her own BAN

(namely ban (ib)) as a buyer.
 The equations for defining operator rands are as fol-

lows:
 eq R \in rands(void) = false .

 ceq R \in rands(M,NW) = true
 if im?(M) and ib = gtr (r (hban (M))) and

 R = r(hban(M)) .
 ceq R \in rands(M,NW) = true

 if pm?(M) and pk(ia) = pk(eslip(M)) and
 R = rand(slip(eslip (M))) .

 ceq R \in rands(M,NW) = true
 if qm?(M) and pk(ia) = pk(eslip(M)) and

 R = rand (slip (eslip (M))) .
 ceq R \in rands(M,NW) = R \in rands(NW)

 if not (im?(M) and ib = gtr (r (hban (M))) and
 R = r(hban(M))) and

not (pm?(M) and pk(ia) = pk(eslip(M)) and
 R = rand (slip (eslip (M)))) and

not (gm?(M) and pk(ia) = pk(eslip(M)) and
 R = rand (slip (eslip (M)))) .

The second equation states that the intruder knows random
numbers generated by herself/himself.

 The equations for defining operator e s l p s are as fol-
lows:
 eq EP \in eslps(void) = false .

 ceq EP \in eslps(M,NW) = true
 if pm?(M) and EP = eslip(M) .

 ceq EP \in eslps(M,NW) = true
 if qm?(M) and EP = eslip(M) .

 ceq EP \in eslps(M,NW) = EP \in eslps(NW)
 if not (pm?(M) and EP = eslip(M)) and

not (gm?(M) and EP = eslip(M)) .

 The equations for defining operator r c o de s are as fol-
lows:
 eq C \in rcodes(void) = false .

 ceq C \in rcodes(M,NW) = true
 if sm?(M) and C = rcode(M) .

 ceq C \in rcodes(M,NW) = C \in rcodes(NW)
 if not (sm? (M) and C = rcode (M)) .

 The equations for defining operator s i ga s are as fol-
lows:
 eq GA \in sigas(void) = false .

 ceq GA \in sigas(M,NW) = true
 if sm?(M) and GA = siga(M) .

 ceq GA \in sigas(M,NW) = GA \in sigas(NW)
 if not(sm?(M) and GA = siga(M))

 The equations for defining operator s i g s s are as fol-
lows:
 eq GS \in sigss(void) = false .

 ceq GS \in sigss(M,NW) = true
 if vm?(M) and GS = sigs(M) .

 ceq GS \in sigss(M,NW) = GS \in sigss(NW)
 if not (vm?(M) and GS = sigs(M)) .

B

•

•

•

A

Intruder

S

•

•

•

S

B

Figure 6. The network as the intruder

 The equations for defining operator s i g s 2 s are as fol-
lows:
 eq GT \in sigs2s(void) = false .

 ceq GT \in sigs2s(M,NW) = true
 if qm?(M) and GT = sigs2(M) .

 ceq GT \in sigs2s(M,NW) = GT \in sigs2s(NW)
 if not (gm?(M) and GT = sigs2(M)) •

 The equations for defining operator s i gb s are as fol-
lows:
 eq GB \in sigbs(void) = false .

 ceq GB in sigbs(M,NW) = true
 if pm? (M) and GB = sigb(M) .

 ceq GB \in sigbs(M,NW) = true
 if qm?(M) and GB = sigb(M) .

 ceq GB \in sigbs(M,NW) = GB \in sigbs(NW)
 if not(pm?(M) and GB = sigb(M)) and

not (gm?(M) and GB = sigb(M)) .

 As described now, the intruder can eavesdrop any mes-
sage flowing in the network and, from it, glean any quan-
tity except those cryptographically processed. The network
is assumed to be completely under the intruder's control.
Therefore, the network can be regarded as the intruder her-
self/himself as shown in Fig. 6.

 All the intruder can do, other than those done by him/her

as a usual principal, is to fake messages using values

gleaned, as described now, from the network.
 In the modeling, we assume that there is one and only le-

gitimate acquirer, and every principal obtains his/her public
key securely. Module LEGITIMATEACQUIRER defines
the legitimate acquirer. We have two operators and one
equation as follows:

 op la : -> Acquirer
op check : Ban -> Rcode

 eq (la = ia) = false .

Constant la denotes the legitimate acquirer. Operator
check corresponds to that the acquirer uses the authoriza-
tion system to obtain on-line authorization of a payment.
The equation declares that the legitimate acquirer is differ-
ent from the intruder.

Observational Transition System to Model AM3KP

The universal state space T is denoted by hidden sort Pro-

tocol. To denote any initial state of the OTS, the following

constant is declared:

12

Alas

op init : -> Protocol

 We use two observations in the OTS. The corresponding
CafeOBJ observation operators are declared as follows:

 bop nw : Protocol -> Network
 bop rand : Protocol -> Rand

Operator rand denotes a perfect random number genera-
tor used in the protocol. As you can imagine, operator nw
denotes the network.

 We use, in the OTS, transition rules corresponding to

passing messages, which are basically classified into two
categories: one obeys the protocol, and the other fakes mes-

sages.
 The CafeOBJ action operators corresponding to transi-
tion rules obeying the protocol are as follows:

 bop sdim : Protocol Buyer Seller -> Protocol
 bop sdvm : Protocol Seller Msg-> Protocol
 bop sdpm : Protocol Buyer Rand Msg Msg -> Protocol
 bop sdqm : Protocol Seller Hban Msg Msg -> Protocol

bop sdsm : Protocol Msg-> Protocol

 Given a buyer and a seller, operator sdim corresponds
to that the buyer sends Invoice to the seller.

 Given a seller and a message, operator sdvm corre-
sponds to that the seller sends Invoice to a buyer if the net-
work includes the message, and the source and destination
of the message are the buyer and the seller respectively. The
conditoin does not include who has actually sent (created)
the message because the receiver of a message cannot gen-
erally decide who has actually sent the message. Therefore
who has actually sent the message may be the intruder. All

the receiver can do is to look at the source field of the mes-
sage and to expect that she/he is probably the sender.

 Given a buyer, a random number and two messages
ml, m2, operator sdpm corresponds to that the buyer sends
Payment to a seller if the following holds. The network
includes the two messages, ml is Initiate that the buyer has
sent to the seller, IDB is computed using the random num-
ber, m2 is Invoice which source is the seller and which des-
tination is the buyer, and m2 is the valid with respect to
ml as described in Sect. 2. The buyer may remember that
she/he has sent which messages to whom by storing them in
her/his own memory. In the modeling, that a buyer has sent
a message to a seller is decided by looking the creator and
destination fields of the message. This does not mean that

anyone can decide who has generated a message.
 Given a seller, a hashed BAN and two messages ml, m2,

operator s dqm corresponds to that the seller sends Auth-
Request to the legitimate acquirer if the following holds.
The network includes the two messages, ml is Invoice that
the seller has generated using the hashed BAN and sent to
a buyer, m2 is Payment which source and destination are
the buyer and the seller, m2 is the valid with respect to ml
as described in Sect. 2.

 Given a message, operator sdsm corresponds to that the
legitimate acquirer sends Auth-Response to a seller if the

network includes the message which source and destination

are the seller and the acquirer, and the message is valid as

described in Sect. 2.

 The transition rules faking messages are basically di-

vided into five classes, each of which fakes each type of

messages. The CafeOBJ action operators corresponding to

transition rules faking Initiate are as follows:

 bop fkiml : Protocol Buyer Seller Hash -> Protocol
 bop fkim2 : Protocol Seller Ban Rand -> Protocol

 The CafeOBJ action operators corresponding to transi-

tion rules faking Invoice are as follows:

 bop fkvml : Protocol Seller Buyer Hcom Sigs -> Protocol
 bop fkvm2 : Protocol Seller Buyer Hban Sigs -> Protocol
 bop fkvm3 : Protocol Seller Ban Rand Sigs -> Protocol
 bop fkvm4 : Protocol Seller Buyer Hcom -> Protocol
 bop fkvm5 : Protocol Seller Buyer Hban -> Protocol
 bop fkvm6 : Protocol Seller Ban Rand -> Protocol

 The CafeOBJ action operators corresponding to transi-

tion rules faking Payment are as follows:

 bop fkpml : Protocol Buyer Seller
 Eslp Sigb -> Protocol

 bop fkpm2 : Protocol Seller Ban
 Rand Hcom Sigb -> Protocol

 bop fkpm3 : Protocol Seller Ban Rand Sigb -> Protocol
 bop fkpm4 : Protocol Buyer Seller

 Eslp Hcom -> Protocol
 bop fkpm5 : Protocol Buyer Seller

 Eslp Hban -> Protocol
 bop fkpm6 : Protocol Seller Eslp Ban Rand -> Protocol
 bop fkpm7 : Protocol Seller Ban Rand Hcom -> Protocol
 bop fkpm8 : Protocol Seller Ban Rand -> Protocol

 The CafeOBJ action operators corresponding to transi-

tion rules faking Auth-Request are as follows:

bop fkgml

bop fkqm2

bop fkqm3

bop fkqm4

bop fkqm5

: Protocol Seller

: Protocol

: Protocol

Seller

 Hban

Seller

: Protocol Seller

: Protocol Seller

Hcom

Eslp Sigs2

 Buyer

Eslp Sigs2

 Ban

Rand Sigs2

 Hcom Eslp

 Buyer

 Hban Eslp

Ban Rand

 Hcom

 Eslp

 Buyer

Hban Eslp

Ban Rand

Hcom Eslp

 Buyer

 Hban

Sigb -> Protocol

Sigb -> Protocol

Sigb -> Protocol

Sigb -> Protocol

 Hban Eslp Sigb -> Protocol
bop fkqm6 : Protocol Seller Ban Rand Sigb -> Protocol
bop fkqm7 : Protocol Seller

 Eslp Sigs2 -> Protocol
bop fkqm8 : Protocol Seller

Hban Eslp Sigs2 -> Protocol
bop fkqm9 : Protocol Seller Ban Rand Sigs2 -> Protocol
bop fkgml0 : Protocol Seller Hcom Eslp -> Protocol
bop fkgmll : Protocol Seller

 Hban Eslp -> Protocol
bop fkgml2 : Protocol Seller Ban Rand -> Protocol

The CafeOBJ action operators corresponding to transi-

tion rules faking Auth-Response are as follows:

 bop fksml : Protocol Seller Rcode Siga -> Protocol
 bop fksm2 : Protocol Seller Rcode Hcom -> Protocol
 bop fksm3 : Protocol Seller Buyer Rcode

 Hban -> Protocol
 bop fksm4 : Protocol Seller Rcode Ban Rand -> Protocol

 Equations to define the action operators described now

are shown in Fig. 7 through Fig. 10. In the equations, P, B,

S, Ml, M2, R, N, HC, HN, EP, C, GA, GS, GT and GB are

CafeOBJ variables which sorts are Protocol, Buyer,

13

Seller, Msg, Msg, Rand, Ban, Hcom, Hban, Eslp,

Rcode, Siga, Sigs, Sigs2 and Sigb, respectively.

 The specification has 27 modules, and is approximately

of 850 lines. The main module in which the OTS modeling

abstract 3KP protocol is described is approximately of 300

lines.

6. Verification

 That the legitimate acquirer receives valid Auth-
Request implies that there exists the valid Auth-Request
in the network. Besides, that there exists a message created
by a principal implies that the principas has sent (generated)
the message. Therefore agreement property with respect to
the AM3KP protocol can be stated as follows:

Claim 0. For any

s2 : Seller, any bl

reachable p : Protocol, any s1
: Buyer, any rl : Rand,

not(si = is and bl = ib)
and

qm(s2,sl,la,cl(h(com(sl,bl,h(rl,ban(b1))))),
enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))),

ban(bl),rl)),

sig(sk(si),h(com(si,bl,h(rl,ban(bi)))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))),

ban(bl),rl))),
sig (sk (bl) ,

enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))),
ban(bl),rl)),

h(com(si,bl,h(rl,ban(bl)))))) \in nw(p)
implies
im(bl,bl,sl,h(rl,ban(bi))) \in nw(p)
and
vm(sl,sl,bl,cl(h(com(sl,bl,h(rl,ban(bl))))),

sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)
and

pm(bl,b1,51,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sip (sk (bl) ,

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl)),

h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)
and

gm(sl,si,la,cl(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(b1)))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl))),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl) , rl)) ,
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

The claim states that if, for any reachable state, there ex-

ists a valid Auth-Request message in the network, no mat-

ter who generates it, there always exist the corresponding

Initiate and Payment messages generated by the involved

buyer, and the corresponding Invoice and Auth-Request

messages generated by the involved buyer.

 To prove Claim 0, we need 17 more claims as lemmas.
The claims are as follows:

Claim 1. For

esl : Cipher,

any reachable p : Protocol, any

esl \in

Claim 2.

nl \in

eslps (nw (p)) implies pk(esl) = pk(la)

For any reachable p :

bans(nw(p))

Claim 3. For any

bl : Buyer, any sl

Protocol, any nl :

implies nl = ban(ib)

 reachable p : Protocol,

: Seller, any rl : Rand,

not(sl = is)

and
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl))) \in sigs2s(nw(p))

implies

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl))),

sig(sk(bl),
enc(pk(la),slp(h(com(sl,bl,h(r1,ban(b1)))),

ban(bl),rl)),
h(com(sl,bl,h(ri,ban(b1)))))) \in nw(p)

Claim 4. For

sl : Seller,
stl : Sigs2,

 any reachable

 any cll : Clear,
any sbl : Sigb,

gm(sl,is,la,cll,esl,stl,sbl)

Claim 5. For any

bl : Buyer, any si

p:

any

Protocol,

esl : Eslp,

\in nw(p) implies

Ban,

any

any

any

sl = is

 reachable p : Protocol,

s2 : Seller, any rl : Rand,

qm(s2,si,la,c1(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bi,h(ri,ban(bl)))),

enc(pk(la),slp(h(com(sl,b1,h(ri,ban(b1)))),
ban(bi),ri))),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(r1,ban(b1)))),

ban(bl),ri)),
h(com(sl,b1,h(rl,ban(bi)))))) \in nw(p)

implies

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),sip(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))),
ban(bl),ri))),

sip (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

Claim 6. For any

bl : Buyer, any si :

 reachable p : Protocol,

Seller, any rl : Rand,

any

any

not(sl = is)
and

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl))),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

implies
vm(sl,sl,bi,cl(h(com(sl,bl,h(rl,ban(bl))))),

sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

14

•

Claim 7. For any reachable p : Protocol, any

si : Seller, any bl : Buyer, any cll : Clear, any

ssl : Sigs,

vm(sl,is,bl,cll,ssl) \in nw(p) implies sl = is

Claim 8. For any reachable p : Protocol, any

bl : Buyer, any rl : Rand,

not(bl = ib)
 and

enc(pk(la),slp(h(com(is,bi,h(rl,ban(bl)))),
ban(bl),ri)) \in eslps(nw(p))

 implies
vm(is,is,bl,cl(h(com(is,bi,h(rl,ban(bi))))),

sig(sk(is),h(com(is,bl,h(ri,ban(b1)))))) \in nw(p)

Claim 9. For any reachable p : Protocol,

bl : Buyer, any sl s2 : Seller, any rl : Rand,

not(sl = is and bl = ib)
 and

qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))),
ban(bl),ri))),

sig (sk (b1) ,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl)),
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

 implies
vm(si,sl,bl,cl(h(com(sl,bl,h(ri,ban(bl))))),

sig(sk(sl),h(com(sl,bi,h(rl,ban(bl)))))) \in

Claim 10. For any reachable p : Protocol

bl : Buyer, any sl : Seller, any rl : Rand,

not (bl = ib)
 and

enc(pk(la),slp(h(com(si,b1,h(r1,ban(b1)))),
ban(bl),ri)) \in eslps(nw(p))

 implies
pm(bl,bl,sl,

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))),
ban(bl),rl)),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban (bi) , rl)) ,
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

Claim 11. For any reachable p : Protocol,
s1 : Seller, any bl : Buyer, any esl : Eslp,

sb l : S i gb,

pm(bi,ib,sl,esl,sbl) \in nw(p) implies bl = ib

Claim 12. For any reachable p : Protocol,

sl : Seller, any rl : Rand,

not(sl = is)
 and

sig(sk(sl),h(com(sl,ib,h(rl,ban(ib)))),
enc(pk(la),slp(h(com(sl,ib,h(rl,ban(ib)))),

ban(ib),rl))) \in sigs2s(nw(p))
implies
pm(ib,ib,sl,

enc(pk(la),slp(h(com(si,ib,h(rl,ban(ib)))),
ban(ib),ri)),

sig(sk(ib),
enc(pk(la),slp(h(com(sl,ib,h(rl,ban(ib)))),

ban(ib),rl)),
h(com(sl,ib,h(rl,ban(ib)))))) \in nw(p)

any

(p)

 any

any

any

any

Claim 13. For any reachable p : Protocol,

bl : Buyer, any sl s2 : Seller, any rl : Rand,

not(sl = is and bl = ib)
 and

qm(s2,si,la,c1(h(com(sl,bi,h(rl,ban(bl))))),
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))),

ban(bl),rl)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bi),ri))),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bi,h(ri,ban(bl)))),

ban(bl),rl)),
h(com(sl,bi,h(ri,ban(b1)))))) \in nw(p)

 implies
pm (bl, bl, si,

enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))),
ban(bl),ri)),

sig (sk (bi) ,
enc(pk(la),slp(h(com(sl,b1,h(r1,ban(b1)))),

ban(bl),rl)),
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

Claim 14. For any reachable p : Protocol,

bl : Buyer, any sl : Seller, any rl : Rand,

not(bl = ib)
 and

pm(bl,bl,sl,
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))),

ban(bi),ri)),
sig (sk (bl) ,

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),ri)),

h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)
 implies

im(bi,bl,si,h(rl,ban(bl))) \in nw(p)

Claim 15. For any reachable p : Protocol,

sl : Seller, any bl : Buyer, any hnl : Hban,

im(bl,ib,si,hni) \in nw(p) implies bl = ib

Claim 16. For any reachable p : Protocol,

sl : Seller, any rl : Rand,

not(si = is)
 and

sig(sk(sl),h(com(sl,ib,h(rl,ban(ib))))) \in
implies
im(ib,ib,sl,h(rl,ban(ib))) \in nw(p)

Claim 17. For any reachable p : Protocol,

bl : Buyer, any sl s2 : Seller, any rl : Rand,

not(sl = is and bl = ib)
 and

qm(s2,sl,la,c1(h(com(sl,bi,h(rl,ban(bi))))),
enc(pk(la),slp(h(com(si,bl,h(rl,ban(bl)))),

ban(bl),ri)),
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))),

enc(pk(la),slp(h(com(sl,bi,h(ri,ban(bl)))),
ban(bl),rl))),

sig (sk (bl) ,
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bi)))),

ban(bi),rl)),
h(com(sl,bl,h(ri,ban(bl)))))) \in nw(p)

 implies
im(bl,bl,sl,h(ri,ban(bl))) \in nw(p)

 Claim 0 ,Claim 5, Claim 9, Claim

been proved only by case analysis,
induction described in Sect. 5.2. All the proofs hav(

any

any

any

any

sigss(nw(p))

any

im 13 and Claim 7 have

is, and the ng by

 All the proofs have been

15

done by writing proof scores in CafeOBJ and having the

CafeOBJ system execute the proof scores.

 In this paper, we describe parts of the proofs for Claim 8

and Claim 9 that are proved by induction and only by case

analysis, respectively.

Proof of Claim 8 We first write a module in which the

predicate to be proved is declared. In the module called
 PRED8, two constants (b1, r1) denoting any intended sorts

(you can imagine) are declared. Operator p8 denoting the
predicate is declared as follows:

op p8 : Protocol Buyer Rand -> Bool

We also have the equation defining the operator as follows:

 eq p8(P,B1,R1)
 = not(B1 = ib)

 and
enc(pk(la),slp(h(com(is,B1,h(R1,ban(B1)))),
 ban(B1),R1)) \in eslps(nw(P))

 implies
vm(is,is,B1,c1(h(com(is,B1,h(Rl,ban(B1))))),

sig(sk(is),h(com(is,B1,h(Rl,ban(B1))))))
 \in nw(P) .

where P, S10, T10, V10, N10 and R10 are CafeOBJ vari-

ables which sorts may be imagined.

 Base Case In any initial state init, to show that the

predicate holds, the following proof score is described and
executed by the CafeOBJ system:

open PRED8
red p8(init,bl,rl) .
close

 Inductive Step The predicate to be proved in each in-
ductive step is defined in module I STEP 8, in which two
constants (p, p') are declared, where p and p' denote any
reachable state and the successor state after executing a
transition rule in the state. The predicate is declared as fol-
lows:

op istep8 : Buyer Rand -> Bool

The equation defining the predicate is as follows:

eq istep8(Bl,Rl) = p8(p,B1,Rl) implies p8(p',B1,R1) .

 All we have to do is basically to show i s —

t ep 8 (bl, r 1) for every transition rule. In this paper, we

describe proof scores showing that any transition rule de-
noted by action operator fkpm2 preserves predicate p5.

We first consider two cases such that one corresponds to

any state in which the transition rule is effective and the

other to any state in which the transition rule is not. Since

the predicate is neither true nor false in the former case, the

case is also split into two parts such that one corresponds to

any state in which bl equals ib, and the other to any state

in which bl does not. Furthermore, for the latter case, we

make use of Claim 2. After all, we have three proof scores

to show that the transition rule preserves the predicate. The
three proof scores are as follows:

open ISTEP8
-- arbitrary chosen objects

op slO : -> Seller .
op n10 : -> Ban .
op r10 : -> Rand .
op hc10 : -> Hcom .
op sb10 : -> Sigb .
-- assumptions

eq n10 \in bans(nw(p)) = true .
eq r10 \in rands(nw(p)) = true .
eq hc10 \in hcoms(nw(p)) = true .
eq sb10 \in sigbs(nw(p)) = true .

eq bl = ib .
-- successor state

eq p' = fkpm2(p,s10,n10,ri0,hc10,sb10) .
-- check if the predicate is also true in p'.

red istep8(bl,r1) .
close

open ISTEP8
-- arbitrary chosen objects

op 810 : -> Seller .
op n10 : -> Ban .
op r10 : -> Rand .
op hc10 : -> Hcom .
op sb10 : -> Sigb .
-- assumptions
-eq n10 \in bans(nw(p)) = true .
eq ban(ib) \in bans(nw(p)) = true .
eq r10 \in rands(nw(p)) = true .
eq hc10 \in hcoms(nw(p)) = true .
eq sb10 \in sigbs(nw(p)) = true .

eq (bl = ib) = false .
-- facts, etc .
-- from Claim 2 (n10 \in bans(nw(p)))

eq n10 = ban(ib) .
-- successor state

eq p' = fkpm2(p,si0,n10,r10,hc10,sb10) .
-- check if the predicate is also true in p' .
red istep8(bl,rl) .
close

open ISTEP8
-- arbitrary chosen objects

op slO : -> Seller .
op n10 : -> Ban .
op r10 : -> Rand .
op hc10 : -> Hcom .
op sb10 : -> Sigb .
-- assumptions

eq (n10 \in bans(nw(p)) and r10 \in rands(nw(p)) and
hc10 \in hcoms(nw(p)) and sb10 \in sigbs(nw(p)))

 = false .
-- successor state

eq p' = fkpm2(p,s10,n10,r10,hc10,sb10) .
-- check if the predicate is also true in p'.

red istep8(bl,ri) .
close

 The number of cases to be considered in all the inductive

steps is 102.

Proof of Claim 9 Like the proof of Claim 8, module
P RE D 9 in which four constants (bl, s 1, s 2, r i) and oper-
ator p 9 are declared is first written. Operator p 9 is declared
as follows:

op p9 : Protocol Buyer Seller Seller Rand -> Bool

16

We also have the equation defining the operator as follows:

eq p9(P,B1,S1,S2,R1)
 = not(S1 = is and B1 = ib)

 and

qm(S2,S1,1a,c1(h(com(S1,Bi,h(Rl,ban(B1))))),
enc(pk(la),s1p(h(com(S1,Bi,h(R1,ban(B1)))),

ban(B1),R1)),
sig(sk(Si),h(com(S1,B1,h(R1,ban(B1)))),

enc(pk(la),s1p(h(com(S1,B1,h(Ri,ban(B1)))),
ban(B1),R1))),

sig (sk (Bi) ,
enc(pk(la),slp(h(com(S1,B1,h(Ri,ban(B1)))),

ban(B1),R1)),
h(com(S1,B1,h(R1,ban(B1)))))) \in nw(P)

 implies
vm(S1,S1,B1,c1(h(com(S1,Bl,h(Rl,ban(B1))))),

sig(sk(S1),h(com(S1,B1,h(Ri,ban(B1))))))
 \in nw(P) .

where P, Bi, Si and Ri are CafeOBJ variables which sorts

may be imagined.

 Then we show that the predicate is always true in any

reachable state p. We first consider two cases such that one

corresponds to any state in which s 1 equals i s, and the

other to any state in which s 1 does not.

 In this paper, we show the proof scores for the former
case. The case is also split into two more cases such that

one corresponds to any state in which b 1 equals i s, and the
other to any state in which b 1 does not. Furthermore, the

latter case is split into two more cases such that one corre-

sponds to any state in which there exists the Auth-Request

message, in the network, corresponding to that occurring in

the premise of the predicate, and the other to any state in

which there does not. After all, we have three cases to be

considered. For the second case, we make use of Claim 8.

The three proof scores are as follows:

-- facts , etc.
-- from Claim 8

eq vm(is,is,bl,cl(h(com(is,bl
sig(sk(is),h(com(is,bl,

 \in nw10 = true .
-- check if the predicate is

red p9(p,bl,s1,s2,r1) .
close

,h(rl,ban(bl)))))
h(rl,ban(bl))))))

also true in p.

open PRED9
-- arbitrary chosen objects

op p : -> Protocol .
-- assumptions

eq is = si .

eq (bl = ib) = false .
eq qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bi),rl)),

sig(sk(sl),h(com(si,bl,h(rl,ban(bl)))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(bl),rl))),
sig(sk(bl),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(bl),rl)),

h(com(sl,bl,h(rl,ban(bl))))))
\in nw(P) = false .

 -- check if the predicate is also true in p.
 red p9(p,b1,si,s2,r1) .

 close

 The size of all the proof scores is approximately of
22,000 lines. It took about 4 minutes to have the CafeOBJ
system load the specification and execute the proof scores
on a laptop with 850MHz Pentium III processor and 512MB
memory.

 The verification that the modified 2KP protocol (actually
the AM2KP protocol) possess agreement property is very
similar to that for the AM3KP protocol. Basically by delet-
ing parts related to Sign from the CafeOBJ document and

proof scores for the AM3KP protocol, we can get the proof
for the AM2KP protocol.

open PRED9
-- arbitrary chosen objects

op p : -> Protocol .
-- assumptions

eq si = is .

eq bl = ib .
-- check if the predicate is also true in p.

red p9(p,bl,sl,s2,r1) .
close

open PRED9
-- arbitrary chosen objects

op p : --> Protocol .
op m10 : -> Msg .
op nw10 : -> Network .
-- assumptions

eq si = is .

eq (bl = ib) = false .
eq m10

 = qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),
ban(hi),rl)),

sig(sk(s1),h(com(sl,b1,h(r1,ban(bi)))),
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))),

ban(hi),ri))),
sig (sk (bl) ,

enc(pk(la),slp(h(com(si,bl,h(rl,ban(bl)))),
ban (bl) , rl)) ,

h(com(sl,bl,h(rl,ban(bl)))))) .
eq nw(p) = m10 , nwi0 .

7. Related Work

 Recently applying formal methods to security proto-
cols is one of the hottest research topics. They are most
likely classified into two approaches: one is to find secu-
rity flaws lurked in security protocols with model check-
ing technology[8, 16], and the other to prove that secu-
rity protocols have desired properties with theorem proving
technology[28, 29, 30]. They are not competing, but com-

plementary to each other. Our approach is classified into the
latter.
 Among security protocols, those to which formal meth-
ods have been often applied so far are authentication pro-
tocols such as the Kerberos authentication system[2, 1] be-
cause they are one of the most basic and important security

protocols. It does not seem that there are many case studies
to apply formal methods to payment protocols. To the best
of our knowledge, we are the first to fromaly analyze the
iKP protocols.

 Our modeling is similar to the inductive method[28] and
the CSP approach[29, 30].

17

 Paulson[28] models a system in which an arbitrary num-
ber of principals including the intruder take part in an au-
thentication protocol by inductively defining traces from a
set of rules that correspond to the possible actions of the

principals including the intruder. Security properties can
be stated as predicates over the traces. You can inductively

prove that a certain property holds of all possible traces for
a certain protocol. The proof can be supported by the the
theorem prover Isabelle/HOL[27].

Schneider[29, 30] models each principal participating in
an authentication protocol as a CSP process. Proving a cer-
tain property corresponds to finding a rank function (which
maps messages to some domain of values) satisfying cer-
tain conditions. The proof can be supported by the theorem

prover PVS[31, 26].
 In both approaches, the network is modeled by regarding

it as the intruder, namely the intruder can glean anything
flowing in the network except for those encrypted by a key
that the intruder does not know and those hashed. We also
model the network as this.

 Observational transition systems are heavily affected by
UNITY[6]. By adopting the notion of behavioral specifi-
cation by hidden algebra[12] and the style of defining fair
transition systems[18, 19], they are reformulated. The con-
cept effectiveness is similar to enabledness used in descrip-
tion of transition systems in temporal logic such as TLA[14]
or in a precondition-effect style such as I/O automata[17].

8. Concluding Remarks

 We first tried to verify that the 3KP protocol has agree-
ment property by assuming that AUTHPRICE and DESC
might happen to be the same as another AUTHPRICE and
DESC. We found out a counter example in the process.
It took about a week to find it. After that, we retried the
verification by assuming that SALTB is never transmitted
in clear, namely that SALTB is encrypted with the seller's

public key and sent to a seller. Unfortunately we found the
counter example shown in Fig. 3 (2). Even if SALTB is
never transmitted in clear, the counter example can be oc-
curred. Since our approach presented in this paper does
not directly help us find counter examples, it took several
weeks to reach the modified iKP protocols and the verifica-

tion descrined in this paper. If we had used model check-
ing techniques[7] to confirm that a system in which a finite
number of principals participate in the 3KP protocol or its
variant has no counter example with respect to agreement

property, we would have reached the modified iKP proto-
cols and the verification much earlier.

 Although the designers of the iKP protocols notice that
the 1KP protocol does not have agreement protocol, they
write, on their papers[4, 3], that if h1 retrieved from Clear
and h2 retrieved from decrypted EncSlip match when ac-

18

quirer receives Auth-Request, it ensures that buyer and
seller agree on the order information even for 1KP. But this
is not true as shown by the counter example in Fig. 3 (1).
Even so, we do not think that the designers and the review-
ers of the papers were somehow careless. We think that the
iKP protocols are rather well designed. We believe that se-
curity protocols are that sensitive and therefore should be
formally verified.

 In this paper, we have described the proof that the
AM3KP protocol has agreement property, which we be-
lieve implies that the modified 3KP protocol also has the

property. Although the relation between the modified 3KP
protocol and the AM3KP protocol is very straightforward,
to prove it more formally, we should show that there exists
a relation between the 3KP protocol and the AM3KP proto-
col such as a simulation relation between I/O automata[17].
We could do this with CafeOBJ.

 Other than agreement property, there are several prop-
erties that electronic payment protocols should have. Re- .•..

play attack protection is one of such interesting properties.
Since a variant of an OTS, called a TOTS[23], describes tim-
ing and yerifies timing properties, we could prove that the

(modified) iKP protocols do have replay attack protection.

References

[1] G. Bella and L. C. Paulson. Using isabelle to prove prop-
 erties of the kerberos authentication system. In DIMACS

 Workshop on Design and Formal Verification of Security
 Protocols, 1997.

[2] G. Bella and E. Riccobene. Formal analysis of the kerberos
 authentication system. Journal of Universal Computer Sci-

 ence, 3(12):1337-1381, 1997.
[3] M. Bellare, J. A. Garay, R. Hauser, A. Herzberg,

 H. Krawczyk, M. Steiner, G. Tsudik, E. V. Herreweghen,
 and M. Waidner. Design, implementation and deployment

 of the iKP secure electronic payment system. IEEE Journal
 of Selected Areas in Communications, 18(4):611-627,2000.

[4] M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, ...
 H. Krawczyk, M. Steiner, G. Tsudik, and M. Waidner. iKP

 — a family of secure electronic payment protocols. In Proc.
 of First USENIX Workshop on Electronic Commerce, pages

89-106, 1995.
[5] CafeOBJ web page. http://www.ldl.jaist.ac.jp/cafeobj/.
[6] K. M. Chandy and J. Misra. Parallel program design: a

 foundation. Addison-Wesley, Reading, MA, 1988.
[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-

 ing. The MIT Press, Cambridge, MA, 1999.
[8] G. Denker, J. Meseguer, and C. Talcott. Protocol spec-

 ification and analysis in Maude. In Formal Meth-
 ods and Security Protocols Workshop (http:llwww.cs.bell-

 labs.com/wholnchlfrnspl), 1998.
[9] R. Diaconescu and K. Futatsugi. CafeOBJ report. AMAST

 Series in Computing, 6. World Scientific, Singapore, 1998.
[10] D. Dolev and A. C. Yao. On the security of public key pro-

 tocols. IEEE Trans. Inform. Theory, IT-29:198-208, 1983.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

 [19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Goguen and G. Malcolm. Algebraic Semantics of Imper-
ative Programs. The MIT Press, Cambridge, MA, 1996.
J. Goguen and G. Malcolm. A hidden agenda. Theor. Corn-
put. Sci., 245:55-101,2000.
J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: algebraic specifi-
cation in action. Kluwer Academic Publishers, 2000.
L. Lamport. The temporal logic of actions. ACM TOPLAS,
16(3):872-923, 1994.
G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Inf. Process. Lett., 56:131-133,
1995.
G. Lowe. Breaking and fixing the Needham-Schroeder

public-key protocol using FDR. In TACAS '96, LNCS 1055,
pages 147-166. Springer, 1996.
N. A. Lynch. Distributed algorithms. Morgan-Kaufmann,
San Francisco, CA, 1996.
Z. Manna and A. Pnueli. The temporal logic of reactive
and concurrent systems: specification. Springer-Verlag, NY,
1991.
Z. Manna and A. Pnueli. Temporal verification of reactive
systems: safety. Springer-Verlag, NY, 1995.
MasterCard/Visa. SET secure electronic transactions proto-
col. Book One: Business Specifications, Book Two: Tech-
nical Specification, Book Three: Formal Protocol Definition
(http://www.setco.org/setspecifications.html), May 1997.
R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers. Comm. ACM,
21(12):993-999, 1978.
K. Ogata and K. Futatsugi. Formally modeling and verifying
Ricart&Agrawala distributed mutual exclusion algorithm. In
APAQS '01, pages 357-366. IEEE CS Press, 2001.
K. Ogata and K. Futatsugi. Modeling and verification of
distributed real-time systems based on CafeOBJ. In ASE
'01

, pages 185-192. IEEE CS Press, 2001.
K. Ogata and K. Futatsugi. Formal analysis of
Suzuki&Kasami distributed mutual exclusion algorithm. In
FMOODS '02, pages 181-195. Kluwer Academic Publish-
ers, 2002.
K. Ogata and K. Futatsugi. Rewriting-based verification
of authentication protocols. In WRLA '02, volume 71 of
ENTCS. Elsevier Science Publishers, 2002.
S. Owre, J. Rushby, N. Shankar, and E von Henke. Fromal
verification for fault-tolerant architectures: Prolegomena to
the design of PVS. IEEE Trans. Softw. Eng., 21:107-125,
1995.
L. C. Paulson. Isabelle: A generic theorem prover. LNCS
828. Springer, 1994.
L. C. Paulson. The inductive approach to verifying crypto-

graphic protocols. J. Comput. Security, 6:85-128, 1998.
S. Schneider. Verifying authentication protocols in CSP.
IEEE Trans. Softw. Eng., 24(9):741-758, 1998.
S. Schneider. Verifying authentication protocol implemen-
tations. In FMOODS '02, pages 5-24. Kluwer Academic
Publishers, 2002.
N. Shanker, S. Owre, and J. M. Rushby. The PVS proof
checker: A reference manual. SRI International, CSL Tech-
nical Report, 1993.

19

-- for any initial state

eq nw(init) = void .
-- for action sdim

eq nw(sdim(P,B,S)) = im(B,B,S,h(nxt(B, rand (P)), ban (B))) , nw(P) .
eq rand (sdim (P, B, S)) = nxt (B, rand (P)) .
-- for action sdvm

ceq nw (sdvm(P,S,M1))
 = vm(S , S, is (M1) , cl(h (com(S, is (M1) ,hban (M1)))) , sig (sk (S) ,h (com(S, is (M1) ,hban (M1))))) , nw(P)

 if M1 \in nw(P) and im?(M1) and S = id(M1) .
ceq nw(sdvm(P,S,Ml)) = nw(P)

 if not (M1 \in nw(P) and im?(M1) and S = id(M1)) .
eq rand (sdvm (P, S,M1)) = rand(P) .
-- for action sdpm

ceq nw(sdpm(P,B,R,M1,M2))
 = pm (B, B, vs (M2) ,enc (pk (la) , slp (hcom (clear (M2)) , ban (B) ,R)) ,

sig (sk (B) ,enc (pk (la) , slp (hcom (clear (M2)) , ban (B) ,R)) , hcom (clear (M2)))) , nw(P)
 if M1 \in nw(P) and im?(M1) and B = ic(M1) and B = is(M1) and hban(M1) = h(R,ban(B)) and

 M2 \in nw(P) and vm?(M2) and B = vd(M2) and id(M1) = vs(M2) and

sig (sk (vs (M2)) , hcom (clear (M2))) = sigs(M2) and hcom (clear (M2)) = h(com(id(M1),B,hban(M1))) .
ceq nw(sdpm(P,B,R,Ml,M2)) = nw(P)

 if not (M1 \in nw(P) and im?(M1) and B = ic(M1) and B = is(M1) and hban(M1) = h(R, ban (B)) and
 M2 \in nw(P) and vm?(M2) and B = vd(M2) and id(M1) = vs(M2) and

sig (sk (vs (M2)) , hcom (clear (M2))) = sigs(M2) and hcom(clear(M2)) = h (com(id (M1) ,B,hban (M1)))) .
eq rand(sdpm(P,B,R,Ml,M2)) = rand(P) .
-- for action sdqm

ceq nw(sdgm(P,S,HN,M1,M2))
 = qm(S,S,la, clear (M1),eslip(M2),sig(sk(S),h(com(S,ps(M2),HN)),eslip(M2)),sigb(M2)) , nw(P)

 if M1 \in nw(P) and vm?(M1) and S = vc(M1.) and S = vs(M1) and
hcom (clear (M1)) = h(com(S,ps(M2),HN)) and sigs(M1) = sig(sk(S),hcom(clear(M1))) and

 M2 \in nw(P) and pm?(M2) and vd(M1) = ps(M2) and S = pd(M2) and
sigb(M2) = sig (sk (ps (M2)) , eslip (M2) , hcom (clear (M1))) .

ceq nw(sdgm(P,S,HN,M1,M2)) = nw(P)
 if not (M1 \in nw(P) and vm?(M1) and S = vc(M1) and S = vs(M1) and

hcom (clear (M1)) = h (com(S,ps (M2) ,HN)) and sigs(M1) = sig (sk (S) , hcom (clear (M1))) and
 M2 \in nw(P) and pm?(M2) and vd(M1) = ps(M2) and S = pd(M2) and

sigb(M2) = sig (sk (ps (M2)) , eslip (M2) , hcom (clear (M1)))) .

eq rand (sdqm (P,S,HN,M1,M2)) = rand(P) .
-- for action sdsm

ceq nw(sdsm(P,M1))
 = sm(la, la, qs(M1), check (ban (slip (eslip(M1)))),

sig (sk (la) , check (ban (slip (eslip (M1)))) , hcom (clear (M1)))) , nw(P)
 if M1 \in nw(P) and qm?(M1) and la = gd(M1) and pk(la) = pk (eslip (M1)) and

sig (sk (qs (M1)) , hcom (clear (M1)) , eslip (M1)) = sigs2(M1) and
sig (sk (b (ban (slip (eslip (M1))))) , eslip (M1) , hcom (clear (M1))) = sigb(M1) and
hcom (clear (M1)) = hcom (slip (eslip (M1))) and
hcom (clear (M1)) = h(com(gs(M1),b (ban (slip (eslip(M1)))),

h (rand (slip (eslip (M1))) ,ban (slip (eslip (M1)))))) .
ceq nw(sdsm(P,M1)) = nw(P)

 if not (M1 \in nw(P) and qm?(M1) and is = gd(M1) and pk(la) = pk (eslip (M1)) and
sig (sk (qs (M1)) , hcom (clear (M1)) , eslip (M1)) = sigs2(M1) and
sig (sk (b (ban (slip (eslip (M1))))) , eslip (M1) , hcom (clear (M1))) = sigb(M1) and
hcom (clear (M1)) = hcom (slip (eslip (M1))) and
hcom (clear (M1)) = h(com(gs(M1),b (ban (slip (eslip(M1)))),

h (rand (slip (eslip(M1))), ban (slip (eslip(M1))))))) .
eq rand (sdsm (P,M1)) = rand(P) .

Figure 7.

tocol

Equations to define transition rules corresponding to passing messages obeying the pro-

20

ipmmon

-- for action fkiml

ceq nw(fkiml(P,B,S,HN)) = im(ib,B,S,HN) , nw(P) if HN \in hbans(nw(P)) .
ceq nw(fkiml(P,B,S,HN)) = nw(P) if not(HN \in hbans(nw(P))) .
eq rand(fkiml(P,B,S,HN)) = rand(P) .
-- for action fkim2

ceq nw(fkim2(P,S,N,R)) = im(ib,b(N),S,h(R,N)) , nw(P) if N \in bans(nw(P)) and R \in rands(nw(P)) .
ceq nw(fkim2(P,S,N,R)) = nw(P) if not(N \in bans(nw(P)) and R \in rands(nw(P))) .
eq rand(fkim2(P,S,N,R)) = rand(P) .
-- for action fkvml

ceq nw(fkvml(P,S,B,HC,GS)) = vm(is,S,B,cl(HC),GS) , nw(P)
 if HC \in hcoms(nw(P)) and GS \in sigss(nw(P)) .

ceq nw(fkvml(P,S,B,HC,GS)) = nw(P)
 if not(HC \in hcoms(nw(P)) and GS \in sigss(nw(P))) .

eq rand(fkvml(P,S,B,HC,GS)) = rand(P) .
-- for action fkvm2

ceq nw(fkvm2(P,S,B,HN,GS)) = vm(is,S,B,cl(h(com(S,B,HN))),GS) , nw(P)
 if HN \in hbans(nw(P)) and GS \in sigss(nw(P)) .

ceq nw(fkvm2(P,S,B,HN,GS)) = nw(P)
 if not(HN \in hbans(nw(P)) and GS \in sigss(nw(P))) .

eq rand(fkvm2(P,S,B,HN,GS)) = rand(P) .
-- for action fkvm3

ceq nw(fkvm3(P,S,N,R,GS)) = vm(is,S,b(N),cl(h(com(S,b(N),h(R,N)))),GS) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) and GS \in sigss(nw(P)) .

ceq nw(fkvm3(P,S,N,R,GS)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GS \in sigss(nw(P))) .

eq rand(fkvm3(P,S,N,R,GS)) = rand(P) .
-- for action fkvm4

ceq nw(fkvm4(P,S,B,HC)) = vm(is,S,B,cl(HC),sig(sk(is),HC)) , nw(P)
 if HC \in hcoms(nw(P)) .

ceq nw(fkvm4(P,S,B,HC)) = nw(P)
 if not(HC \in hcoms(nw(P))) .

eq rand(fkvm4(P,S,B,HC)) = rand(P) .
-- for action fkvm5

ceq nw(fkvm5(P,S,B,HN)) = vm(is,S,B,cl(h(com(S,B,HN))),sig(sk(is),h(com(S,B,HN)))) , nw(P)
 if HN \in hbans(nw(P)) .

ceq nw(fkvm5(P,S,B,HN)) = nw(P)
 if not(HN \in hbans(nw(P))) .

eq rand(fkvm5(P,S,B,HN)) = rand(P) .
-- for action fkvm6

ceq nw(fkvm6(P,S,N,R))
 = vm(is,S,b(N),cl(h(com(S,b(N),h(R,N)))),sig(sk(is),h(com(S,b(N),h(R,N))))) , nw(P)

 if N \in bans(nw(P)) and R \in rands(nw(P)) .
ceq nw(fkvm6(P,S,N,R)) = nw(P)

 if not(N \in bans(nw(P)) and R \in rands(nw(P))) .
eq rand(fkvm6(P,S,N,R)) = rand(P) .
-- for action fkpml

ceq nw(fkpml(P,B,S,EP,GB)) = pm(ib,B,S,EP,GB) , nw(P) if EP \in eslps(nw(P)) and GB \in sigbs(nw(P)) .
ceq nw(fkpml(P,B,S,EP,GB)) = nw(P) if not(EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) .
eq rand(fkpml(P,B,S,EP,GB)) = rand(P) .
-- for action fkpm2

ceq nw(fkpm2(P,S,N,R,HC,GB)) = pm(ib,b(N),S,enc(pk(la),slp(HC,N,R)),GB) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkpm2(P,S,N,R,HC,GB)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) and GB \in sigbs(nw(P))) .

eq rand(fkpm2(P,S,N,R,HC,GB)) = rand(P) .
-- for action fkpm3

ceq nw(fkpm3(P,S,N,R,GB)) = pm(ib,b(N),S,enc(pk(la),sip(h(com(S,b(N),h(R,N))),N,R)),GB) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkpm3(P,S,N,R,GB)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P))) .

eq rand(fkpm3(P,S,N,R,GB)) = rand(P) .
-- for action fkpm4

ceq nw(fkpm4(P,B,S,EP,HC))
 = pm(ib,B,S,EP,sig(sk(ib),EP,HC)) , nw(P) if EP \in eslps(nw(P)) and HC \in hcoms(nw(P)) .

ceq nw(fkpm4(P,B,S,EP,HC)) = nw(P) if not(EP \in eslps(nw(P)) and HC \in hcoms(nw(P))) .
eq rand(fkpm4(P,B,S,EP,HC)) = rand(P) .

Figure 8. Equations to define transition rules correspond ing to fak ing messages (1)

21

-- for action fkpm5

ceq nw(fkpm5(P,B,S,EP,HN)) = pm(ib,B,S,EP,sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P)
 if EP \in eslps(nw(P)) and HN \in hbans(nw(P)) .

ceq nw(fkpm5(P,B,S,EP,HN)) = nw(P)
 if not(EP \in eslps(nw(P)) and HN \in hbans(nw(P))) .

eq rand(fkpm5(P,B,S,EP,HN)) = rand(P) .
-- for action fkpm6

ceq nw(fkpm6(P,S,EP,N,R)) = pm(ib,b(N),S,EP,sig(sk(ib),EP,h(com(S,b(N),h(R,N))))) , nw(P)
 if EP \in esips(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P)) .

ceq nw(fkpm6(P,S,EP,N,R)) = nw(P)
 if not(EP \in eslps(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P)))

eq rand(fkpm6(P,S,EP,N,R)) = rand(P) .
-- for action fkpm7

ceq nw(fkpm7(P,S,N,R,HC))
 = pm(ib,b(N),S,enc(pk(la),sip(HC,N,R)),sig(sk(ib),enc(pk(la),slp(HC,N,R)),HC)) , nw(P)

 if N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) .
ceq nw(fkpm7(P,S,N,R,HC)) = nw(P)

 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P))) .
eq rand(fkpm7(P,S,N,R,HC)) = rand(P) .
-- for action fkpm8

ceq nw(fkpm8(P,S,N,R))
 = pm(ib,b(N),S,enc(pk(1a),sip(h(com(S,b(N),h(R,N))),N,R)),

sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) .

ceq nw(fkpm8(P,S,N,R)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P))) .

eq rand(fkpm8(P,S,N,R)) = rand(P) .
-- for action fkgml

ceq nw(fkgml(P,S,HC,EP,GT,GB)) = gm(is,S,la,cl(HC),EP,GT,GB) , nw(P)
 if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkgml(P,S,HC,EP,GT,GB)) = nw(P) if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and
 GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) .

eq rand(fkgml(P,S,HC,EP,GT,GB)) = rand(P) .
-- for action fkqm2

ceq nw(fkgm2(P,S,B,HN,EP,GT,GB)) = qm(is,S,la,ci(h(com(S,B,HN))),EP,GT,GB) , nw(P)
 if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkgm2(P,S,B,HN,EP,GT,GB)) = nw(P) if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and
 GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) .

eq rand(fkqm2(P,S,B,HN,EP,GT,GB)) = rand(P) .
-- for action fkqm3

ceq nw(fkqm3(P,S,N,R,GT,GB))
 = gm(is,S,ia,ci(h(com(S,b(N),h(R,N)))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R)),GT,GB) , nw(P)

 if N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) .
ceq nw(fkqm3(P,S,N,R,GT,GB)) = nw(P)

 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) .
eq rand(fkqm3(P,S,N,R,GT,GB)) = rand(P) .
-- for action fkqm4

ceq nw(fkgm4(P,S,HC,EP,GB)) = qm(is,S,la,ci(HC),EP,sig(sk(is),HC,EP),GB) , nw(P)
 if HC \in hcoms(nw(P)) and EP \in esips(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkqm4(P,S,HC,EP,GB)) = nw(P)
 if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) .

 eq rand(fkqm4(P,S,HC,EP,GB)) = rand(P) .
-- for action fkgm5

ceq nw(fkgm5(P,S,B,HN,EP,GB))
 = qm(is,S,la,cl(h(com(S,B,HN))),EP,sig(sk(is),h(com(S,B,HN)),EP),GB) , nw(P)

 if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P)) .
ceq nw(fkgm5(P,S,B,HN,EP,GB)) = nw(P)

 if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) .
eq rand(fkgm5(P,S,B,HN,EP,GB)) = rand(P) .
-- for action fkqm6

ceq nw(fkqm6(P,S,N,R,GB))
 = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),

sig(sk(is),h(com(S,b(N),h(R,N))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R))),GB(, nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P)) .

ceq nw(fkgm6(P,S,N,R,GB)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P))) .

eq rand(fkgm6(P,S,N,R,GB)) = rand(P) .

Figure 9. Equations to define transition rules corresponding to faking messages (2)

22

 -- for action fkqm7

ceq nw(fkqm7(P,S,HC,EP,GT)) = qm(is,S,la,cl(HC),EP,GT,sig(sk(ib),EP,HC)) , nw(P)
 if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) .

ceq nw(fkqm7(P,S,HC,EP,GT)) = nw(P)
 if not(HC \in hcoms(nw(P)) and EP \in esips(nw(P)) and GT \in sigs2s(nw(P))) .

eq rand(fkgm7(P,S,HC,EP,GT)) = rand(P) .
-- for action fkqm8

ceq nw(fkqm8(P,S,B,HN,EP,GT))
 = gm(is,S,la,cl(h(com(S,B,HN))),EP,GT,sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P)

 if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P))

ceq nw(fkqm8(P,S,B,HN,EP,GT)) = nw(P)
 if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P))) .

eq rand(fkqm8(P,S,B,HN,EP,GT)) = rand(P) .
-- for action fkgm9

ceq nw(fkgm9(P,S,N,R,GT))
 = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),

GT,sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) .

ceq nw(fkqm9(P,S,N,R,GT)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P))) .

eq rand(fkqm9(P,S,N,R,GT)) = rand(P) .
-- for action fkgml0

ceq nw(fkgml0(P,S,HC,EP)) = gm(is,S,la,cl(HC),EP,sig(sk(is),HC,EP),sig(sk(ib),EP,HC)) , nw(P)
 if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) .

ceq nw(fkgml0(P,S,HC,EP)) = nw(P)
 if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P))) .

eq rand(fkgml0(P,S,HC,EP)) = rand(P) .
-- for action fkgmll

ceq nw(fkgmll(P,S,B,HN,EP)) = gm(is,S,la,cl(h(com(S,B,HN))),EP,sig(sk(is),h(com(S,B,HN)),EP),
sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P)

 if HN \in hbans(nw(P)) and EP \in esips(nw(P)) -
ceq nw(fkgmll(P,S,B,HN,EP)) = nw(P)

 if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P))) .
eq rand(fkgmll(P,S,B,HN,EP)) = rand(P) .
-- for action fkgml2

ceq nw(fkgml2(P,S,N,R))
 = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R)),

sig(sk(is),h(com(S,b(N),h(R,N))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R))),

sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P)
 if N \in bans(nw(P)) and R \in rands(nw(P)) .

ceq nw(fkgml2(P,S,N,R)) = nw(P)
 if not(N \in bans(nw(P)) and R \in rands(nw(P))) .

eq rand(fkgml2(P,S,N,R)) = rand(P) .
-- for action fksml

ceq nw(fksml(P,S,C,GA)) = sm(ia,la,S,C,GA) , nw(P) if C \in rcodes(nw(P)) and GA \in sigas(nw(P)) .
ceq nw(fksml(P,S,C,GA)) = nw(P) if not(C \in rcodes(nw(P)) and GA \in sigas(nw(P))) .
eq rand(fksml(P,S,C,GA)) = rand(P) .
-- for action fksm2

ceq nw(fksm2(P,S,C,HC)) = sm(ia,la,S,C,sig(sk(ia),C,HC)) , nw(P)
 if C \in rcodes(nw(P)) and HC \in hcoms(nw(P)) .

ceq nw(fksm2(P,S,C,HC)) = nw(P) if not(C \in rcodes(nw(P)) and HC \in hcoms(nw(P))) .
eq rand(fksm2(P,S,C,HC)) = rand(P) .
-- for action fksm3

ceq nw(fksm3(P,S,B,C,HN)) = sm(ia,la,S,C,sig(sk(ia),C,h(com(S,B,HN)))) , nw(P)
 if C \in rcodes(nw(P)) and HN \in hbans(nw(P)) .

ceq nw(fksm3(P,S,B,C,HN)) = nw(P)
 if not(C \in rcodes(nw(P)) and HN \in hbans(nw(P))) .

eq rand(fksm3(P,S,B,C,HN)) = rand(P) .
-- for action fksm4

ceq nw(fksm4(P,S,C,N,R)) = sm(ia,la,S,C,sig(sk(ia),C,h(com(S,b(N),h(R,N))))) , nw(P)
 if C \in rcodes(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P)) .

ceq nw(fksm4(P,S,C,N,R)) = nw(P)
 if not(C \in rcodes(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P))) .

eq rand (fksm4 (P, S, C, N, R)) = rand(P) .

Figure 10 . Equations to define transition rules correspond ing to faking messages (3)

23

