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Abstract

  iKP (i-Key-Protocol, i = 1, 2, 3) is  a  family of electronic 

payment protocols, developed in early 1995 by a group of 
researchers at the IBM Research labs in Yorktown Heights 
and Zurich, and one of the ancestors of well-known SET 
standard. In this paper, we analyze iKP with respect that 
they have a property that buyer and seller always agreed 
on the payment whenever acquirer authorizes it. As the de-
signers of the iKP protocols point out, the 1KP protocol 
does not possess the property. We found out, however, that 
there exists a counter example to the 2KP and 3KP proto-
cols. Threfore we propose modification of the 2KP and 3KP 

protocols so that they can possess the property. We have 
formally verified that the modified 2KP and 3KP protocols 
possess the property. In this paper, we describe the verifica-
tion that the modified 3KP protocol possesses the property.

Keywords: CafeOBJ, electronic commerce, the iKP elec-

tronic payment protocols, observational transition systems, 

proof scores, rewriting, verification.

1. Introduction

  Nobody doubts that security protocols are a key to suc-
cess of sound development of the Internet, especially suc-
cess of electronic commerce. But, they are subject to sub-
tle errors that are especially difficult to reveal by traditional 
testing methods and usual operations. Actually Lowe[ 15] 
found out a serious security flaw of the Needham-Schroeder 
Public-Key authentication protocol[21], or the NSPK pro-
tocol 17 years later since the protocol had been proposed. 
This demonstrates that errors lurked in security protocols

are very subtle, and has motivated many researchers to ap-

ply formal methods to security protocols so as to analyze 
them. 

  iKP (i-Key-Protocol, i = 1, 2, 3)[4, 3] is a family of 
electronic payment protocols, developed in early 1995 by a 

group of researchers at the IBM Research labs in Yorktown 
Heights and Zurich. They have affected the design of well-
known SET standard[20]. In this paper, we analyze iKP 
with respect that they have a property that buyer and seller 
always agree on the payment whenever acquirer authorizes 
it, which is called agreement property in this paper. As the 
designers of the iKP protocols point out, the 1KP protocol 
does not have the property. We found out, however, that 
there exists a counter example to the 2KP and 3KP proto-
cols. Threfore we propose modification of the 2KP and 3KP 

protocols so that they can possess the property. We have 
formally verified that the modified 2KP and 3KP protocols 

possess the property. In this paper, we describe the verifica-
tion that the modified 3KP protocol possesses the property. 

  The verification has been done with CafeOBJ[5, 9]. 
CafeOBJ is an algebraic specification language in which ab-
stract machines or objects in object-orientation as well as 
abstract data types can be described. The verification pro-
cess is roughly as follows. First the modified 2KP and 3KP 

protocol have been abstracted to ease the verification, which 
are called the AM2KP and AM3KP protocols. Next each of 
the AM2KP and AM3KP protocols has been modeled as 
an observational transition system (an OTS)[23, 22, 24] and 
the OTS has been described in CafeOBJ. Then proof scores 
to show that the AM2KP and AM3KP protocols possess 
agreement property have been written in CafeOBJ and have 

got executed by the CafeOBJ system. Writing proof scores 
in algebraic specification languages was first advocated by 
Goguen's group and developed for more than 15 years in



OBJ  community[11, 13]. This paper also shows that the 
approach can be applied to analyzing security protocols. 

  The rest of the paper is organized as follows. Section 2 

provides a summary of the iKP electronic payment proto-
cols. Section 3 defines agreement property and shows some 
counter examples with respect to the property. We propose 
modificatoin of the 2KP and 3KP protocols so that they can 

possess the property in Sect. 4. In Sect. 5, we describe how 
to model the modified 3KP protocol. In the section, we first 
abstract the modified iKP protocols to ease the verification, 
which are called the AMiKP protocols. We next write ob-

servational transition systems (oTS's) and how to describe 
oTS's in CafeOBJ. We finally describe the OTS modeling 
the AM3KP protocol and its CafeOBJ document in the sec-
tion. Section 6 describes the verification that the AM3KP 

protocol possesses agreement property. Section 7 mentions 
the related work, and finally we conclude with Sect. 8.

2. The iKP Electronic Payment Protocols

  iKP (i-Key-Protocol, i = 1, 2, 3)[4, 3] is a family of 
electronic payment protocols, developed in early 1995 by 
a group of researchers at the IBM Research labs in York-
town Heights and Zurich. Afterward it was incorporated 
into the "Secure Electronic Payment Protocols (SEPP)," a 
short-lived standardization effort by IBM, MasterCard, Eu-
ropay and Netscape. SEPP, in turn, was a key starting 

point for "Secure Electronic Payments (SET)," the joint 
VISA/MasterCard standard for credit card payments[20]. In 
fact, SET will retains many of the iKP-esque features. 

  All iKP protocols are based on the existing credit-card 

payment system. The parties in the payment system are 
show in Fig. 1. The iKP protocols deal with the payment 
transaction only (namely the solid lines in Fig. 1) and there-
fore involve only three parties called B (Buyer), S (Seller) 
and A (Acquirer). Note that A is not the acquirer in the fi-
nancial sense, but a gateway to the existing credit card clear-
ing/authorization network. 

  The payment system is operated by a payment system 

provider who maintains a fixed business relationship with a 
number of banks. Banks act as credit card (account) issuer 
to buyers, and/or as acquirers of payment records from mer-
chants (sellers). It is assumed that each buyer receives its 
credit card from an issuer, and is somehow assigned (or se-
lects) an optional PIN as its common in current credit card 
systems. In 1KP and 2KP, payments are authorized only 
by means of the credit card number and the optional PIN 
(both suitably encrypted), while, in 3KP, a digital signature 
is used, in addition to the above. A seller signs up with the 

payment system provider and with a specific bank, called 
an acquirer, to accept deposits. Clearing between acquirers 
and issuers is done using the existing financial networks. 

  All iKP protocols are based on public key cryptogra-
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Figure 1. Generic model of a payment system

phy, and each acquirer A has a secret key SKA that enables 
signing and decryption. In this paper, for brevity, we as-
sume that its public counterpart PKA that enables signa-
ture verification and encryption is securely conveyed to ev-
ery buyer and seller participating the protocols via any of 
a number of key distribution mechanisms. Each seller S in 
2KP/3KP and each buyer B in 3KP has a secret/public key-

pair (SKS, PKs) and (SKS, PKs), respectively. We also 
assume that each seller's public key is securely conveyed to 
every acquirer and buyer in 2KP/3KP, and that each buyer's 

public key is securely conveyed to every acquirer and seller 
in 3KP. 

  Cryptographic primitives used in the protocols are as fol-
lows:

• R(•) : A strong collision-resistant one-way hash func-
 tion that returns strong pseudo-random values. 

• 9-1k (K, .) : A one-way hash function requiring in ad-
 dition to collision-resistance, no information leakage 

 with respect to its other arguments, if the first argu-
 ment K is chosen at random.

 • Sx(•) : Public-key encryption with PKx, performed 
   in a way to provide both confidentiality and some kind 

   of computational message integrity. 

 • Sx(•) : Signature computed with SKx. 

  Figure 2 shows the three iKP protocols. Parts enclosed 
by [2,3...] and [3...] are ignored for 1KP and 2KP respec-
tively. The main difference between 1, 2 and 3KP is the 
increasing use of digital signatures as more of the parties 
involved possess a public/secret key pair. 

  Quantities occurring in the protocols are as follows: 

 • SALTB : Random number generated by B. Used to 

   salt DESC and thus ensure privacy of order informa-
   tion (DESC) on the S to A link; also used to provide 
   freshness of signatures.



Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sign

AUTHPRICE, IDs, TIDs, DATE, NONCEs, IDB, 71 k (SALTB, DESC) [2,37-1(V), 7-1(VC)]
IDs, TIDE, DATE, NONCEs,'7-l(Common) [2,37-1(V), 7-l(VC)]
AUTHPRICE, 'H (Common) ,BAN, RB, [PIN],EXPIRATION

SA (SLIP)
SA(RESPCODE, 1-1(Common))
Ss (7-1 (Common) )
S (EncSlip, 94 (Common)) )

Starting information of parties:

B

S

A

DESC, AUTHPRICE, BAN, EXPIRATION, PKA, [PIN] [2,3PKs, [3SKB]]
DESC, AUTHPRICE, PKA, [2,3SKs, [3PKB]]
SKA, PKA, [2,3PKs, [3PKB]]

Protocol flows:

Initiate: 

Invoice: 

Payment: 

Auth-Request: 

Auth-Response: 

Confirm:

B 

S 
B 

S 

A 
S

—4 

--4

S 
B 

S 
A 

S 
B

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

•

SALTB, IDB 
Clear, [2,3Sigs] 
EncSlip, [3 Sign] 
Clear, 7-1k (SALTB, DESC), EncSlip, [2,3Sigs, [3 
RESPC ODE, Sigh 
RESPCODE, Sigh, [2,3VIVC]

Sign]]

Figure 2. iKP protocols

• AUTHPRICE : Amount and currency. 

• DATE : Seller's date/time stamp, used for coarse-

 grained payment replay protection. 

• NONCEs : Seller's nonce (random number) used for 
 more fine-grained payment replay protection.

• IDs : Seller ID.

• TIDE : Transaction ID. 

• DESC : Description of purchase/goods, and delivery 

 address. Includes payment information such as credit 
 card name, bank identification number, and currency. 

 Defines agreement between buyer and seller as to what 
 is being paid for in this payment transaction. 

• BAN : Buyer's Account Number such as credit card 
  number.

• EXPIRATION : Expiration date associated with 

 Buyer's Account Number. 

• RB : Random number chosen by buyer to form IDB . It 

 must be random in order to serve as proof to the buyer 

 that the seller agreed to the payment.

• IDB : A buyer 
7-1 (RB , BAN).

pseudo-ID computed as IDB =

• RESPCODE : Response from the clearing network: 

 YES/NO or authorization code.

• PIN : Buyer PIN.

• V : Random number generated by seller in 2KP/3KP 

 for use as a proof that seller has accepted payment.

• VC : Random number generated by seller in 2KP/3KP 

 for use as a proof that seller has not accepted payment.

  We are about to describe how the iKP protocols work. 

Before each protocol starts, each party has the information 
as shown in Fig. 2. Each buyer B has an account number 
BAN and associated EXPIRATION, both known to the 

payment system. B may also have a secret PIN that is also 
known (possibly under a one-way function image) to the 

payment system.

Initiate: Buyer forms IDB by generating a random num-
ber RB and computing IDB = 7-lk(RB, BAN). Buyer gen-
erates another random number SALTB to be used for salt-
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ing the hash of merchandise description (DESC) in 

quent flows. Buyer sends Initiate flow.

subse-

Invoice: Seller retrieves SALTB and  IDB from Initi-
ate, and obtains DATE and generates a random quantity 
NONCEE. The combination of DATE and NONCEE is 
used later by A to uniquely identify this payment. Seller 
then chooses a transaction ID TIDE that identifies the 
context and computes 7-tk (SALTB, DESC). In 2KP/3KP, 
seller also generates two random values V and VC, and 
then computes 7-1(V) and 7-1(VC). Seller forms Common 
as defined above and computes 3-1(Common). In 2KP/3KP, 
seller also computes Sigs (= S(7-l(Common))). Finally 
seller sends Invoice.

Payment: Buyer retrieves Clear from Invoice and val-
idates DATE within a pre-defined time skew. Buyer 
computes 7-1k (SALTB, DESC) and 7-1(Common), and 
checks it matches the corresponding value in Clear. In 
2KP/3KP, buyer also validates the signature retrieved from 
Invoice using PKs. Next buyer forms SLIP as de-
fined in Fig. 2 and encrypts it using PKA (EncSlip = 
EA(SLIP)). In 3KP, buyer also computes Sign (= 
SB(EncSlip,7-1(Common))). Finally buyer sends Pay-
ment.

Auth-Request: In 3KP, seller validates the signature 
retrieved from Payment using PKB. Seller forwards 
EncSlip (and also Sign in 3KP) along with Clear and 
?lk (SALTB, DESC) (and also Sigs in 2KP/3KP) as Auth-
Request.

Auth-Response: Acquirer extracts Clear, EncSlip and 
7-lk (SALTB, DESC) (and also Sigs in 2KP/3KP and fur-
thermore Sign in 3KP) from Auth-Request. Acquirer then 
does the following:

1. Extracts IDs, TIDE, DATE, NONCEE and the value 
  h1 presumably corresponding to 7L(Common) from 
  Clear. In 2KP/3KP, also extracts 7-1(V) and 7-1(VC). 

  Acquirer checks for replays, namely makes sure that 
  there is no previously processed request with the same 

 quadruple (IDs, TIDE, DATE, NONCEs).

2. Decrypts EncSlip. If decryption fails, acquirer as-
  sumes that EncSlip has been altered and the transac-

  tion is therefore invalid. Otherwise, acquirer obtains 
  SLIP and, from it, extracts AUTHPRICE, h2 (cor-

  responding to 7-1(Common)), BAN, EXPIRATION, 
  RB and optionally PIN.

3. Checks that h1 and h2 match.
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4. Reconstructs Common, computes 7-i (Common) and 
  checks that it matches h1.

5. In 2KP/3KP, validates Sigs using PKs.

6. In 3KP, validates Sign using PKB.

 7. Uses the credit card organization's existing clearing 
   and authorization system to obtain on-line authoriza-

   tion of this payment. This entails forwarding BAN, 
   EXPIRATION, PIN (if present), price, etc. as dic-

   tated by the authorization system. Upon receipt of a 
   response RESPCODE from the authorization system, 

   acquirer computes a signature on RESPCODE and 
7-1(Common). 

Finally acquirer sends Auth-Response to seller.

Confirm: Seller extracts RESPCODE and the acquirer's 
signature from Auth-Response. Seller then validates the 

signature using PKA and forwards both RESPCODE and 
the signature as Confirm. In 2KP/3KP, either V or VC is 

also included in Confirm depending on RESPCODE.

3. Agreement Property

  There are several properties that electronic payment pro-

tocols such as the iKP protocols must have. For example 

they must make it impossible for intruders or malicious sell-
ers to launch replay attack. The property that we deal with 

in this paper is as follows:

Buyer and seller always agreed on the payment 

whenever acquirer authorizes it.

The property is called agreement property in this paper. 
  In the iKP protocols, acquirer must receive valid Auth-

Request in the sense described in the previous section, no 
matter who has generated, so that she/he can have the ex-
isting authorization system check the payment. Moreover 
that buyer and seller agreed on the payment (namely the 
valid Auth-Request) can be stated as they have generated 
Initiate and Payment, and Invoice and Auth-Request cor-
responding to the valid Auth-Request respectively. There-
fore agreement property can be restated as follows:

Involved buyer and seller have always gener-

ated Initiate and Payment, and Invoice and 
Auth-Request corresponding to the valid Auth-

Request respectively whenever acquirer receives 
valid Auth-Request, no matter who has gener-

ated.

  Do all the iKP protocols have this property? The answer 

is NO!



(1) In 1KP Clear' and EncSlip' are Clear and Enc 
tively.

Initiate: 

Invoice: 

Payment: 

Auth-Request: 

 Auth-Request': 

Auth-Response:

IB 
S 
IB 
S 
IS(S) 
A

S 

IB 

S 

A 

A 

S

Slip replaced AUTHPRICE with AUTHPRICE

• 

• 

• 

• 

• 

• 

•

SALTIB, ID IB 
Clear 
EncSlip 
Clear, I-1k (SALT/B, DES C), EncSlip 
Clear', 7-1k (SALTIB, DESC), EncSlip' 
RESP CODE, Sigh

' respec -

(2) In 3KP 

    Initiate: IB —* S :SALTIB, IDB 
    Invoice:S -- IB :Clear, Sigs 

    Auth-Request: IS(S) -- A :Clear, 7-1 (SALT/B, DESC), EncSlip, Sigs, SigJB 
    Auth-Response: A --~ S : RESPCODE, Sigh 

Suppose that there exists an intruder that is also a legitimate principal. IB and IS stand for the intruder acting as a 
buyer and a seller respectively. IS(S) and IB(B) mean that IS and IB impersonate S and B respectively.

Figure 3. Counter examples

  As the designers of the iKP protocols point out, 1KP 
does no have the property. Although you can easily gener-
ate counter examples for 1KP, one of the interesting counter 
examples is shown in Fig. 3 (1). We assume that there exits 
an intruder that can also act as a legitimate principal in the 

protocols. The intruder can eavesdrop any message flowing 
in the network and, from it, glean any quantity except those 
cryptographically processed (namely it is assumed that the 
cryptsystem used cannot be broken). In the example shown 
in Fig. 3 (1), the intruder impersonates S and sends Auth-
Request' to A before A receives Auth-Request from S. 
Since the intruder knows all the quantities to compute Auth-
Request', she/he can generate and send it to A, and then 
A receives it as valid. If AUTHPRICE' is smaller than 
AUTHPRICE, the payment would be disadvantageous to 
S. Although S will notice that this payment transaction 
is not valid by checking Sigh against RESPCODE and 
7-1(Common) computed by himself/herself, he/she cannot 

prove it invalid to others. 
  How about 2KP/3KP? They seemingly possess the prop-

erty, but there exists an counter example shown in Fig. 3 

(2). What advantage can the intruder get from the counter 
example? We can imagine several. S might want to can-
cel IB's payment request due to some reason if S received 
Payment from IB, although the cancelation is outside the 
scope of the iKP protocols. In the counter example, A ac-
cepts Auth-Request regardless of S's intention. 

  The intruder just wants to confuse the payment system. 
S receives Confirm from A even if S has never sent the cor-
responding Auth-Request to A, and gets aware that some-
thing, no matter what it is, that does not follow the protocol 
has been occurred. S might decide not to use the payment

system because S cannot believe the payment system any 

more. Getting worse, the media cover this unexpected be-

havior of the payment system, and more people stop making 

use of the payment system. This is clearly disadvantageous 

to the payment system. 

  If possible, don't you think that electronic payment pro-

tocols must have agreement property? In the following sec-

tions, we propose a modification of the iKP protocols and 
formally verify that the modified 3KP protocol possesses 

the property.

4. Modification of the iKP Protocols

  We propose two modifications to the iKP protocols. 

  The reason why the counter example shown in Fig. 3 (2) 
can be occurred is that IB receives Invoice and gains all 

the quantities to generate valid Auth-Request. If S newly 
makes another signature when it sends Auth-Request, not 
reusing Sigs used for sending Invoice, then the counter ex-
ample cannot be occurred. Threfore the first modification 
is making a different signature for sending Auth-Request 
than that used for sending Invoice. 

  The second modification is adding the involved buyer's 
ID into Common. This modification is not essential, but 
makes it possible to ease the verification described later. 

  Figure 4 shows the modified iKP protocols. In the mod-
ified iKP protocols, S is used as seller's ID instead of IDs. 
The modification is as follows. B as buyer's ID is added 
into Common. Sig2s is newly introduced. It is used for 
sending Auth-Request instead of Sigs.
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Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sig2s

Sign

AUTHPRICE, S, B, TIDE, DATE, NONCEs, IDB, 71,E (SALTB, DESC) [2,3R (v), it (VC)]
IDE, TIDE, DATE, NONCEs, 7-l(Common) [2,37 (V), (VC)]
AUTHPRICE, 7-1(Common),BAN, RB, [PIN],EXPIRATION

EA (SLIP)
SA (RESPCODE, 71 (Common) )
Ss (7-1 (Common) )
Ss CH (Common) ,EncSlip)
SB (EncSlip, 'l (Common)) )

Protocol flows:

Initiate: 

Invoice: 
Payment: 

Auth-Request: 

Auth-Response: 

Confirm:

B 

S 

B 

S 

A 

S

S 

B 

S 

A 

S 
B

• 

• 

• 

• 

• 

• 

• 

• 

• 

•

SALTB, IDB 
Clear, [2,3Sigs] 
EncSlip, [3SigB] 
Clear, 7-1k (SALTB, DESC), EncSlip, [2,3Sig2s, [ 
RESPCODE, Sigh 
RESPCODE, Sigh, [2,3VIVC]

3S1gB]]

Figure 4. Modified iKP protocols

5. Modeling the Modified 3KP Protocol

  First we abstract the modified iKP protocols so that we 
can reasonably verify that the modified 3KP protocol has 

agreement protocol. Next observational transition systems 

used for modeling the protocol and how to describe such 

models in CafeOBJ are written. Finally how to model 

the abstraction of the modified 3KP protocol as an obser-

vational transition system is written and its description in 

CafeOBJ is shown.

BAN is used and the remaining two are deleted. DESC is 

deleted because it seems irrelevant to agreement property, 

and SALTB is removed because it is primarily used for salt-

ing DESC. Moreover Confirm is irrelevant to agreement 

property as well, and Confirm message flow is deleted. 
  Figure 5 shows the AMiKP protocols. 

  Since the abstraction done is simply deleting some quan-

tities, if we verify that the AM3KP protocol has agreement 

property, then we are assured that the modified 3KP proto-
col really does.

5.1. Abstraction of the Modified iKP Protocols 5.2. Observational Transition Systems

  Since the (modified) iKP protocols should have other 

properties such as replay attack protection than agreement 
property, messages exchanged between principals includes 
information that is not directly needed to possess the prop-
erty. Therefore we first abstract the modified iKP protocols 
so that we can reasonably verify that the modified 3KP pro-
tocol has the property.The abstraction is called the AMiKP 

protocols. 
  AUTHPRICE, 71(V) and 7-l(VC) are removed because 
they are most likely irrelevant to agreement property. Al-
though TIDs, DATE and NONCEE are also used so that 
S can remember which buyer S is communicating with us-
ing Common including these quantities, they are removed 
because buyer's ID is included in Common. BAN, PIN 
and EXPIRATION are used so that acquirer can check 
that the credit card is valid. In the AMiKP protocols, only

Models We assume that there exists a universal state 
space called T. You can imagine that an element, called a 
state, of T corresponds to a snapshot of the universe. When 
we describe a system, the system is basically modeled by 
observing only quantities that are relevant to the system and 
that interest us from the outside of each state of T. An ob-
servational transition system[23, 24, 251, or an OTS can be 
used to model a system in this way. 

  An OTS S = (0,1, T) consists of:

• 0 : A set of observations. Each observation o E 0 
 is a function o : T —+ D mapping each v E T into 

 some typed value in D (D may be different for each 
 observation). The value returned by an observation (in 

 a state) is called the value of the observation (in the 
  state).
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Composite fields:

Common

Clear

SLIP

EncSlip

Sigh

 Sigs

Sig2s

Sign

S, B, IDB

7-1(Common)
1-l( Common) , BAN, RB

SA (SLIP)
SA(RESPCODE, 71(Common))
Ss (N(Common) )
SsCH(Common) , EncSlip)
SB(EncSlip, 7-1 (Common)) )

Protocol flows:

Initiate: 

Invoice: 

Payment: 

Auth-Request: 

Auth-Response:

B 

S 

B 

S 

A

-- 4

S 

B 

S 

A 

S

• 

• 

• 

• 

• 

• 

• 

•

IDB 

Clear, [2,3Sigs] 
EncSlip, [3 Sign ] 
Clear, EncSlip, [2,3Sig2s, [ 
RESP CODE, Sigh

3S1gB]]

Figure 5. The AM iKP protocols

Given an OTS S and two states v1, v2 E T, the equality 

between two states, denoted by v1 =s v2, with respect 

to S is defined as follows:

vl =S 1)2 iff Vo E (7.0(vl) = 00)2)1

where =' in o(vi) = o(v2) is supposed to be well de-
fined for the range of each o E 0. S may be removed 
from =s if it is clear from the context.

• I : The initial condition. This condition specifies the 

 initial value of each observation that defines initial 

 states of the OTS.

• 1: A set of conditional transition rules. Each tran-
 sition rule T E 'T is a relation between states pro-
 vided that, for each state v E T, there exists a state 
 v' E T, called a successor state, such that T(v, v') and 
 moreover, for each state v1, v2, vi, v2 E T such that 
 v1 =S V2, T(V1, el) and T(v2, v2), vi =s v. T can 

 be regarded as a function on equivalent classes of T 
 with respect to =s. Therefore, we assume that T(v) 

 denotes the representative element of the equivalent 
 class the successor states of v with respect T belong 

  to. 

 The condition cT for a transition rule T E T is called 
 the effective condition. Given a state, its truth value 
 can be determined by only the values of observations in 

 the state. Predicates of this kind are called state predi-
  cates. Given a state v E T, c.- is true in v, namely T is 

 effective in v, iff v Os T(V).

  Multiple similar observations or transition rules may be 
indexed. Generally, observations and transition rules are de-
noted by oi1,...,i and 'r 1  i , respectively, provided that 
m, n > 0 and we assume that there exist data types Dk such 
that k E Dk (k = il, ... , i„i, jl, ... , jn). For example, an 
integer array a possessed by a process p may be denoted by 
an observation ap, and the increment of the ith element of 
the array may be denoted by a transition rule incap,i. 

  An execution starts from one initial state and goes on 
forever; in each step of execution some transition rule is se-
lected nondeterministically and executed. Nondeterministic 
selection is constrained by the following fairness rule: ev-
ery transition rule is selected infinitely often. Given an OTS, 
a set of infinite sequences of states is obtained from execu-
tion, constrained by the fairness rule, of the OTS. Such an 
infinite sequence of states is called an execution of the OTS. 
More specifically, an execution of an OTS S is an infinite 
sequence so, s1, ... of states satisfying: 

  • Initiation : For each o E 0, o(so) satisfies I. 

  • Consecution: For each i E {0,1, ...}, si+1 =8 T(Si) 
   for some T E T.

 • Fairness : For each T E T, there exist an infinite num-
   ber of indexes i E {0, 1, ...} such that si+1 =s T(si). 

A state is called reachable with respect to S if it appears in 
an execution of the OTS.

Verification Important properties that an OTS may have 
are basically classified into two classes: safety and liveness
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(or progress) properties. Since non-overcharge property is 
a safety property, we only describe safety properties and 
how to prove that an OTS has a safety property in this pa-

per. Safety properties are defined as follows: a predicate 
 p  : T -+ {true, false} is a safety property with respect to S 
iff p is a state predicate and p(v) holds for every reachable 
v E T. 

  If we prove that an OTS has a safety property p, the fol-
lowing induction is mainly used:

• Base case: For any state v E T in which each obser-
 vation o E 0 satisfies I, we show that p(v) holds.

• Inductive step: Given any reachable state v E T such 
 that p(v) holds, we show that, for any transition rule 

T E T, p(r(v)) also holds.

5.3. Observational Transition Systems in CafeOBJ

  CafeOBJ[5, 9] is mainly based on two logical founda-
tions: initial and hidden algebra. Initial algebra is used 
to specify abstract data types such as integers, and hidden 
algebra[ 12] to specify abstract machines. There are two 
kinds of sorts (corresponding to types in programming lan-

guages) in CafeOBJ. They are visible and hidden sorts. A 
visible sort represents an abstract data type, and a hidden 
sort the state space of an abstract machine. There are ba-
sically two kinds of operations to hidden sorts. They are 
action and observation operations. An action operation can 
change a state of an abstract machine. It takes a state of an 
abstract machine and zero or more data, and returns another 

(possibly the same) state of the abstract machine. Only ob-
servation operations can be used to observe the inside of an 
abstract machine. An observation operation takes a state of 
an abstract machine and zero or more data, and returns a 
value corresponding to the state. An action operation is ba-
sically specified with equations by describing how the value 
of each observation operation changes relatively based on 
the values of observation operations in a state after execut-
ing the action operation in the state. 

  Declarations of visible sorts are enclosed with [ and ] , 
and those of hidden ones with * [ and ] *. Declarations of 
observation and action operations start with bop or bops, 
and those of other operations with op or ops. After bop 
or op (or bops or ops), an operator is written (or more 
than one operator is written), followed by : and a sequence 
of sorts (i.e. sorts of the operators' arguments), and ended 
with —> and one sort (i.e. sort of the operators' results). 

Definitions of equations start with eq, and those of condi-
tional ones with ceq. After eq, two expressions, or terms 
connected by = are written, ended with a full stop. After 
ceq, two terms connected by = are written, followed by if 
and a term denoting a condition, and ended with a full stop.
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  The CafeOBJ system, an implementation of CafeOBJ, 
rewrites (reduces) a given term by regarding equations as 
left-to-right rewrite rules. This executability makes it pos-
sible to simulate described systems and to verify that they 

possess some desired properties. 
  Basic units of description by CafeOBJ are modules. 

Modules may have parameters, and generic lists, etc. can 
be described. Attributes such as associativity and commu-
tativity may be given to operations, and sets and bags (mul-
tisets) can be conveniently declared. Each operation can 
be given local strategy as its attribute, and rewriting can be 
controlled to some extent. We can define the syntax of terms 
by declaring mix-fix operators. Thus, CafeOBJ has a lot of 
functionalities. We will mention other functionalities we do 
not here if we encounter them. 

  An OTS S is described in CafeOBJ. 
  The universal state space T is denoted by a hidden sort, 

say Sys, by declaring * [ Sys ] *. 
  An observation oil,...,im E 0 is denoted by a CafeOBJ 

observation operation. We assume that data types Dk (k = 
... , a„L) and D are described in initial algebra and there 

exist visible sorts Sk (k = il, ... , im) and S correspond-
ing to the data types. The CafeOBJ observation operation 
denoting oil is declared as follows:

bop o : Sys Si1 ... Si,n -> S

  The initial condition I, the value of each observation in 
any initial state, is described by declaring a constant (an op-
erator without any arguments) denoting any initial state and 
specifying the value of each observation in the state with 
equations. First, the constant init  denoting any initial 
state is declared as follows:

op init : -> Sys

Suppose that the initial value of oil ,...,im is f (ii, . . . , i.), 
this can be described in CafeOBJ as follows:

eq o (init, Xs1,... , Xi,n) = f(Xt,... , X., ( .

where Xk (k = i 1 i ... , ini) is a CafeOBJ variable which 
sort is Sk, and f (Xi1 , ... , Xj) means a term (consisting 
of Xil, ... , Xi„L) corresponding to f (ii, ... , im). 

  A transition rule Tjl E T is denoted by a CafeOBJ 
action operation. We assume that data types Dk (k = 

... , j,,) are described in initial algebra and there exist 
visible sorts Sk (k = ji, ... , jr,) corresponding to the data 
types. The CafeOBJ action operation denoting Tj jn is 
declared as follows:

bop a : Sys S71 ... SJn -> Sys

  If Tj1 ..., jn is executed in a state in which it is effective, 

the value of oil ,,..,i,n may be changed, which can be de-

scribed in CafeOBJ generally as follows:



 ceq  o  (a  (S  ,  X  J  1  ,  ...  ,Xj)  ,  Xi  1  ,  ...  ,  X  i  m  ) 

        if c-a (S, XJ1 , ... , Xjn) .

where e—a (S, Xj1 , ... , Xjn , Xi1 , ... , Xim) means a term 

(consisting of S, Xi, , ... , Xjn , X~1, ... , Xim) correspond-
ing to the value of oi1....,im in the successor state, 
and c—a (S, Xj1, ... , Xjn ) means a term (consisting of 
S, Xj1, ... , Xjn) corresponding to cTj1 jn . 

If T~1i,,,~„is executed in a state in which it is not effec- 
tive, the value of any observation is not changed. Therefore, 
all we have to do is to declare the following equation:

 ceq a(S,Xj1,...,Xj) = Sif not c-a(S,Xj1,...,Xjn) . 

 If the value of oil is not affected by executing 
      in any state (regardless of the truth value of 

c,.jl jn ), the following equation is declare: 

eqo(a(S,XJ1,...,Xjn),Xi1,...,Xim) =o(S,Xi1,...,Xim) .

5.4. Modeling

 Let us model as an OTS the AM3KP protocol. First data 

structures used in the protocol are defined in CafeOBJ.

Data Structures Used to Model Abstract 3KP Module 
BAN defines BAN's. The signature (in the context of alge-
braic specification) is as follows: 

 [Ban] 
 op _=_  : Ban Ban -> Bool {comm} 

CafeOBJ provides built-in operator _==_,  but it could be 
sometimes troublesome especially for verification. There-
fore, for each data structure used to model the AM3KP pro-
tocol, we define operator _=_  that checks if two values are 
equal. The operator is given operator attribute comm declar-
ing that the operator is commutative. Necessary equations 
for defining operator _ should be described. For visible 
sort Ban, we have the following equation:

eq (N:Ban = N) = true .

where N is a CafeOBJ variable which sort is Ban. Such a 

equation is called the basic equation for the operator. Every 

visible sort corresponding to data structure used to model 

the AM3KP protocol has this equation. 

  Module RCODE defines RESPCODE's. The signature is as 

follows: 

 [Rcode] 
 ops yes no : -> Rcode 
op : Rcode Rcode -> Bool {comm} 

  Modules PKEY and SKEY define public and secret keys 

respectively. We have visible sorts Pkey and Skey, and 

the equality operator for each sort. 
  Module BUYER defines buyers. The signature is as fol-

lows:
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[Buyer] 
op b 
op ban 
op pk 
op sk 
op =

Ban -> Buyer 
Buyer -> Ban 
Buyer -> Pkey 
Buyer -> Skey 
Buyer Buyer -> Bool {comm}

Given a buyer, operators ban, pk and sk return the corre-
sponding BAN, public key and secret key, respectively. On 
the other hand, given a BAN, operator b returns the corre-
sponding buyer. 

  Module Seller defines sellers. The signature is as fol-
lows: 

 [Seller] 
 op pk : Seller -> Pkey 

 op sk : Seller -> Skey 
 op _=_  : Seller Seller -> Bool {comm} 

  Module ACQUIRER defines acquirers. The signature is 
as follows: 

 [Acquirer] 
 op pk : Acquirer -> Pkey 

 op sk : Acquirer -> Skey 
 op _=_ : Acquirer Acquirer -> Bool {comm} 

  Module RAND defines random numbers. The signature 
is as follows: 

 [Rand] 
 op nxt : Buyer Rand -> Rand 

 op gtr : Rand -> Buyer 
 op rnd : Rand -> Rand 
 op _=_ : Rand Rand -> Bool {comm} 

Operator nxt denotes a perfect random number generator. 
The first argument indicates the buyer who has generated 
the random number, and the second argument can be re-

garded as something like a seed to generate the random 
number. Operators gt r and rnd are projection functions of 
a random number, returning the first and second arguments 
respectively. 
  Module HASHVALUE defines values returned by hash 
functions 7-1 and 1-1k. Two visible sorts Hban and Hcom, 

                                           and their equality operators are declared. Hban corre-
sponds to ?tk (RB, BAN), and Hcom to 7-1(Common). The 
data constructors for the hash values are defoned after the 
definition of module COMMON because undefined symbols 
cannot be used in CafeOBJ, or forward reference is prohib-
ited in CafeOBJ. 

  Module COMMON defines Common's. The signature is 
as follows: 

[Common] 
 op com : Seller Buyer Hban -> Common 

 op s : Common -> Seller 
 op b : Common -> Buyer 
 op hban : Common -> Hban 
 op =  : Common Common -> Bool {comm} 

Operator com is the data structure, and the following three 
operators are the projection functions. 

  Module HCOM defines hash values returned by applying 
7-1 to Common's. The data constructor h is declared. Mod-
ule HBAN defines hash values returned by applying 7lx to 

pairs of random numbers and BAN's. The data constructor



h and the projection function r returning the random num-
ber are declared. 

  Module CLEAR defines Clear's. The signature is as fol-
lows: 
 [Clear] 
 op  cl : Hcom -> Clear 

 op hcom : Clear -> Hcom 
 op = : Clear Clear -> Bool {comm} 

Operator c 1 is the data constructor, and the following oper-
ator is the projection function. 

  Module SLIP  defines SLIP's. The signature is as fol-
lows: 

• 

 [Slip] 
 op slp : Hcom Ban Rand -> Slip 

 op hcom : Slip -> Hcom 
 op ban : Slip -> Ban 
 op rand : Slip -> Rand 
 op _=_  : Slip Slip -> Bool {comm} 

Operator s1p is the data constructor, and the following 
three operators are the projection functions. 

  Module ESLP defines the ciphers obtained by encrypting 
SLIP's with a public key. The signature is as follows: 

[Eslp] 
 op enc : Pkey Slip -> Eslp 

 op pk : Eslp -> Pkey 
 op slip : Eslp -> Slip 
 op _=_  : Eslp Eslp -> Bool {comm} 

Operator enc is the data constructor, and the following two 
operators are the projection functions. 

  Module S I GA defines signatures (in the context of cryp-
tography) generated by acquirers. The signature (in the con-
text of algebraic specification) is as follows: 

[Siga] 
 op sig : Skey Rcode Hcom -> Siga 

 op sk : Siga -> Skey 
 op rc : Siga -> Rcode 
 op hc : Siga -> Hcom 
 op _=_ : Siga Siga -> Bool {comm} 

Operator sig is the data constructor, and the following 
three operators are the projection functions. 

  Module S I G S defines signatures (in the context of cryp-
tography) generated by sellers for sending Invoice. The 
signature (in the context of algebraic specification) is as fol-
lows: 
 [Sigs] 
 op sig : Skey Hcom -> Sigs 

 op sk : Sigs -> Skey 
 op hc : Sips -> Hcom 
 op = : Sips Sips -> Bool {comm} 

Operator s i g is the data constructor, and the following two 
operators are the projection functions. 

  Module 51G52 defines signatures (in the context of 
cryptography) generated by sellers for sending Auth-
Request. The signature (in the context of algebraic speci-
fication) is as follows: 

[Sigs2] 
  op sig : Skey Hcom Eslp -> Sigs2 

  op sk : Sigs2 -> Skey 
  op hc : Sigs2 -> Hcom 
  op es : Sigs2 -> Eslp 
  op = : Sigs2 Sigs2 -> Bool {comm}

Operator s i g is the data constructor, and the following 
three operators are the projection functions. 

  Module S I GB defines signatures (in the context of cryp-
tography) generated by buyers. The signature (in the con-
text of algebraic specification) is as follows: 

 [Sigb] 
 op sig : Skey Eslp Hcom -> Sigb 

 op sk : Sigb -> Skey 
 op he : Sigh -> Hcom 
 op es : Sigb -> Eslp 
 op _=_  : Sigb Sigb -> Bool {comm} 

Operator s i g is the data constructor, and the following 
three operators are the projection functions. 

  Module MSG defines messages exchanged by principals 
in abstract 3KP protocol. The main part of the signature is 
as follows: 

[Msg] 
 op im : Buyer Buyer Seller Hban -> Msg 

 op vm : Seller Seller Buyer Clear Sips -> Msg 
 op pm : Buyer Buyer Seller Eslp Sigb -> Msg 
 op qm : Seller Seller Acquirer Clear Eslp 

Sigs2 Sigb -> Msg 
 op sm : Acquirer Acquirer Seller Rcode Siga -> Msg 

Operators im, vm, pm, qm and sm are data constructors 
for Initiate, Invoice, Payment, Auth-Request and Auth-
Response, respectively. The fist, second and third argu-
ments of each constructor means the generator, the source 
and the destination of the corresponding message. The gen-
erator argument is a meta information that indicates who 

generates the message. You can understand what any other 
arguments of the constructors would be. Other than those 
operators, we have operators (im?, vm?, pm?, qm? and 
sm?) checking if a given message is a certain type of mes-
sages, and the projection functions. The projection func-
tions are, for a given message, those (ic, vc, pc, qc, sc) 
returning the generator, those (is, vs,  p, q s , ss) return-
ing the source, those (id, vd, pd, qd, sd) returning the 
destination, hb a n returning ID B if any, clear  returning 
Clear if any, eslip returning EncSlip if any, rcode re-
turning RCODE if any, siga returning Sigh if any, sigs 
returning Sigs if any, s i g s 2 returning Sig2s if any, and 
s i gb returning Sign if any. We also have the equality op-
erator. 
  The network with which messages are exchanged is 
modeled as a bag (or multiset) of messages. Module 
EQTRIV is needed for defining module BAG. We have visi-
ble sort TRIV and the equality operator in the module. 

  Module BAG is a parameterized one with one parameter. 
The formal parameter is D : : EQTRIV. The signature is as 
follows: 

  [Elt.D < Bag] 
 op void : -> Bag 

 op _,_ : Bag Bag -> Bag { assoc comm id: void } 
  op _\in_ : Elt.D Bag -> Bool 

CafeOBJ is order-sorted, meaning that you can define par-
tial ordering among sorts. By declaring E 1 t .D < Bag,
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an element of bags can be regarded as a singleton bag.  Op-

erator void denotes the empty bag. Operator _, _ is the 
data constructor of bags. Other than comm, the operator is 

given two more operator attributes ass  o c and id: void. 
The former means that the operator is associative, and the 

latter that void is the identity of bags. Given an element 

and a bag, operator _\ in_ checks if the bag includes the 
element. 

  Module INTRUDER defines an intruder. The intruder 
acts as each of a usual buyer, a usual seller and a usual ac-

quirer. We have the following constants:

op ib 

op is 

op ia

-> Buyer 

-> Seller 

-> Acquirer

The intruder behaves basically following the Doleve-Yao 

general intruder model[10]. What the intrude can do other 
than as a usual principal in the protocol will be described. 

  The intruder can eavesdrop any message flowing in the 
network and glean information related to the protocol from 
the message. Given a snapshot of the network, what in-
formation the intruder has gleaned is represented by the 

collection data structure defined in parameterized module 
COLLECTION with one parameter. The formal parameter 
is D : : TRIV, where TRIV is a built-in module in which 

one visible sort Elt is declared. The signature of module 
COLLECTION is as follows:

 [Elt.D < Col] 
 op _\in_ : Elt.D Col -> Bool 

  Module NETWORK defines the network. The module im-

ports several other modules as follows:

pr(INTRUDER) 
pr(BAG(MSG) 
pr(COLLECTION(HCOM) 
pr(COLLECTION(HBAN) 
pr(COLLECTION(BAN) 
pr(COLLECTION(RAND) 
pr(COLLECTION(ESLP) 
pr(COLLECTION(RCODE) 
pr(COLLECTION(SIGA) 
pr(COLLECTION(SIGS) 
pr(COLLECTION(SIGS2) 
pr(COLLECTION(SIGB)

*{sort Bag -> Network}) 

*{sort Col -> ColHcoms}) 
*{sort Col -> ColHbans}) 
*{sort Col -> ColBans}) 
*{sort Col -> ColRands}) 
*{sort Col -> ColEslps}) 
*{sort Col -> ColRcodes}) 
*{sort Col -> ColSigas}) 
*{sort Col -> ColSigss}) 
*{sort Col -> ColSigs2s}) 
*{sort Col -> ColSigbs})

CafeOBJ command pr is basically used to import mod-
ules. Other than module INTRUDER, a module is first in-
stantiated, a sort is renamed, and then the instantiated and 
renamed module is imported. For example, module BAG 
is instantiated with module MSG, creating a module defin-
ing bags of messages, the visible sort Bag in the created 
module is renamed to Network, and then it is imported. 
Visible sort Network is dedicated to the network with 
which messages are exchanged in the protocol. Visible sorts 
Co1X (X = Hcoms, Hbans, Bans, Rands, Eslps, Rcodes, 
Sigas, Sigss, Sigs2s, Sigbs) correspond to quantities 
gleaned by the intruder from the network. 

  The signature of module NETWORK is as follows:

op 

op 

op 

op 

op 

op 

op 

op 

op 

op

hcoms 

hbans 

bans 

rands 

eslps 

rcodes 

sigas 

sigss 

sigs2s 

sigbs

Given a network, 

hash values 

ues obtained  by applying 71K to pairs of random num-

bers and a I 

RESPCODE's, signatures generated by acquirers, signa-

tures generated 

generated by sellers for sending Auth-Request, and signa-
tures by buyers, respectively, gleaned by the intruder from 

the network. 

  We are about to describe equations defining those opera-

tors because they are a key to modeling the protocol. While 

describing the equations, it is assumed that NW, M, HC, HN, 

S, B, N, R, EP, C, GA, GS, GT and GB are CafeOBJ variables 
which sorts are Network, Msg, Hcom, Hban, Seller, 

Buyer, Ban, Rand, Eslp, Rcode, Siga, Sigs, Sigs2 

and S i gb, respectively. 

  The equations for defining operator hcoms are as fol-
lows:

Network -> ColHcoms 
Network -> ColHbans 
Network -> ColBans 
Network -> ColRands 
Network -> ColEslps 
Network -> ColRcodes 
Network -> ColSigas 
Network -> ColSigss 

 Network -> ColSigs2s 
Network -> ColSigbs 

obtained by applying 7-1 to BAN's, hash val-

 by applying 71K to pairs of random num-

E's, signatures generated by acquirers, signa-

Led by sellers for sending Invoice, signatures

 eq HC \in hcoms(void) = false . 
 ceq HC \in hcoms(M,NW) = true 

     if vm?(M) and HC = hcom(clear(M)) . 
 ceq HC \in hcoms(M,NW) = true 

     if pm?(M) and pk(ia) = pk(eslip(M)) and 
HC = hcom(slip(eslip(M))) . 

 ceq HC \in hcoms(M,NW) = true 
     if qm?(M) and HC = hcom(clear(M)) . 

ceq HC \in hcoms(M,NW) = true 
     if qm?(M) and pk(ia) = pk(eslip(M)) and 

HC = hcom(slip(eslip(M))) . 
 ceq HC \in hcoms(M,NW) = HC \in hcoms(NW) 
     if not(vm?(M) and HC = hcom(clear(M))) and 

not(pm?(M) and pk(ia) = pk(eslip(M)) and 
HC = hcom(slip(eslip(M)))) and 

not(gm?(M) and HC = hcom(clear(M))) and 
not(gm?(M) and pk(ia) = pk(eslip(M)) and 

HC = hcom(slip(eslip(M)))) . 

If the network does not have any message, the intruder 
has not gleaned any hashed Common's from the network. 
If the network includes Initiate or Auth-Request, the in-
truder can glean any hashed Common's in plain text. Be-
sides, if the network includes Payment or Auth-Request, 
and EncSlip in the message happens to be encrypted by a 

public key (namely pk (ia)) known by the intruder, then 
the hashed Common occurring in the EncSlip can also be 

gleaned. Otherwise, the intruder cannot glean any hash val-
ues. 
  The equations for defining operator hbans are as fol-
lows:

eq HN 

ceq HN 

    if 

ceq HN 

    if

\in hbans(void) 
\in hbans(M,NW) 
im?(M) and HN = 
\in hbans(M,NW) 
not (im? (M) and

 = false . 
 = true 

hban(M) . 
= HN \in hbans(NW) 

HN = hban(M)) .
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  The equations for defining operator bans are as follows: 

 eq  ban(ib) \in bans(void) = true . 
 ceq N \in bans(void) = false if not (N = ban(ib)) . 

 ceq N \in bans(M,NW) = true 
     if pm?(M) and pk(ia) = pk(eslip(M)) and 

        N = ban (slip (eslip (M)) ) . 
 ceq N \in bans(M,NW) = true 

     if qm?(M) and pk(ia) = pk(eslip(M)) and 
        N = ban (slip (eslip (M) ) ) 

 ceq N \in bans(M,NW) = N \in bans (NW) 
     if not(pm?(M) and pk(ia) = pk(eslip(M)) and 

            N = ban (slip (eslip (M) ) ) ) and 
not (gm?(M) and pk (ia) = pk (eslip (M) ) and 

            N = ban (slip (eslip (M) ) ) ) . 

In any situation, the intruder knows his/her own BAN 

(namely ban (ib)) as a buyer. 
  The equations for defining operator rands are as fol-

lows: 
 eq R \in rands(void) = false . 

 ceq R \in rands(M,NW) = true 
     if im?(M) and ib = gtr (r (hban (M) ) ) and 

        R = r(hban(M)) . 
 ceq R \in rands(M,NW) = true 

     if pm?(M) and pk(ia) = pk(eslip(M)) and 
        R = rand(slip(eslip (M) ) ) . 

 ceq R \in rands(M,NW) = true 
     if qm?(M) and pk(ia) = pk(eslip(M)) and 

        R = rand (slip (eslip (M) ) ) . 
 ceq R \in rands(M,NW) = R \in rands(NW) 

     if not (im?(M) and ib = gtr (r (hban (M) ) ) and 
            R = r(hban(M))) and 

not (pm?(M) and pk(ia) = pk(eslip(M)) and 
            R = rand (slip (eslip (M) ) ) ) and 

not (gm?(M) and pk(ia) = pk(eslip(M)) and 
            R = rand (slip (eslip (M) ) ) ) . 

The second equation states that the intruder knows random 
numbers generated by herself/himself. 

  The equations for defining operator e s l p s are as fol-
lows: 
 eq EP \in eslps(void) = false . 

 ceq EP \in eslps(M,NW) = true 
     if pm?(M) and EP = eslip(M) . 

 ceq EP \in eslps(M,NW) = true 
     if qm?(M) and EP = eslip(M) . 

 ceq EP \in eslps(M,NW) = EP \in eslps(NW) 
     if not (pm?(M) and EP = eslip(M)) and 

not (gm?(M) and EP = eslip(M)) . 

  The equations for defining operator r c o de s are as fol-
lows: 
 eq C \in rcodes(void) = false . 

 ceq C \in rcodes(M,NW) = true 
      if sm?(M) and C = rcode(M) . 

 ceq C \in rcodes(M,NW) = C \in rcodes(NW) 
      if not (sm? (M) and C = rcode (M) ) . 

  The equations for defining operator s i ga s are as fol-
lows: 
 eq GA \in sigas(void) = false . 

 ceq GA \in sigas(M,NW) = true 
      if sm?(M) and GA = siga(M) . 

 ceq GA \in sigas(M,NW) = GA \in sigas(NW) 
     if not(sm?(M) and GA = siga(M)) 

  The equations for defining operator s i g s s are as fol-
lows: 
 eq GS \in sigss(void) = false . 

 ceq GS \in sigss(M,NW) = true 
     if vm?(M) and GS = sigs(M) . 

 ceq GS \in sigss(M,NW) = GS \in sigss(NW) 
     if not (vm?(M) and GS = sigs(M)) .

B

• 

• 

•
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Intruder

S
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S

B

Figure 6. The network as the intruder

  The equations for defining operator s i g s 2 s are as fol-
lows: 
 eq GT \in sigs2s(void) = false . 

 ceq GT \in sigs2s(M,NW) = true 
     if qm?(M) and GT = sigs2(M) . 

 ceq GT \in sigs2s(M,NW) = GT \in sigs2s(NW) 
     if not (gm?(M) and GT = sigs2(M)) • 

  The equations for defining operator s i gb s are as fol-
lows: 
 eq GB \in sigbs(void) = false . 

 ceq GB in sigbs(M,NW) = true 
     if pm? (M) and GB = sigb(M) . 

 ceq GB \in sigbs(M,NW) = true 
     if qm?(M) and GB = sigb(M) . 

 ceq GB \in sigbs(M,NW) = GB \in sigbs(NW) 
     if not(pm?(M) and GB = sigb(M)) and 

not (gm?(M) and GB = sigb(M)) . 

  As described now, the intruder can eavesdrop any mes-
sage flowing in the network and, from it, glean any quan-
tity except those cryptographically processed. The network 
is assumed to be completely under the intruder's control. 
Therefore, the network can be regarded as the intruder her-
self/himself as shown in Fig. 6. 

  All the intruder can do, other than those done by him/her 

as a usual principal, is to fake messages using values 

gleaned, as described now, from the network. 
  In the modeling, we assume that there is one and only le-

gitimate acquirer, and every principal obtains his/her public 
key securely. Module LEGITIMATEACQUIRER defines 
the legitimate acquirer. We have two operators and one 
equation as follows: 

 op la : -> Acquirer 
op check : Ban -> Rcode 

 eq (la = ia) = false . 

Constant la denotes the legitimate acquirer. Operator 
check corresponds to that the acquirer uses the authoriza-
tion system to obtain on-line authorization of a payment. 
The equation declares that the legitimate acquirer is differ-
ent from the intruder.

Observational Transition System to Model AM3KP 

The universal state space T is denoted by hidden sort Pro-

tocol.  To denote any initial state of the OTS, the following 

constant is declared:
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op  init : -> Protocol

  We use two observations in the OTS. The corresponding 
CafeOBJ observation operators are declared as follows: 

 bop nw : Protocol -> Network 
 bop rand : Protocol -> Rand 

Operator rand denotes a perfect random number genera-
tor used in the protocol. As you can imagine, operator nw 
denotes the network. 

  We use, in the OTS, transition rules corresponding to 

passing messages, which are basically classified into two 
categories: one obeys the protocol, and the other fakes mes-

sages. 
  The CafeOBJ action operators corresponding to transi-
tion rules obeying the protocol are as follows: 

 bop sdim : Protocol Buyer Seller -> Protocol 
 bop sdvm : Protocol Seller Msg-> Protocol 
 bop sdpm : Protocol Buyer Rand Msg Msg -> Protocol 
 bop sdqm : Protocol Seller Hban Msg Msg -> Protocol 

bop sdsm : Protocol Msg-> Protocol 

  Given a buyer and a seller, operator sdim corresponds 
to that the buyer sends Invoice to the seller. 

  Given a seller and a message, operator sdvm corre-
sponds to that the seller sends Invoice to a buyer if the net-
work includes the message, and the source and destination 
of the message are the buyer and the seller respectively. The 
conditoin does not include who has actually sent (created) 
the message because the receiver of a message cannot gen-
erally decide who has actually sent the message. Therefore 
who has actually sent the message may be the intruder. All 

the receiver can do is to look at the source field of the mes-
sage and to expect that she/he is probably the sender. 

  Given a buyer, a random number and two messages 
ml, m2, operator sdpm corresponds to that the buyer sends 
Payment to a seller if the following holds. The network 
includes the two messages, ml is Initiate that the buyer has 
sent to the seller, IDB is computed using the random num-
ber, m2 is Invoice which source is the seller and which des-
tination is the buyer, and m2 is the valid with respect to 
ml as described in Sect. 2. The buyer may remember that 
she/he has sent which messages to whom by storing them in 
her/his own memory. In the modeling, that a buyer has sent 
a message to a seller is decided by looking the creator and 
destination fields of the message. This does not mean that 

anyone can decide who has generated a message. 
  Given a seller, a hashed BAN and two messages ml, m2, 

operator s dqm corresponds to that the seller sends Auth-
Request to the legitimate acquirer if the following holds. 
The network includes the two messages, ml is Invoice that 
the seller has generated using the hashed BAN and sent to 
a buyer, m2 is Payment which source and destination are 
the buyer and the seller, m2 is the valid with respect to ml 
as described in Sect. 2. 

  Given a message, operator sdsm corresponds to that the 
legitimate acquirer sends Auth-Response to a seller if the

network includes the message which source and destination 

are the seller and the acquirer, and the message is valid as 

described in Sect. 2. 

  The transition rules faking messages are basically di-

vided into five classes, each of which fakes each type of 

messages. The CafeOBJ action operators corresponding to 

transition rules faking Initiate are as follows:

 bop fkiml : Protocol Buyer Seller Hash -> Protocol 
 bop fkim2 : Protocol Seller Ban Rand -> Protocol 

  The CafeOBJ action operators corresponding to transi-

tion rules faking Invoice are as follows:

 bop fkvml : Protocol Seller Buyer Hcom Sigs -> Protocol 
 bop fkvm2 : Protocol Seller Buyer Hban Sigs -> Protocol 
 bop fkvm3 : Protocol Seller Ban Rand Sigs -> Protocol 
 bop fkvm4 : Protocol Seller Buyer Hcom -> Protocol 
 bop fkvm5 : Protocol Seller Buyer Hban -> Protocol 
 bop fkvm6 : Protocol Seller Ban Rand -> Protocol 

  The CafeOBJ action operators corresponding to transi-

tion rules faking Payment are as follows:

 bop fkpml : Protocol Buyer Seller 
                                      Eslp Sigb -> Protocol 

 bop fkpm2 : Protocol Seller Ban 
                                  Rand Hcom Sigb -> Protocol 

 bop fkpm3 : Protocol Seller Ban Rand Sigb -> Protocol 
 bop fkpm4 : Protocol Buyer Seller 

                                        Eslp Hcom -> Protocol 
 bop fkpm5 : Protocol Buyer Seller 

                                        Eslp Hban -> Protocol 
 bop fkpm6 : Protocol Seller Eslp Ban Rand -> Protocol 
 bop fkpm7 : Protocol Seller Ban Rand Hcom -> Protocol 
 bop fkpm8 : Protocol Seller Ban Rand -> Protocol 

  The CafeOBJ action operators corresponding to transi-

tion rules faking Auth-Request are as follows:

bop fkgml

bop fkqm2

bop fkqm3

bop fkqm4 

bop fkqm5

: Protocol Seller

: Protocol

: Protocol

Seller 

 Hban 

Seller

: Protocol Seller 

: Protocol Seller

Hcom 

Eslp Sigs2 

 Buyer 

Eslp Sigs2 

 Ban 

Rand Sigs2 

 Hcom Eslp 

 Buyer 

 Hban Eslp 

Ban Rand 

 Hcom 

     Eslp 

 Buyer 

Hban Eslp 

Ban Rand 

Hcom Eslp 

 Buyer 

       Hban

Sigb -> Protocol

Sigb -> Protocol

Sigb -> Protocol 

Sigb -> Protocol

 Hban Eslp Sigb -> Protocol 
bop fkqm6 : Protocol Seller Ban Rand Sigb -> Protocol 
bop fkqm7 : Protocol Seller 

     Eslp Sigs2 -> Protocol 
bop fkqm8 : Protocol Seller 

Hban Eslp Sigs2 -> Protocol 
bop fkqm9 : Protocol Seller Ban Rand Sigs2 -> Protocol 
bop fkgml0 : Protocol Seller Hcom Eslp -> Protocol 
bop fkgmll : Protocol Seller 

       Hban Eslp -> Protocol 
bop fkgml2 : Protocol Seller Ban Rand -> Protocol 

The CafeOBJ action operators corresponding to transi-

tion rules faking Auth-Response are as follows:

 bop fksml : Protocol Seller Rcode Siga -> Protocol 
 bop fksm2 : Protocol Seller Rcode Hcom -> Protocol 
 bop fksm3 : Protocol Seller Buyer Rcode 

                                               Hban -> Protocol 
 bop fksm4 : Protocol Seller Rcode Ban Rand -> Protocol 

  Equations to define the action operators described now 

are shown in Fig. 7 through Fig. 10. In the equations, P, B, 

S, Ml, M2, R, N, HC, HN, EP, C, GA, GS, GT and GB are 

CafeOBJ variables which sorts are Protocol, Buyer,
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Seller, Msg, Msg, Rand, Ban, Hcom, Hban,  Eslp, 

Rcode, Siga, Sigs, Sigs2 and Sigb, respectively. 

  The specification has 27 modules, and is approximately 

of 850 lines. The main module in which the OTS modeling 

abstract 3KP protocol is described is approximately of 300 

lines.

6. Verification

  That the legitimate acquirer receives valid Auth-
Request implies that there exists the valid Auth-Request 
in the network. Besides, that there exists a message created 
by a principal implies that the principas has sent (generated) 
the message. Therefore agreement property with respect to 
the AM3KP protocol can be stated as follows:

Claim 0. For any 

s2 : Seller, any bl

reachable p : Protocol, any s1 
: Buyer, any rl : Rand,

not(si = is and bl = ib) 
and 

qm(s2,sl,la,cl(h(com(sl,bl,h(rl,ban(b1))))), 
enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))), 

ban(bl),rl)), 

sig(sk(si),h(com(si,bl,h(rl,ban(bi)))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))), 

ban(bl),rl))), 
sig (sk (bl) , 

enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))), 
ban(bl),rl)), 

h(com(si,bl,h(rl,ban(bl)))))) \in nw(p) 
implies 
im(bl,bl,sl,h(rl,ban(bi))) \in nw(p) 
and 
vm(sl,sl,bl,cl(h(com(sl,bl,h(rl,ban(bl))))), 

sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 
and 

pm(bl,b1,51, 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sip (sk (bl) , 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl)), 

h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 
and 

gm(sl,si,la,cl(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(b1)))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl))), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl) , rl)) , 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

The claim states that if, for any reachable state, there ex-

ists a valid Auth-Request message in the network, no mat-

ter who generates it, there always exist the corresponding 

Initiate and Payment messages generated by the involved 

buyer, and the corresponding Invoice and Auth-Request 

messages generated by the involved buyer. 

  To prove Claim 0, we need 17 more claims as lemmas. 
The claims are as follows:

Claim 1. For 

esl : Cipher,

any reachable p : Protocol, any

esl \in

Claim 2.

nl \in

eslps (nw (p) ) implies pk(esl) = pk(la)

For any reachable p :

bans(nw(p))

Claim 3. For any 

bl : Buyer, any sl

Protocol, any nl :

implies nl = ban(ib)

  reachable p : Protocol, 

: Seller, any rl : Rand,

not(sl = is) 

and 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl))) \in sigs2s(nw(p)) 

implies 

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl)) ), 

sig(sk(bl), 
enc(pk(la),slp(h(com(sl,bl,h(r1,ban(b1)))), 

ban(bl),rl)), 
h(com(sl,bl,h(ri,ban(b1)))))) \in nw(p)

Claim 4. For 

sl : Seller, 
stl : Sigs2,

  any reachable 

 any cll : Clear, 
any sbl : Sigb,

gm(sl,is,la,cll,esl,stl,sbl)

Claim 5. For any 

bl : Buyer, any si

p: 

any

Protocol, 

esl : Eslp,

\in nw(p) implies

Ban,

any

any 

any

sl = is

  reachable p : Protocol, 

s2 : Seller, any rl : Rand,

qm(s2,si,la,c1(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bi,h(ri,ban(bl)))), 

enc(pk(la),slp(h(com(sl,b1,h(ri,ban(b1)))), 
ban(bi),ri))), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(r1,ban(b1)))), 

ban(bl),ri)), 
h(com(sl,b1,h(rl,ban(bi)))))) \in nw(p) 

implies 

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),sip(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,b1,h(rl,ban(b1)))), 
ban(bl),ri))), 

sip (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)

Claim 6. For any 

bl : Buyer, any si :

 reachable p : Protocol, 

Seller, any rl : Rand,

any

any

not(sl = is) 
and 

qm(sl,sl,la,cl(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl))), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl)), 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 

implies 
vm(sl,sl,bi,cl(h(com(sl,bl,h(rl,ban(bl))))), 

sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p)
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Claim 7. For any reachable p : Protocol, any 

si : Seller, any  bl : Buyer, any cll : Clear, any 

ssl : Sigs, 

vm(sl,is,bl,cll,ssl) \in nw(p) implies sl = is 

Claim 8. For any reachable p : Protocol, any 

bl : Buyer, any rl : Rand, 

not(bl = ib) 
 and 

enc(pk(la),slp(h(com(is,bi,h(rl,ban(bl)))), 
ban(bl),ri)) \in eslps(nw(p)) 

 implies 
vm(is,is,bl,cl(h(com(is,bi,h(rl,ban(bi))))), 

sig(sk(is),h(com(is,bl,h(ri,ban(b1)))))) \in nw(p)

Claim 9. For any reachable p : Protocol, 

bl : Buyer, any sl s2 : Seller, any rl : Rand, 

not(sl = is and bl = ib) 
 and 

qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))), 
ban(bl),ri))), 

sig (sk (b1) , 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl) ), 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 

 implies 
vm(si,sl,bl,cl(h(com(sl,bl,h(ri,ban(bl))))), 

sig(sk(sl),h(com(sl,bi,h(rl,ban(bl)))))) \in 

Claim 10. For any reachable p : Protocol 

bl : Buyer, any sl : Seller, any rl : Rand, 

not (bl = ib) 
 and 

enc(pk(la),slp(h(com(si,b1,h(r1,ban(b1)))), 
ban(bl),ri)) \in eslps(nw(p)) 

 implies 
pm(bl,bl,sl, 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))), 
ban(bl),rl) ), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban (bi) , rl)) , 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 

Claim 11. For any reachable p : Protocol, 
s1 : Seller, any bl : Buyer, any esl : Eslp, 

sb l : S i gb, 

pm(bi,ib,sl,esl,sbl) \in nw(p) implies bl = ib 

Claim 12. For any reachable p : Protocol, 

sl : Seller, any rl : Rand, 

not(sl = is) 
  and 

sig(sk(sl),h(com(sl,ib,h(rl,ban(ib)))), 
enc(pk(la),slp(h(com(sl,ib,h(rl,ban(ib)))), 

ban(ib),rl))) \in sigs2s(nw(p)) 
implies 
pm(ib,ib,sl, 

enc(pk(la),slp(h(com(si,ib,h(rl,ban(ib)))), 
ban(ib),ri)), 

sig(sk(ib), 
enc(pk(la),slp(h(com(sl,ib,h(rl,ban(ib)))), 

ban(ib),rl)), 
h(com(sl,ib,h(rl,ban(ib)))))) \in nw(p)

any

(p) 

   any

any 

any

any

Claim 13. For any reachable p : Protocol, 

bl : Buyer, any sl s2 : Seller, any rl : Rand, 

not(sl = is and bl = ib) 
 and 

qm(s2,si,la,c1(h(com(sl,bi,h(rl,ban(bl))))), 
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))), 

ban(bl),rl)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bi),ri))), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bi,h(ri,ban(bl)))), 

ban(bl),rl) ), 
h(com(sl,bi,h(ri,ban(b1)))))) \in nw(p) 

 implies 
pm (bl, bl, si, 

enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bl)))), 
ban(bl),ri)), 

sig (sk (bi) , 
enc(pk(la),slp(h(com(sl,b1,h(r1,ban(b1)))), 

ban(bl),rl)), 
h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 

Claim 14. For any reachable p : Protocol, 

bl : Buyer, any sl : Seller, any rl : Rand, 

not(bl = ib) 
 and 

pm(bl,bl,sl, 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bi)))), 

ban(bi),ri)), 
sig (sk (bl) , 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),ri)), 

h(com(sl,bl,h(rl,ban(bl)))))) \in nw(p) 
 implies 

im(bi,bl,si,h(rl,ban(bl))) \in nw(p) 

Claim 15. For any reachable p : Protocol, 

sl : Seller, any bl : Buyer, any hnl : Hban, 

im(bl,ib,si,hni) \in nw(p) implies bl = ib 

Claim 16. For any reachable p : Protocol, 

sl : Seller, any rl : Rand, 

not(si = is) 
 and 

sig(sk(sl),h(com(sl,ib,h(rl,ban(ib))))) \in 
implies 
im(ib,ib,sl,h(rl,ban(ib))) \in nw(p) 

Claim 17. For any reachable p : Protocol, 

bl : Buyer, any sl s2 : Seller, any rl : Rand, 

not(sl = is and bl = ib) 
 and 

qm(s2,sl,la,c1(h(com(sl,bi,h(rl,ban(bi))))), 
enc(pk(la),slp(h(com(si,bl,h(rl,ban(bl)))), 

ban(bl),ri)), 
sig(sk(sl),h(com(sl,bl,h(rl,ban(bl)))), 

enc(pk(la),slp(h(com(sl,bi,h(ri,ban(bl)))), 
ban(bl),rl))), 

sig (sk (bl) , 
enc(pk(la),slp(h(com(sl,bl,h(ri,ban(bi)))), 

ban(bi),rl)), 
h(com(sl,bl,h(ri,ban(bl)))))) \in nw(p) 

 implies 
im(bl,bl,sl,h(ri,ban(bl))) \in nw(p) 

  Claim 0 ,Claim 5, Claim 9, Claim 

been proved only by case analysis, 
induction described in Sect. 5.2. All the proofs hav(

any

any

any

any

sigss(nw(p))

any

im 13 and Claim 7 have 

is, and the ng by 

                       All the proofs have been
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done by writing proof scores in CafeOBJ and having the 

CafeOBJ system execute the proof scores. 

  In this paper, we describe parts of the proofs for Claim 8 

and Claim 9 that are proved by induction and only by case 

analysis, respectively.

Proof of Claim 8 We first write a module in which the 

predicate to be proved is declared. In the module called 
 PRED8, two constants (b1, r1) denoting any intended sorts 

(you can imagine) are declared. Operator p8 denoting the 
predicate is declared as follows:

op p8 : Protocol Buyer Rand -> Bool

We also have the equation defining the operator as follows:

 eq p8(P,B1,R1) 
    = not(B1 = ib) 

      and 
enc(pk(la),slp(h(com(is,B1,h(R1,ban(B1)))), 
                    ban(B1),R1)) \in eslps(nw(P)) 

      implies 
vm(is,is,B1,c1(h(com(is,B1,h(Rl,ban(B1))))), 

sig(sk(is),h(com(is,B1,h(Rl,ban(B1)))))) 
       \in nw(P) . 

where P, S10, T10, V10, N10 and R10 are CafeOBJ vari-

ables which sorts may be imagined.

  Base Case In any initial state init, to show that the 

predicate holds, the following proof score is described and 
executed by the CafeOBJ system:

open PRED8 
red p8(init,bl,rl) . 
close

  Inductive Step The predicate to be proved in each in-
ductive step is defined in module I STEP 8, in which two 
constants (p, p') are declared, where p and p' denote any 
reachable state and the successor state after executing a 
transition rule in the state. The predicate is declared as fol-
lows:

op istep8 : Buyer Rand -> Bool

The equation defining the predicate is as follows:

eq istep8(Bl,Rl) = p8(p,B1,Rl) implies p8(p',B1,R1) .

 All we have to do is basically to show i s — 

t ep 8 (bl, r 1) for every transition rule. In this paper, we 

describe proof scores showing that any transition rule de-
noted by action operator fkpm2 preserves predicate p5. 

We first consider two cases such that one corresponds to 

any state in which the transition rule is effective and the 

other to any state in which the transition rule is not. Since 

the predicate is neither true nor false in the former case, the 

case is also split into two parts such that one corresponds to 

any state in which bl equals ib, and the other to any state 

in which bl does not. Furthermore, for the latter case, we

make use of Claim 2. After all, we have three proof scores 

to show that the transition rule preserves the predicate. The 
three proof scores are as follows:

open ISTEP8 
-- arbitrary chosen objects 

op slO : -> Seller . 
op n10 : -> Ban . 
op r10 : -> Rand . 
op hc10 : -> Hcom . 
op sb10 : -> Sigb . 
-- assumptions 

eq n10 \in bans(nw(p)) = true . 
eq r10 \in rands(nw(p)) = true . 
eq hc10 \in hcoms(nw(p)) = true . 
eq sb10 \in sigbs(nw(p)) = true . 

eq bl = ib . 
-- successor state 

eq p' = fkpm2(p,s10,n10,ri0,hc10,sb10) . 
-- check if the predicate is also true in p'. 

red istep8(bl,r1) . 
close

open ISTEP8 
-- arbitrary chosen objects 

op 810 : -> Seller . 
op n10 : -> Ban . 
op r10 : -> Rand . 
op hc10 : -> Hcom . 
op sb10 : -> Sigb . 
-- assumptions 
-eq n10 \in bans(nw(p)) = true . 
eq ban(ib) \in bans(nw(p)) = true . 
eq r10 \in rands(nw(p)) = true . 
eq hc10 \in hcoms(nw(p)) = true . 
eq sb10 \in sigbs(nw(p)) = true . 

eq (bl = ib) = false . 
-- facts, etc . 
-- from Claim 2 (n10 \in bans(nw(p))) 

eq n10 = ban(ib) . 
-- successor state 

eq p' = fkpm2(p,si0,n10,r10,hc10,sb10) . 
-- check if the predicate is also true in p' . 
red istep8(bl,rl) . 
close

open ISTEP8 
-- arbitrary chosen objects 

op slO : -> Seller . 
op n10 : -> Ban . 
op r10 : -> Rand . 
op hc10 : -> Hcom . 
op sb10 : -> Sigb . 
-- assumptions 

eq (n10 \in bans(nw(p)) and r10 \in rands(nw(p)) and 
hc10 \in hcoms(nw(p)) and sb10 \in sigbs(nw(p))) 

   = false . 
-- successor state 

eq p' = fkpm2(p,s10,n10,r10,hc10,sb10) . 
-- check if the predicate is also true in p'. 

red istep8(bl,ri) . 
close

  The number of cases to be considered in all the inductive 

steps is 102.

Proof of Claim 9 Like the proof of Claim 8, module 
P RE D 9 in which four constants (bl, s 1, s 2, r i) and oper-
ator p 9 are declared is first written. Operator p 9 is declared 
as follows:

op p9 : Protocol Buyer Seller Seller Rand -> Bool
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We also have the equation defining the operator as follows:

eq  p9(P,B1,S1,S2,R1) 
   = not(S1 = is and B1 = ib) 

     and 

qm(S2,S1,1a,c1(h(com(S1,Bi,h(Rl,ban(B1))))), 
enc(pk(la),s1p(h(com(S1,Bi,h(R1,ban(B1)))), 

ban(B1),R1)), 
sig(sk(Si),h(com(S1,B1,h(R1,ban(B1)))), 

enc(pk(la),s1p(h(com(S1,B1,h(Ri,ban(B1)))), 
ban(B1),R1))), 

sig (sk (Bi) , 
enc(pk(la),slp(h(com(S1,B1,h(Ri,ban(B1)))), 

ban(B1),R1)), 
h(com(S1,B1,h(R1,ban(B1)))))) \in nw(P) 

     implies 
vm(S1,S1,B1,c1(h(com(S1,Bl,h(Rl,ban(B1))))), 

sig(sk(S1),h(com(S1,B1,h(Ri,ban(B1)))))) 
      \in nw(P) .

where P, Bi, Si and Ri are CafeOBJ variables which sorts 

may be imagined. 

  Then we show that the predicate is always true in any 

reachable state p. We first consider two cases such that one 

corresponds to any state in which s 1 equals i s, and the 

other to any state in which s 1 does not. 

  In this paper, we show the proof scores for the former 
case. The case is also split into two more cases such that 

one corresponds to any state in which b 1 equals i s, and the 
other to any state in which b 1 does not. Furthermore, the 

latter case is split into two more cases such that one corre-

sponds to any state in which there exists the Auth-Request 

message, in the network, corresponding to that occurring in 

the premise of the predicate, and the other to any state in 

which there does not. After all, we have three cases to be 

considered. For the second case, we make use of Claim 8. 

The three proof scores are as follows:

-- facts , etc. 
-- from Claim 8 

eq vm(is,is,bl,cl(h(com(is,bl 
sig(sk(is),h(com(is,bl, 

     \in nw10 = true . 
-- check if the predicate is 

red p9(p,bl,s1,s2,r1) . 
close

,h(rl,ban(bl))))) 
h(rl,ban(bl))))))

also true in p.

open PRED9 
-- arbitrary chosen objects 

op p : -> Protocol . 
-- assumptions 

eq is = si . 

eq (bl = ib) = false . 
eq qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))),

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bi),rl)), 

sig(sk(sl),h(com(si,bl,h(rl,ban(bl)))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(bl),rl))), 
sig(sk(bl), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(bl),rl)), 

h(com(sl,bl,h(rl,ban(bl)))))) 
\in nw(P) = false . 

 -- check if the predicate is also true in p. 
 red p9(p,b1,si,s2,r1) . 

 close 

  The size of all the proof scores is approximately of 
22,000 lines. It took about 4 minutes to have the CafeOBJ 
system load the specification and execute the proof scores 
on a laptop with 850MHz Pentium III processor and 512MB 
memory. 

 The verification that the modified 2KP protocol (actually 
the AM2KP protocol) possess agreement property is very 
similar to that for the AM3KP protocol. Basically by delet-
ing parts related to Sign from the CafeOBJ document and 

proof scores for the AM3KP protocol, we can get the proof 
for the AM2KP protocol.

open PRED9 
-- arbitrary chosen objects 

op p : -> Protocol . 
-- assumptions 

eq si = is . 

eq bl = ib . 
-- check if the predicate is also true in p. 

red p9(p,bl,sl,s2,r1) . 
close

open PRED9 
-- arbitrary chosen objects 

op p : --> Protocol . 
op m10 : -> Msg . 
op nw10 : -> Network . 
-- assumptions 

eq si = is . 

eq (bl = ib) = false . 
eq m10 

   = qm(s2,sl,la,c1(h(com(sl,bl,h(rl,ban(bl))))), 

enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 
ban(hi),rl)), 

sig(sk(s1),h(com(sl,b1,h(r1,ban(bi)))), 
enc(pk(la),slp(h(com(sl,bl,h(rl,ban(bl)))), 

ban(hi),ri))), 
sig (sk (bl) , 

enc(pk(la),slp(h(com(si,bl,h(rl,ban(bl)))), 
ban (bl) , rl)) , 

h(com(sl,bl,h(rl,ban(bl)))))) . 
eq nw(p) = m10 , nwi0 .

7. Related Work

  Recently applying formal methods to security proto-
cols is one of the hottest research topics. They are most 
likely classified into two approaches: one is to find secu-
rity flaws lurked in security protocols with model check-
ing technology[8, 16], and the other to prove that secu-
rity protocols have desired properties with theorem proving 
technology[28, 29, 30]. They are not competing, but com-

plementary to each other. Our approach is classified into the 
latter. 
  Among security protocols, those to which formal meth-
ods have been often applied so far are authentication pro-
tocols such as the Kerberos authentication system[2, 1] be-
cause they are one of the most basic and important security 

protocols. It does not seem that there are many case studies 
to apply formal methods to payment protocols. To the best 
of our knowledge, we are the first to fromaly analyze the 
iKP protocols. 

  Our modeling is similar to the inductive method[28] and 
the CSP approach[29, 30].
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 Paulson[28] models a system in which an arbitrary num-
ber of principals including the intruder take part in an au-
thentication protocol by inductively defining traces from a 
set of rules that correspond to the possible actions of the 

principals including the intruder. Security properties can 
be stated as predicates over the traces. You can inductively 

prove that a certain property holds of all possible traces for 
a certain protocol. The proof can be supported by the the 
theorem prover Isabelle/HOL[27]. 

Schneider[29, 30] models each principal participating in 
an authentication protocol as a CSP process. Proving a cer-
tain property corresponds to finding a rank function (which 
maps messages to some domain of values) satisfying cer-
tain conditions. The proof can be supported by the theorem 

prover PVS[31, 26]. 
  In both approaches, the network is modeled by regarding 

it as the intruder, namely the intruder can glean anything 
flowing in the network except for those encrypted by a key 
that the intruder does not know and those hashed. We also 
model the network as this. 

  Observational transition systems are heavily affected by 
UNITY[6]. By adopting the notion of behavioral specifi-
cation by hidden algebra[ 12] and the style of defining fair 
transition systems[18, 19], they are reformulated. The con-
cept effectiveness is similar to enabledness used in descrip-
tion of transition systems in temporal logic such as TLA[14] 
or in a precondition-effect style such as I/O automata[ 17].

8. Concluding Remarks

  We first tried to verify that the 3KP protocol has agree-
ment property by assuming that AUTHPRICE and DESC 
might happen to be the same as another AUTHPRICE and 
DESC. We found out a counter example in the process. 
It took about a week to find it. After that, we retried the 
verification by assuming that SALTB is never transmitted 
in clear, namely that SALTB is encrypted with the seller's 

public key and sent to a seller. Unfortunately we found the 
counter example shown in Fig. 3 (2). Even if SALTB is 
never transmitted in clear, the counter example can be oc-
curred. Since our approach presented in this paper does 
not directly help us find counter examples, it took several 
weeks to reach the modified iKP protocols and the verifica-

tion descrined in this paper. If we had used model check-
ing techniques[7] to confirm that a system in which a finite 
number of principals participate in the 3KP protocol or its 
variant has no counter example with respect to agreement 

property, we would have reached the modified iKP proto-
cols and the verification much earlier. 

  Although the designers of the iKP protocols notice that 
the 1KP protocol does not have agreement protocol, they 
write, on their papers[4, 3], that if h1 retrieved from Clear 
and h2 retrieved from decrypted EncSlip match when ac-
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quirer receives Auth-Request, it ensures that buyer and 
seller agree on the order information even for 1KP. But this 
is not true as shown by the counter example in Fig. 3 (1). 
Even so, we do not think that the designers and the review-
ers of the papers were somehow careless. We think that the 
iKP protocols are rather well designed. We believe that se-
curity protocols are that sensitive and therefore should be 
formally verified. 

  In this paper, we have described the proof that the 
AM3KP protocol has agreement property, which we be-
lieve implies that the modified 3KP protocol also has the 

property. Although the relation between the modified 3KP 
protocol and the AM3KP protocol is very straightforward, 
to prove it more formally, we should show that there exists 
a relation between the 3KP protocol and the AM3KP proto-
col such as a simulation relation between I/O automata[17]. 
We could do this with CafeOBJ. 

  Other than agreement property, there are several prop-
erties that electronic payment protocols should have. Re- .•.. 

play attack protection is one of such interesting properties. 
Since a variant of an OTS, called a TOTS[23], describes tim-
ing and yerifies timing properties, we could prove that the 

(modified) iKP protocols do have replay attack protection.
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-- for any initial state 

eq  nw(init) = void . 
-- for action sdim 

eq nw(sdim(P,B,S)) = im(B,B,S,h(nxt(B, rand (P)), ban (B))) , nw(P) . 
eq rand (sdim (P, B, S) ) = nxt (B, rand (P) ) . 
-- for action sdvm 

ceq nw (sdvm(P,S,M1) ) 
    = vm(S , S, is (M1) , cl(h (com(S, is (M1) ,hban (M1) ) ) ) , sig (sk (S) ,h (com(S, is (M1) ,hban (M1) ) ) ) ) , nw(P) 

    if M1 \in nw(P) and im?(M1) and S = id(M1) . 
ceq nw(sdvm(P,S,Ml)) = nw(P) 

    if not (M1 \in nw(P) and im?(M1) and S = id(M1)) . 
eq rand (sdvm (P, S,M1) ) = rand(P) . 
-- for action sdpm 

ceq nw(sdpm(P,B,R,M1,M2)) 
    = pm (B, B, vs (M2) ,enc (pk (la) , slp (hcom (clear (M2) ) , ban (B) ,R) ) , 

sig (sk (B) ,enc (pk (la) , slp (hcom (clear (M2) ) , ban (B) ,R) ) , hcom (clear (M2) ) ) ) , nw(P) 
    if M1 \in nw(P) and im?(M1) and B = ic(M1) and B = is(M1) and hban(M1) = h(R,ban(B)) and 

       M2 \in nw(P) and vm?(M2) and B = vd(M2) and id(M1) = vs(M2) and 

sig (sk (vs (M2) ) , hcom (clear (M2) ) ) = sigs(M2) and hcom (clear (M2) ) = h(com(id(M1),B,hban(M1))) . 
ceq nw(sdpm(P,B,R,Ml,M2)) = nw(P) 

    if not (M1 \in nw(P) and im?(M1) and B = ic(M1) and B = is(M1) and hban(M1) = h(R, ban (B)) and 
           M2 \in nw(P) and vm?(M2) and B = vd(M2) and id(M1) = vs(M2) and 

sig (sk (vs (M2) ) , hcom (clear (M2) ) ) = sigs(M2) and hcom(clear(M2)) = h (com(id (M1) ,B,hban (M1) ) ) ) . 
eq rand(sdpm(P,B,R,Ml,M2)) = rand(P) . 
-- for action sdqm 

ceq nw(sdgm(P,S,HN,M1,M2)) 
    = qm(S,S,la, clear (M1),eslip(M2),sig(sk(S),h(com(S,ps(M2),HN)),eslip(M2)),sigb(M2)) , nw(P) 

    if M1 \in nw(P) and vm?(M1) and S = vc(M1.) and S = vs(M1) and 
hcom (clear (M1) ) = h(com(S,ps(M2),HN)) and sigs(M1) = sig(sk(S),hcom(clear(M1))) and 

       M2 \in nw(P) and pm?(M2) and vd(M1) = ps(M2) and S = pd(M2) and 
sigb(M2) = sig (sk (ps (M2) ) , eslip (M2) , hcom (clear (M1) ) ) . 

ceq nw(sdgm(P,S,HN,M1,M2)) = nw(P) 
    if not (M1 \in nw(P) and vm?(M1) and S = vc(M1) and S = vs(M1) and 

hcom (clear (M1) ) = h (com(S,ps (M2) ,HN) ) and sigs(M1) = sig (sk (S) , hcom (clear (M1) ) ) and 
           M2 \in nw(P) and pm?(M2) and vd(M1) = ps(M2) and S = pd(M2) and 

sigb(M2) = sig (sk (ps (M2) ) , eslip (M2) , hcom (clear (M1) ) ) ) . 

eq rand (sdqm (P,S,HN,M1,M2)) = rand(P) . 
-- for action sdsm 

ceq nw(sdsm(P,M1)) 
    = sm(la, la, qs(M1), check (ban (slip (eslip(M1)))), 

sig (sk (la) , check (ban (slip (eslip (M1) ) ) ) , hcom (clear (M1) ) ) ) , nw(P) 
    if M1 \in nw(P) and qm?(M1) and la = gd(M1) and pk(la) = pk (eslip (M1) ) and 

sig (sk (qs (M1) ) , hcom (clear (M1) ) , eslip (M1) ) = sigs2(M1) and 
sig (sk (b (ban (slip (eslip (M1) ) ) ) ) , eslip (M1) , hcom (clear (M1) ) ) = sigb(M1) and 
hcom (clear (M1) ) = hcom (slip (eslip (M1) ) ) and 
hcom (clear (M1) ) = h(com(gs(M1),b (ban (slip (eslip(M1)))), 

h (rand (slip (eslip (M1) ) ) ,ban (slip (eslip (M1) ) ) ) ) ) . 
ceq nw(sdsm(P,M1)) = nw(P) 

    if not (M1 \in nw(P) and qm?(M1) and is = gd(M1) and pk(la) = pk (eslip (M1) ) and 
sig (sk (qs (M1) ) , hcom (clear (M1) ) , eslip (M1) ) = sigs2(M1) and 
sig (sk (b (ban (slip (eslip (M1) ) ) ) ) , eslip (M1) , hcom (clear (M1) ) ) = sigb(M1) and 
hcom (clear (M1) ) = hcom (slip (eslip (M1) ) ) and 
hcom (clear (M1) ) = h(com(gs(M1),b (ban (slip (eslip(M1)))), 

h (rand (slip (eslip(M1))), ban (slip (eslip(M1))))))) . 
eq rand (sdsm (P,M1) ) = rand(P) .

Figure 7. 

tocol

Equations to define transition rules corresponding to passing messages obeying the pro-
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ipmmon

-- for action fkiml 

ceq nw(fkiml(P,B,S,HN)) = im(ib,B,S,HN)  , nw(P) if HN \in hbans(nw(P)) . 
ceq nw(fkiml(P,B,S,HN)) = nw(P) if not(HN \in hbans(nw(P))) . 
eq rand(fkiml(P,B,S,HN)) = rand(P) . 
-- for action fkim2 

ceq nw(fkim2(P,S,N,R)) = im(ib,b(N),S,h(R,N)) , nw(P) if N \in bans(nw(P)) and R \in rands(nw(P)) . 
ceq nw(fkim2(P,S,N,R)) = nw(P) if not(N \in bans(nw(P)) and R \in rands(nw(P))) . 
eq rand(fkim2(P,S,N,R)) = rand(P) . 
-- for action fkvml 

ceq nw(fkvml(P,S,B,HC,GS)) = vm(is,S,B,cl(HC),GS) , nw(P) 
    if HC \in hcoms(nw(P)) and GS \in sigss(nw(P)) . 

ceq nw(fkvml(P,S,B,HC,GS)) = nw(P) 
    if not(HC \in hcoms(nw(P)) and GS \in sigss(nw(P))) . 

eq rand(fkvml(P,S,B,HC,GS)) = rand(P) . 
-- for action fkvm2 

ceq nw(fkvm2(P,S,B,HN,GS)) = vm(is,S,B,cl(h(com(S,B,HN))),GS) , nw(P) 
    if HN \in hbans(nw(P)) and GS \in sigss(nw(P)) . 

ceq nw(fkvm2(P,S,B,HN,GS)) = nw(P) 
    if not(HN \in hbans(nw(P)) and GS \in sigss(nw(P))) . 

eq rand(fkvm2(P,S,B,HN,GS)) = rand(P) . 
-- for action fkvm3 

ceq nw(fkvm3(P,S,N,R,GS)) = vm(is,S,b(N),cl(h(com(S,b(N),h(R,N)))),GS) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) and GS \in sigss(nw(P)) . 

ceq nw(fkvm3(P,S,N,R,GS)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GS \in sigss(nw(P))) . 

eq rand(fkvm3(P,S,N,R,GS)) = rand(P) . 
-- for action fkvm4 

ceq nw(fkvm4(P,S,B,HC)) = vm(is,S,B,cl(HC),sig(sk(is),HC)) , nw(P) 
    if HC \in hcoms(nw(P)) . 

ceq nw(fkvm4(P,S,B,HC)) = nw(P) 
    if not(HC \in hcoms(nw(P))) . 

eq rand(fkvm4(P,S,B,HC)) = rand(P) . 
-- for action fkvm5 

ceq nw(fkvm5(P,S,B,HN)) = vm(is,S,B,cl(h(com(S,B,HN))),sig(sk(is),h(com(S,B,HN)))) , nw(P) 
    if HN \in hbans(nw(P)) . 

ceq nw(fkvm5(P,S,B,HN)) = nw(P) 
    if not(HN \in hbans(nw(P))) . 

eq rand(fkvm5(P,S,B,HN)) = rand(P) . 
-- for action fkvm6 

ceq nw(fkvm6(P,S,N,R)) 
    = vm(is,S,b(N),cl(h(com(S,b(N),h(R,N)))),sig(sk(is),h(com(S,b(N),h(R,N))))) , nw(P) 

    if N \in bans(nw(P)) and R \in rands(nw(P)) . 
ceq nw(fkvm6(P,S,N,R)) = nw(P) 

    if not(N \in bans(nw(P)) and R \in rands(nw(P))) . 
eq rand(fkvm6(P,S,N,R)) = rand(P) . 
-- for action fkpml 

ceq nw(fkpml(P,B,S,EP,GB)) = pm(ib,B,S,EP,GB) , nw(P) if EP \in eslps(nw(P)) and GB \in sigbs(nw(P)) . 
ceq nw(fkpml(P,B,S,EP,GB)) = nw(P) if not(EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) . 
eq rand(fkpml(P,B,S,EP,GB)) = rand(P) . 
-- for action fkpm2 

ceq nw(fkpm2(P,S,N,R,HC,GB)) = pm(ib,b(N),S,enc(pk(la),slp(HC,N,R)),GB) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkpm2(P,S,N,R,HC,GB)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) and GB \in sigbs(nw(P))) . 

eq rand(fkpm2(P,S,N,R,HC,GB)) = rand(P) . 
-- for action fkpm3 

ceq nw(fkpm3(P,S,N,R,GB)) = pm(ib,b(N),S,enc(pk(la),sip(h(com(S,b(N),h(R,N))),N,R)),GB) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkpm3(P,S,N,R,GB)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P))) . 

eq rand(fkpm3(P,S,N,R,GB)) = rand(P) . 
-- for action fkpm4 

ceq nw(fkpm4(P,B,S,EP,HC)) 
    = pm(ib,B,S,EP,sig(sk(ib),EP,HC)) , nw(P) if EP \in eslps(nw(P)) and HC \in hcoms(nw(P)) . 

ceq nw(fkpm4(P,B,S,EP,HC)) = nw(P) if not(EP \in eslps(nw(P)) and HC \in hcoms(nw(P))) . 
eq rand(fkpm4(P,B,S,EP,HC)) = rand(P) .

Figure 8. Equations to define transition rules correspond ing to fak ing messages (1)
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-- for action fkpm5 

ceq  nw(fkpm5(P,B,S,EP,HN)) = pm(ib,B,S,EP,sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P) 
    if EP \in eslps(nw(P)) and HN \in hbans(nw(P)) . 

ceq nw(fkpm5(P,B,S,EP,HN)) = nw(P) 
   if not(EP \in eslps(nw(P)) and HN \in hbans(nw(P))) . 

eq rand(fkpm5(P,B,S,EP,HN)) = rand(P) . 
-- for action fkpm6 

ceq nw(fkpm6(P,S,EP,N,R)) = pm(ib,b(N),S,EP,sig(sk(ib),EP,h(com(S,b(N),h(R,N))))) , nw(P) 
    if EP \in esips(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P)) . 

ceq nw(fkpm6(P,S,EP,N,R)) = nw(P) 
   if not(EP \in eslps(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P))) 

eq rand(fkpm6(P,S,EP,N,R)) = rand(P) . 
-- for action fkpm7 

ceq nw(fkpm7(P,S,N,R,HC)) 
    = pm(ib,b(N),S,enc(pk(la),sip(HC,N,R)),sig(sk(ib),enc(pk(la),slp(HC,N,R)),HC)) , nw(P) 

    if N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P)) . 
ceq nw(fkpm7(P,S,N,R,HC)) = nw(P) 

    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and HC \in hcoms(nw(P))) . 
eq rand(fkpm7(P,S,N,R,HC)) = rand(P) . 
-- for action fkpm8 

ceq nw(fkpm8(P,S,N,R)) 
    = pm(ib,b(N),S,enc(pk(1a),sip(h(com(S,b(N),h(R,N))),N,R)), 

sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) . 

ceq nw(fkpm8(P,S,N,R)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P))) . 

eq rand(fkpm8(P,S,N,R)) = rand(P) . 
-- for action fkgml 

ceq nw(fkgml(P,S,HC,EP,GT,GB)) = gm(is,S,la,cl(HC),EP,GT,GB) , nw(P) 
    if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkgml(P,S,HC,EP,GT,GB)) = nw(P) if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and 
                                                GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) . 

eq rand(fkgml(P,S,HC,EP,GT,GB)) = rand(P) . 
-- for action fkqm2 

ceq nw(fkgm2(P,S,B,HN,EP,GT,GB)) = qm(is,S,la,ci(h(com(S,B,HN))),EP,GT,GB) , nw(P) 
    if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkgm2(P,S,B,HN,EP,GT,GB)) = nw(P) if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and 
                                                  GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) . 

eq rand(fkqm2(P,S,B,HN,EP,GT,GB)) = rand(P) . 
-- for action fkqm3 

ceq nw(fkqm3(P,S,N,R,GT,GB)) 
    = gm(is,S,ia,ci(h(com(S,b(N),h(R,N)))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R)),GT,GB) , nw(P) 

    if N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P)) . 
ceq nw(fkqm3(P,S,N,R,GT,GB)) = nw(P) 

    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) and GB \in sigbs(nw(P))) . 
eq rand(fkqm3(P,S,N,R,GT,GB)) = rand(P) . 
-- for action fkqm4 

ceq nw(fkgm4(P,S,HC,EP,GB)) = qm(is,S,la,ci(HC),EP,sig(sk(is),HC,EP),GB) , nw(P) 
    if HC \in hcoms(nw(P)) and EP \in esips(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkqm4(P,S,HC,EP,GB)) = nw(P) 
    if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) . 

  eq rand(fkqm4(P,S,HC,EP,GB)) = rand(P) . 
-- for action fkgm5 

ceq nw(fkgm5(P,S,B,HN,EP,GB)) 
    = qm(is,S,la,cl(h(com(S,B,HN))),EP,sig(sk(is),h(com(S,B,HN)),EP),GB) , nw(P) 

    if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P)) . 
ceq nw(fkgm5(P,S,B,HN,EP,GB)) = nw(P) 

    if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GB \in sigbs(nw(P))) . 
eq rand(fkgm5(P,S,B,HN,EP,GB)) = rand(P) . 
-- for action fkqm6 

ceq nw(fkqm6(P,S,N,R,GB)) 
    = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)), 

sig(sk(is),h(com(S,b(N),h(R,N))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R))),GB( , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P)) . 

ceq nw(fkgm6(P,S,N,R,GB)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GB \in sigbs(nw(P))) . 

eq rand(fkgm6(P,S,N,R,GB)) = rand(P) .

Figure 9. Equations to define transition rules corresponding to faking messages (2)
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 -- for action  fkqm7 

ceq nw(fkqm7(P,S,HC,EP,GT)) = qm(is,S,la,cl(HC),EP,GT,sig(sk(ib),EP,HC)) , nw(P) 
    if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) . 

ceq nw(fkqm7(P,S,HC,EP,GT)) = nw(P) 
    if not(HC \in hcoms(nw(P)) and EP \in esips(nw(P)) and GT \in sigs2s(nw(P))) . 

eq rand(fkgm7(P,S,HC,EP,GT)) = rand(P) . 
-- for action fkqm8 

ceq nw(fkqm8(P,S,B,HN,EP,GT)) 
    = gm(is,S,la,cl(h(com(S,B,HN))),EP,GT,sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P) 

    if HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P)) 

ceq nw(fkqm8(P,S,B,HN,EP,GT)) = nw(P) 
    if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P)) and GT \in sigs2s(nw(P))) . 

eq rand(fkqm8(P,S,B,HN,EP,GT)) = rand(P) . 
-- for action fkgm9 

ceq nw(fkgm9(P,S,N,R,GT)) 
    = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)), 

GT,sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P)) . 

ceq nw(fkqm9(P,S,N,R,GT)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P)) and GT \in sigs2s(nw(P))) . 

eq rand(fkqm9(P,S,N,R,GT)) = rand(P) . 
-- for action fkgml0 

ceq nw(fkgml0(P,S,HC,EP)) = gm(is,S,la,cl(HC),EP,sig(sk(is),HC,EP),sig(sk(ib),EP,HC)) , nw(P) 
    if HC \in hcoms(nw(P)) and EP \in eslps(nw(P)) . 

ceq nw(fkgml0(P,S,HC,EP)) = nw(P) 
    if not(HC \in hcoms(nw(P)) and EP \in eslps(nw(P))) . 

eq rand(fkgml0(P,S,HC,EP)) = rand(P) . 
-- for action fkgmll 

ceq nw(fkgmll(P,S,B,HN,EP)) = gm(is,S,la,cl(h(com(S,B,HN))),EP,sig(sk(is),h(com(S,B,HN)),EP), 
sig(sk(ib),EP,h(com(S,B,HN)))) , nw(P) 

    if HN \in hbans(nw(P)) and EP \in esips(nw(P)) - 
ceq nw(fkgmll(P,S,B,HN,EP)) = nw(P) 

    if not(HN \in hbans(nw(P)) and EP \in eslps(nw(P))) . 
eq rand(fkgmll(P,S,B,HN,EP)) = rand(P) . 
-- for action fkgml2 

ceq nw(fkgml2(P,S,N,R)) 
    = qm(is,S,la,cl(h(com(S,b(N),h(R,N)))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R)), 

sig(sk(is),h(com(S,b(N),h(R,N))),enc(pk(la),s1p(h(com(S,b(N),h(R,N))),N,R))), 

sig(sk(ib),enc(pk(la),slp(h(com(S,b(N),h(R,N))),N,R)),h(com(S,b(N),h(R,N))))) , nw(P) 
    if N \in bans(nw(P)) and R \in rands(nw(P)) . 

ceq nw(fkgml2(P,S,N,R)) = nw(P) 
    if not(N \in bans(nw(P)) and R \in rands(nw(P))) . 

eq rand(fkgml2(P,S,N,R)) = rand(P) . 
-- for action fksml 

ceq nw(fksml(P,S,C,GA)) = sm(ia,la,S,C,GA) , nw(P) if C \in rcodes(nw(P)) and GA \in sigas(nw(P)) . 
ceq nw(fksml(P,S,C,GA)) = nw(P) if not(C \in rcodes(nw(P)) and GA \in sigas(nw(P))) . 
eq rand(fksml(P,S,C,GA)) = rand(P) . 
-- for action fksm2 

ceq nw(fksm2(P,S,C,HC)) = sm(ia,la,S,C,sig(sk(ia),C,HC)) , nw(P) 
    if C \in rcodes(nw(P)) and HC \in hcoms(nw(P)) . 

ceq nw(fksm2(P,S,C,HC)) = nw(P) if not(C \in rcodes(nw(P)) and HC \in hcoms(nw(P))) . 
eq rand(fksm2(P,S,C,HC)) = rand(P) . 
-- for action fksm3 

ceq nw(fksm3(P,S,B,C,HN)) = sm(ia,la,S,C,sig(sk(ia),C,h(com(S,B,HN)))) , nw(P) 
    if C \in rcodes(nw(P)) and HN \in hbans(nw(P)) . 

ceq nw(fksm3(P,S,B,C,HN)) = nw(P) 
    if not(C \in rcodes(nw(P)) and HN \in hbans(nw(P))) . 

eq rand(fksm3(P,S,B,C,HN)) = rand(P) . 
-- for action fksm4 

ceq nw(fksm4(P,S,C,N,R)) = sm(ia,la,S,C,sig(sk(ia),C,h(com(S,b(N),h(R,N))))) , nw(P) 
    if C \in rcodes(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P)) . 

ceq nw(fksm4(P,S,C,N,R)) = nw(P) 
    if not(C \in rcodes(nw(P)) and N \in bans(nw(P)) and R \in rands(nw(P))) . 

eq rand (fksm4 (P, S, C, N, R)) = rand(P) .

Figure 10 . Equations to define transition rules correspond ing to faking messages (3)
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