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                                      Abstract 

  We present a new approach to find a binary image reproducing a given continuous-tone image so 

that the picture printed out on a paper by a printer with limited number of ink colors looks as similar 

to the given one as possible. This process is called digital halftoning. The main contribution of this 

paper is to present a new approach for digital halftoning to generate binary images of best quality. Our 
basic strategy is well characterized as halftoning through optimization of restored image, that is, we 

minimize the difference between an input image and the image restored from an output binary image 

by applying a usual Gaussian filter. Algorithmically, our approach uses iterative exhaustive search on 

huge neighborhood combined with several acceleration techniques. The experimental results are fairly 

satisfactory: the resulting binary images are quite sharp and have no artifact. Since a simple iterative 

exhaustive search needs a lot of computing time, we have developed the FPGA-based co-processor for 

acceleration. Using the co-processor, artifact-free sharp binary images can be obtained in practical 

computing time.
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1 Introduction

Digital Halftoning is an important task to convert a continuous-tone image into a binary image consisting 

only of black and white dots [7, 4]. This task is necessary when we print out a monochrome or color image 
by a printer with limited number of ink colors. A great number of techniques and algorithms for digital 
halftoning have been proposed so far. Among them, Error Diffusion [6] which propagates rounding errors 
to unprocessed neighboring pixels according to some fixed ratios is the most commonly used algorithm. 
It preserves the average gray level between input and output images. It is quite  efficient and often gives 
excellent results, but one of its drawbacks is visible artifact especially in an area of uniform intensity. Several 
techniques have been developed to avoid creating artifacts in output images [11]. However, as long as Error 
Diffusion based techniques are used, the pixel values are propagated to neighbors and the resulting images 
are defocused. 

  One of our goals in this paper is to devise an algorithm that finds an artifact-free sharp binary image 
while keeping the similarity to an input image as much as possible. The similarity or dissimilarity between 
input and output images is defined using the human vision system. That is, for the purpose of comparing an 
input multiple-level images and its associated output binary image we restore the output image by applying 
a Gaussian filter. The dissimilarity between input and output images is defined by the sum of difference 
of gray levels in the input image and the resulting restored image at each pixel. In other words, it is the 
difference between an input image and an image restored from an output binary image by a Gaussian filter. 

  Several halftoning algorithms have been proposed in this direction. One of them is Direct Binary 
Search [1], which is an iterative improvement or minimization of the difference between input and out-
put images. Some variations are possible using heuristic search methods such as simulated annealing and 
genetic algorithm (e.g. see [5]). 
  The problem of minimizing the above-defined difference between input and output images seems to be 

intractable. Although there is no NP-hardness result for this problem, a simpler problem is known to be 

NP-complete [2]. The problem is to minimize the maximum error instead of the sum of errors. The definition 
of error is also different: For a 2 x 2 small region R we take the sum of values in input and output images and 
their difference is defined as the error for the region. If we take all such 2 x 2 regions to evaluate the maximum 
error, the problem is NP-complete. On the other hand, if we carefully design a family of such regions (not 
necessarily 2 x 2) so that an incidence matrix defined between pixels and regions is totally unimodular (simply 
speaking, each pixel belongs to a few regions), then an optimal solution (optimal halftoning) is obtained in 
polynomial time by applying a minimum-cost network flow algorithm [3]. 

  Our algorithm to be presented uses iterative improvement, but what should be distinguished from the 
existing ones is local search on huge neighborhood with hardware acceleration and several algorithmic tech-
niques for efficient implementation. In the usual local search for halftoning used to be flipping one or two 
pixel values while our new algorithm repeats an operation of replacing a binary pattern for a group of pixels 
with the locally best binary pattern for the group. Such optimization is done using the exhaustive search 
with some acceleration techniques. It is also supported by hardware implementation using FPGA (Field 
Programmable Gate Array) technology. 

  We have implemented our algorithm both in a usual environment of a single CPU PC and also using 
FPGA as a hardware accelerator. The results are quite satisfactory. Although there is no formal proof for 
the optimality of our output images, the authors strongly believe that they are almost optimal and it would 
be impossible to distinguish them from theoretically optimal images even if we could find them.

2 Preliminary

Suppose that an original L-level gray-scale image A = (ai,j) of size n x n is given, where ai,j denotes 
the intensity level at position (i, j) (1 < i, j < n) taking an integer in the range [0, L — 1]. The goal of 
halftoning is to find a binary image B = (b,, i) of the same size that reproduces original image A, where 
each bi,j is either 0 or 1. We measure the goodness of output binary image B using the Gaussian filter that 
approximates the characteristic of the human visual system. Let V = (vk,j) denote a Gaussian filter, i.e. a 
2-dimensional symmetric matrix of size (2w + 1) x (2w + 1), where each vk,l (—w < k,1 < w) is determined 
by a 2-dimensional Gaussian distribution. The image R = (ri, j) restored from a binary image B = (bi, j) by
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applying the Gaussian filter is an L-level gray-scale image:

 r = L(L — 1) E Vk,lbi+k,j+1 
—w<k ,1<w

(1<i,j<n) (1)

From E _w<k,c<w2k,1 = 1, each ri,j takes an integer in the range [0, L — 1] and restored image R is an L-level 
gray-scale image. We can say that a binary image B is a good approximation of original image A if the 
difference between A and R is very small. According to this consideration, we are going to define the error 
by the difference between R (or B) and A as follows. The error e2, j at each pixel location (i, j) is defined by

e2, .i = ai,j — r2,3 (2)

and the total error 1 is defined by

Error(A, B) = E Iei I. 
1<i,j<n

(3)

Since the Gaussian filter approximates the characteristics of the human visual system, we can think that 
image B reproduces original gray-scale image A if Error(A, B) is small enough. The best binary image that 
reproduces A is a binary image B with the minimum total error is given by the following formula:

B* = arg min Error(A, B). 

           B

(4)

Once the best image B* is obtained, the restored image R, which can be computed by (1), is a good 
approximation of A. 

  If the size of the Gaussian filter is 1 x 1, then B* can be obtained by the simple thresholding. In other 
words, the binary image B* = (bi, j) such that b1, j = 1 if and only if aZ, j > is an optimal binary image 
satisfying (4). However, in general, it is very hard to find the optimal binary image B* for a given gray-scale 
image A if the Gaussian filter is not small, say, 5 x 5. As we discussed in Introduction, the problem of 
finding the optimal binary image B* is so intractable that we believe it is NP-hard. We need to evaluate 
Error(A, B) for all possible 2n2 binary images B to find the best image. Clearly, this takes more than S2(2n) 
computing time. Since n is usually larger than 100, this approach is not feasible. Thus, the challenge is to 
find, in practical computing time, a nearly optimal binary image B, whose total error is close to that of the 
optimal image B* .

3 Iterative Improvement with Local Search on Huge Neighbor-

hood

The main purpose of this section is to present our ideas to find a good binary image B whose error with 
respect to original gray-scale image A may not be minimum but is small. A basic idea behind our approach 
is iterative improvement with local search on huge neighborhood. We first show our local search on huge 
neighborhood, which is a key ingredients of our halftoning algorithm. 

  Suppose that an original image A and a temporary binary image B are given. Further, let W (i, j) be a 
window of size k x k in B whose top-left corner is at position (i, j). Our first idea is to check all 2k2 binary 

patterns in W (i, j) and replace the current binary subimage in the window by the best binary pattern that 
minimizes the total error. In other words, we find a binary image B' such that

B' = arg min{Error(A, B) B and B' differ only in W (i, j)}. (5)

Clearly, Error(A, B') < Error(A, B) always holds, we can say that B' is an improvement of B as a repro-
duction of original gray-scale image A.

  1We can generalize the total error using LP metric such that Error(A,B) = lei,jjP]1/P. However, this paper                                                                                    1<i,j<n 
deals with only p = 1.

3



  Next, let us see the details how we find B' satisfying formula (5) above. Since we use a Gaussian filter 
of size (2w + 1) x (2w + 1), the change of the binary pattern may affect the errors in a square region of size 

(2w + k) x (2w + k), which we call the influence region. The reader should refer to Figure 1 for illustration 
of a window, a Gaussian filter, and the influence region. It should be clear that the best binary pattern can 
be selected by computing the total errors of the influence region of size (2w + k) x (2w + k), because the 
change of the binary pattern does not affects errors at pixels outside the influence region.

Gaussian filter

window  TV(i, j) k

2w+1 

influence region

 

I I I I 1 I I  
I I I I 1  

I I 1 I 1 

 

I I I I I
''^^ 

^.^^ --L-- 
- _ L - - ̂  ^ ^ ^

1 1 1 
1 -2c 

11  
1 1 1

2w+k

Figure 1: Illustrating a window of size k x k, a Gaussian filter of size (2w + 1) x (2w + 1), and the influence 
region of size (2w + k) x (2w + k)

  Let us evaluate the computing time necessary to find the best binary pattern in the window. The error 
of a fixed pixel in an influence region can be computed in 0(k2) time by evaluating formulas (1) and (2). 
Hence all the errors in the influence region can be computed in 0(k2(2w + k)2) time. After that, their sum 
can be computed in 0((2w + k)2) time. Thus, the total error in the influence region can be computed in 
0(k2(2w + k)2) time. Since we need check all the possible 2k2 binary patterns, the best binary pattern can 
be obtained in 0(2k2 k2 (2w + k)2) time. We can improve the computing time by a pixel flipping in the order 
of the gray code of binary numbers. Recall that the gray code represents a list of all 2' binary numbers with 
m bits such that any two adjacent numbers differ only one position. Thus, by flipping a bit in an appropriate 
position, we can list all the2mbinary numbers with m bits. Using the gray code with k2 bits, we can check 
all binary patterns in 0(2k w2) time as follows. Starting with the current pixel pattern in the window, we 
repeat flipping an appropriate pixel by the gray code. In each flipping, we compute the total error in the 
influence region for the current binary pattern in the window. Since a single bit flipping affects the error of 
2w + 1 x 2w + 1 pixels, the total error can be computed in 0(w2) time in an obvious way. Thus, the best 
binary pattern can be computed in 0(w2) x 2k2 = O (2k2 w2) time using the exhaustive search. 

  We are now in position to show our iterative improvement using the exhaustive search because no more 
improvement for the current window is possible. Let Bo be an appropriate initial binary image Bo. We 
scan the binary image by a window of size k x k and improve it by the exhaustive search, that is, replacing 
binary pattern in the window so that the total error is minimized. The scan by a window can be done by 
any order. We perform the scan on Bo in the raster order, and obtain a better quality binary image B1. 
The same procedure is repeated, that is, the scan operation is applied to Bt_1 and obtain a better binary 
image Bt (t > 1) until Bt_1 and Bt are identical and no more improvement is possible. When computing 
Bt for t > 2, we do not have to perform the exhaustive search for all the windows. If the restored image of 
the influence region for the current window did not changed, then we can omit the exhaustive search. The 
details of our algorithm are spelled out as follows: 

Iterative Improvement(A) 
Set an appropriate initial binary image in Bo; 
B1+-Bo
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 for  iE-1ton-w+1do 
for j 1 to n - w + 1 do 

   Perform the exhaustive search in W(i, j) for B1 and update B1 
   by the best binary pattern. 

t - 2; 
do { 

Bt F- Bt-i 
for iF-1ton-w+1do 

for jE-1ton-w+1do 
    if the influence regions of W(i, j) for Rt_1 and Rt_2 are not 

    identical then perform the exhaustive search in 1V(i, j) for Bt 
    and update Bt by the best binary pattern. 

} until (Bt and Bt_1 are identical) 
output (Bt);

  If k = 1, then all we need to do is to flip the binary value of a pixel. This idea is implemented under 
the name of Direct Binary Search (DBS) [1]. In DBS, a pixel is flipped if the resulting image has smaller 
total error. Thus, our iterative improvement method is a generalization of the DBS. Since the DBS checks 
only the immediate neighborhood, the binary image falls into the local minimum solution with large error. 
However, since we check the large neighborhood, say, 4 x 4, the resulting binary image is very close to the 
optimal one. Actually, we have developed the image halftoning system using FPGAs, which performs the 
iterative improvement for widows of size 3 x 3 and 4 x 4. As we are going to show later, the binary images 
obtained by the large neighborhood are much better in the quality than those by the DBS.

4 Hardware Acceleration for the Exhaustive Search using an FPGA

co-processor

We have developed the hardware accelerator using the PCI-connected FPGA that performs the exhaustive 
search to find the best binary pattern in a window. This section is devoted to show the architecture of our 
hardware FPGA-based accelerator. 

  Before showing the architecture, we first show how our hardware accelerator is used by the host PC. 
Recall that, as is easily seen in Figure 1, W (i, j) contains pixels at position (i +i, j + j') for 0 < i', j' < k - 1. 
Also, the influence region involves pixels (i + i, j + j') for -w < i', j''< w + k - 1. The host PC initializes 
all binary pixels in window W (i, j) to 0, i.e. bi+i,j+i' = 0 for all 0 < i', j' < k - 1. After that, it computes 
all the errors in the influence region by (2). The host PC sends these errors to the PCI-connected FPGA. 
Since each error is an integer in the range [- (L - 1), L - 1], (2w + k)2 integers with (log L +1) bits are sent 
through the PCI bus. Note that the number of bits sent though the PCI bus is independent of the size n x n 
of the image. For example, if w = 2, k = 4, and L = 256, then the PCI bus transfers 576 bits to find the 
best binary pattern. Once the PCI receives the errors in the window, it computes the best pattern by the 
exhaustive search. 

  Next, we are going to show the architecture of our hardware accelerator. Figure 2 illustrates a part of 
the FPGA-based hardware accelerator, which outputs the total error for every binary patterns. The binary 
pattern is stored in the k2-bit counter. A combinatorial circuit is used to apply the Gaussian filter to this 
binary pattern stored in the counter. Note that the combinatorial circuit is very simple; it just evaluates 
Formula (1) for the window of size (2w + k) x (2w + k). Once the resulting image and the errors are 
obtained, the total error is computed by a simple combinatorial circuit, which just computes the formulas 
(2) and (3). The evaluation of formulas (1) and (3) involves the computation of the sum of integers, which 
can be performed quite efficiently on the FPGA [9, 8]. The architecture illustrated in Figure 2 outputs the 
errors of all binary patterns in 2k2 clock cycles. Using all the total errors, the best binary pattern can be 

stored into a register using a comparator in an obvious way. After that, the best binary pattern is sent to 

the host PC, which stores it in the window of the binary image. 

  In principle, the hardware accelerator computes the best binary pattern in 2k2 clock cycles. Since the 

circuit is so simple that it applies the Gaussian filter and computes the total sum, we can use the pipelining
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the errors for  all-0 
 binary pattern 

w + k)2 log L-bit 
   registers

binary pattern 

k2-bit counter

combinatorial circuit 
   to apply the 

  Gaussian filter

combinatorial circuit to 
compute the total errors

the total error

Figure 2: Illustrating a part of the hardware accelerator.

technique [9] to increase the frequency of clock cycles. Actually, we have partitioned the combinatorial circuits 
into seven stages. The pipelined architecture works correctly in frequency of 80ivIHz on Xilinx XC2V3000 
(Speed Grade 4). We can also achieve further speed up by parallelizing the exhaustive search. Recall that 
the hardware accelerator is used to compute the total errors for a set of all 2k2 binary patterns. We can 
equally partition this set into m groups ofZmin obvious way and use m-parallel circuit to find the best 
binary patten in each group. Actually, we succeeded in embedding three 2-parallel hardware accelerators in 
XC2V3000, each of which computes the best binary pattern for each of the RGB colors.

5 Experimental Results

This section presents experimental results obtained by our halftoning method using iterative improvement 
on huge neighborhood. 

  We have developed a software that performs our halftoning algorithm using the iterative improvement 
for windows of sizes 1 x 1, 2 x 2, 3 x 3, and 4 x 4, which we call 1-flip, flip, 9-flip, and 16 flip, respectively. 
Recall that 1-flip corresponds to the DBS [1]. 

  Table 1 show the results for a standard color image, "Lena", which is a 256-Level color RGB image of 
size 512 x 512. We use a Gaussian Filter of size 5 x 5 with parameter a = 1.5. The iterative improvement 
is applied to each of the RGB colors independently. The initial binary image is given by the white noise 
halftoning, which gives 1 to each pixel b2,i with probability 

  The Average Error in Table 1 is the absolute value of the error per pixel, that is, (Error(Ar, Br) + 
Error(A9, B9) + Error(Ab, Bb))/3n2, where Ar, A9, Ab, Br, B9, andBb denote the images of RGB colors of 
original A and halftone image B, respectively. Clearly, the average error for 16-flip is the smallest and 
that for 1-flip (DBS) is quite large. We have used a Pentium4 Processor PC (2.8GHz, 2Gbyte memory, 
512Kbyte cache) with Linux OS (kernel 2.4). Table 1 includes the computing time by the software on this 
PC using no FPGA. The source C program is complied by gcc 3.2 with -02 and -march=pentium4 options. 
For "Lena", the non-FPGA program runs in 536.8 and 72834 seconds for 9-flip and 16-flip, respectively. To 
accelerate the computation for 9-flip and 16-flip, we use Xtreme DSP kit [10], which is a PCI card with Xilinx 
Virtexll series FPGA XC2V3000. Since we embedded three 2-parallel circuits on the FPGA, the exhaustive 
search for a window can be done for each of the RGB colors concurrently in222                                                             clock cycles. Although the 

speed up factor of 97.3 is attained for 16-flip, that for 9-flip is only 4.52. The reason is that the latency 

of data transmission through PCI bus is dominant in computing time for 9-flip, because the exhaustive
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  Average Error 
Time  (no-FPGA,sec) 

 Time (FPGA,sec) 
    Speed up

1-flip

7.81 

1.91

4-flip

5.32 

20.56

9-flip

4.91 

536.8 
118.8 

4.52

16-flip

4.61 

72834 

748.17 
97.3

Table 1: The experimental results for "Lena", 256-Level RGB Color image of size 512 x 512.

search for a window takes only '~ = 256 clock cycles, which is approximately (8oNlHti) sec 3.2 usec. On 
the other hand, the exhaustive search for 16-flip needs 226 = 32768 clock cycles, which is approximately 
(80mHz)sec : 0.4msec. If the FPGA has an enough memory to store the whole image data, we can omit 
the frequent data transmission though PCI bus. If this is the case, we can attain the same speed up factor 

as that of 16-flip and the computing time for 9-flip will be few seconds. 

  Figure 3 shows the resulting halftone images and their restored images including the images generated 

by ordered dither and Error Diffusion. It is easily to see that the quality of the binary image obtained using 
16-flip is the best. The quality of 9-flip is very close to 16-flip. The binary images obtained by Error Diffusion 

has artifacts and worms, while those of 9-flip and 16-flip are artifact-free. Also, the restored images of 9-flip 

and 16-flip are quite sharp and very well reproduces the original image. We can conclude that, since the 

16-flip takes a lot of time, the 9-flip is a practical method for find halftone images of good quality.

6 Discussions and Future Works

We have demonstrated a powerful halftoning algorithm for producing plausible halftone images without any 
visible artifacts under the ideas of iterative improvement based on local search on huge neighborhood together 
with the help of hardware acceleration. Since this halftoning process requires huge amount of computation, 
it would be impractical if we would implement it naively. Although the processing time is still much larger 
than that of the currently used halftoning algorithms such as Error Diffusion and also much larger hardware 
resources are required, our algorithm would be useful if we really needed good halftone images. 

  The scheme described in this paper could be applied to several other optimization problems related to 
halftoning. One of them is to design optimal masks (or matrices) used for blue noise mask and dot diffusion.
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Figure 3: The resulting halftone images and the restored images: Top row, Ordered Dither, Error Diffu-
sion(Floyd and Steinberg), and the halftone image by 1-flip(DBS). Second row, the halftone images by 
4-flip, 9-flip, and 16-flip. Third row, Original image, the restored image of Error Diffusion, and that of 
1-flip. Bottom row, the restored images of 4-lip, 9-flip, and 16-flip.
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