
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Halftoning through optimization of restored

images : a new approach with hardware

acceleration

Author(s) Asano, Tetsuo; Nakano, Koji

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2003-001: 1-9

Issue Date 2003-01-22

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8401

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

 Halftoning Through Optimization of Restored Images
— A New Approach with Hardware Acceleration

 Tetsuo Asano Koji Nakano

January 22, 2003

IS-RR-2003-001

 School of Information Science

Japan Advanced Institute of Science and Technology
 Tatsunokuchi, Ishikawa, 923-1292 Japan

ISSN 0918-7553

 Halftoning Through Optimization of Restored Images
 A New Approach with Hardware Acceleration

 Tetsuo AsanoKoji Nakano
 School of Information Science School of Information Science

 JAISTJAIST
 t-asano©jaist.ac.jpknakano©jaist.ac.jp

 January 22, 2003

 Abstract

 We present a new approach to find a binary image reproducing a given continuous-tone image so

that the picture printed out on a paper by a printer with limited number of ink colors looks as similar

to the given one as possible. This process is called digital halftoning. The main contribution of this

paper is to present a new approach for digital halftoning to generate binary images of best quality. Our
basic strategy is well characterized as halftoning through optimization of restored image, that is, we

minimize the difference between an input image and the image restored from an output binary image

by applying a usual Gaussian filter. Algorithmically, our approach uses iterative exhaustive search on

huge neighborhood combined with several acceleration techniques. The experimental results are fairly

satisfactory: the resulting binary images are quite sharp and have no artifact. Since a simple iterative

exhaustive search needs a lot of computing time, we have developed the FPGA-based co-processor for

acceleration. Using the co-processor, artifact-free sharp binary images can be obtained in practical

computing time.

1

1 Introduction

Digital Halftoning is an important task to convert a continuous-tone image into a binary image consisting

only of black and white dots [7, 4]. This task is necessary when we print out a monochrome or color image
by a printer with limited number of ink colors. A great number of techniques and algorithms for digital
halftoning have been proposed so far. Among them, Error Diffusion [6] which propagates rounding errors
to unprocessed neighboring pixels according to some fixed ratios is the most commonly used algorithm.
It preserves the average gray level between input and output images. It is quite efficient and often gives
excellent results, but one of its drawbacks is visible artifact especially in an area of uniform intensity. Several
techniques have been developed to avoid creating artifacts in output images [11]. However, as long as Error
Diffusion based techniques are used, the pixel values are propagated to neighbors and the resulting images
are defocused.

 One of our goals in this paper is to devise an algorithm that finds an artifact-free sharp binary image
while keeping the similarity to an input image as much as possible. The similarity or dissimilarity between
input and output images is defined using the human vision system. That is, for the purpose of comparing an
input multiple-level images and its associated output binary image we restore the output image by applying
a Gaussian filter. The dissimilarity between input and output images is defined by the sum of difference
of gray levels in the input image and the resulting restored image at each pixel. In other words, it is the
difference between an input image and an image restored from an output binary image by a Gaussian filter.

 Several halftoning algorithms have been proposed in this direction. One of them is Direct Binary
Search [1], which is an iterative improvement or minimization of the difference between input and out-
put images. Some variations are possible using heuristic search methods such as simulated annealing and
genetic algorithm (e.g. see [5]).
 The problem of minimizing the above-defined difference between input and output images seems to be

intractable. Although there is no NP-hardness result for this problem, a simpler problem is known to be

NP-complete [2]. The problem is to minimize the maximum error instead of the sum of errors. The definition
of error is also different: For a 2 x 2 small region R we take the sum of values in input and output images and
their difference is defined as the error for the region. If we take all such 2 x 2 regions to evaluate the maximum
error, the problem is NP-complete. On the other hand, if we carefully design a family of such regions (not
necessarily 2 x 2) so that an incidence matrix defined between pixels and regions is totally unimodular (simply
speaking, each pixel belongs to a few regions), then an optimal solution (optimal halftoning) is obtained in
polynomial time by applying a minimum-cost network flow algorithm [3].

 Our algorithm to be presented uses iterative improvement, but what should be distinguished from the
existing ones is local search on huge neighborhood with hardware acceleration and several algorithmic tech-
niques for efficient implementation. In the usual local search for halftoning used to be flipping one or two
pixel values while our new algorithm repeats an operation of replacing a binary pattern for a group of pixels
with the locally best binary pattern for the group. Such optimization is done using the exhaustive search
with some acceleration techniques. It is also supported by hardware implementation using FPGA (Field
Programmable Gate Array) technology.

 We have implemented our algorithm both in a usual environment of a single CPU PC and also using
FPGA as a hardware accelerator. The results are quite satisfactory. Although there is no formal proof for
the optimality of our output images, the authors strongly believe that they are almost optimal and it would
be impossible to distinguish them from theoretically optimal images even if we could find them.

2 Preliminary

Suppose that an original L-level gray-scale image A = (ai,j) of size n x n is given, where ai,j denotes
the intensity level at position (i, j) (1 < i, j < n) taking an integer in the range [0, L — 1]. The goal of
halftoning is to find a binary image B = (b,, i) of the same size that reproduces original image A, where
each bi,j is either 0 or 1. We measure the goodness of output binary image B using the Gaussian filter that
approximates the characteristic of the human visual system. Let V = (vk,j) denote a Gaussian filter, i.e. a
2-dimensional symmetric matrix of size (2w + 1) x (2w + 1), where each vk,l (—w < k,1 < w) is determined
by a 2-dimensional Gaussian distribution. The image R = (ri, j) restored from a binary image B = (bi, j) by

2

applying the Gaussian filter is an L-level gray-scale image:

 r = L(L — 1) E Vk,lbi+k,j+1
—w<k ,1<w

(1<i,j<n) (1)

From E _w<k,c<w2k,1 = 1, each ri,j takes an integer in the range [0, L — 1] and restored image R is an L-level
gray-scale image. We can say that a binary image B is a good approximation of original image A if the
difference between A and R is very small. According to this consideration, we are going to define the error
by the difference between R (or B) and A as follows. The error e2, j at each pixel location (i, j) is defined by

e2, .i = ai,j — r2,3 (2)

and the total error 1 is defined by

Error(A, B) = E Iei I.
1<i,j<n

(3)

Since the Gaussian filter approximates the characteristics of the human visual system, we can think that
image B reproduces original gray-scale image A if Error(A, B) is small enough. The best binary image that
reproduces A is a binary image B with the minimum total error is given by the following formula:

B* = arg min Error(A, B).

 B

(4)

Once the best image B* is obtained, the restored image R, which can be computed by (1), is a good
approximation of A.

 If the size of the Gaussian filter is 1 x 1, then B* can be obtained by the simple thresholding. In other
words, the binary image B* = (bi, j) such that b1, j = 1 if and only if aZ, j > is an optimal binary image
satisfying (4). However, in general, it is very hard to find the optimal binary image B* for a given gray-scale
image A if the Gaussian filter is not small, say, 5 x 5. As we discussed in Introduction, the problem of
finding the optimal binary image B* is so intractable that we believe it is NP-hard. We need to evaluate
Error(A, B) for all possible 2n2 binary images B to find the best image. Clearly, this takes more than S2(2n)
computing time. Since n is usually larger than 100, this approach is not feasible. Thus, the challenge is to
find, in practical computing time, a nearly optimal binary image B, whose total error is close to that of the
optimal image B* .

3 Iterative Improvement with Local Search on Huge Neighbor-

hood

The main purpose of this section is to present our ideas to find a good binary image B whose error with
respect to original gray-scale image A may not be minimum but is small. A basic idea behind our approach
is iterative improvement with local search on huge neighborhood. We first show our local search on huge
neighborhood, which is a key ingredients of our halftoning algorithm.

 Suppose that an original image A and a temporary binary image B are given. Further, let W (i, j) be a
window of size k x k in B whose top-left corner is at position (i, j). Our first idea is to check all 2k2 binary

patterns in W (i, j) and replace the current binary subimage in the window by the best binary pattern that
minimizes the total error. In other words, we find a binary image B' such that

B' = arg min{Error(A, B) B and B' differ only in W (i, j)}. (5)

Clearly, Error(A, B') < Error(A, B) always holds, we can say that B' is an improvement of B as a repro-
duction of original gray-scale image A.

 1We can generalize the total error using LP metric such that Error(A,B) = lei,jjP]1/P. However, this paper 1<i,j<n
deals with only p = 1.

3

 Next, let us see the details how we find B' satisfying formula (5) above. Since we use a Gaussian filter
of size (2w + 1) x (2w + 1), the change of the binary pattern may affect the errors in a square region of size

(2w + k) x (2w + k), which we call the influence region. The reader should refer to Figure 1 for illustration
of a window, a Gaussian filter, and the influence region. It should be clear that the best binary pattern can
be selected by computing the total errors of the influence region of size (2w + k) x (2w + k), because the
change of the binary pattern does not affects errors at pixels outside the influence region.

Gaussian filter

window TV(i, j) k

2w+1

influence region

I I I I 1 I I
I I I I 1

I I 1 I 1

I I I I I
''^^

^.^^ --L--
- _ L - - ̂ ^ ^ ^

1 1 1
1 -2c

11
1 1 1

2w+k

Figure 1: Illustrating a window of size k x k, a Gaussian filter of size (2w + 1) x (2w + 1), and the influence
region of size (2w + k) x (2w + k)

 Let us evaluate the computing time necessary to find the best binary pattern in the window. The error
of a fixed pixel in an influence region can be computed in 0(k2) time by evaluating formulas (1) and (2).
Hence all the errors in the influence region can be computed in 0(k2(2w + k)2) time. After that, their sum
can be computed in 0((2w + k)2) time. Thus, the total error in the influence region can be computed in
0(k2(2w + k)2) time. Since we need check all the possible 2k2 binary patterns, the best binary pattern can
be obtained in 0(2k2 k2 (2w + k)2) time. We can improve the computing time by a pixel flipping in the order
of the gray code of binary numbers. Recall that the gray code represents a list of all 2' binary numbers with
m bits such that any two adjacent numbers differ only one position. Thus, by flipping a bit in an appropriate
position, we can list all the2mbinary numbers with m bits. Using the gray code with k2 bits, we can check
all binary patterns in 0(2k w2) time as follows. Starting with the current pixel pattern in the window, we
repeat flipping an appropriate pixel by the gray code. In each flipping, we compute the total error in the
influence region for the current binary pattern in the window. Since a single bit flipping affects the error of
2w + 1 x 2w + 1 pixels, the total error can be computed in 0(w2) time in an obvious way. Thus, the best
binary pattern can be computed in 0(w2) x 2k2 = O (2k2 w2) time using the exhaustive search.

 We are now in position to show our iterative improvement using the exhaustive search because no more
improvement for the current window is possible. Let Bo be an appropriate initial binary image Bo. We
scan the binary image by a window of size k x k and improve it by the exhaustive search, that is, replacing
binary pattern in the window so that the total error is minimized. The scan by a window can be done by
any order. We perform the scan on Bo in the raster order, and obtain a better quality binary image B1.
The same procedure is repeated, that is, the scan operation is applied to Bt_1 and obtain a better binary
image Bt (t > 1) until Bt_1 and Bt are identical and no more improvement is possible. When computing
Bt for t > 2, we do not have to perform the exhaustive search for all the windows. If the restored image of
the influence region for the current window did not changed, then we can omit the exhaustive search. The
details of our algorithm are spelled out as follows:

Iterative Improvement(A)
Set an appropriate initial binary image in Bo;
B1+-Bo

4

 for iE-1ton-w+1do
for j 1 to n - w + 1 do

 Perform the exhaustive search in W(i, j) for B1 and update B1
 by the best binary pattern.

t - 2;
do {

Bt F- Bt-i
for iF-1ton-w+1do

for jE-1ton-w+1do
 if the influence regions of W(i, j) for Rt_1 and Rt_2 are not

 identical then perform the exhaustive search in 1V(i, j) for Bt
 and update Bt by the best binary pattern.

} until (Bt and Bt_1 are identical)
output (Bt);

 If k = 1, then all we need to do is to flip the binary value of a pixel. This idea is implemented under
the name of Direct Binary Search (DBS) [1]. In DBS, a pixel is flipped if the resulting image has smaller
total error. Thus, our iterative improvement method is a generalization of the DBS. Since the DBS checks
only the immediate neighborhood, the binary image falls into the local minimum solution with large error.
However, since we check the large neighborhood, say, 4 x 4, the resulting binary image is very close to the
optimal one. Actually, we have developed the image halftoning system using FPGAs, which performs the
iterative improvement for widows of size 3 x 3 and 4 x 4. As we are going to show later, the binary images
obtained by the large neighborhood are much better in the quality than those by the DBS.

4 Hardware Acceleration for the Exhaustive Search using an FPGA

co-processor

We have developed the hardware accelerator using the PCI-connected FPGA that performs the exhaustive
search to find the best binary pattern in a window. This section is devoted to show the architecture of our
hardware FPGA-based accelerator.

 Before showing the architecture, we first show how our hardware accelerator is used by the host PC.
Recall that, as is easily seen in Figure 1, W (i, j) contains pixels at position (i +i, j + j') for 0 < i', j' < k - 1.
Also, the influence region involves pixels (i + i, j + j') for -w < i', j''< w + k - 1. The host PC initializes
all binary pixels in window W (i, j) to 0, i.e. bi+i,j+i' = 0 for all 0 < i', j' < k - 1. After that, it computes
all the errors in the influence region by (2). The host PC sends these errors to the PCI-connected FPGA.
Since each error is an integer in the range [- (L - 1), L - 1], (2w + k)2 integers with (log L +1) bits are sent
through the PCI bus. Note that the number of bits sent though the PCI bus is independent of the size n x n
of the image. For example, if w = 2, k = 4, and L = 256, then the PCI bus transfers 576 bits to find the
best binary pattern. Once the PCI receives the errors in the window, it computes the best pattern by the
exhaustive search.

 Next, we are going to show the architecture of our hardware accelerator. Figure 2 illustrates a part of
the FPGA-based hardware accelerator, which outputs the total error for every binary patterns. The binary
pattern is stored in the k2-bit counter. A combinatorial circuit is used to apply the Gaussian filter to this
binary pattern stored in the counter. Note that the combinatorial circuit is very simple; it just evaluates
Formula (1) for the window of size (2w + k) x (2w + k). Once the resulting image and the errors are
obtained, the total error is computed by a simple combinatorial circuit, which just computes the formulas
(2) and (3). The evaluation of formulas (1) and (3) involves the computation of the sum of integers, which
can be performed quite efficiently on the FPGA [9, 8]. The architecture illustrated in Figure 2 outputs the
errors of all binary patterns in 2k2 clock cycles. Using all the total errors, the best binary pattern can be

stored into a register using a comparator in an obvious way. After that, the best binary pattern is sent to

the host PC, which stores it in the window of the binary image.

 In principle, the hardware accelerator computes the best binary pattern in 2k2 clock cycles. Since the

circuit is so simple that it applies the Gaussian filter and computes the total sum, we can use the pipelining

5

 PCI bus

the errors for all-0
 binary pattern

w + k)2 log L-bit
 registers

binary pattern

k2-bit counter

combinatorial circuit
 to apply the

 Gaussian filter

combinatorial circuit to
compute the total errors

the total error

Figure 2: Illustrating a part of the hardware accelerator.

technique [9] to increase the frequency of clock cycles. Actually, we have partitioned the combinatorial circuits
into seven stages. The pipelined architecture works correctly in frequency of 80ivIHz on Xilinx XC2V3000
(Speed Grade 4). We can also achieve further speed up by parallelizing the exhaustive search. Recall that
the hardware accelerator is used to compute the total errors for a set of all 2k2 binary patterns. We can
equally partition this set into m groups ofZmin obvious way and use m-parallel circuit to find the best
binary patten in each group. Actually, we succeeded in embedding three 2-parallel hardware accelerators in
XC2V3000, each of which computes the best binary pattern for each of the RGB colors.

5 Experimental Results

This section presents experimental results obtained by our halftoning method using iterative improvement
on huge neighborhood.

 We have developed a software that performs our halftoning algorithm using the iterative improvement
for windows of sizes 1 x 1, 2 x 2, 3 x 3, and 4 x 4, which we call 1-flip, flip, 9-flip, and 16 flip, respectively.
Recall that 1-flip corresponds to the DBS [1].

 Table 1 show the results for a standard color image, "Lena", which is a 256-Level color RGB image of
size 512 x 512. We use a Gaussian Filter of size 5 x 5 with parameter a = 1.5. The iterative improvement
is applied to each of the RGB colors independently. The initial binary image is given by the white noise
halftoning, which gives 1 to each pixel b2,i with probability

 The Average Error in Table 1 is the absolute value of the error per pixel, that is, (Error(Ar, Br) +
Error(A9, B9) + Error(Ab, Bb))/3n2, where Ar, A9, Ab, Br, B9, andBb denote the images of RGB colors of
original A and halftone image B, respectively. Clearly, the average error for 16-flip is the smallest and
that for 1-flip (DBS) is quite large. We have used a Pentium4 Processor PC (2.8GHz, 2Gbyte memory,
512Kbyte cache) with Linux OS (kernel 2.4). Table 1 includes the computing time by the software on this
PC using no FPGA. The source C program is complied by gcc 3.2 with -02 and -march=pentium4 options.
For "Lena", the non-FPGA program runs in 536.8 and 72834 seconds for 9-flip and 16-flip, respectively. To
accelerate the computation for 9-flip and 16-flip, we use Xtreme DSP kit [10], which is a PCI card with Xilinx
Virtexll series FPGA XC2V3000. Since we embedded three 2-parallel circuits on the FPGA, the exhaustive
search for a window can be done for each of the RGB colors concurrently in222 clock cycles. Although the

speed up factor of 97.3 is attained for 16-flip, that for 9-flip is only 4.52. The reason is that the latency

of data transmission through PCI bus is dominant in computing time for 9-flip, because the exhaustive

6

 Average Error
Time (no-FPGA,sec)

 Time (FPGA,sec)
 Speed up

1-flip

7.81

1.91

4-flip

5.32

20.56

9-flip

4.91

536.8
118.8

4.52

16-flip

4.61

72834

748.17
97.3

Table 1: The experimental results for "Lena", 256-Level RGB Color image of size 512 x 512.

search for a window takes only '~ = 256 clock cycles, which is approximately (8oNlHti) sec 3.2 usec. On
the other hand, the exhaustive search for 16-flip needs 226 = 32768 clock cycles, which is approximately
(80mHz)sec : 0.4msec. If the FPGA has an enough memory to store the whole image data, we can omit
the frequent data transmission though PCI bus. If this is the case, we can attain the same speed up factor

as that of 16-flip and the computing time for 9-flip will be few seconds.

 Figure 3 shows the resulting halftone images and their restored images including the images generated

by ordered dither and Error Diffusion. It is easily to see that the quality of the binary image obtained using
16-flip is the best. The quality of 9-flip is very close to 16-flip. The binary images obtained by Error Diffusion

has artifacts and worms, while those of 9-flip and 16-flip are artifact-free. Also, the restored images of 9-flip

and 16-flip are quite sharp and very well reproduces the original image. We can conclude that, since the

16-flip takes a lot of time, the 9-flip is a practical method for find halftone images of good quality.

6 Discussions and Future Works

We have demonstrated a powerful halftoning algorithm for producing plausible halftone images without any
visible artifacts under the ideas of iterative improvement based on local search on huge neighborhood together
with the help of hardware acceleration. Since this halftoning process requires huge amount of computation,
it would be impractical if we would implement it naively. Although the processing time is still much larger
than that of the currently used halftoning algorithms such as Error Diffusion and also much larger hardware
resources are required, our algorithm would be useful if we really needed good halftone images.

 The scheme described in this paper could be applied to several other optimization problems related to
halftoning. One of them is to design optimal masks (or matrices) used for blue noise mask and dot diffusion.

Acknowledgments

This work has been partially supported by Grant in Aid for Scientific Research of the Ministry of Education,

Culture, Sports, Science and Technology of Japan. The authors would like to thank Hisao Tamaki for his

stimulus suggestions on local search on huge neighborhood.

References

[1] M. Analoui and J.P. Allebach. Model-based halftoning by direct binary search. In Proc. SPIE/ISPT
 Symposium on Electronic Imaging Science and Technology, volume 1666, pages 96-108, 1992.

[2] T. Asano, T. Matsui, and T. Tokuyama. Optimal roundings of sequences and matrices. Nordic Journal
 of Computing, 7(3):241-256, 2000.

[3] T. Asano, K. Obokata, N. Katoh, and T. Tokuyama. Matrix rounding under the 4-discrepancy measure
 and its application to digital halftoning. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages

 896-904, 2002.

[4] Tetsuo Asano. Digital halftoning: Algorithm engineering challenges. IEICE Transactions on Informa-
 tion and Systems, February 2003.

7

[5]

[6]

[7]

[8]

[9]

[10]

[11]

C.H. Chu. A visual mode-based halftone pattern design algorithm. In IEEE Signal Processing Society
Seventh Workshop on Multidimensional Signal Processing, pages 23-25, 1991.

R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale. SID 75 Digest,Society for
Information Display, pages 36-37, 1975.

Daniel L. Lau. Modern Digital Halftoning. Marcel Dekker, 2001.

Rong Lin, Koji Nakano, Stephan Olariu, M. C. Pinotti, James L. Schwing, and Albert Y. Zomaya.
Scalable hardware-algorithms for binary prefix sums. IEEE Transactions on Parallel and Distributed
Systems, 11(8):838-850, 8 2000.

Koji Nakano and Koichi Wada. Integer summing algorithms on reconfigurable meshes. Theoretical
Computer Science, pages 57-77, January 1995.

Nallatech. Xtreme DSP Development Kit User Guide, 2002.

Victor Ostromoukhov. A simple and efficient error-diffusion algorithm. In Proc.of the 28th SIGGRAPH,

pages 567 — 572, 2001.

8

 Il
a ~

I

8

` f
P ~

 s•

 L
 fd

oi
 .weLr; $,

.:-.44,,,,L,-..'1.-.,-R.,,,---,,all,),.: .ry~h

~~-,`:

!/ e
,'-.L .i+3x.;x 1 \',.<.,-.., ~~.F~.,~RS'~>5x?55..5.~n x°4yy:

de

 Qi.a.}> A
 S3'S."5-,,,I,,,.,?...,,,,,,S.„N

 3.$5 :'
i

0 P x,1

c

E

'ft
Yl B,..yp3,

S~~'

,,q
 Fi

 !yy -47
;;;Q,-.‘8,`

.,,,,,,),
, ,

`

 €,

F•~FtEi,

 F~

.)...',
,,

>

,..,,,, ,

)/11'

8
> <

 ie;,„

 • ~ de

Yx 3,

1,4

3

3.

a
Y:

1,

 b
-! l

4. j

: E

•

1

 R'
7

 4t~x•

~r}v`h~~iZrc,R'
,

 s~ah"
0.XA:,t.s Kz2r~t'~'"~L~'
Ia4"r xsa

Y.'y 2"•'b'i'~"j-~

EazRT .{'~z

 ~al~.°r
 sz

t.i,'" ,'b
''

kY3'P

ttr~a~~r~~~~ig,,

o~t>~rr.:;',',',.i~~
ilt'''..~~rr^,~,.y'...=

 sl ..,
:,.:-.,...E. 5

.Y

I ~-,•,,k`

'*
":

 3, t,

fir

 ti

Figure 3: The resulting halftone images and the restored images: Top row, Ordered Dither, Error Diffu-
sion(Floyd and Steinberg), and the halftone image by 1-flip(DBS). Second row, the halftone images by
4-flip, 9-flip, and 16-flip. Third row, Original image, the restored image of Error Diffusion, and that of
1-flip. Bottom row, the restored images of 4-lip, 9-flip, and 16-flip.

9

