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Fundamental frequency estimation for noisy
speech based on instantaneous amplitude and

frequency

Yuichi Ishimoto, Masashi Unoki, Masato Akagi

School of Information Science, Japan Advanced Institute of Science and

Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

Abstract

This paper proposes a robust and accurate method of estimating the fundamental
frequencies (F0s) for noisy speech. In general, it is difficult to directly estimate
accurate FOs from noisy speech. This method combines two different methods of
FO estimation. One is based on the periodicity and harmonicity of instantaneous
amplitude of speech; it is robust against noise, but it does not allow for accurate
FO estimation. The other is based on the stability of instantaneous frequency, and
it enables accurate FO estimation, but this method is not robust against noise. To
combine these two methods, the proposed method makes use of noise reduction by
using a comb filter with controllable pass-bands. Experiments were carried out to
estimate FOs of real speech in noisy environments and to compare the proposed
method with other methods such as an autocorrelation method and a cepstrum
method. The results showed that this method was more robust than the other
methods. This method could estimate FOs of noisy speech with accuracy similar
to that in clean speech FO estimation by using only the stability of instantaneous

frequency.
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1 Introduction

Extracting fundamental frequencies (F0s) of target speech signals is important
in various areas of speech signal processing such as speech recognition, speech
analysis/synthesis, and speech segregation. For example, in speech recogni-
tion, FO information can be used for spectrum normalization to improve the
accuracy of speech recognition (Singer and Sagayama, 1992). In speech analy-
sis/synthesis, F0 is a factor controlling the pitch of speech, so extracting accu-
rate FOs is important if the synthesized speech is to sound natural (Kawahara
et al., 1999). In ‘Auditory Scene Analysis’, F0 is a significant element charac-
terizing the difference between sounds that can be used as cues to segregate
concurrent speech signals (Bregman, 1990). There have been many studies in
the field of ‘Computational Auditory Scene Analysis’, for example, on speech
segregation, which used FOs from target speech in noisy environments (e.g.,
Nakatani et al., 1995; Unoki and Akagi, 1999; see also, Cooke and Ellis, 2001,
for a detailed review). In order to use speech signal processing in real en-
vironments, we must be able to extract accurate F(0s. However, accurately
extracting FOs from target speech in noisy environments is difficult, because

noise distorts fundamental harmonic components of the target speech.

Various methods of F0 estimation have been proposed (for further details, see
Hess, 1983, 1992; Hermes et al., 1993), most of which make use of periodic
features of speech in the time domain or harmonic features in the frequency

domain. F0s from periodic features of speech in the time domain are currently



extracted using an autocorrelation function of speech waveforms (Takagi et
al., 1997; de Cheveigné and Kawahara, 2002). This autocorrelation method
is relatively robust against noise, but it is not very accurate. FOs from har-
monic features in the frequency domain are extracted using a cepstrum method
(Noll, 1967) or by comb filtering of the amplitude spectrum (e.g., Nishi and
Ando, 1998). The cepstrum method can extract relatively accurate FOs in
noiseless speech, but it is not very robust against noise. The method based on
comb filtering of the amplitude spectrum is more robust against noise than
the cepstrum method. These methods, however, cannot estimate F0Os in noise-
less speech with accuracy similar to that of the FO estimation method using

instantaneous frequency described below.

The time-frequency representation of speech obtained by time-frequency anal-
ysis can also represent harmonic components of speech (Cohen, 1995). The in-
stantaneous amplitude of speech signals, which are analyzed by filterbanks and
are represented in the time-frequency domain, has harmonic features that are
robust against noise (Unoki and Akagi, 1998; Ishimoto et al., 2001). A method
of FO estimation based on the comb filtering of instantaneous amplitude was
proposed by Unoki and Akagi (1998) to construct a sound segregation model.
This method can estimate F0Os of vowels in noisy environments. However, the

estimated FOs of sentences are not sufficiently accurate.

Instantaneous frequency of speech has also been used to accurately estimate
FOs (Qiu et al., 1995; Abe et al., 1996; Kawahara et al., 1999). For example,
Kawahara et al.(1999) proposed a method of FO estimation, STRAIGHT-
TEMPO, based on the stability of instantaneous frequencies to construct a
speech analysis/synthesis system. This method can accurately estimate F0s

in clean speech, however, it is sensitive to noise. Other, more robust meth-



ods using instantaneous frequency in noisy environments have been proposed
(Atake et al., 2000; Nakatani and Irino, 2002); some of these methods are more

robust than STRAIGHT-TEMPO.

Nevertheless it appears that most existing methods have certain drawbacks
in estimating FOs of target speech in noisy environments and cannot be both

accurate and robust.

This paper proposes a robust and accurate method for estimating F0Os even
in noisy environments. The proposed method (1) estimates rough FOs from
noisy speech, (2) reduces noise by using the roughly estimated FOs, and (3)

estimates accurate FOs from the noise-reduced speech.

2 The model of FO estimation for noisy speech

In general, it is difficult to directly estimate accurate FOs from noisy speech.
The proposed method reduces the noise and then estimates accurate FOs from
the noise-reduced speech. The noise is reduced by using a comb filter that
eliminates noise components in the noisy speech, leaving harmonic components
intact (de Cheveigné, 1993, 1997). The center frequencies of the comb filter
must be the same as those of the harmonics of the target speech. Hence, to
construct a comb filter, we first need to extract the FOs of the target speech.
We cannot obtain accurate FOs directly from noisy speech, but we can obtain
rough one. In this method, we first try to obtain FOs as accurately as possible
in order for the roughly estimated FOs not to reduce the harmonics of the

target speech as a result of comb filtering.



2.1 Algorithm overview

Figure 1 shows a block diagram of the proposed method. First, the method
roughly estimates F0s from noisy speech using instantaneous amplitude, which
has robustly periodic and harmonic features corresponding to F0s, in the time-
frequency domain. The FO estimation is based on the periodicity and har-
monicity of instantaneous amplitude of speech signals by using time-frequency
analysis. Then noise reduction is performed using a comb filter with control-
lable pass-bands, whose center frequencies are calculated from the roughly
estimated F0s. The pass-band width is controlled depending to the amount of
noise present. Before reducing the noise, this method performs time warping
of the noisy-speech waveform in order to flatten the FO contours, because the
comb filter is constructed by assuming that the FOs in a frame are constant.
This procedure decreases the amount of error in noise reduction. After that,
accurate F0s are estimated from the noise-reduced speech waveform using the

stability of instantaneous frequency.

In the following sections, we describe the proposed method in detail. Section
2.2 outlines F0 estimation based on the periodicity and harmonicity of instan-
taneous amplitude; section 2.3 describes noise reduction by using a comb filter
with controllable pass-bands; and section 2.4 presents FO estimation based on

the instantaneous frequency.



2.2 F0 estimation based on the periodicity and harmonicity of instantaneous

amplitude

The first stage of the proposed method requires that it be robust in noisy
environments, although the estimated FOs do not need to be very accurate.
Time-frequency representation of the instantaneous amplitude of speech can
contain information about F0s even in noisy environments. To enable robust
estimation of FOs in noisy speech, the proposed method uses harmonicity,
which appears as fluctuation in instantaneous amplitude with intervals corre-
sponding to the FO in the frequency direction, and periodicity, which appears
as fluctuation in instantaneous amplitude with intervals corresponding to the
fundamental period in the time direction. Figure 2 illustrates FO estimation
based on the periodicity and harmonicity of instantaneous amplitude (called

PHIA), which is the first stage of the proposed method.

2.2.1 Time-frequency representation of instantaneous amplitude

The time-frequency representation of speech signals is obtained as follows. An
input signal, z(t), is analyzed by using band-pass filters hy(¢). The outputs of

filterbank, (), are given by

yk(t) = x(t) * hu (1), (1)

where k is the channel index, and * denotes the operation of the convolution.

The analytic signal, g (¢), is obtained as

ge(t)=F " [2YVi(w)U(w)], (2)



where Y, (w) is the Fourier spectrum of yx(t) and F![-] is the inverse Fourier
transform. Then, the instantaneous amplitude, s;(¢), and instantaneous fre-

quency, Agx(t), are given in Eqgs. (4) and (5), respectively.

sel0) =10, )
Me(0) = arg () )

In this time-frequency analysis, the proposed method uses two filterbanks
as the band-pass filters. One is a constant-Q filterbank, and the other is
a constant narrow bandwidth filterbank. In this paper, the filterbanks are
constructed by using the gammatone filter (Patterson and Holdworth, 1991),

which is represented by

gt(t) = AtNexp(—27b; ERB(f.)t) cos(2m f.t), (t >0) (6)

where NV and by are the parameters related to bandwidth, f, is the center fre-
quency and ERB(f,) is the Equivalent Rectangular Bandwidth of f. (Glasberg

and Moore, 1990).

In constructing a constant-QQ gammatone filterbank (for details, see Unoki and

Akagi, 1999),




a =10/ K)(k=-1)-1

: (8)

where N =4, f, =600 Hz, by = 1,1 <k < K+ 1, and K = 64. Then Eq.
(1) is the wavelet transform. In practice, filters whose center frequencies are

in the range of 2 to 6 kHz, that is, which have 16 channels, are used.

In constructing a constant-bandwidth filterbank, hy(t) is given by

hi(t) = AtN "t exp(—27byt) cos(27 fit), 9)
fr =60+ 5(k — 1) Hy, (10)

where N = 4, by = 20 Hz and 1 < k < 389. f; means that the center
frequencies of these filters are ranging from 60 to 2000 Hz. The boundary
between the two filterbanks is decided as 2 kHz because the expedient periodic
feature represented by a constant-Q filterbank did not appear below 2 kHz in
our preliminary investigation, and the frequency region below 2 kHz is used to

extract the harmonic feature represented by a constant-bandwidth filterbank.

When si(t) is allocated by the channel index in the time-frequency plane
by using a constant-Q filterbank, periodic fluctuations appear in the instan-
taneous amplitude in the time direction. The peak intervals of the fluctua-
tions equal the fundamental period, which is the reciprocal of the FO. These
fluctuations are called ‘periodicity’. Periodicity is especially noticeable in the
high-frequency region because the constant-(Q filterbank has high temporal

resolution in the high-frequency region.

Similarly, when a constant-bandwidth filterbank is used, fluctuations in the
instantaneous amplitude appear in the frequency direction. These fluctuations
are called ‘harmonicity’ and their peak intervals equal the F0. Harmonicity is

especially prominent in the low-frequency region, because speech harmonics



tend to swerve as a result of harmonicity in the high frequency region. The
instantaneous amplitude obtained by using a constant-bandwidth filterbank

can alternatively be implemented by using fast Fourier transformation.

The upper panel in Fig. 3 shows the instantaneous amplitude calculated by
using a constant-Q filterbank for male vowel /a/. The bottom panel in Fig. 3
is the instantaneous amplitude on one channel (#13) of the filterbank, which
is indicated by the dashed line in the upper panel. The periodicity is clearly
visible in the time direction. The left panel in Fig. 4 shows the instantaneous
amplitude obtained by using a constant-bandwidth filterbank for the same
vowel. The right panel in Fig. 4 is the instantaneous amplitude at one time (320
ms), which is indicated by the dashed line in the left panel. The harmonicity

is clearly visible in the frequency direction.

2.2.2  Calculating FO distributions derived from periodicity and harmonicity

Next, this method calculates FO distributions from the periodicity and har-
monicity that indicate the presence of F0s. In the time-frequency representa-
tion of periodicity, FO candidates are extracted by using an autocorrelation
function in the time domain. The autocorrelation function of lag 7 in the time
direction is given in Eq. (11).
t+we
() = Y Sk(4)5k(i + 1), (11)
i=t
where w, is 35 ms, and 5, (t) is center-clipped si(t) using the average am-
plitude. ry(7) is calculated in 1-ms steps for every filter channel. Then, FO
candidates are estimated at time ¢ and channel index & from ry,(7). A his-

togram, p;(f), is constructed using the FO candidates gathered from all filter



channels within 20 ms, where f is the bin of the histogram that contains

frequency.

Similarly, in the representation of harmonicity, FO candidates are extracted
by using an autocorrelation function in the frequency domain. The autocor-

relation function of lag ¢ in the frequency direction is given by

"0 = Z (1)5;2c(0), (12)

where wy, is the filter index that contains 800, 1100, 1400, 1700 or 2000 Hz,
and 5, (t) is center-clipped log(s,(t)) using the average amplitude. r,, ,(¢) is

also calculated in 1-ms steps. Then, F0s are estimated as candidates from each

/
wk,t

r(C). A histogram, ¢;(f), is constructed using the F0O candidates gathered

from all filter channels within 20 ms.

Then, 1 is added to all the bins of the histogram as offset. If there is no offset,
the correct FO information may be lost at integration of the FO distributions
described in the next section. The obtained histograms are then normalized

so that their sum is 1. We call the resultant histogram ‘F0 distribution’.

2.2.8 Integration of FO distributions and F0 estimation

If both distributions obtained from the periodicity and harmonicity of instan-
taneous amplitude have a peak at the same point, the peak is assumed to
indicate the correct FO. However, if the distributions have peaks at different
points, they may not indicate the correct F0O. To improve FO estimation in

noisy environments, the method integrates the two FO distributions as

di(f) = pe(f)a(f)- (13)

10



Finally, the frequency with the peak in the integrated FO distribution d;(f) is

extracted as the FO.

Figure 5 shows an example of estimated FOs and the peak values of FO dis-
tributions at each time. In the voiced section, the peak values are relatively
close to 1. In the unvoiced, or noisy section, they are close to 0. This means
that the peak value of the FO distributions shows whether or not the signal
is noisy. The line close to 0.2 in the peak values is due to the offset of the

histogram described in section 2.2.2.
2.3 Noise reduction by using a comb filter with controllable pass-bands

2.3.1 Comb filter construction

The second stage of the proposed method requires a comb filter with con-
trollable pass-bands that can both decrease the amount of error in the FO0
estimation obtained in the first stage and minimize the amount of noise. This

comb filter is constructed as follows.

We assume that the target signal s(t¢) is a harmonic complex tone, and n(t) is

noise. We obtain the observed signal, x(t), as

x(t) =s(t) + n(t)
— Z alej(lwo(t)t"‘gl) + Z bmej(wmt+0m), (14)
l

m

wo(t) =27 [To(t), (15)

where Ty(t) is a fundamental period. To simplify the construction of the comb

filter, we assume that Tj(t) is fixed to
TU = 27'('/(,()0. (16)

11



If we eliminate the two signals, which are shifted x(¢) to ¢ + Tp, from z(t),

then ¢(t) is calculated as follows.

() = 2x(t) — x(t — Zo) —z(t +1p) (17)

—Zb el @ntm) g2 Em (18)

Wo

Signal ¢(t) is transformed by using a short-term Fourier transform (STFT).

The result is C(wp,):

C(wm) = N(wpy) sin® 2%, (19)

where N(w,,) is the STFT of noise n(t). Then, noise spectrum N (w,,) is

N(wm) = C(wy)/ sin? 2. (20)

Wo

By transforming N (w,,) using the inverse STF'T, we estimate noise n(t). Then,
the noise is reduced by subtracting n(¢) from the observed signal, z(¢). Since

N(wy,) becomes infinite when w,,/wg is an integer, N(wy,) is calculated as

C(wp)/ sin® o, |sin¢mw|>e
N(wm) = (21)

C(wm), | sin 22| < g

where 0 < ¢ < 1. This equation means that the pass-bands of the comb filter
can be easily changed by e. Figure 6 illustrates the frequency response in the
noise reduction model by using a comb filter when T} is 5 ms. As shown in
Fig. 6, the pass-bands are controlled as a function of . That is, if € is small,

the pass-bands are narrow, and if ¢ is large, the pass-bands are wide.

12



2.3.2  Determining

To reduce noise effectively and minimize the effect of error in the F0 estimation
in the first stage, the value of ¢ should be given according to the features of
the target speech and noise. Therefore, to construct a comb filter, we need
to determine whether or not the observed signal is noisy. As shown earlier,
the peak values of the FO distributions obtained with PHIA vary with noise,
hence these values are used to determine . In our preliminary investigation,
we found that the quality of noise-reduced speech deteriorated when £ was
less than 0.3, and the noise could not be reduced when ¢ was greater than 0.8.
Given that the peak values of the F0 distributions obtained by PHIA generally
fall between 0.3 and 0.8 depending on the features of the target speech and

SNR (see Fig. 5), the value of ¢ is calculated as follows.

e=11-P, (22)

where P is the average of the peak values of the F0 distributions in 20 ms.
When P is close to 0 (i.e. the error of FO estimation in the first stage is large),
the pass-bands of the comb filter are made wide in order for the comb filter
to reduce harmonic components of the target speech. When P is close to 1
(i.e., the error is small), the pass-bands are made narrow in order for the comb

filter to reduce noise components more effectively.

2.3.83 Time-warping of speech waveforms to flatten the F0

In the above formulation of the comb filter, we assumed that the fundamen-
tal period is constant in Eq. (17). However, in real speech, the fundamental

periods vary with time. This causes error in FO estimation. Therefore, before

13



reducing the noise by using a comb filter, the speech waveforms are time-

warped to flatten their fundamental periods using the roughly estimated FOs.

The time-warping of speech waveforms to flatten the FO contours is performed
by varying the sampling interval and resampling. The sampling interval is
varied by using fundamental periods Tj(t) estimated in the first stage. The

sampling interval, T;(t), is calculated as

Ti(t) = TT—(t) < T, (23)

where T is the average of Ty(t), and Ty is the sampling period of the original
speech waveform. The speech waveform represented by using Ts(t) is resampled
by using interpolation in 7§ steps. The speech waveform, then, has a constant
FO. Figure 7 shows an example of time-warped speech. After the noise has
been reduced by the comb filter, the speech waveforms are once again inversely

time-warped to restore their estimated fundamental periods.

2.4 FO estimation based on instantaneous frequency

The third stage of the proposed method is estimating the FOs of the noise-
reduced signals. This estimation must be highly accurate. In mapping from
the center frequencies of the band-pass filters to the instantaneous frequencies
of the filter outputs, the fixed points that contain FO information appear at all
times if the signal is periodic. The F0 estimation method based on this stability
of instantaneous frequency can give accurate FOs (for details, see Kawahara et
al., 1999). In this paper, therefore, we consider STRAIGHT-TEMPO proposed

by Kawahara et al. as the third stage of our method.

14



3 Experiments

To compare the robustness and accuracy of the proposed method with those of
other methods, we carried out experiments using real speech to which we added
white and pink noise. The evaluated methods were the proposed method,
PHIA, STRAIGHT-TEMPO, YIN (de Cheveigné and Kawahara, 2002), an
autocorrelation method, and a cepstrum method. It should be noted that
here are many autocorrelation and cepstrum methods; in this study, we used
an autocorrelation method with multiple window lengths (Takagi et al., 1997)
and an improved cepstrum method developed by Kato and Miwa (1995). The
evaluation measures were ‘the gross FO error’ and ’the fine FO error’. The
former was defined as a more than 20% difference from the reference FO0s
in the voiced section. The latter was defined as a standard deviation of the
error within the threshold of the gross FO error. Hence, the gross FO error
indicated the robustness of the methods in noisy environments. The fine FO
error indicated the accuracy of the methods within the threshold of the gross

FO error.

To evaluate the methods, we used a database of simultaneous recordings of
speech sounds and electroglottographs (EGGs) (Atake et al., 2000). This
database contains 30 short Japanese sentences pronounced by 14 male and
14 female speakers, together with voiced-unvoiced labels, which were used
to detect the voiced sections in these experiments. The reference FOs of the
speech signals were FOs extracted from EGG waves by STRAIGHT-TEMPO.
This is because STRAIGHT-TEMPO had the least bias in FO estimation from
the EGG waves in the preliminary experiment (see Appendix). The sampling

frequency was 16 kHz. The SNRs of the noisy speech were 10, 5, 3, and 0 dB.

15



3.1 Results

3.1.1 White noise

Figures 8 and 9 show the gross FO error and the fine FO error obtained for the

six FO estimation methods for speech signals containing white noise.

When the speech signals were clean (the SNR was infinite as shown in Figs. 8
and 9), the gross F0 error obtained with almost all the methods was about 5%.
YIN had the best performance. The fine FO error obtained with STRAIGHT-
TEMPO was about 1.8 Hz and that of the proposed method was about 2.1
Hz, while that of PHIA was 6.2 Hz. That is, when the speech signal was clean,
PHIA could not provide the same accuracy as the other methods, however, the
proposed method’s accuracy was close to that of STRAIGHT-TEMPO. The
fine FO error of YIN was larger than those of the other methods. One reason
for this is that YIN reduces only those errors that are too-high or too-low,

and does not reduces fine FO errors.

When white noise was added to the speech signals and the SNR was 0 dB, the
gross error obtained with the proposed method had the best performance of all
the methods. The gross FO error of STRAIGHT-TEMPO increased more than
40% compared with the error for clean speech. The gross F0 error of PHIA in-
creased only 11% compared with the error for clean speech. PHIA, therefore,
has high robustness against white noise. The proposed method could have
the same robustness as that of PHIA, which is the first stage of the proposed
method, and it was about 30% lower than that of STRAIGHT-TEMPO, which
is the third stage of the proposed method. The results showed that the pro-

posed method can greatly improve the robustness of STRAIGHT-TEMPO.

16



The autocorrelation and the cepstrum methods were also relatively robust,
however, their gross FO error was low compared with that of the proposed

method under noisy conditions.

The fine FO error obtained with STRAIGHT-TEMPO was very small even in
noisy speech. This result means that the estimated F0s were accurate within
the threshold of the gross F0 error, although most of the FO estimation errors
exceeded the threshold. The fine FO error of the proposed method was much
smaller than the error of PHIA, and it was close to that of STRAIGHT-
TEMPO. This result indicates that the second and third stages of the proposed
method can reduce the error of PHIA in the first stage and that the method
can estimate accurate F0Os under noisy conditions. The fine FO error of the
autocorrelation and cepstrum methods was large compared with that of the

proposed method.

Based on the results, we conclude that STRAIGHT-TEMPO and YIN are not
robust against noise. The autocorrelation and cepstrum methods are relatively
robust for noisy speech, but they are not accurate. The proposed method is

the most robust against white noise of all the methods, and it is as accurate

for noisy speech as STRAIGHT-TEMPO for clean speech.

3.1.2 Pink noise

Figures 10 and 11 show the gross FO error and the fine FO error for speech

signals containing pink noise.

When pink noise was added to the speech signals, the gross FO error of all the

methods showed the same tendency towards increasing. However, the gross

17



FO error obtained with the proposed method was more than 20% lower than
that of STRAIGHT-TEMPO when the SNR was 0 dB, and it was more than
10% lower than that of STRAIGHT-TEMPO when the SNR was 10 dB. The
proposed method had the best performance in terms of the gross FO error
when the SNR was more than 3 dB, and its fine FO error was also small
compared with that of the autocorrelation and cepstrum methods. When the
SNR was 0 dB, the gross FO error of the proposed method was a little higher
than that of the cepstrum method. However, the fine F0O error of the proposed
method was smaller than that of the cepstrum method. The proposed method
suffered more from the effect of pink noise than it did from the effect of white
noise. This is because pink noise has higher energy in the low-frequency region
around FOs than in the high-frequency region. STRAIGHT-TEMPO, which
is the third stage of the proposed method, uses fundamental components of
speech signals, and it is sensitive to pink noise. The comb filter, which is used in
the second stage of the proposed method, cannot effectively reduce noise in the
fundamental components. The proposed method, therefore, cannot perform as

robustly as the proposed method against white noise.

4 Conclusion

This paper described a robust and accurate method of estimating the FOs of
noisy speech. The proposed method consists of two different methods of FO
estimation. One is based on the time-frequency representation of instantaneous
amplitude, which is relatively insensitive to noise. Therefore, FO estimation
based on instantaneous amplitude enables robust F0 extraction from noisy

speech, although the extracted FOs are not highly accurate. The other method

18



is FO estimation based on instantaneous frequency. Although FO estimation
using instantaneous frequency is sensitive to noise, this method can extract
accurate F0s from noiseless speech. The proposed method combines these two
methods of FO estimation, reducing the noise by using a comb filter with
controllable pass-bands, which enables the method to be both robust and

accurate.

Experimental results showed that the gross FO error of the proposed method
was approximately the same as that of STRAIGHT-TEMPO for clean speech
and that it was about 30% lower than that of STRAIGHT-TEMPO when the
SNR of the speech with white noise was 0 dB. The proposed method was most

effective when the SNR of noisy speech was more than 3 dB.

Thus, the proposed method can be used not only for speech analysis/synthesis
in noisy environments but also for speech segregation that requires estimating

accurate FOs.
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Table 1 Fine FO error for clean speech.

from EGG (Reference)

FO estimation method AC Cepstrum | YIN | TEMPO

Autocorrelation (AC) || 7.52 Hz 4.42 Hz, 6.57 Hz | 3.08 Hz

Cepstrum method 4.93 3.62 7.30 3.92
YIN 8.17 8.84 6.91 7.27
STRAIGHT-TEMPO 4.06 3.90 6.70 1.64
average 6.17 5.20 6.87 3.98

Appendix A

To investigate which method was the most effective in extracting the FOs from
EGGs, we evaluated the fine FO error for clean speech using four FO estimation
methods. The methods were an autocorrelation method using multiple window
lengths (Takagi et al., 1997), an improved cepstrum method (Kato and Miwa,
1995), YIN (de Cheveigné and Kawahara, 2002), and STRAIGHT-TEMPO
(Kawahara et al., 1999). The same database was used as in the experiments in
section 3. The evaluation measure was the fine FO error. The results are shown
in table 1. The columns are the methods for extracting the FO from EGG
waves (used as reference FOs), and the rows are the methods for extracting
FOs from clean speech. The bottom of the table shows the average fine FO
error: the smaller the error, the less biased the method. As can be seen in the
table, although all the methods have a certain amount of bias, STRAIGHT-

TEMPO appears to have the least bias of the four methods. In this study,
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therefore, STRAIGHT-TEMPO was used to extract the reference F0Os from
EGGs.
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Fig. 1. Block diagram of the proposed method.
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(a) Speech waveform (female /aoi/)
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(f) Integration of FO distributions
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on the periodicity and harmonicity of instantaneous

amplitude (PHIA). (a) A female speech waveform /aoi/. (b) Time-frequency repre-

sentation of the instantaneous amplitude of speech by using a constant Q filterbank.

The periodicity appears in the time domain. (c¢) Time-frequency representation of

the instantaneous amplitude of speech by using a constant bandwidth filterbank.

The harmonicity appears in the frequency domain. (d) Time-frequency plot of FO

distributions obtained from the periodicity by allocating the FO distributions in

temporal order. The shading indicates peaks. (e) Time-frequency plot of FO distri-

butions obtained from the harmonicity. (f) Time-frequency plot of the integrated

FO distributions. (g) Estimated FOs.

25



0 100 200 300 400 500 600 700
Time [ms]

0 100 200 300 400 500 600 700
Time [ms]

Fig. 3. Periodicity of instantaneous amplitude for male vowel /a/ in the
time-frequency domain. Bottom panel shows the instantaneous amplitude in the

time domain on channel #13 (dashed line in top panel).
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Fig. 4. Harmonicity of instantaneous amplitude for the male vowel /a/ in the
time-frequency domain. Right panel shows the instantaneous amplitude in the fre-

quency domain on 320 ms (dashed line in left panel).
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Fig. 5. FOs estimated by using PHIA. Top panel: female speech with pink noise
(SNR is 10 dB); middle panel: FOs estimated by using PHIA; bottom panel: the
peak values of FO distributions obtained by PHIA. The line that is close to 0.2 in

the peak values is due to the offset of the histogram described in section 2.2.2.
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(a) usual comb filter (b) £e=0.3
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Fig. 6. Frequency responses in noise reduction by using a comb filter with control-

lable pass-bands.
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Fig. 7. Time-warping of speech waveforms to flatten F0s. Left panel: original speech

and its FOs; right panel: time-warped speech and its FOs.
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Fig. 9. Fine FO error for speech with white noise.
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