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Abstract

Nash's Theorem guarantees the existence of Nash 
equilibria for strategic-form games. The typical proof 
of the result uses Brouwer's Fixed Point Theorem on 
probabilistic strategies. We show that Tarski's Fixed 
Point Theorem can be used to establish a similar re-
sult for discrete equilibria in a much larger class of 
games that we call conversion/preference games. Our 
result rests on a graph characterisation of Nash equi-
libria that i) reifies the decision procedure for pure 
Nash equilibria, ii) allows us to compute the equi-
libria in quadratic time in the number of game situa-
tions, and iii) makes the equilibria explicitly dynamic 
in nature. We also briefly discuss the extended range 
of technical applications of non-cooperative game the-
ory that results from the new theorem, including for 
gene regulation and cell-level signal transduction.

1 Introduction

original strategies and then proved that the latter set 

of games always have Nash equilibria, in the form of 

fixed points of a given continuous function.

h1 h2

In (1), Nash proved that all strategic-form games 
have a mixed (aka probabilistic) Nash equilibrium. 
A detailed proof using Brouwer's Fixed Point The-
orem (2) is given in (3). To be precise, Nash ob-
served that the set of finite strategic-form games can 
be embedded into a set of (continuous) strategic-form 
games where each agent's set of strategies is com-
prised of probability distributions over the agent's

v1 

V2

0, 1

1, 0

1, 0

0, 1

*Corresponding author , <vester@jaist.ac.jp>.

Each cell of the array above should be thought of 
as the outcome of a possible play of the exemplified 
game, with the first number in a cell being the 
resulting payoff to player `v', who chooses the row, 
and the second number the payoff to player `h', 
who chooses the column. The example has no one 
outcome that satisfies all players in Nash's sense: an 
agent is happy if he cannot single-handedly improve 
his payoff, see Definition 2. For example, 'v' would 
be unhappy with the upper-left outcome because 
the lower-left is a feasible alternative to him that 
would increase his payoff; in turn, `h' would be 
unhappy with the lower-left outcome because of the 
lower-right one, and so on counter-clockwise around 
the array. Instead, a probabilistic Nash equilibrium 
arises if both agents choose between their two 
options with equal probability, with expected payoffs 
of a half to each. The usual reading of Nash's prob-
abilistic construction is that it prescribes (weighted) 
compromises.

 In Section 2, we discuss the original Nash Theo-
rem; in Section 3, we introduce the new formalism 
of conversion/preference (C/P) games; in Section 4,
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we pursue a discrete fixed-point construction on C/P 
 games; in Section 5, we directly prove our discrete 

Nash theorem with low complexity; in Section 6, we 
show that the new result admits dynamic equilibria; 
in Section 7, we connect our earlier fixed-point con-
struction to our new Nash theorem; in Section 8, we 
compare the Nash equilibria found by Nash's proba-
bilistic and our discrete Nash theorems; in Section 9, 
we briefly discuss the additional modelling capabili-
ties of C/P games compared with Nash's strategic-
form games; in Section 10, we summarise two appli-
cations of our new Nash theorem in life science.

2 Nash's Theorem

We informally described strategic-form games as be-
ing arrays. More formally, we have the following. 

Definition 1 (Strategic-Form Games) Gsf are 
3-tuples (A, SA, P), where: 

  • A is a non-empty set of agents, 

 • SA is the cartesian product, ®aEA Sa, called 
   strategy profiles, of non-empty sets of individual 

    strategies, Sa, for each agent, a, 

  • P : SA —> A -* R, is a real-valued payoff func-
    tion. 

Let s, a strategy profile, range over SA and let sa be 
the a-projection of s. 

 In terms of Nash equilibria, agents in a strategic-
form game are free to change the entry in their di-
mension of the cartesian product of individual strate-
gies but must leave any other entries unchanged. The 
question of whether a better outcome single-handedly 
can be obtained by any particular agent is therefore 
answered (in the negative) by the following predicate. 

Definition 2 A strategy, s, is a Nash equilibrium, 
Eq r (s), for a given strategic-form game, Gsf, ifl 

baEA,s'ESA . (Va.'EA.a sa'=sa,) 

-(P(s)(a) < P(s')(a)) 

'Standard notation for our s' is s; Q
a, i.e., s with something 

else in the a-position.

 We suppress the Gsf-subscript when it is obvious 
from the context what strategic-form game we mean. 

 As noted, Nash equilibria do not always exist di-
rectly in a strategic-form game and we now define 
individual probabilities, probability profiles, and, for a 
given probability profile, the overall probability that 
the a.gents collectively assign to a strategy profile. 

Definition 3 (Strategic-Form Probabilities) 
Given finite (A, SA, P) . 

Wsa Iwa : Sa [0,11 (EQEs,,wa(0 = 1~ 

WSA 
t®7aEAWsa PSA (w• s)11aEAwa(Sa) 

 The expected payoff function associated with a 
probability profile is as follows. 

Definition 4 (Expected Payoff Function) 
Given finite (A, SA, P) with associated probabilities. 

EPspA (w)(a) EsES ,U,SA (w, s) • P(s)(a) 

Nash's result, existence argument, and the employed 
construction can now be articulated as follows. 

Theorem 5 (Nash (1, 3)) Consider a finite 
strategic-form game, (A, SA, P), given with proba-
bilities. The strategic-form game (A, WSA , EPspA ) 
has a Nash equilibrium. Informally, we say that 
(A, SA, P) has a probabilistic Nash equilibrium. 
Proof We follow (3). WSA is the cartesian prod-
uct of each agent's Ws.. Because they involve a sum-
mation to 1, each Ws. is the standard simplex of the 
vector space spanned by the elements of Sa taken as 
unit vectors. As a result, WSA is a convex polytope in 
the vector space spanned by SA, which in particular 
means that it is compact. More, it is possible to de-
fine a. continuous function from probability profiles to 
probability profiles that, for each agent, speculatively 
puts more weight where that agent can benefit from 
it relative to the other agents' unchanged weights and 
then re-normalises all weights and makes a combined 
change. This function has a fixed point by the gener-
alised Brouwer's Fixed Point Theorem2 (2) and any 
such fixed point is a Nash equilibrium (3). ^ 

2"A continuous function on a compact , convex set has a 
fixed point".
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 The problem of finding probabilistic Nash equilib-
ria for finite strategic-form games with at least two 
agents is in PPAD in the size of SA (4). In fact, it is 
PPAD-complete (5, 6). Informally, this means that it 
is likely that we will not know whether the problem 
is polynomial or exponential for some time.

3 C/P Games

To facilitate our discrete development, we now 
 introduce a new game formalism called conver-

sion/preference (C/P) games. It is based on 
strategic-form games, with conversion and preference 
accounting for the views and options available to the 
partaking players. The formalism distinguishes itself 
by seemingly being the most general structure that 
allows for the definition of Nash equilibria; in a sense,
C/P games capture the essence of Nash equilibria.

Definition 6 (C/P Games) G" 

(A, S, ( )aEA, (4a)aEA), where:

•

•

are 4-tuples

A is a non-empty set of agents. 

S is a non-empty set of synopses.3 

For a E A,-is a binary relation over S, asso- 

ciating two synopses if agent a can convert the 

first to the second. 

For a E A, <a is a binary relation over S, asso-
ciating two synopsis if agent a prefers the second 
to the first.

  Synopses are abstractions over strategy profiles 
but, in combination with conversion and preference, 
they can also be seen more generally as denoting the 
state of (a play of) a game, e.g., in terms of the play-
ers' possessions or even in a purely abstract sense, see 
Sections 9 and 10. 

  In strategic-form games, the cartesian-product na-
ture of the set of strategy profiles, SA, determines 
what alternatives are available to a particular agent 
as far as Nash equilibria are concerned: agent a can 

  3The name synopsis is inspired by the thespian meaning of 
`abstract of a play'.

change the a-projection of an s to something else from 
Sa. The dynamic view of an agent "changing" one 
strategy profile to another by contributing a differ-
ent individual strategy is what we capture directly in 
the definition of C/P games, by , without resort-
ing to an underlying structure of, in this case, S. 

  The preference relations, <a, account relatively for 
the penalties and rewards the agents receive in the 
different outcomes, without explicit payoffs (7).

Definition 

equilibrium,

7 A synopsis, s, is an abstract Nash 

Ee„ (s), for a given G", if

Va E A, E S . s as'-'(S <a S')

 We suppress the G"-subscript when it is obvious 
from the context what C/P game we mean. 

 Unsurprisingly, the canonical embedding of 
strategic-form games into C/P games preserves and 
reflects (abstract) Nash equilibria and, consequently, 
we typically suppress the word "abstract" .

Theorem 8

S >-< 

s<aS'

G~p = (A.

For a strategic-form game, Gsf, , let

SA,

Va'.(a4a' sa,=s'a,) 

P(s)(a) < P(s')(a)

><a)aEA, (<a)aEA) is a C/P game and

EgNG,c (s) Ee„ (s)

 To illustrate, we note that the example we consid-
ered earlier is mapped to the following C/P game.

la --------- 0, 1 1,010,11-47411,0 
v~ vIhtv h 1 h h~v 

    1,0>—‹0,1 1,0 0,1 

 The C/P-game formalism accommodates more 
than just strategic-form games. We shall address 
what this means in Section 9 and take more substan-
tial advantage of it in Section 10.
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 S  >-  S/ S

S—>S

S —>aS [s] Ls'j

[S] r-va [s']

Fig. 1. The (free) a-change-of-mind relation Fig. 2. The a-progressive change-of-mind relation

4 Discrete Fixed Points

The starting point of our discrete Nash Theorem is 

the relation that captures when agents both can and 

want to change their minds.

Definition 9 Given GcP, the (free) change-of-mind 
relation, —>a, for agent a is given in Figure 1. Let 
-> °= UaEA ->a and let _* be the reflexive, transitive 
closure of =* .

 Our initial interest in the change-of-mind relation 
is that it allows us to define a discrete equivalent of 
the probability-update function sketched in the proof 
of Theorem 5. Rather than trying to establish that 
this function is of inherent/instinctive interest as, for 
example, Nash's is thought to be, we shall objectively 
compare the notions of compromise induced by the 
two different flavours of Nash equilibria in Section 8.4

Definition 10 (Discrete Updates)

Qi(S) Uses{s' E S s~*s~}

 The empty set, 0, and the full set, S, are straight-
forwardly seen to be fixed points of this function. 
More generally, we have the following result.

Lemma 11 The set of fixed points of V forms a 
non-empty, complete lattice. 

Proof V is monotonic on the complete lattice 
P(S) ordered by inclusion because —›* is reflexive; 
we are done by Tarski's Fixed Point Theorem (8). ^

1Additionally . Section 10.1 will detail a compelling analogue 

of the difference between the two styles of update functions 

that is well-established in the area of gene-regulation analysis.

 Unlike Nash, our fixed-point construction works 
natively for infinite games and, of course, for games 
with unstructured/arbitrary S. On the other hand, 
not all fixed points will be Nash equilibria and we 
therefore pursue an alternative presentation of our 
technology next. We shall return to the fixed-point 
construction and the Nash-equilibrium characterising 
equivalence proof of the two approaches in Section 7.

5 A Discrete Nash Theorem 

In this section, we take inspiration from the fact that 
the change-of-mind relation can be used to charac-
terise Nash equilibria in the pure sense. We note that 
a terminal in a graph is a node with no out-edges. 

Proposition 12 EgaN (s) . Terminal_ (s) 

Proof Straightforward, as —>a is the intersection 
of and <a.^ 

 The result says that the notion of "happiness" dis-
cussed in Section 1 corresponds to the absence of 
change-of-mind steps and it implies that only cy-
cles can prevent the existence of Nash equilibria for 
a finite C/P game. Thinking graph theoretically, 
we note that the general form of cycles in graphs 
is called strongly connected components (SCCs) and 
that their cycle-free super-structure is called the 
shrunken graph, see Appendix A. 

Definition 13 (Progressive Change-of-Mind) 
The progressive change-of-mind relation, r 5, for 
agent a is given in Figure 2. Let n-°=UaEA 

The progressive change-of-mind relation is the 

shrunken graph of the change-of-mind relation, which 

means that it is cycle-free by construction. It also 

means that we are able to prove a first version of our 

alternative Nash Theorem, establishing the guaran-

teed existence of a discrete notion of Nash equilibria.
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Theorem 14 Consider a finite C/P game. The 
 "shrunken" C/P game (A, [5], (r -a)aEA, (~a)aEA) 

has Nash equilibria and all of them can be found in 
quadratic time in the size of S. 
Proof The progressive change-of-mind relation 
underlying the considered "shrunken" C/P game is 
cycle-free by construction, see Proposition 20, Ap-
pendix A. This means that the length of any change-
of-mind path in it is bounded by the size of [S] , guar-
anteeing the existence of terminal nodes and thus, 
by Proposition 12, compromises that are "shrunken" 
Nash equilibria. The complexity measure is due to 
Tarjan (9). see Theorem 19, Appendix A.^ 

 The theorem exploits what could be called the 
Nash Construction, i.e., the guarantee first used in 
Theorem 5 that some derived game has Nash equilib-
ria that are meaningful as constituting a compromise 
when retracted back to the original game. We will 
spend the latter part of this article, from Section 8 
on-wards, clarifying the notion of compromise that is 
invoked in Theorem 14 and on comparing it to Nash's 
payoff-driven probabilistic notion.

6 Change-of-Mind Equilibria

Proof By two direct arguments. ^ 

 Unlike Theorems 5 and 14, whose formulations de-

pend on a derived game, we can now state our main 

theorem, establishing the existence of a dynamic no-

tion of Nash equilibria directly in the game con-

cerned.

Theorem 17 Any finite C/P game, GcP, has 
change-of-mind equilibria, Eqr, , and all of them can 
be found in quadratic time in the number of synopses. 

Proof Lemma 16 and Theorem 14. ^ 

 To preliminarily illustrate what this result means, 
we revisit our motivating example from Section 1.

hl h2

V1 

V2

0, 1

1, 0

1, 0

0, 1

Unlike Nash's Theorem, the compromises fingered as 
Nash equilibria in Theorem 14 have a formal, direct 
characterisation in the originating C/P game. As we 
shall see, they are clusters of synopses that, while 
potentially improvable in the view of some agents, 
cannot be improved upon in an irreversible manner. 

Definition 15 Write - for —> fl (S x S) . The graph 

of an SCC of synopses,Ls],is a change-of-mind equi- 

                       5 librium, EC),!,, (—), for a given C/P game, GCP, if 

dso E [s] , s' E S . so _*s' s' E [s] 

 As before, we will suppress the GcP-subscript when 
it is obvious what C/P game we mean. The point 
is this: a change-of-mind equilibrium is the topology 
in the original game of the discrete compromises fin-
gered as Nash equilibria in Theorem 14. 

Lemma 16 Eqc, (->) EqG„j (Ls] )

0,1F1,0 

1,0..0, 1

 As mentioned, the only probabilistic Nash equilib-

rium arises when both agents choose between their 

two options with equal probability, for expected pay-

offs of a half to each. The only change-of-mind equi-

librium is shown on the right. It, too, involves all four 

outcomes of the game in the prescribed compromise. 

The main virtue of Nash's probabilistic compromise 

is that it dictates an exact expected payoff to each 

agent. Change-of-mind equilibria, on the other hand, 

states exactly why the four outcomes are included in 

the compromise. The upper-left outcome, say, is in-

cluded because 'h' prefers it to the upper-right out-

come, and so on clock-wise around the array.

7 Fixed Points Revisited

Returning to our discrete fixed-point construction in 

Section 4, we can now finally identify the interesting 

91-fixed points as those that are least non-empty.

Lemma 18 Given Gcp with change-of-mind —> .

Eq"' 

9/ as]) = [s] A (VS . 0 C

L 1)

S c [s] 9/(S) S)
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Proof The  "-r" part follows by a direct argument, 
while the other direction is split into two lemmas, 
each proved by a direct argument. 

 • Egcom ( ) V( [s])  - [s] 

• O c S c [s] = W(S) S^

 The result is, perhaps, most interesting in the in-
finite case where we have not guaranteed the exis-
tence of change-of-mind equilibria. Some infinite C/P 
games may have change-of-mind equilibria but, e.g., 
any C/P game with the following infinitely-ascending 
progressive change-of-mind relation will not.

carve-out a part of a game as constituting a Nash 

equilibrium, below right with six involved outcomes.

hl h2 h3

Vi 

V2 

V3

0,1

1, 0

0, 0

0, 0

0,1

1,0

1, 0

0, 0

0, 1

0,1 c-------------- 1,0 

1,03-0,1 

1,03-0,1

The only probabilistic Nash equilibrium arises again 

if both agents choose between their options with 

equal probability, for expected payoffs of a third to 

each and involving all nine possible outcomes.

        ••• ... 

 Clearly, the relation has no terminal node. Con-

versely, the complete lattice of v-fixed points is the 

set of all tails in which there is no least non-empty 

element. The relevance of this, however, is that it 

may open a way to define a notion of Nash equilib-

rium that specialises to that of Definition 7 in the 

finite case and can be guaranteed to exist also in the 

infinite case, in case that should be needed.

8 Compromises

Our running example strategic-form game betrays 

the substantial differences that may exist between 

the compromises prescribed by Nash's probabilistic 

Theorem 5 and our discrete Theorems 14 and 17.

8.1 Direct Comparisons 

In the example, the compromises coincide, i.e., the 
only probabilistic Nash equilibrium assigns non-zero 

probabilities to the same outcomes as are involved in 
the only change-of-mind equilibrium. We will now 
show that all possible configurations can be observed 
when comparing compromises.

Probabilistic are Change-of-Mind A different 

generalisation of our two-by-two example arises by 

adding an extra, 'h'-undesirable column.

h1 h2 h3  
v1 0,1 1,0 0, 10, 1E-1,0 0, 
v2  1,0 0,1 1,-7WW                                 1, 00, 1 F 1, -7 

If 'h' puts weight on the third column, 'v' will prefer 
the second row because of the double 1 payoff for 
him there. This, however, will give 'h' a negative 

payoff and 'h' therefore wishes to avoid h3, i.e., the 
only probabilistic Nash equilibrium involves vi, v2, 
hi, and h2 with equal probabilities. The one change-
of-mind equilibrium involves all six outcomes.

Disjoint Compromises By a similar token, we 
can make several rows 'v'-undesirable.

hl h2 h3

1, 0
0, 1 < 1, 0 

W 
1, 0.0, 1 

W 
1,03-0,1

V1 

V2 

V3 

V4

0, 1

1. 0
-7 , 0

0, 0

-7 ,0

0, 1

1, 0

0, 0

-7 ,0

0, 1

0, 0

Change-of-Mind are Probabilistic Generalis-

ing our running example to a three-by-three game 

highlights perhaps the most interesting feature of 

change-of-mind equilibria, namely the ability to

In any Nash probabilistic compromise, player 'v' 
chooses strategy v4 with full weight. By contrast, 
the only change-of-mind equilibrium is disjoint from 
there, involving the previously-observed cycle around 
the cells with 1, 0 and 0, 1.
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 Non-Trivial Overlaps The strategic-form game 

where only the last row is 'v'-undesirable exhibits 

complementary features.

h1 h2 h3

1.0

0,1 < 1.0 

1,0-0,1 

1, 0 . 0, 1 

1,0 0,1

of justice and are punished for that and the crime.

Z~1 

v2 

273 

v4

0, 1

1, 0

0. 0
—7

, 0 

0, 0

0,1

1,0

1, 0

0, 0

0, 1

0, 1

As before, 'v' will avoid the row with the negative 

payoff and the only probabilistic Nash equilibrium 

involves the upper nine cells with equal probability. 

The only change-of-mind equilibrium is as shown.

8.2 Absence of Objective Measures

Focusing narrowly on their prescribed compromises 
for strategic-form games, we have not been able to 
separate change-of-mind and probabilistic Nash equi-
libria in terms of a measure. In particular, the exam-
ples in Section 8.1 make it clear that neither notion 
consistently results in smaller compromises than the 
other nor higher average/expected payoffs. Indeed, 
the two notions appear to essentially be of indepen-
dent interest. More, the algebraic argument we re-
ferred to as Nash's construction is sufficiently general 
to allow for other kinds of derived Nash equilibria.

9 C/P vs Strategic-Form

The prisoner's dilemma is a classic example in game 
theory that more than being a dilemma highlights 
the non-cooperative aspect of Nash equilibria. The 
game is made up of two agents who are accused of a 
crime. If both confess, they share the mandated 3-
year prison term for the crime, with right of parole. If 
one confesses and the other denies any involvement, 
the former serves the full sentence. If both deny their 
involvement (and they have been found guilty), they 
are deemed to have attempted to pervert the course

                         hconfess hdeny  
Vconfess—1, —1 —3, 0 

vdeny  0, —3 —2. —2 

The issue at hand is that the lower right cell, with 
both denying their involvement, is the only Nash 
equilibrium although they would be better off by 

jointly confessing. The mechanics of the prisoner's 
dilemma also show up if we consider two players that 
share two tokens that they play for: a player with a 
token can take the token from the other player at will 
with the aim of acquiring both tokens. We call the 

game "blink-and-you-lose" . 

hleave htake  
               Vleave  1, 1 0, 2 

              Vtake 2, 0 1, 1

Here, the lower-right cell is again the only Nash 
equilibrium. The main failure of non-cooperative 

game theory in this case is not that it steers the 
players towards the worse of two evils but that it fails 
to allow for the winning configurations of one player 

possessing both tokens (corresponding to avoiding 
incarceration in the prisoner's dilemma) as equilibria.

 By contrast, and because C/P games need not be 
array-shaped and because no particular set of per-
missible moves are mandated, we can model aspects 
of blink-and-you-lose that classic game theory can-
not. One way is to form a game consisting not of 
four strategy profiles but of three "game situations": 
a) player 1 has both tokens, b) the players have a to-
ken each, and c) player 2 has both tokens. According 
to the rules of the game, agent 1 prefers his winning 
situation, a), to b) and c), and the neutral b) to c), 
his losing situation. Similarly, for agent 2 and c) over 
a) and b), and b) over a). When it comes to speci-
fying the conversion relations there are at least three 
distinct principles that can be employed, i.e., agents 
can be assigned different capabilities/intentions. 

Foresight: A player realises that he can win by tak-
   ing the opponent's token faster than the oppo-

   nent can react, i.e., player 1 can convert b) to

7



a) by outpacing player 2. Player 2, in turn, 
can convert b) to c). This version of the game 
has two singleton change-of-mind equilibria, i.e., 
Nash equilibria: a) and c).

20 ®2c0,2)

Hindsight: A player, say 1, analyses what would 
   happen if  he does not act. In case 2 acts, the 

   game would end up in c) and 1 looses, and 1 
   therefore concludes that he could have prevented 

   the c) outcome by acting. In other words, it is 
   within l's power to convert c) to b). Similarly 

   for player 2 from a) to b). This version of the 

game has one singleton change-of-mind equilib-
    rium, i.e., a Nash equilibrium: b).

2.0 -®~(so

Omnisight: The players have both conversion step-
   styles just considered, resulting in a C/P game 
   with one change-of-mind equilibrium covering all 

    outcomes, i.e., no pure Nash equilibrium. 

     (2,0) 1 go 2 CD 
2 1 

10 Rewriting Game Theory

As mentioned, our main result is Theorem 17. We 
have dubbed applications of C/P games and change-
of-mind equilibria rewriting game theory to stress 
our positive reading of the change-of-mind relation 
that Nash interpreted negatively, see Proposition 12. 
Graphs are the simplest and most abstract structure 
pursued in the field of rewriting, with focus on their 
dynamic aspects, equational theories, termination 
properties, and more (10).

10.1 Gene Regulation 

In (11), we use rewriting game theory to pro-
vide a foundation for Kauffman/Thomas-style gene-
regulation analysis (12-15). In the case of the stan-
dard example of 2-variable bacteriophage lambda, 
Kauffman's model produces the following state-space 
graph, which we directly take as change-of-mind. The 
graph consists of synchronous updates of gene states.

(do, croo)

(clo,croi) croo)

(GI croi)

        (do, cro2) (cli, cro2) 

 Thomas' model, on the other hand, is asyn-
chronous, allowing each gene to update its own state 
in isolation, with the dotted arrows indicating up-
dates of cro and the dashed arrows updates of cl.'

(do, croo) 

•(clo,croi) (ell,croo) 

                                                                                                                 • (cli,croi) 
F. 

                                                                                                                            • (clo, cro2) F — — — (cli, cro2) 

 The relevance of Kaufmann/Thomas-style gene-
regulation analysis is that, e.g., the singleton 
change-of-mind equilibrium in these graphs consist-
ing of (cli , croo) is phage A's lysogenic state that 
"involves integration of the phage DNA into the bac-

terial chromosome [of its host] where it is passively 
replicated at each cell division just as though it 
were a legitimate part of the bacterial genome" (16). 
Similarly, the change-of-mind equilibrium consisting 
of the cycle between (cl o, croi) and (cI o, cro2) in

 We now present the highlights of two uses of rewrit-
ing game theory. Generally speaking, they show that 
change-of-mind equilibria can be used to identify the 
biologically meaningful parts of a purely chemically-
conceived C/P game.

  5By analogy to our's vs Nash's game-theoretic update func-

tions, we see that Nash and Kauffman correspond to each 
other, while we natively correspond to the Thomas approach; 
we can, however, vary the considered set of agents without 
otherwise changing a C/P game, which means that we can 
accommodate also the former two, as already illustrated.
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the graphs is characteristic of  phage A's lytic state 
in which it actively uses its host's transcription 
mechanism to replicate itself (16).6 

 Rewriting game theory provides a unifying ac-
count of static and dynamic steady states of genes as 
change-of-mind equilibria and, moreover, uniformly 
accommodates both Kauffman's and Thomas' mod-
els and, for that matter, any hybrid of them. In ad-
dition, we prove equivalent two independent charac-
terisations of dynamic steady states (as fixed-points 
(17) and as terminal SCCs (18)), see Lemma 18. 
Rewriting game theory is a good foundation for gene-
regulation analysis because it provides a general the-
ory of possibly dynamic equilibria and because the 
technical means by which it accomplishes this, i.e., 
change-of-mind, has the same reading as the estab-
lished models but for gene-independent reasons.

10.2 Signalling Pathways 

In (19), we construct a so-called cascaded protein 
game from the 113 chemical reactions stated to be 
involved in MAPK cascades in (20-27). The con-
structed game has two change-of-mind equilibria. 
One is the ERK pathway, known as the signalling 
pathway responsible for cell growth, while the other 
is a combination of the JNK and p38 signalling path-
ways, known among other things for their cross-talk. 
The (C/P) agents in the constructed cascaded pro-
tein game are the enzymes that catalyse the involved 
reactions (for a standard increase in observed kinet-
ics of 106 to 1012 times (28)). The reading of this 
is i) that the discussed signalling pathways are in-
evitable, i.e., they are the best compromise for what 
the enzymes prefer to do when given a suitable in-
put, see Theorem 14, and ii) that the pathways are 
good candidates for a central building block of a liv-
ing organism because they are sustainable, i.e., no 
enzyme can defect "play" from the pathways once it 
has arrived there, see Theorem 17.

  6The cycle between (clo , croo) and (al, crol) is a known 
false positive of Kauffman's model.

11 Conclusion 

We have proved a new Nash Theorem in two ver-
sions: Theorem 14 is stated in the usual indirect 
form with Nash equilibria in a derived game while 
Theorem 17 is direct and pertains to the new notion 
of change-of-mind equilibria. Summarising our de-
velopment compared with Nash's, we have arbitrary 
vs array-structured games, arbitrary vs real-valued 
payoffs, Tarski's vs Brouwer's Fixed Point Theorems, 
quadratic vs PPAD-complete complexity, and dis-
crete vs probabilistic and dynamic vs payoff-driven 
equilibria. The result allows for an extended range of 
technical applications of non-cooperative game the-
ory, e.g., in the life sciences, see Section 10. 

SCCs,A SCCs. Shrunken Graphs Graphs 

  • A graph is a binary relation on a carrier set, 
   called vertices: —C V x V. 

  • The reflexive, transitive (or pre-order) closure, 
—4*, of a graph, --->, is 

   vl S V2V1 * V V —>* V2 

V1 —4* V2 V — VV1 _** V2 

 • The strongly connected component (SCC) of a 
    vertex, v, in a graph is 

Ltd °— { v' v —> * v' A v' —>* v } 

   (The relation "is in the L-]-class of" is an equiv-
    alence relation.) 

 • The set of SCCs of a graph is 

LV °_ { [v] v E V} 

  • The shrunken graph of -->C V x V is 
(-.0 [V] x [V , defined by 

    Va Vb Va Vb A Ova E V , vb E Vb • Va —> Vb) 

Theorem 19 (Tarjan (9, 29)) Given a graph, 
~C V x V, the SCCs and their shrunken graph can 
be found in linear time in the sizes of —* and V. 

Proposition 20 A shrunken graph is cycle-free.
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