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Abstract

  We introduce Normalisation by Stack-based Evaluation, NbSE, com-
bining Normalisation by Evaluation, NbE, with stack-based evaluation a 
la ZINC and Krivine's Machine. Stack-based evaluation avoids building, 
returning, and unpacking some of the closures (i.e., code, environment 
pairs) that evaluation uses internally as primitives. NbE makes evalua-
tion two-sorted and invokes sort-coercers, called reify and reflect, in order 
to eliminate (external) closures from the domain of yielded values. We 
show that their combination, NbSE, can be implemented entirely with-
out closures for both the call-by-name and call-by-value paradigms. The 
call-by-value implementation is more aggressive than usual in that it fully 
normalises argument terms before passing them on. The technical devel-
opment in the paper establishes a conservative-extension hierarchy of the 
considered evaluation mechanisms that focuses on type soundness and its 
correctness consequences; this includes the various NbE/NbSE theorems.

1 Introduction

When implementing a programming language, the engendered execution speed 
of programs is a typical concern. In the case of functional (i.e., A-calculus de-
rived) languages, see Figure 1, a main obstacle to speed is their higher-order 
nature that allows for reduction to take place anywhere in a term and for new 
reduction needs, i.e., redexes, to be created anywhere. Firstly, it is expensive 
to repeatedly search for redexes. Secondly, it is expensive to perform the sub-
stitution that is incurred by contracting a redex. Instead of implementing full 
reduction relations, it is therefore standard to merely implement the evaluation 
part of a relation.

1.1 Evaluation

To evaluate means to only consider redexes at the outermost level of a term, so 
to speak. Evaluation has the dual benefits (i) of eliminating the need for redex-
searching because only pre-determined positions are considered contractible and 
(ii) of postponing substitutions — through the use of threaded environments,
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e ::= x

T ::=  0  T  —> T

Ax.e

F{ x Ti } > e : T2

ee

F : VAr {T}

r > el :T2--+Ti F > e2 : T2

F{x T}Dx:T Fr>Ax.e:Ti—>T2

eEAT ~def ]F.F > e : T

FDeie2:71

Figure 1: The implicitly simply typed A-calculus — o is a ground type, F{x ~T} 
is the function F extended with/shadowed by the mapping of x to T.

p(x) = [e', p']

p: VAT —{t}

eval" (e p') = r

eval" (x, p) = r 

eval" (ei, p) = (x, e, p')

eval" (Ax.e, p) _ (x, e, p) 

eval" (e, p' { x H [e2 , p] }) = r

evaV (ei e2, p) = r

x Dom(p) eval" (e i , p) = error

eval" (x, p) = error eval" (el e2, p) = error

Figure 2: Big-step semantics for CbN-evaluation

p until the target itself is being evaluated. The trade-off is that terms yield 
run-time values, r, rather than terms, when evaluated. 

                       k ::= (x, e, p) 

                      t ::= [e, p] 

               r k error 

  We use k and t to range over closures and thunks, respectively. Closures 
record an evaluation state that has been aborted because an abstraction does 
not contain any "outermost" redexes. Thunks record suspended computations 
in a more general sense. The constant error is used to account for attempted 
computation that is not well-defined, i.e., a run-time error. That said, we show 
that error is not yielded as a result when starting from a certain class of 
terms (essentially closed, simply-typed terms) relative to any of the evaluation 
mechanisms we consider in this paper. 

  Refer to Figures 2 and 3 for two big-step semantics (roughly: functions de-
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p :  VA(' {k}

p(x) = k

evah' (x, p) = k eva1' (Ax.e, p) = (x, e, p) 

eval'(ei, p) = (x, e, p') eval1'(e2, p) = k evall'(e, p'{xti k}) = r

evah'(ei e2, p) = r

x Dom(p) (evaP'(ei,p) = error) V (eval"(e2,p) = error)

eval" (x, p) — error eve' (el e2, p) = error

Figure 3: Big-step semantics for CbV-evaluation

fined over the abstract syntax) for call-by-name (CbN) and call-by-value (CbV) 
evaluation of the A-calculus, respectively. The main difference between the two 
is their treatment of the argument in the application case, which results in the 
indicated differences in their use of environments. For CbV, arguments are 
evaluated before being passed to the applied function, which means that the 
enviromnents, p, store closures, k. For CbN, arguments are passed to functions 
as they are and environments thus store thunks, t. With this, we can note that 
evaluation will yield at most one result for a given term, environment pair. 

Proposition 1 (Well-definedness) evals(—, —) is functional, for s E {n, 'v}. 

Proof The case-splitting (over e and p) is non-overlapping in each figure. ^ 

We also note that all errors are explicitly accounted for in the following sense. 

Proposition 2 (Quasi-totality) If, for s E {n, v}, evals(e, p) is undefined, 
the evaluation of e relative to p does not terminate. 

Proof The case-splitting (over e and p) is exhaustive in each figure. ^ 
  The proposition, in other words, rules out that evals may be undefined be-

cause no rule can be applied to a particular combination of arguments.

1.2 Stack-Based Evaluation 

Refining the standard notion of evaluation, we can consider states of the form 
(e, p, (5) with a term, e, to be evaluated in the context of an environment, p, as 
well as a stack, S. The new feature, the stack, is used to maintain the application 
context (or spine) of the term that is being evaluated. 

((eei)e2,p,6)"(e,p, a2 al) 

The ai's are the values denoted by the arguments, ei, under p and an empty 
stack, and S • a2 al is the stack obtained by pushing on the values in the
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order they are encountered, i.e., outermost-first. When the stack is empty, the 

evaluation step for an abstraction remains unchanged: a closure is built  and 

returned. When the stack is non-empty, however, evaluation can directly bind 

the abstracted variable to the top element of the stack, i.e., the last encountered 

argument. 

(Ax .e, p, (5• a) -* (e, p{x—*a}, 6) 
In the non-empty stack case, several administrative steps are thus avoided. 
Consider, for example, the following stack-based evaluation sequence. 

(((Axi.Ax2.eo) ei) e2, A, (5) ((Axi.Ax2.eo) ei, A, 8 • a2) 
—> (Axi.Ax2.eo, A, S . a2 • al) 

(Ax2.eo,A{x1Hai},8' a2) 
—> (co, A{xi Hai}{x2-->a2}, b) 

Stack-free evaluation, on the other hand, will build, return, and unpack (in close 
succession) the following two closures: (xi,.Ax2.eo, p), (x2, co, p{xi--->ai}), ill 
addition to performing the work described above. The expectation is, therefore, 
that stack-based evaluation will have lower administrative overhead than stack-
free evaluation, i.e., will result in increased evaluation speed. We will define 
stack-based evaluation formally in Section 3.

A.

1.3 Normalisation by Evaluation 

Normalisation by Evaluation (NbE) has, as the name states, the effect of fully 
normalising terms. This should be contrasted with standard evaluation tech-
nology that yields closures as results, rather than (normal-formed) terms. NbE 
employs standard evaluation machinery but, in addition, relies on a canonical 
mechanism for supplying function-typed objects with a generic argument that 
allows evaluation to continue when it would otherwise stop. NbE works by 
distinguishing between "semantical" objects, which include the terms we ulti-
mately are interested in normalising, and "syntactical" normal forms, which will 
be the computation results.1 For variables, we let x and y divide VN 

VAC n vNy = 0 

VA1x u vNy = VN 

VNX1 = IV.NyI 

And, for terms, we consider two levels in the following sense. 

e x 1 Ax.e e 
                      d 

                c Ay.c body d 

IC 
           d y dAc 

  'The terminology refers to a particular NbE application, namely de-compilation.
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 F  :  VNC {T} 

F{xHTl};IINDe T2

F; fl CD Ax.e T2

 H : V.Ny {T} 

F; fl{y -+ ri } CD c _ T2

F; d_o

F; dTo

F;fIDE>Ay.c_ T2 

F;Htr d_o

F; fl ND body d : o 

F;H e:o

F;IINt>e:o

F; n

F{x - T}; H ND x T 

ND el T2 —> Tl F; fl Ck> e2 T72 F; n

F; 11{y — r} C> y _ T 

d: 72 -4Tl F;H Er'c:T2

F; H e, @ e2 : Ti F;II n d@c_Ti

Figure 4: Simple, two-level types for an NbE A-calculus---the left column types 

the "semantics", the right the "syntax"

The terms consist of a full, overlined copy of the A-terms: e, the "semantics" 
as it were, and an underlined copy of "syntax": c, which amounts to long /3(rt)- 

             longnormal forms
, A,~~~~, at type T [1] . For convenience, we shall sometimes 

ignore the distinction between the syntactic sorts ranged over by c and d (i.e., 
syntactic constructors and deconstructors, respectively). 

                      b ::= c d 

As shown in [2], these terms lend themselves to a natural presentation of NbE 
when constrained by a corresponding two-level type system enforcing that the 
overlaps between the term-sorts ranged over by e, c, and d are at ground type, 
see Figure 4. 

                  eEANbE .#,def 3F, U. F; f CD e: 

cECT ,#,def ]F,11.F; c_T 

d E DT gdef 3F,II.F;II GDd_T 

bEBr gdef bEC UD 

  The ground-type restriction on the body-construct guarantees long ,3(i) nor-
mal formedness of the underlined level. The ground-type restrictions on d in e 
and e in c are what ultimately guarantee that we perform normalisation as they 
prevent (higher-typed) closures — that can contain outstanding inner compu-
tation — from being first-class objects in a general sense. The fact that we 
perform normalisation amounts to the property that an underlined term con-
tains no overlined syntax, i.e., that a term is equal to the underlined embedding,
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 L-1, of the standard A-term obtained by stripping away all lining, II - II 

bEBT <=>aef bEBT A b=Lllbl~J 

Proposition 3 LAr°"g'3(11) = Br fl Cr 

The technology that ensures that the terms above can be used for NbE are the 
following two functions, i.e., the canonical type-indexed coercers between the 
two considered term levels. 

Proposition 4 (Reify and Reflect are Level Coercers) Defined as follows, 
J,- and T_ are total, computable functions on T and they send well-typed terms 
to well-typed terms, as prescribed. 

-NbF

e 

T1 — T2 e

TT 
To d 

I T, —T2 d

~T —> CT 

e 

Ay•J.T2 (e ©o (TTl y)) 

NbE 

DT -*AT 
d
\T Ax.T2 (d (IT1 x))

(aka reify) 

(for y FV(e))

Proof t- and T_ are defined by structural recursion 
inductive data-type of T, which means that they are total, computable functions 
by construction. The type-preservation property follows by a straightforward 
rule induction in the definition of j- and T . 

  Informally speaking, reify and reflect wrap their 
context that is uniquely determined by the type argument in such a way that 
the result exists in the other term and typing level.  
is not changed, or even copied or discarded. 

  If we define r-, to completely overline an ordinary A-term, II - II to strip 
off all lining, - (x) to denote (x-)closed terms, eval(-, -) to be evaluation, and 
1 to be the empty environment, we can describe the workings of NbE as the 
commutation of the following diagram, with the dashed arrow being (inferred) 
norinalisation. 

T r-I 
AT   CT 

                           111 eval(-,1) 11 
Along /3(1)) 

The key to understanding the diagram lies in the fact that evaluation, when 
2 

constrained by IT r--1, removes any and all overlined objects from CT, as we 
shall see in Section 4. Ultimately, this is so because there are no closed, normal-

formed terms of ground type and because all overlined content of a Cr-term by 
construction is closed and of ground type at the outermost.

 (aka reflect) 

(for x ¢ FV(d)) 

re total, computable functions 
follows by a straightforward 

eir term arguments in a term 
argument in such a way that 
rel. The term araument itself
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Closure-free  NhSE

I
  Normalisation by 

stack-based evaluation

./F
Stack-based 

evaluation

Normalisation by 

  Evaluation

Standard 

evaluation

Figure 5: Normalisation by stack-based evaluation as a conservative extension of 

stack-based evaluation, Normalisation by Evaluation, and standard evaluation, 

as well as its closure-free implementation

1.4 Our Contribution

Figure 5 presents the evaluation-mechanism hierarchy we establish in this paper. 
We use -* to express that the origin mechanism is conservatively extended by 
the target. Informally speaking, this means that everything that can done at 
the base of the arrow can be done at the head, albeit with more notation/formal 
machinery. Properties concerning the correctness of the different mechanisms 
can therefore be transferred between the systems. We also derive a non-trivial 
implementation of vanilla NbSE, as expressed by r- in the figure, which is 
closure-free and, thus, potentially very efficient. In addition to the conceptual 
contribution of the figure itself, this paper contributes technically by cleanly 
introducing NbSE and pointing out that it can implemented to be closure-free 
in a similarly clean manner.

1.5 Relevance

Our technical presentation is narrowly focused on the use of the considered 
formalism for real-time simplification of A-terms, e.g., in an interpreter. The 
specific application we have in mind is to use the considered big-step semantics 
as the internal reduction engine in a type-theory based theorem prover, for 
which the computed results must be A-terms (as opposed to closures) to allow 
the person doing the proving to read the generated proofs.
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 H>  p: r 

H> [e, p] : T 
H> (x,e,p) : T

def

<=>.def 

<=>def

 Dom(p) = Dom(F) A 
Vx E Dom(p). H> p(x) : F(x) 

3F.H>p:FAFL>e:T 
3r.H>p:rAr>Ax.e:T

Figure 6: Simple value typing

2 Evaluation

This section introduces the basic formal framework we employ in the paper. It 
will be done in the context of the standard, stack-free evaluation mechanisms 
for the A-calculus, see Figures 2 and 3. The core technical concepts we need 
are those of value typing and soundness, from which we are able to conclude 
(minimal) correctness fairly straightforwardly. We state the soundness result 
for (standard) evaluation although, as suggested in the introduction, we shall 
not prove it in a stand-alone manner. Instead, it will follow from our formal 
treatment of NbSE, see Appendix B.

Adak

2.1 Value Typing 

We saw that evaluation should be properly thought of as computing on states 
rather than on terms. We therefore extend simple typing to environments and 
their content: thunks and closures. In other words, we define value typing (by 
a triple induction, anchored in simple typing of terms).

Definition 5 Simple value typing, >, is defined in Figure 6.

  Writing [A> for the complement of >, we state an immediate consequence 
of the definition.

Proposition 6 ;L> error : T

2.2 Value vs Simple Typing 

A subtlety in the definition of value typing pertains to the use of existentially 
quantified typing environments, F, for closures and thunks. Because of this, it 
is possible for a variable name that occurs freely in different bindings in a given 
environment, p, e.g., {yi-* [x, —]}{z H [x, —]} to have its occurrences typed 
differently, i.e., by an intersection type from a global perspective, which may 
suggest that the simple-typing discipline is broken. However, each occurrence 
will itself be bound in a term environment and, indeed, all free variables will 
ultimately have to be bound to a closed term to terminate the >.-nesting. This 
means that the "intersection-typed" variables are in line to be replaced by terms 
whose types obviously can be different while retaining simple typability of the 
overall term. Another way of saying this is that the variables are to be considered 
different (in terms of binding) and we will never be forced to write therin next to
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each other in a term (where they would have the same binding). To illustrate this 
point a  bit further, we define the action of an environment on a term as follows 

  in the last case, —(— := —) is meta-level, capture-avoiding substitution, with 
all its formal short-comings [3], and z is a (not-further-specified) variable that 
is fresh with respect to .\x.e and p.

p[x] =def

p[el e2] =def 

p[Ax.e] =def

 A'[e] 
p'[Ay.e] 

  X A[el] A[e2] 
Az.p[e(x :=

if p(x) = [e, A~] 
if A(x) = (y, e, A') 
otherwise

Z)1

  An environment acting on a term will repeatedly seek to apply all the sub-

stitutions that it and its bindings prescribe. The point, which we note without 

proof, is that value typing implies simple typing under environment action.

[e,p]:T I>p[e]:T 
H_> (x, e, p) : T L > p[Ax.e] : T

  We also note that this implies that value typing only can be applied to terms 

that "morally" are closed.

2.3 Soundness

The main technical result we establish for the various evaluation mechanisms 
is (type) soundness. It states an equivalent property to that of subject reduc-
tion for reduction relations, namely that types are preserved by computation. 
The result employs value typing, which, in fact, has been introduced for this 
exact purpose. Soundness states that a well-typed term with a correspondingly 
value-typed environment will result in a similarly value-typed result, provided 
evaluation terminates.2

Lemma 7 (Soundness) Let s E {n, v}, see Figures 2 and 3.

FDe:TA H°p:F A evals(e,p)=r 

                       r :T 

Proof See Appendix B.1. 

  2We stress that termination means that evaluation yields an arbitrary run-time value, r. 

Insisting on the more restrictive possibility that a closure, k, is yielded would prevent us from 
obtaining any useful kind of correctness property from soundness, see Theorem 8.
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  Apart from functioning as a basic sanity check, the lemma also plays a part 

 in establishing correctness of evaluation, as we shall see next.

2.4 Error-Freeness 

The notion of correctness we concern ourselves with is minimal in nature and 
addresses neither termination nor preservation of a1371-equivalence up to envi-
ronment actions (although these properties, of course, would be relevant for 
separate reasons and, indeed, do hold). Instead, we focus narrowly on what we 
can derive from soundness, namely that well-typed computation "does not go 
wrong". For the ensuing notions of evaluation, we shall see that this notion of 
correctness becomes gradually more interesting. 

Theorem 8 (Error-Freeness) Let s E {n, v}, see Figures 2 and 3. 

I D e : T = evals(e, 1) error 

Proof By Proposition 6 and Lemma 7.^ 
  The inequality in the theorem, , is the complement of equality, which means 

that the result allows for evals(e, I) to be undefined. With the explicit, non-
value-typable error run-time value to compare against, the above result implies 
that we can characterise what correctness means in terms of the behaviour of 
the evaluation functions. 

Proposition 9 (Digest) Well-typed evaluation will 

  • yield a closure when applied to the function position of an application (if 
    it terminates) and, more generally, 

  • not yield error from any sub-computation, and, finally, 

  • bind any encountered variable in the associated environment. 

Proof Theorem 8 juxtaposed with the rules that generate and propagate 
error in Figures 2 and 3.^

3 Stack-Based Evaluation 

In this section, we account for stack-based evaluation in terms of the formal 
framework we outlined in the previous section. The definitions of the relevant 
call-by-name and call-by-value big-step semantics are recalled in Figures 7 and 
8, respectively. It is interesting to note that, as a result of the "optimisation" of 
their use of closures, these two mechanisms have one less error-rule each coin-
pared to the corresponding mechanisms for standard evaluation, see Figures 2 
and 3, respectively. 

Proposition 10 (Well-definedness) Sevals(—, —, —) is functional, for s E 

{n, v}. 
Proof The case-splitting is non-overlapping in each figure. ^
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 p  : {t}

p(x) _ [e', p']

a::=EI6•t

Sevaln(e', p', a) = r

Sevaln (x, p, (5) = r 

Seval" (e, p{x -+ t}, a) = r

Sevaln (Ax .e, p, e) = (x, e, p) Seval" (Ax.e, p, a • t) = r 

Seval" (e i , p,6 • [e2, P]) = r

Sevaln (ei e2, p, a) = r

  Dom(p)

Seval" (x, p, b) = error

Figure 7 : Big-step semantics for stack-based CbN-evaluation

Proposition 11 (Quasi-totality) If, for s E {n, v}, Sevals(e, p,6) is 
fined, the evaluation of e relative to p and a does not terminate. 
Proof The case-splitting is exhaustive in each figure.

unde-

3.1 Type Theory 

In order to address typing in the presence of a stack, we note that the considered 
evaluation mechanism implements a sort of uncurrying that is not explicitly 
captured by the traditional type system for the )-calculus,'see Figure 1. Instead, 
we can introduce the obvious notion of stack type, as a stack of types, see 
Figure 9: 0, as well as notation for the type of a function that can be applied 
to a stack: 0 = T. We write e for the empty stack type, L1-  T for the stack type 
obtained from A by pushing T on the top, T as short-hand for 6 • T, AA' for the 
"stacking" of two stack types

, and, finally, we use A.i to denote the ith element 
of the stack type, e.g., (A • T).1 = T. We use a to denote an actual stack with 
essentially the same notation as for stack types. The notation A T is defined 
inductively over stack types as follows. 

E =def 

(A • Ti) T2 =def Ti (A T2) 

  A term will be stack-typed relative to a (term) environment, F, and a stack 
type, A, resulting in typing judgements of the following form, see Figure 9: 

FiAr>e:T 

  The above e is meant to produce a value of type T when encountered in a 
context with arguments of type A on the accompanying stack. When not all

11



 p(x)  =  k

p : V {k}

p(x) =(x',     ,p') 

      e

6 ::= e 6•k

Seval"(e', p'{x'Hk},(5) = r

Seval" (x, p, e) = k Seval" (x, p, 8 • k) = r 

Seval" (e, p{x H k}, (5) = r

Seval'' (Ax.e, p, e) = (x, e, p) 

Seval" (e2, p, e) = k

Seval" (Ax .e, p, 6 • k) = r 

Seval" (ei, p, (5 • k) = r

Seval"(ei e2, p, (5) = r

x Dom(p) Seval" (e2, p, e) = error

Seval" (x, p, 8) = error Seval" (e i e2, p, S) = error ..0

Fig ure 8 : Big-step semantics for stack-based CbV-evaluation

arguments to a given function are supplied and the function itself is passed on 
as an argument, we pack the stack type into an ordinary function type with 
the use of the (abs)-rule in Figure 9. In turn, the (code)-rule in the figure is 
intended to be used to unpack an ordinary function type to a stack type when 
a function that has been supplied as (a higher-order) argument is about to be 
applied. Intuitively, stack-typing is a concise way of differentiating the dual 
roles of abstractions as first-class objects: as code that can be executed and as 
code that is treated as data. The preceding discussion, however, suggests that, 
from a technical perspective, the use of stack types is inconsequential. In other 
words, and more formally speaking, we have that stack-based and simple typing 
are equivalent.

Lemma 12 See Figures 1 and 9. 

F>e:L = f=› FIo>>e:T 

Proof Straightforward rule inductions.^ 
  The result implies that stack-based typing is a conservative extension of 

simple typing. 

Corollary 13 See Figures 1 and 9. 

F>e:T f=> r ~»e:T 

  As for value typing, we can straightforwardly adapt Definition 5 to address 
stack types and to pertain to stack-based typing more generally. 

Definition 14 Stack-based value typing, 1=n , is defined in Figure 10.

12



 F:vN  {r} A • TI£ 

F{ x i--->Ti } I L1 >> e : T2

F{xr-->T}I£»x:T 

FIL1•T2 D>el:Tl

FIA•T1 >> A:x.e : T2 

FIE» e2 : 72

FIe>>e

     FIO>>ele2 

. A T
(code)

: Tl 

FIO>>e:T

FIA>>e:T FIr>>e:L T
(abs)

Figure 9 : Simple stack-based typing

H°>p:F 

H>> 6:0 

[e,A] : T 

~» (x e,A) : T

.>def { Dom(p) = Doin(F) A 
bx E Dom(p). H>> p(x) : F(x) 

<=>def 161=IoI AdiE{1, ... I6I}.H»Li:o.i 

<=>def 3F.HD>p:FAFIED>e:T 
<=>def ]F.H>>p: F A F I ED> Ax.e : T

Figure 10: Stack-based value typing

Proposition 15 ik» error : T 

  Unsurprisingly, perhaps, we have that also value typing for the simple and 
the stack-based disciplines coincide. 

Lemma 16 

(H> p : F ~_>> A : F) A 
(H> [e, p] : T H_>> [e, p] : r) A 

(H> (x, e, A) : T 1_1> (x, e, p) : T) 
Proof Straightforward triple rule inductions, using Corollary 13. ^

3.2 Operational Semantics 

While it was straightforward to show that standard and stack-based (value) 
typing coincide, it is a bit more subtle to establish a connection between evalu-
ation with and without a stack. The required lemmas, as it turns out, are the 
following two "continuation" properties for stack-based evaluation in the cases 
of computation failure and success, respectively. 

Lemma 17 Let s E {n, v}, cf. Figures 7 and 8. 

Sevals (e, p, 6) = error Sevals (e, p, S'6) = error 
Proof By rule induction in Sevals.^
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Lemma 18  Let  s  E  {n,  v} and let is be t in cases = n and k in case s = v. 

Sevals(e,p,8) = (z,eo,po) A Sevals(eo, Po{ zHls},E) = r 
1 
Sevals(e, p, lsb) = r 

Proof By rule induction in Sevals . The cases where the stack is not e follow 
by trivial invocations of the I.H.. The cases with E can be simulated by the 
corresponding rule with a non-empty stack, by assumption.^ 

  With these properties in place, we can show that stack-based evaluation is, 
indeed, a conservative extension of standard, or stack-free, evaluation. 

Lemma 19 Let s E {n, v}, cf. Figures 2, 3, 7, and 8. 

evals (e, p) = r Sevals (e, p, E) = r 

Proof By straightforward rule inductions in evals, using Lemmas 17 and 18 
in the application cases.^ 

  We stress that the above property involves an r, rather than just a k, which 
means that no errors are introduced or overcome by the use of a stack (except 
for any non-terminating cases). More generally speaking, the lemma establishes 
that the considered stack correctly implements evaluation's argument-passing 
mechanism. The converse implication in the lemma also holds but we shall not 
need it and, as its proof requires the introduction of non-trivial formalism, we 
shall not pursue the matter.

Allah

3.3 Soundness and Error-Freeness 

In analogy with standard evaluation, we can also show that stack-based evalu-
ation is sound and correct in the limited sense of being error-free. 

Lemma 20 (Soundness) Let s E {n, v}, see Figures 7 and 8. 

FIOD>e:TA >> 6:A A Sevals(e,p,6)=r 

                                                     r : T 

Proof See Appendix B.2.^

Theorem 21 (Error-Freeness) Let s e {n, v}, see Figures 7 and 8. 

1 I e> e: T Sevals (e, 1, e) error 

Proof By Proposition 15 and Lemma 20.
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              def JDom(p) = Dom(F) A    I1 pr 
l Vx E Dom(p).n p(x) F(x) 

II b_T <=>-def1;IICi>b_T 

~C~ d o <#.def d _ o 
H H [e, p1 T .4=>def]r.11p: F A F; e T 

     (x, e, p) : T .<==def 1=' p : F A F; II CD Ax.e : T

Figure 11: NbE value typing

Proposition 22 (Digest) Well-typed stack-based evaluation will 

  • not yield error from any sub-computation, 

  • bind any encountered variable in the associated environment, and 

  • return with an empty stack, when terminating. 

Proof For the first two properties, juxtapose Theorem 21 with the rules that 
generate and propagate error in Figures 7 and 8. For the last property, observe 
that the non error-yielding axioms in Figures 7 and 8 specify an empty stack 
and that the other non-error rules merely yield as result something that was 
yielded further up.^

4 Normalisation by Evaluation 

In this section, we briefly revisit Section 1.3 and [2] to state the relevant formal 
results for NbE in the style of the previous sections.

4.1 Type Theory 

We first present the relevant notion of NbE value typing, where we note that free 

(underlined) ys are fully acceptable because, as syntax, they will be considered 
immutable at the operational, i.e., overlined, level. 

Definition 23 NbE value typing, , is defined in Figure 11. 

Proposition 24 II [C° error : T A II [km' error : T 

  Secondly, we show that also NbE typing is a conservative extension of stan-
dard simple typing. 

Lemma 25 See Figures 1 and 4. 

FDe:T F;IMrC:T 

Proof By straightforward rule inductions.^

15



 1

p is a function from  VAC whose range is determined by the specifi 

evale (c, p) = c' 

evalE (y, p) = yevalE (Ay.c, p) = Ay.c' 

evalE (d, p) = d' evalE (c, p) = c' E(e, p) = qd

evalE(d@c, p) = d' @c' evalE (e, p) = qd

c

eva1E (c, p) = error

(evalE (d, p) = error) V (evalE(c,p) = error)

evale (ay. c, p) = error 

g(e, p) = k

evalE (d ©c, p) = error evalE(e,p) = error

Figure 12: Big-step semantics for syntactic pass-through to semantic evaluation 
E; formally speaking, a renaming environment for ys is needed to avoid variable-
capture (within p) in the abstraction rule

With this, we can show that NbE and standard value typing are equivalent. 

Lemma 26 

(1=>p:F L -F)A 
[e, p] : T L ~L° [r , . T) A 

( > (x, e, p) : T < L ~1:° (x, rel, rp~) : T) 
Proof By straightforward triple rule inductions, using Lemma 25. ^ 

4.2 Operational Semantics 

The operational semantics of NbE is two-sorted to reflect the two levels of terms 
we recounted in Section 1.3.3 Evaluation of the underlined, or "syntactical", 
level is basically the identity function as syntax, naturally, is immutable as far 
as sernantical evaluation is concerned. Figure 12 presents the details. 

Proposition 27 (Well-definedness) eval£(—, —) is functional, provided E 
is. 

Proof The case-splitting is non-overlapping in the figure. ^ 

  3Strictly speaking
, the terms are three sorted, which means that so is evaluation. However, 

we largely suppress the distinction between c and d and consider just one syntactic sort, b.
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 p  :  V {t}

P(x) = [e', P'] eval
91

(e', p') = r

eval (x, P) = r eval 

evaleval'1(d p) = qd

(Ax .e, P) = (x, e, p)

evaln(ei,p)

eval 

(x, e', p')

(d, P) 

 eval

d = q 

T1(e', p'{x 1--> [e2, p1 }) = r

eval

x Dom(p)

(ei ©e2, p) = r

eval (ei, p) E {d, error}

evaln (x, p) = error eval (el e2 P) error

       Figure 13: The NbEcbN big-step semantics (for semantics) 

Proposition 28 (Quasi-totality) If evalE(b, p) is undefined, some i.nvoca-
tion of E does not terminate. 
Proof The case-splitting is exhaustive in the figure and each recursive call of 
evale is on a proper sub-term of the case term (i.e, evale is defined structural-
recursively, modulo E).^ 

  Before leaving syntactic (pass-through) evaluation we note that, in order to 
prevent capture of free y's occurring in the term environments, p, we must also 
thread a renaming environment, c, to be used as follows. 

eval£(c, p, a{yHz}) = c' z fresh (1) 

eva1E(y, p, v) = c(y) eval(,\y.c, p, ci) = Az.c' 

  We suppress the details here but stress that the use of a renaming environ-
ment is necessary4 (and that, naturally, it is used in the accompanying ML 
implementations). 

  Unsurprisingly, the run-time values for the overlined NbE big-step semantics, 
see Figures 13 and 14, include underlined syntax as constants alongside closures: 

               q b error 

w k d 

                     r ::= w error 

   If renaming is not used, Axi.xi (Ax2.xi (Ax3.x;)) will normalise-by-evaluation to a fixed 
term irrespective of whether x; is 12 or x3 with thanks to A. Filinski.
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 p:VNT—{w}

p(x) = w  evalqd eval(d,p)=q
eval" (x, p) = w eva ' (Xx.e, p) = (x, e, p) evah' (d, p) = qd 

eval''(ei, p) = (x. e' p') eval''(e2, p) = w eval'(e', p'{xHw}) = r

eval'(ei @ e2, p) = r

x Dom(p)

eval"(x,p) = error

(eval' (ei , p) E {d, error}) V (eva1 ' (e2, p) = error)

eval" (el @ e2, p) = error

Figure 14: The NbEcbv big-step semantics (for semantics)
A

  As seen, we retain r for semantic run-time values and use q for syntactic run-
time values and qd when we wish to disambiguate b and stress that we mean d 
or error. For semantic run-time values, we use w to denote well-defined values, 
i.e., what the call-by-value big-step semantics stores in the environments. The 
call-by-name big-step semantics still stores thunks. 

Proposition 29 (Well-definedness) evals (—, —) is functional, for s E {n, v}. 

Proof Further to Proposition 27, we note that the case-splitting is non-
overlapping in each figure.^ 

Proposition 30 (Quasi-totality) If, for s E {n, v}, evals (e, p) is undefined, 
the evaluation of e relative to p does not terminate. 

Proof Further to Proposition 28, we note that the case-splitting is exhaustive 
in each figure.^ 

  The final result of this section is semantical conservative extensivity (in the 
stronger form of equivalence) over standard evaluation. 

Lemma 31 revals(e, p)-' = evals(re,, rp,), for s E {n, v}. 
Proof By two straightforward rule inductions, invoking the definition of r—' 
to show that the cases for evals that involve a d need not be considered. ^

4.3 Soundness and Error-Freeness 

In analogy with the earlier evaluation mechanisms, the results we have just 

presented allow us to state soundness and minimal correctness of NbE. We 
trust no further comments are necessary for the first three results.
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Lemma 32 (Soundness) Let s E  {n, v}. 

           F; it > b : T AII'''''p _ F A evalevals  (b p) --= q 

II ''''q_T 

                           A 

            F; II > e : T A fl=° p T F A evals (e, p) = r 

II C°r:T 

Proof See Appendix B.3.^ 

Theorem 33 (Error-Freeness) Let s E {n, v}. 

1; II Ci> b : T evalevals (b,1) error 

                           A 1; II > e : T evals (e, l) error 
Proof By Proposition 24 and Lemma 32.^ 

Proposition 34 (Digest) Well-typed NbE will 

  • yield (underlined) syntax from (underlined) syntax, when terminating, 

  • yield a closure when applied to the function position of a sernantical ap-
    plication (if the call terminates) and, more generally, 

  • not yield error from any sub-computation, and, finally, 

  • bind any encountered variables in the associated environment. 

  As promised, soundness can be used to establish even more interesting results 
than the above notion of correctness in the.case of NbE. Specifically, it can used 
to establish that NbE eponymously performs normalisation by evaluation. 

Theorem 35 (Normalisation by Evaluation) Let s E {n, v}. 

I>e:T A evaleval(ITre-  I)=q 
4 
                 q E LAT°ng p(n) 

Proof The result is a special case of Theorem 49, according to Lemma 45. ^
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F :  VA C {T}

F{x~>T1}I DA>e:T2

A•TIE II:VN,,

FIE; HO,— T1 }

— {T}

D~ C : 72

FIA Tl; II D' Ax.e T72

FIE; IID›d_o

FIE; II dTo

FIE; H D~ Ay.0 _ T1 T2 

FIE; IID'd:o

FIE;IID~body d_o 

FIE;II L e-o

FIE; IIDIe_o

F{x--> THE; HD' x T 

FIA•T2;IICA>e1:Tl FIG; H e2 T2

FIE; my, T} DL y_T

FIO; II D4> el @ e2 T1 

FIE; H d _ T2 —+ T1 FIE; C _ T2

FIE;IIA>eTL T
(code)

FIE; IID.d@C_T1 

FIA;IIDIe:T

FIo;IID~e:T FIE;II ›A>e: A T
(abs)

Figure 15: Simple, two-level types for NbSE

  If we had presented a direct proof of Lemma 32, we could have noted that 
the b - e-case shows that no overlined syntax can remain because a closure (as 
well as error) cannot be yielded due to the type constraint, which means that 
we have Theorem 35. The details of the argument are available in the combined 
proof of Lemma 46 and Theorem 49 in Appendix A.

5 Normalisation by Stack-Based Evaluation 

Having given detailed, stand-alone accounts of NbE and stack-based evaluation, 
we will now combine them as Normalisation by Stack-based Evaluation, NbSE. 
This section presents their conservative-extension union. In the next section, 
we shall anticipate a later efficiency assessment by identifying and implement-
ing what appears to be optimisations arising out of the complementary nature 
of "Nb" and "SE". The optimisations are not possible for either of the two in 
isolation and, as they break the naive conservative-extension property, they are 
addressed separately.

  This section contains very little explanatory text because the technical for-

mat we employ is known by now and because, by construction, very few technical
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 IIH p F 

11 TO 
   H  b _ 

H d o 
1-1 [e, P1 T 

H (x, e, P)T T

.#>.def 

~def 

4=>def' 

<#.def 

def 

<=>def

f Dom(p) = Dom(F) A 
ex E Dom(p).II°F' p(x) T F(x) 

161 = Io1 n `di E {1, ... 161}.n =o' 6.i : A.i 
_LIE; rimb:T 

        II d 
3F.HI p:FA F'E;II>>eTT 
]F.[1 p:F A PIE; H>'Ax.e:T

Figure 16: NbSE value typing

subtleties are introduced relative to the previous two sections.

5.1 Type Theory 

The new type system simply overlaps the two type systems just considered. A 
typing judgement for a "semantical" term, a, will thus be of the form Flo; II >> 
e T T and, for a "syntactical" term, b, Fie; fl >A> b : T where F and 0 are an 
environment and a stack for the semantics, respectively, and H is an environment 
for the syntax. Figure 15 gives the typing rules. 

Lemma 36 

NbSE/SE typing: 

Fl0»e:TF10;1 TT 

NbSE/NbE typing: 

(F;IICteTT FIE; II>>eTT) A 
(F;II›b v FIE; b_T) 

Proof By straightforward rule inductions.^ 

  In the NbSE/NbE case, the first property is a consequence of the following, 
more general equivalence result. 

Lemma 37 
F;IICDe -O=T FiA;III>&.e r 

Proof From Lemma 36, using the (code) and (abs) rules of Figure 15. ^ 

  As we have seen, the results above carry over to value typing. 

Definition 38 NbSE value typing, =°', is defined in Figure 16. 

Proposition 39 II 1#°'' error : T A II W:>> error T T 

Lemma 40
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p :  VJUx — {t} 

P(x) _ [e' , P']

  6 ::= 

Seval" (e

E d•t 

,(5) = r

Sevaln (x, P, 6) = r 

Seva1"(e, p{x > t}, 6) = r

Sevaln (Ax.e, p, E) = (x, e, p) 

evalSeval" - (d p) = qd

 Seval 

Seva

(.Xx.e, p, 6 • t) = r 

(e1,P,6 • [e2,P]) = r

Seval" (d, p, E) = qd 

x Dom(p)

Seval
n(el@e2,P,(5) =r

Seva1" (x,p,(5) _ error Seval n (d,p,b•t)= error

       Figure 17: The NbSEcbN big-step semantics (for semantics) 

NbSE/SE value typing: 

          P: F 1 T F)A 
("d:A1 TL)A 

[e, P] : T f=> I = ' [re1, rp 1] T) A 
               (" (x,e,p) : T 1 = ' (x,re-1,rp1)T T) 

NbSE/NbE value typing: 

(II = pTF II => pTF)A 
(II =b_T b_T) A 
(H='d:oU=>'d-o)A 

[e, PI : T II  [e, P] : T) A 
(~ =~ (x,e,p) T T III—['*'(x,e,p) ' T) 

Proof By simultaneous rule inductions, using Lemma 36. 

5.2 Operational Semantics 

The run-time values for evaluation in this system are as follows. 

               q b error 

                  w ::= k d 

              r w error 

Big-step semantics Refer to Figures 17 and 18 for the details and 
with Figures 7 and 8 for the originals. 
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p(x)

 p 

 =  w

: V.I~T—{w} 

    p(x) =

           ::= e I S•w 

---------1~ 

(x', e, p') Seval(e, p'{x' to} , S) = r

Seval' (x, p, e) = w Seval" (x, p, S • w) = r 

  eval'(e, p{x l--> w}, (5) = r

Seval
"(Xx.e, p, E) = (x, e, p) Seval"(Xx.e, p, S • w) = r 

        evalSevai(-,-,E)(d p) = qa

Seval

Seval" 

(e2,p,E)=w

(d,p,~) = qd 

Seval" (e1 • w) = r

Seval

x Dom(p)

(ei @ e2, p, (5) = r

p(x) = d

Seval (x, p,6) = error Seval (x, p, S w) = error 

Seval"(e2,p,6) = error

Seval
v(d

,p,6•w)= error Seva1''(ei @e27 p,b) = error

       Figure 18: The NbSEcbv big-step semantics (for semantics) 

Proposition 41 (Well-definedness) Sevals(—, —, —) is functional, for s E 
{rn, v}. 
Proof Further to Proposition 27, we note that the case-splitting is non-
overlapping in each figure.^ 

Proposition 42 (Quasi-totality) If, for s E {n, v}, Sevals(e, p,6) is unde-
fined, the evaluation of e relative to p and S does not terminate. 
Proof Further to Proposition 28, we note that the case-splitting is exhaustive 
in each figure.^ 

Conservative Extensivity Like for stack-based evaluation proper, we shall 
need "continuation" lemmas for NbSE in order to prove conservative-extensivity 
relative to the corresponding stack-free notion of evaluation, viz. NbE. 

Lemma 43 Let s E {n, v}, cf. Figures 2, 3, 7, and 8. 

Sevals (e, p, S) = error Sevals (e, p, S'S) = error 

Proof By a straightforward rule induction.^
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 Lemma  44 Let s E {n, v} and let is be t in case s = n and w in case s = v. 

Seval5(e, p, 6) _ (z,co, Po) A Sevals(eo, Is}, e) = r 

Sevals(e, p,186) = r 

Proof By a straightforward rule induction in Sevals(e, p, 6). As it turns out, 
a double induction, involving also eval-, is not necessary because the considered 
e cannot be a d (because a closure is yielded).^ 

Lemma 45 Let s E {n, v}. 

NbSE/SE: 

Sevals(e, p, 6) = r=Sevals (r , rp-1, r6-1) = 

NbSE/NbE: 

          (evaleval` (bp) = qevalSevalg(E)(b,p) = q) A 
(evals (e, p) = r = Sevals (e, p, E) = r) 

Proof By rule inductions. For the NbSE/NbE case, we proceed by a double 
rule induction, using Lemmas 43 and 44 for semantical application. ^

5.3 Soundness, Error-Freeness, 

Lemma 46 (Soundness) Let s E {n, v}.

FIE; IIDi>b_ 

II ~ • q _ T

and NbSE

T A p T F A evalSeval'(—. .E) (b p) = q

                           A 

    FlA;IIDA>e:T A II l'p_F A II [:'6_A A Seval8(e,p,6) 
41 
II 'r:T 

Proof See Appendix A; the proof contains no surprises. 

Theorem 47 (Error-Freeness) Let s E {n, v}. 

          L1E; II co b:TevalSevals(E)(bl)error 

                           A LIe; II > e T T Sevals(e, L, E) 4 error 

Proof By Proposition 39 and Lemma 46.

=r
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Proposition 48 (Digest) Well-typed NbSE will 

  • never abandon a non-empty stack, even when returning, 

  • yield  (underlined) syntax from (underlined) syntax, when terminating, 

  • bind any encountered variables in the associated environment, and 

  • not yield error from any sub-computation. 

Theorem 49 (Normalisation by Stack-Based Evaluation) Let s E {n, v} 

              I>e: T A evalSeval—,—.~)(~Tre ,1) = q 

             q E LmDfls /3(7) 
Proof See Appendix A: the proof piggybacks the proof of Lemma 46. ^

6 Closure-Freeness 

With NbSE defined naively, we shall now optimise it to be closure-free in the 
hope that this will result in a low administrative overhead. We note that it 
is the combination of "Nb" and "SE" that enables the optimisation and that 
neither of "Nb" and "SE" can be made closure-free by themselves, at least not 
in the prescribed manner.

6.1 Call-by-Name without Closures 

When using NbSE for normalisation, see Lemma 49, all overlined CbN evalua-
tion will natively take place at ground type. To see this, observe that overlined 
evaluation can only be initiated through the underlined level, i.e., at ground 
type (and with an empty stack). In the case of an overlined application, CbN 
evaluation will immediately address the function position, which strictly speak-
ing means at higher type. However, due to the presence of the stack, which is 
extended with a thunk for the argument, the overall type stays at ground type. 
In other words, we can adapt naive NbSE to only consider ground-type run-time 
states, see Figure 19, and, in the process, convert Figure 17's closure-building 
rule (abstraction, empty stack) into an error-production rule that we do not 
encounter with well-typed terms (at ground type).
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 p  :  VAr {t} 

P(x) = [e', P'] Seval

6 

7, 

cf(e

.._ E 6•t 

6)=qd

Sevalenr,f(x, p, 6) = qd 

     Sevalenr,f(e, p{x — t}, b) = q
d

evalSevarf(,E)(dp) = qa

Sevalcnf(Ax.e, p, 6 t) = q 

Sevalcif(ei, p, 6 • [e2, P1) =

d 

d 
q

     Seval 

x Dom(p)

cf(d,P,E) = qd Seval ( 'fe@e2,) = qd cf1P, ~

Seval of (x, = error Sevalef(d,p,5-t)— error Sevahf(Ax E) = error

 Figure 19: The (closure-free) NbSE fbN big-step semantics (for semantics) 

Lemma 50 (Closure-Free Implementation Correctness) 

           FIE; IIM•b_T A II p - I' 

           VvalSeval"' (-,-,E) (b, p) = evalSeval:f(-,,E) (b, p) 

                           A 

           F1A;IICA>e:o A II=D'p_F A II >'6-A 

        Vevaln(e, p, 6) = Seval f(e, p, 6) 
Proof By two (separate) double rule inductions for the left-to-right and right-
to-left parts of the equalities. All cases are straightforward I.H.-applications, 
except for error-rules and the Sevaln(.Ax.e, p, E)-case. These follow, instead, 
by an unlisted result stating that the scenarios in question violate the typing 
requirements.^ 

Theorem 51 (Closure-Free Call-by-Name NbSE) 

              I C e: T A evalSevalcf(—. .E(IT 1-- e-' L) = q 

q E LATOng °(71)_) 
Proof By Proposition 4, Corollary 13/Lemma 25, Lemma 36, Theorem 49, 
and Lemma 50.^

26



6.2 Call-by-Value without Closures 

Unlike the situation with CbN, the CbV version of NbSE does not natively 
restrict computation to ground type. The difference lies in the evaluation of the 
argument position of an application for which no arguments are contained on 
the stack that is being considered, even if the argument term is of higher type. 
The relevant details can be found in the application rule in Figure 18, which 
uses an empty stack,  e, for the evaluation of e2. The question we are interested 
in now is whether we can use a non-empty "speculative" stack instead of e that 
allows us to stay at ground type from an overall perspective. 

  As it turns out, forcing potentially higher-typed semantical evaluation to 
be initiated at ground type is straightforward in the present set-up. Provided 
we know the type of the argument term, we can namely evaluate it through 
a syntactic "NbE interface": eval (1.T e2, p). Doing so will encapsulate e2 by 
applications to reflected syntax, TT yi, until reaching ground type. This means 
that the actual overlined evaluation of e2 we go on to perform will take place 
with a stack that keeps the overall type ground. The result of the computation 
is going to be a (fully) syntactic long /3(77)-normal form, c. However, 

  • c cannot be used as the result because we need to apply el to it (seman-
    tically). 

  • We cannot use fl c In because c may contain free (syntactical) ys that we 
    are not allowed to turn into free (semantical) xs. 

  • We cannot use IT c because the domain of TT is DT and reflecting a c 
    would ultimately break the syntactic restrictions on the underlined level 

    and, with them, the results relying on those restrictions. 

  We will instead pursue a subtler approach that takes advantage of the ana-
lytic properties of long /3(y)-normal forms: any and all ground type sub-terms 
occurs as a body.5 We can, therefore, proceed as follows, see Figure 20: tra-
verse the term, c, recursively turning the initial abstractions into semantical 
abstractions; upon reaching a body decide whether the head-variable is free in 
the overall term or not; if it is free, process the body as syntax; if it is not free, 
process the body as semantics. 

Lemma 52 Let b E BT and let Sem be defined in Figure 20.

LIE; b : T = LIE; Sem(b):T 
Proof A straightforward double rule induction in Synt and Sem-. 

Theorem 53 (Closure-Free Call-by-Value NbSE) 

               I> e : T A Sevalcuf(,-,E)(tT re-,L) = qd 

             qd E LArong 13(1))~ 
tNote that , e.g., ym @ y2 actually amounts to ym © (body y2), with y2 (of ground 

trivially occurring fully-applied in a separate d.
type)
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 Sem(c)

Sem' (Ay, .c)

Sem' (body d)

Sem'(d@c) 

Sem' (y, )

Synt' (Ay, .c)

Synt' (body d)

Synt' (d @ c) 

Synt' (y,)

c[d @ c] 

c[y]

= Sem (c)

                s{y;~-.True = .~x, .Sem(c) 

f Sem' (d) if c[d] l 
Synt' (d) otherwise 

= Sem' (d).75 Sem' (c) 
= x;

   Ay, .Synt'{yHase} (c) 

  5 Sem'(d) if c[d] 
Synt' (d) otherwise 

= Synt' (d) @ Synt' (c) 
= y;

c[d] 
= c(y)

Figure 20 : Converting open syntax to closed semantics

Proof The result follows by the obvious adaptation (and vast simplification of 
not considering closures, value typing, etc.) of the proof in Appendix A, where 
we use Lemma 52 for the required typing information in the altered application 
case, rather than a direct argument.^

7 Conclusion

We have shown that stack-based evaluation (SE) and normalisation by evalua-
tion combine cleanly as NbSE. At the core of our presentation is a conservative-
extension hierarchy reaching down to plain evaluation that allows us to prove 
just one type-soundness result and have it reflected down the hierarchy. In ad-
dition, we note that the NbE and NbSE theorems straightforwardly piggyback 
type soundness because of our two-level presentation of the considered language. 
Finally, we have shown how to implement NbSE without closures for a potential 
reduction in administrative overhead although the details remain to be investi-
gated. The above works for both call-by-name (CbN) and call-by-value (CbV) 
and, moreover, closure-free CbV NbSE is more aggressive than usual CbV big-
step semantics by fully normalising argument terms before passing them on.

Acknowledgement We thank A.Ohori for discussions about type soundness.
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 U  :._ 

p(x) = d

Ax.m i d

p(x)

Sevale'f(x> p,

p:VA, {u} d ::_ E I d• u 

Sevalevf(m, L{x' --> a}, (5) = qd

E) =--

Seval

Svealf(x,p,S•u)=qd 

Sevalef(e, p{x Hu}, (5) = qd

Sevalcvf(Ax.e, p 

r(—. ,E)(d p) = qd

,S u)=q 

d

Seval

eval

eval er(—.—.E) (1

Sevalc'f(d 

e2,p) =c

p, ~) = qd 

Sevalcvf(ei, p, (5 • Sem(c)) = qd

Seval ~f(ef4.e2, p,(5) = qd 

            p(x) _ Ax.m

Seval ( e, p, s) = error Sevalcuf (x, p, E) = error 

     p(x) = d

Seva1c'f (d, p, S • u) _ 

     x Dom(p)

error Sevalcrf(x, p, S • u) = error 

evalSevalcvf(—,—,E) e2 p) = error

Seva1e'f (x, p, S) _ error Seval:,f(el @ e2, p, S) = error

 Figure 21: The (closure-free) NbKMC bu big-step semantics (for semantics) 

A Combined Proof of Lemma 46, Theorem 49 

The property we prove here relies on the obvious notion of NbE value-typing of 
stacks, defined as follows — it is readily seen to coincide with II 6 T d. 

      ncm6TA<=>def161=1o1AViE{1,...i6}.u=6.i T o.i 

  More precisely, we prove the following, where i) quantifications and conjunc-
tions are in the places they need to be for the proof to work and ii) further to 
Lemmas 36, 37, and 40, we use Cr> in place of D> because it follows the term

29



structure closer, thereby making a  number of required arguments more direct.

Vh,c,p,d,q,r. 

(evalSeval

VF, H,

(-.-.')(h p) = q) 

I';IIct>b_T 
T. J 

II g_T

A

A (Sevals (e, p, 6) = r)

A II p_F 

AgEBT

We con-
clusions 
conlusions in the CbV case, value-typing of enviromnents must be extended with 
the clause 
property 
and they 

Proof 
tions, assume the statements about evaluation, and proceed by a double rule 

induction 

  1. split the conjunction (inside one set of parentheses) and, for each conjunct, 

  2. consider arbitrary values for the universally quantified F, II, (A, )T, 

  3. assume the premises of the implication (inside two sets of parentheses), 

  4. take note of the relevant sub-cases and their I.H.; one of the sub-cases for

5, 

6. 

7.

           I';He-O~T A II~~p-I,A II~~B_ 0 
bTIIOT..l~ 

            II [''r:T A (Vb.r=b = rEBT) 

e say 'first conclusion' to mean the first conjunct in the inner-most con-
ns and likewise for second. We note that in order to establish the second 
iions in the CbV case, value-typing of enviromnents must be extended with 
ause (Vb .w=b wEB;), for each value, w, in the environments. The 
rty is respected because we only put yielded values in the environment 
ley enjoy the required property by I.H. — we suppress the details. 

f We consider arbitrary values for the outer-most universal quantifica-
assume the statements about evaluation, and proceed by a double rule 

Lion in evalSeval(-,-,6) and Sevaln/Sev. The typical case proceeds thus 

split the conjunction (inside one set of parentheses) and, for each conjunct, 

consider arbitrary values for the universally quantified F, II, (A, )T. 

assume the premises of the implication (inside two sets of parentheses), 

take note of the relevant sub-cases and their I.H.; one of the sub-cases for 

                   F;IIt d_T A II1=C°p_F 
              VI'. HO- 

II1=C°d'_T A d'EBT 

show the premises of the I.H. for the particular F', II', T' of the sub-case, 

discharge the I.H., thereby concluding, e.g., II' C° d' _ Ti A d' E BT,, 

use this to conclude, e.g., (II HC° d' ©c' _ T) A (d' ©c' E By), as required.
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Steps 1-4 are left implicit. We present the cases in linearised form: the first 
typing-implication (conjunct inside one set of parentheses) is established by the 
first evaluation assumption and likewise for the second typing-implication and 

evaluation assumption. First, we consider the cases for evalSevals(-,-,E

Case

Case

Case

 evalSevals(—,—,0(y  p) = y 

The (assumed) term-typing premise implies (by an unstated lemma) that 
II(y) = T and therefore that 1; II y : T, as required for the first conclu-
sion. The second conclusion holds by definition. 

evalSeval s (—,—.E) (c, p) = c' 

                 s evalSeval(—.—.E)(,•c,p) = Ay. c' 

P; _T2 
------------------------- is the only rule that could have resulted in the (as-

r;IICi'Ay.c_'T] —*T2 

sumed) term-typing premise (further to an unstated lemma that abstrac-
tions cannot be of ground type, o). We thus have II{y c' _ T2 
and c' E BC, by I.H. (and two un-stated weakening lemmas implying that 
II{ y H Ti } can be used instead of II in both premises) . This implies that 
we have I; II{y F---> Tl } ›c' :T2 and both conclusions are now simple. 

evalSevals(—,—,E) (d, p) = d' evalSevals(,—,E) (c, p) = c'

evalSevals (—, E) (d @ c,p) =

Case

F;IIr:E>d:T2—Ti F;1ICt.>c:T2 F;II>eTo 
------------------------------and -------------are the only rules that 

F;IIC*,d@c:TiF;IICDe:o 
could have resulted in the (assumed) term-typing premise. In the latter 

        F;IICl>d'_o 
case, only --------------- could have preceded the considered rule and only 

F;IIc d':o 
the former typing rule could have preceded that (because of the terms' in-

                                   F;fC'd_T2 — vi F;1Icc_T2 
ductive structure). In other words, we have----------------------------------- 

F; rI › d @ c : Tl 
The I.H. for evaluation of d and c can therefore have their implications 
discharged and the desired conclusions are straightforward. 

Sevals (e, p, e) = qd 

evalSevals(—,—,0(e p) = qd 

F;IICI>e:o 
--------------- is the only rule that could have resulted in the (assumed) 

F; e_o 
term-typing premise and we are straightforwardly done by I.H. (involving 
Sevals) (and an unstated lemma that all r such that II r T o are a b, 
i.e., that closures, k, cannot be of ground type, o). For discharging the 
implication of the I.H., note that stack-value-typing holds trivially for e.

31



Case
 eva1Seval'~(—,-.E)  (c,  p) = error

evalSeval~(E)cp)=error

Case

Part of the argument in the non-error case for Ay.c, including discharge of 
the I.H., and Proposition 24 show that the assumptions are contradictory. 

(eva1Sevar(—,—,E)(d p) =error) V (evalSevals(—,—,E)(c,p) =error)

eva1Seval' (—,—.E) (d @ c, p) = error

    Part of the argument in the non-error case for d© c,  including discharge of 
    the I.H., and Proposition 24 show that the assumptions are contradictory. 

Sevaln (e, p, s) = k 
Case ---------------------------- 

evaiSeval (—,—,E) (e, p) = error 

    Part of the argument in the non-error case for e, including the unstated 
    lemma, shows that the assumptions are contradictory. 

Next, we consider the cases for Sevaln. 

     p(x) = [e', p'] Sevaln (e', p', (5) = r C
ase-------------------------------- 

Sevaln (x, p, S) = r  

    The I.H. can be discharged by the definitional meaning of II 1_[:* [e', p'] T T 
    and we are done because r is also the finally yielded value.

Case

Case

Case

Sevaln (Ax.e, p, s) = (x, e, p)  

The first conclusion holds by assumption, the second holds trivially. 

Sevaln (e, p{x — t}, 8) = r 

Sevaln (Ax. e, p, (5 • t) = r  

F{x1-7-1};11 L e ' T2      
_------------------------------is the only rule that could have resulted in the (as- 

F;IIC~.\x.e-T1—T2 
sumed) term-typing premise and by definition of value-typing stacks, we 
must have some 0' such that 0 = 0' • Ti . We can directly discharge the 
I.H. with F{x Tl }, II, A', T2 and we are done because r is also the finally 
yielded value. 

evalSeval" (—,—.E) (d p) = qd 

------------------------------ • Sevaln (d, p, e) = qd 

F; d_o 
--------------- is the only rule that could have resulted in the (assumed) 

F;fl dTo 
term-typing premise and the I.H. can be discharged by the assumptions of 
the case and we are done because qd is also the finally yielded value and 
because overlined and underlined value-typing coincide at ground type, o.
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Case

Case

 Sevaln(ei,p,b • [e2, P1) = r 

Seva1n(ei @ e2ip,6) = r  

F; II CD el ' T2 T1 r; H e2 72 
-------------------------------------------- is the only rule that could have re-

      r;HCDe1@e2 Tl 
F;II m.d_o 

sulted in the (assumed) term-typing premise (-------------cannot be used 
F; dTo 

because e1 @ e2 cannot be a d). Rearranging the assumptions allows is to 
discharge the I.H. and we are done because r is also the finally yielded 
value. 

    x Dom(p) 

SevalT (x, p, S) = error

--------------------------- is the only rule that could have resulted in the (as-
F{x~-->T}; H >x 
surned) term-typing premise. The facts that x E Dom(F{x T}) and 
x Dom(p) are inconsistent with the assumption that p - F and 
we are trivially done.

Case----- 
Seval" (d, p, S • t) = error 

F; d_o 
--------------- is the only rule that could have resulted in the (assumed) 

F;[ICi>dTo 
    term-typing premise. The fact that we are considering a non-empty stack 

    at ground type, o, is inconsistent because of the assumption that reads 
H 1=a (6 . t) : e and we are trivially done. 

Finally, we consider the cases for Sevaly that differ from Sevaln. 

         p(x) = w 
Case------------------------ • 

Seval (x, p, e) = w 

    We are straightforwardly done by definition of the assumed II 
    (with the extension to the relation discussed above). 

      p(x) = (x',e,p') Seva11'(e,p'{x'Hw},6) = r C
ase--------------------------------------

Seval" (x, p, S • w) = r

Case

The I.H. can be discharged by definition of the assumed II p T F, in 

the particular case of x, with the obvious instantiations of the universal 

quantifications, and we are done because r is also the finally yielded value. 

Sevar (e2, p, e) = w Seva1' (ei, p, 6 • w) = r

Seva1' (ei @ e2, p, (fa) = r
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Case

Case

 Sevaln(ei,p,6 [e2,p]) = r 
Similar to the case for  _, except that the consid-

                  Sevaln(ei @ e2, p, S) = r 
ered typing rule is used to first discharge the I.H. involving e2, with the 
conclusion of that used to help discharge the I.H. for el; we are then done 
because r is also the finally yielded value. • 

      p(x) = d 

Seva1' (x, p, 8 • w) = error 

By construction of the type system and definition of the assumed H ~CD 
p T F, the type in question is ground, o. We are therefore trivially done by 

a similar argument to that used or------n                             S
eval(d, p, S • t) = error. 

Seval'' (e2, p, b) = error 

Seval" (ei @e2, p, S) = error 

SevalV(e2, p, E) =w SevalV (el , p, S • w) = r 
We u_ t._.,_ t,. the  case for  

Sevalv(el @ e2, p, S) = r 
are trivially because the assumptions are contradictory accord 
sition 24.

ing to Propo-

B Deriving Results from NbSE 

B.1 Evaluation 

We derive Lemma 7 from both Lemmas 32 and 20, independently. 
assume the premises of the former lemma: 

F> e: T A => p: F A evals(e, p) = r 

B.1.1 From Normalisation by Evaluation 

By Lemmas 25, 26, and 31, we have 

F; L re-I TT A I 1=>  - F A evals(rel rp-1) = rr-' 

From Lemma 32, we can therefore conclude 

1 W-' rr-'-T 

This implies that r error and we are done by Lemma 26.

We first
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B.1.2 From Stack-based Evaluation 

From Corollary 13 and Lemmas 16 and 19, we have 

             F~eD>e:TA >> p:F A  Sevals(e,p,E)=r 

As we trivially have H' E : E, we can apply Lemma 20 to conclude 

                        ~D> r : T 

This implies that r error and we are done by Lemma 16. 

B.2 Stack-based Evaluation 

We derive Lemma 20 from Lemma 46. First, we assume the premises of the 
former lemma. 

F10> e:TA H°>p:FA W~'6:A A Sevals(e,p,(5)=r 

By Lemmas 36, 40, and 45, we therefore have 

F10;1 D> re-'TT A 1 rp-i - F 
             A 1 rS- : 0 A Sevals rp-1 ESQ) = rr~ 

By Lemma 46, we can conclude 

1 I=n rr-1 T T 

This implies that r error and we are done by Lemma 40. 

B.3 Normalisation by Evaluation 

We derive Lemma 32 from Lemma 46. 

B.3.1 Syntactic Soundness 

First, we assume the premises pertaining to syntax: 

F;II›b:T A IIW°pTF A evalevai(b p)=q 

By Lemmas 36, 40, and 45, we therefore have 

FIE; II c> b _ T n II 1=°>' p _ F n evalSeval (b p) = q 

By Lemma 46, we can conclude 

11H'q_T 

This implies that q error and we are done by Lemma 40. 
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B.3.2 Semantic Soundness 

Next, we assume the premises pertaining to semantics: 

 F; e v A B = ' p - F A evals (e, p) = r 

By Lemmas 36, 40, and 45, we therefore have 

FIE; II e T r A II p _ F A Sevals (e, p, = r 

As we trivially have II 1='*' E T E, we can apply Lemma 46 to conclude 

II H ' r T 

This implies that r error and we are done by Lemma 40.
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