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Abstract properties that on the surface might look intractable.

  We present a formal notion of diagram that captures 
standard rewriting properties such as confluence, commut-
ing relations, semi-standardisation, the triangle property, 
etc. We prove a number of results that imply diagram equiv-
alence between abstractly related rewrite relations, i.e., that 
show that one enjoys a diagram-expressed property iff the 
other one does. In particular, we focus on the case where 
one rewrite system is over structurally collapsed terms of 
the other We apply the results to various concrete systems, 
including the A-calculus, with its notion of a-equivalence, 
and cut-elimination, with its notion of permutative conver-
sions. The core theory and substantial applications have 
been formally verified in the HOL4 proof assistant.

1 Introduction

This work makes four important contributions 

 • Foundationally, we want to answer the question: 
   "how do different formalisations of the same subject -

   domain (e.g., the A-calculus) inter-relate, and in par-
   ticular do they entail the same behavioural theo-

   rems?" This question is highly pertinent to recent 
   interest in languages with binders (see, for example, 

   the PoPLMARK Challenge [2]) because the proposed 
   techniques for modelling binders (de Bruijn terms, 

   quotients, higher order syntax, nominal approaches, 
   and others) are rather differently construed and exe-

    cuted.

 • Our results have practical relevance because they al-

   low for a broad family of properties proved of one ap-

   proach to be shown true of another in "one fell swoop". 

 • Our results also have technical relevance because, as 

   we show in Section 6.2, our results allow us to prove 

*This author gratefully acknowledges NICTA's financial support and 

hospitality while a visiting researcher.

• Finally, we contribute by formalising diagrams as a 

 simple language for capturing the behavioural proper-

 ties desired of a type. Our diagrams are given a for-

 mal semantics and allow us to focus on extensional 

 behaviour without becoming entangled in intensional 

 structure or composition. Moreover, we shall see that 

 the derived notion of diagram equivalence is not so 

 constrained as to force types to be isomorphic.

Choice of Language Our results are obtained through the 
study of epimorphisms between rewrite systems and say 
that (the enjoyment or not of) any possible diagram is pre-
served and reflected across a large class of epimorphisms. 
The specific language of properties captured by the dia-

grams is therefore of crucial importance. We can testify 
through personal experience that our diagram language is 
rather expressive but we leave for future work an objec-
tive characterisation of the issue; see, however, Section 3. 
Among the questions that can be addressed are: can the 
language of properties formalisable as a diagram be inde-

pendently characterised (similar to the Goldblatt-Thomason 
Theorem in modal logic [8])? What is the largest class of 
functions that preserve and reflect diagrams? What is the 
largest set of properties that are preserved and reflected by 
our class of functions? As it stands, these issues are indi-
rectly addressed by the facts that i) the use of diagrams is a 
wide-spread practice and ii) our formal development is sur-

prisingly straightforward and fully algebraic.

Relations We consider Abstract Rewrite Systems 

(ARSs), —C X x X, over carrier set, X, with primitive 
equality, =x. The reflexive, transitive (or pre-order) clo-
sure of an ARS, ~~ is denoted —*x or x*, depending on 
context. Symmetric closure is denoted x, while reflexive, 
transitive, symmetric (or equivalence) closure is denoted 
=x or T. Juxtaposition (e.g., xy) indicates relation-union. 
Relational composition is written with a semi-colon x; y.
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2 Diagrams

  Diagrams with solid (universal) and dashed, dotted or 
grey (existential) lines abound in the  rewriting literature. 
Barendregt [4, "Hints for the Reader"] calls them "cate-
gory theoretic "pictures' . Baader and Nipkow use them and 
their "precise meaning" throughout their book [3]. Follow-
ing Vestergaard [26], we say a commutative diagram of this 
nature is a set of coloured vertices and a set of coloured 
directed edges between pairs of vertices. Informally, the 
colour of a vertex (solid vs open) denotes quantification 
modes over terms, universal and existential, respectively. 
Edges are written as the relational symbol they pertain to 
and are either solid or dotted. Informally, the colour in-
dicates assumed and concluded relations, respectively. An 
edge connected to an open circle must be dotted. A property 
is read from a diagram thus: 

 1. write universal quantifications for all solid circles 
 2. assume the solid relations 

 3. conclude existence of open circles and dotted relations 

The following diagram and formula are thus equivalent: 

•—^^• Vxyz. 
R* (x, y) A R* (x, z) =      

•......H o 3u. R*(y, u) A R*(z, u) 
  The use of open circles as well as dotted lines allows us 
to distinguish (onto):

o........>• 

(that is, Vy. 3x. R(x, y)) from (complete):

            

•........>• 

(that is, Vx y. R(x, y)). 
  A diagram is thus a graphical representation of a II1 con-

dition on a relation (or a family of relations, as in commu-
tativity and sequentialisation statements). 

Definition 1 (Diagrams) A diagram is a quadruple 

(B, W, F, E), with B the set of closed ("black") circles, 
and W the set of open ("white') circles. F C N x B x B 
represents the solid ("forall') links between solid 
circles, where the natural-number indexing serves 
to ident/ different relations (if necessary). Finally, 
EC N x (B + W) x (B + W) represents the dotted 
("existential') links (again, possibly of different sorts), 
which may be between either solid or open circles. 

I The difference is that dashed lines in category theoretic pictures are 
usually read as "unique existence", and that diagrams are concerned with 
equality of composed arrows. 

  2The use of N to index relations is an arbitrary choice: for added gen-
erality, diagrams could be parameterised by this index set. Further, though 
we will not exploit it, we note that this formalism allows diagrams of infi-
nite size.
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  We can now capture what it is for a diagram to be true of 
a family of relations. 

Definition 2 (Diagram Evaluation) A diagram d is true 
of relations R, over X x X (written R, d), ffor ev-
ery function f : B -* X that is homomorphic on all the Fi 
and R, simultaneously (i.e., Vn bi b2. (n, bi, b2) E F 
(f (bi ), f (b2)) E R0), there is a g : W -* X, such that 

Vn b1 b2. (n, bi, b2) E E = (f (bi), f (b2)) E Rn 
Vo b1 w2. (n,bi,w2) E E= (f(bi),g(w2)) E R71 
Vn w1 b2. (n, w1, b2) E E = (g(wi ), f (b2 )) E R0 
Vn w1 w2. (n, wl, W2) E F = (g(w1), g(w2)) E R7, 

(Values b, and wi are implicitly injected into the appropri-
ate half of the disjoint union when membership of E is as-
serted.)

Example: Diamond The graphical diamond property di-

agram 
•-->• 

I V 
•........>o 

is formally captured by Diamond = ({0,1, 2}, {0}, F, E), 
where 

   F = {(1,0,1), (1,0,2)} 

   E = {(1, inl(1), inr(0)), (1, inl(2), inr(0))} 

Lemma 3 The diagram Diamond is true of a family of re-
lations R, in the sense ofDefinition 2 iff R1 has the diamond 

property, i.e., 

Vx y z. Rl (x, y) A Ri (x, z) = 3u. R1(y, u) A Ri (z, u)

Example: Completeness The graph-completeness dia-

gram             
•........>• 

is captured by 

GComp = ({0,1}, 0, 0, {(1, inl(0), inl(1))}) 

Lemma 4 The diagram GComp is true of a family of re-
lations R, iff Ri is complete, that is Vx, y. R1(x, y).

Example: Commuting Relations The commuting-

relations diagram 2                  
•........>o 

1 1 

•—>• 2 

is captured by ComRel = ({0, 1, 2}, {3}, F, E) where 

   F = {(1,O,1), (2,1, 2)} 
E = {(2, inl(0), inr(3)), (1, inr(3), inl(2))}



Lemma 5 The diagram  ComRel is true of a family of re-
lations R,iffRi and R2 commute, i.e.,

dx y z. Ri (x, y) A R2 (y, z) 3u. R2 (x, u) A Ri (u, z)

 Note also that a diagram with only solid edges (including 
the empty diagram) is vacuously true.

Definition 6 (Diagram Equivalence) Relation fam-
ilies -->x and -~ are diagram equivalent (written 

-->y)) if for all diagrams D, D if and 
only if —>y D. 

  (Often we will only be interested in one particular pair 
of relations, rather than a whole family.)

  In what follows we will develop a theory establishing 
sufficient conditions to show diagram equivalence. We con-
sider the situation of two ARSs with interrelated carrier sets, 
one concrete, C, and one abstract, A. The relationship be-
tween C and A is captured by some total and onto function, 

L-i : C -f A (that parameterises this and later sections). 
This function will be constrained in the way in which it pre-
serves and reflects reductions in the two carrier sets.

Definition 7 Let -~~, C C x C and - *a C A x A be i-
indexed ARS_ families.

(Presa')  

(aRefla') °_ 

(sRefla ,) °-

Vi Cl C2. Cl 

Vi Cl C2. Cl 

Vi a1 a2. 

al --4a, 

]C1 C2.

—*c, C2LCli —>a; [C2] 

—*c, C2=Led -4a, LC2J

a2 

LCIJ = al A [c2J = a2 A 
Cl —>c, C2

Tres' stands for preservation, ̀ sRefl' for some-reflection, 
`aRefl ' for any-reflection; we write (Presa) for di . (Presa' ), 
and, analogously, write (sRefla) and (aRefla ). Some au-
thors identify functions satisfying (Presa) and (aRefla) as 
"strong homomorphisms ".

  Our key lemma generalises earlier results [27] but it is 
worth noting that the arrived-at conclusion is very strong, 
indeed (although, it remains to be seen exactly how strong).

Lemma 8 (Any-Reflected Diagram Equivalence)

(Presa) A (aRefla) 0-Eq(-c, -- a) 
Proof Consider an arbitrary diagram D = (B, W, F, E). 
Case l: D is true of ->c, and an arbitrary f : B - A 
is homomorphic over F. As [- j is onto, there is a right-
inverse h : A -i C. Combining, we have that h o f is 
homomorphic onto C by (aRefla). Because D is true of 

   there is a homomorphic g : W C. By (Presa),
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[g(-)j is a homomorphism of the desired form from IV to 
A. 
  Case 2: D is true of -3a, and an arbitrary f : B -> C is 
homomorphic over F. By (Presa), [ f (-) ] is homomorphic 
over F into A. As D is true of -ja there is a homomorphic 
g : W -> A. By composition with an inverse of [-], and 
use of (aRefla), we derive a homomorphism of the desired 
form from W to C.^

3 Modalities and Diagrams

  As briefly discussed in Section 1, our results appear to 
be related (but complementary) to classic results in modal 
logic. It is instructive to look at some of the details of this 
connection in order to understand some of the subtleties of 
our diagram language, e.g., in relation to equality and equiv-
alence, as such differences will become important later on.

3.1 Modal Frame Axioms

  Diagrams are capable of expressing many of the notions 

over relations that are also expressible in the frame axioms 

of propositional modal logic. In addition to the diamond 

and commuting relations diagrams, we have the example of 

symmetry: the diagram is

while the frame axiom is

•,
-  .•

p = ^Op

While there is considerable interesting overlap, it is equally 

clear that neither language contains the other. Not all modal 

formulas are expressible in first order logic, for example, 

whereas all diagrams are first order. Conversely, consider 

the following diagram for "existence of a reflexive point": 

                                            J 
o.

This property is not expressible as a frame axiom because 

it is not preserved by generated sub-frames, as required. In 

fact, diagrams are not guaranteed to be preserved by the 

three standard modal constructions:

Bounded p-morphisms: If q5 is true of relation -->c on C, 
   and there is a homomorphic, onto, function f : C -> 
   A, where f (c) a a in A implies there exists a c' such 

   that f(c') =a and c-4 c', then 0is true of—>a. 

Disjoint unions: If every frame in a family R, satisfies 
   some formula (15, then so too does UZRz.

Generated sub-frames: If is true of a relation R, then it 

   is also true of the sub-relation R', where the domain of 

   R' is closed under the relation.



  The counter-example to diagram-preservation for 

bounded p-morphisms corresponds to the formula

 Vxy. R(x, y) A R(y, x) 3z. R(x, z) A R(z, y)

where the range of the p-morphism is a two-element loop 

(which falsifies the diagram), and where the domain is a 
three element chain (which satisfies the diagram). 

  The counter-example for disjoint unions is the diagram 
for a complete graph. While two graphs may be complete, 
their disjoint union will not be. Finally, we have already 
seen that the existence of a reflexive point is not preserved 
by generated sub-frames.

3.2 Equality

  Diagrams are not able to capture all the first-order defin-

able modal formulas, at least not without outside help. The 

simplest counter-example is determinism

or in its first order form

Op ^p

b'x y z. R(x,y) A R(x, z) (y = z)

Without seeming to mention the notion at all, the modal 

formula refers to equality. It is not possible to similarly use 

equality implicitly inside diagrams. On the other hand, it is 

certainly possible to explicitly state that a diagram is being 

evaluated with respect to a family of relations, one of which 

is equality. Graphically, determinism could be done thus

•

•

To be explicit about the formal presentation, the above dia-
gram is ({0, I, 2}, 0, F, E) where

F = {(0, 0,1), (0, 0, 2)} 

E = {(1, inl(1), inl(2))}

The labelling of the arrows in the graph corresponds to as-
serting that the diagram is true of the relations (R,=) (thus, 
the F-links belong to relation 0, which is R, and the one 
Blink belongs to relation 1, which is equality). 

  Unfortunately, the strong homomorphisms that are the 
basis for our preservation and reflection results only pre-
serve equality; they do not reflect it. Similarly, in modal 
logic, frame axioms are only preserved by bounded p-
morphisms, not reflected by them. 

  In what follows, we successfully deal with equality by 
reflecting it back to equivalence. Complementing this ap-

proach, we shall return to "internalised" equality in Sec-
tion 7.3.
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4 Structural Collapse

  Let us assume the concrete carrier set C contains unde-

sired structure, axiomatised by --->S C C x C; A is intended 

to be a structure-free version of C.

Definition 9

(kSound)s 
(kCompl)s 

(Coll),

A is the s-collapse of C, (CollA) s, for —* if 

° dCl,C2• C1 —>s C2 LCli =A LC2J 
    eel,C2.c1=s C2=LC1i =A LC2J 

—° (kSound)s A (kCompl)s

The first two properties state that ---->s axiomatises the kernel 
of [-] : `kSound'stands for kernel soundness and `kCompl' 
for kernel completeness.

Definition 10 We call —*s orientation-free if any sequence 
of s-steps can be undone by further s-steps. (This is slightly 
weaker than simply requiring -->s to be symmetric.) We re-
fer to the s-collapse of an orientation free relation, s, as a 
structural collapse. 

      (oFree)s °A Vc1 c2. Cl =s c2 = Cl —4 C2 

(StrColl°)s°_(Coll°)s A (oFree)s

  With this, we note that we typically define al —>a a2 to 
be Cl c2, for ai = {ci ci =s ci}. When we do this, 
we have, e.g., (Presa) and (sRefla) by construction, which 
motivates the following definition.

Definition 11 —>a C A x A is induced as the (structural) 
collapse of — *, C C x C, relative to --8C C x C if 

(Collin )s °_ (Col6)s A (Presa) A (sRefla) 
 (StrColl:: )s—°—(StrColl )s A (Presa) A (sRefla) 

Proposition 12 

(S1rColl~a )S (Coll)s A (oFree), 
Proof By definition. ^ 

  We shall now attempt to lower the proof burden for uses 
of our key Lemma 8. First we address the any-requirement 
of the last property. In the presence of structure, we have a 
some-any equivalence:

Proposition 13 (Reflection is Structurally Some/Any) 

(kSound)s A (kCompl)s ((sRefla) <=> (aRefla;")) 
Proof By two direct arguments. ^ 

  Due to its inherent any-nature, the preservation property 
is straightforwardly closed under the additional structure 
(use of =5; c; instead of c):

Proposition 14 (Structural Preservation) 

(kSound)s A (Presa) (Presa>e's) 
Proof By a direct argument.



  Thus, our first weakening result is that diagram-
equivalence holds if we have preservation and some-
reflection (rather than Lemma  8's any-reflection), but that 
the concrete reduction relation must be bracketed by s-
equivalence steps: 

Theorem 15 (Co1l )s 0-Eq((=s; --*c; =s), -~a) 

Proof Lemma 8 and Propositions 13 and 14.^

Example: While Lemma 8 may make diagram equiva-
lence look simple, it does, slightly counter-intuitively, es-
tablish the property between and —4a below [27]. In 

passing, we note that this example demonstrates how the "determinism axiom" (Op p) from Section 3 is not 

reflected by strong homomorphisms. 

         /C11--* AI               \r'_1a 
         C24L C3 ~-A2 

  Up-front, this may be taken to imply that the language 
of properties expressible as diagrams is weak, as it cannot 
separate the two relations. However, it is probably more rea-
sonable to conclude that the involved issues are non-trivial 
and subtle. In particular, adding a reflexive —*a-step on A2 
breaks (aRefly) because it necessitates (or -->s) steps 
between C2 and C3. The issues take shape when we pur-
sue reflexive, transitive closures next. Indeed, considering 
relations that are reflexive and transitive appears to rule out 
anomalies like the one above, leaving us with a clean notion 
of diagram equivalence (but the issue remains open).

5 Pre-Order Reduction

  When we consider the pre-order, or transitive, reflex-
ive closures of our reduction relations (as is necessary for 
confluence, for example), structure again turns out be in-
tertwined with the process of weakening "any" (aRefl) to 
"some" (sRefl) in Lemma 8. First, we note that preserva-
tion is straightforwardly closed under pre-ordering. 

Proposition 16 (Pre-ordered Preservation) 

(Presy) = (Presy. ) 
Proof By reflexive, transitive induction.^ 

  But if we wish to include the structural relation s, the 
natural extension at the concrete level is to the relation 
i.e., (s U c)*. This is not the reflexive and transitive closure 
of (s; c; s), as the latter cannot do s by itself. 

Lemma 17 (Structural Pre-ordered Preservation) 

(kSound)s A (Presa) (Pres.) 
Proof By reflexive, transitive induction.^

5

  The dual situation of pre-order closure for reflection is 
slightly different because the considered L—_I need not and 
typically will not be one-to-one.

Proposition 18 

 1. (sRejn) (sRefly. )

2. (aRejn) (aRefly. )

Proof The first property needs onto-ness for the reflexive 

case but fails in the transitive case. For the second property, 

the reflexive case is problematic while onto-ness makes the 

transitive case go through. Induced counter-examples: 

C2iC22 —>C3 
T x ,( T T 

  4,14, 
Al A2 A3

C1

1 ~
A

i

C2 
T

  With explicit s-equivalence, we have a similar result to 
Proposition 16 for (sRefla), provided we are considering 
a structural s. The relation at the concrete level is again 
(s U c)*.

Lemma 19 (Some-Reflection is Structurally Pre-ordered)

                                                                                                   ^ 

(kCompl)s A (oFree)s A (sRefla) (sRefla:c) ) 
Proof By reflexive, transitive induction. 

  Moreover, a some/any-equivalence holds.

Lemma 20 (Pre-ordered Structural Reflection is Some/Any)

(kCompl)s A (oFree)s ((sRef(as: )*) < (aRefla:c)*)) 
Proof By two direct arguments. ^ 

  The two preceding lemmas therefore give us the best 

we could hope for, namely that simple, computational-only 

some-reflection suffices for showing full-scale structural 

any -reflection.

Lemma 21

(kCompl)s A (oFree)s A (sRefla) (aReks.c)*) 
Proof By Lemmas 19 and 20. ^



  We note that some-reflection allows for structure and 

computation to be addressed separately. In particular, struc-

ture need only be addressed once for each language.

To conclude:

Theorem 22  —»S~ and --Ha are diagram equivalent if ~a 
is induced as the structural collapse of —>c, relative to

(StrColli )s 0-Eq(—~sa, —~a) 
Proof By Lemma 8, it remains to be proved that we have 

(Presa:c) *) and (aRefla:c). ), which follow from Lemmas 17 
and 21.^

5.1 Intermediate Relations

  For technical reasons involving, e.g., parallel reduction 

relations, we note that we have the following result.

Theorem 23

(StrColh )s 
A (-~C~~Csc) A (—>aC—>a,C—»a) 

A-Eq((=s; —c'; =s), ---+a') A A-Eq(-- * , *a) 

Proof Proposition 24, next, with Theorems 15 and 22. ̂  
  The outstanding result in the above proof concerns uni-

versality of reflexive, transitive closure for related relations.

Proposition 24

• ~aC~a'c— — a --4a

• 

Proof The first result is a special-case of the second re-

sult, with —>S the identity relation. The second result fol-

lows by two reflexive, transitive inductions, where only the 

base cases are interesting.^

6 Applications

  Here we describe how the general theory presented so far 
can be used to demonstrate connections between different 
views of the same underlying behaviour. We also note that 
such connections do not need to be shown by the construc-
tion of a single homomorphism satisfying the constraints 
of Theorems 15 or 22. Instead, the fact that diagram-

equivalence is an equivalence means that equivalences inde-

pendently established with distinct homomorphisms can be 
stitched together to establish the diagram equivalence of su-

perficially disparate systems. Indeed, we shall now discuss 
the diagram equivalences indicated in Figure 1: AJm and 
Ag are the (non-formalist) term calculi for cut-elimination

6

aQ

a I / 
ar ~-  

Id

 Ajni 

T 
13'4' I

Fig . 1. Diagram-equivalent systems and their witnessing 

epimorphisms, indicated by collapsed structure; 

solid lines: formalised, dashed lines: discussed

studied in [21, 23, 22, 24]; as are three different formal-
ist presentations of the A-calculus over a-collapsed terms 

(identified below in Section 6.1); and Avar is the equally 
formalist version over first-order abstract syntax with one-
sorted variable names and with explicit a in [26, 27].

6.1 The A-calculus

  In this section, we describe the connection between 

two different presentations of the A-calculus: the "raw" 

first order syntax, and the same syntax quotiented by ca-

equivalence. The raw syntax is simply the free algebra gen-

erated by the recursion equation

A V+A xA+V xA

with V some infinite set of variable names. 
  This type's behaviour (/3-reduction) can be defined in at 

least two ways.

Partial Make substitution of M for variable v in term N 
   behave correctly only when the abstractions in the term 

   N do not need to be renamed to avoid capture of free 
   variables in M. The /3-reduction relation for this type 
   can then be partial as well: if the preconditions for 

   the ,3-reduction's substitution are not met, no reduc-
   tion takes place. 

   The advantage of this approach is that the substitution 
   function can be defined by primitive recursion. All de-

   sired reductions can be performed by first making a 
   series of a-renaming steps. This approach is carefully 

   presented by Vestergaard and Brotherston [26, 27].

Total Define substitution on A as a total function that may 

   perform additional renaming steps as it passes through 
   abstractions. Such a function can be defined by re-

   course to a definition using simultaneous substitutions, 

   iterated substitutions, or well-founded recursion on the 

   size of the argument. In our view, the advantages of 

   totality are more than counter-balanced by the disad-

   vantages of ugly definitions and the need to choose ar-

   bitrary fresh names as a term is traversed.



 Either form of substitution on A allows the definition of 
a-equivalence. We can then take the quotient with respect 
to that equivalence, generating a fresh type that we will call 

 Aa. Defining /3-reduction on the quotiented type Aa can 
also be done in a number of ways.

Lifting substitution Homeier [11] defines a total substitu-
   tion function on A and shows that this function respects 
   a-equivalence, enabling it to be "lifted" to the level of 

Aa. Being able to do this is perhaps the best argument 
   for using the "total" option above for substitution on A. 

   With substitution defined on Aa, defining 3-reduction 
   is straightforward.

Lifting /3-reduction One can define the 3-reduction rela-
   tion on Aa by reference to the relation on A, allowing 

   for explicit a-conversion at the raw level [26, 27]. This 
   avoids the need to define substitution at the level of Aa.

Defining substitution directly If one has a recursion prin-
   ciple for Aa justifying the definition of functions in 

   a primitive recursive style, substitution can be defined 
   directly. Recursion principles of the desired sort are 

   discussed in papers by Ambler et al. [1], Norrish [16] 
   and Pitts [18]. Then, with substitution defined at the 
   level of Aa, /3-reduction can also be defined directly.

With /3-reduction defined on Aa it is possible to compare 
the two types and their associated behavioural relations. Be-
low, we will write —90 for the relation on A and -->p for the 
relation on Aa. 

  Clearly, the desired homomorphism between the two 
types must be the function taking a raw value in A to its 
equivalence class in Aa. We will write [t] to denote the 
equivalence class of t E A. By Theorem 15, there is dia-
gram equivalence between 13-reduction on Aa and =a; --
; =a on A if it is possible to show (Coll:00 )a. 

Because Aa is the quotient of A with respect to a-
equivalence, we have a total, onto function with (kSound)a 
and (kCompl)a by definition. The remaining proof obli-
gations are that the map from A to Aa must preserve and 
some-reflect reductions.

Lemma 25 (Preservation of 3-reduction) If t u, 
then [t] - p Lu] . 

Proof If /3-reduction on Aa has been defined by lifting 
the operation from A, this result is immediate, by definition. 
Otherwise, the proof is by rule induction on the definition of 
--40. The only interesting case is showing that substitutions 
in A can be matched by those in Aa. This proof is in turn 
straightforward because the preconditions from A require 
an appropriate choice of bound name in the abstraction. ^
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Lemma 26 (Some-reflection of /3-reduction) If It1 —+ 
N, then there exist t, u E A, with [t] = M and [u] = N, 
such that t u. 

Proof Again, if 3-reduction on Aa has been defined by 
lifting the operation from A, then the result is immediate. 
Otherwise, the proof is by rule induction on the definition 
of The congruence cases for applications require use 
of the fact that L-_J is onto. The base case also uses this 
result, as well as the fact that it is always possible to find 
a-equivalent versions of terms that have their bound names 
chosen so as to avoid clashes when a substitution is per-
formed.^ 

  To show that confluence (a property of pre-order clo-
sures) at the raw level is present if and only if it is present 
at the quotiented level, we appeal to Theorem 22. This re-
quires only that we now show (oFree). As a-equivalence 
is indeed an equivalence, this is immediate. More, we have 
not just established equivalence for confluence, but that —*0 
and  share all possible diagrams. 

  We have formally verified the existence of structural col-
lapses for three different formalist presentations of the A-
calculus over a-collapsed terms relative to Avar

~a: terms-as-a-equivalence-classes with "lifted 
reduction" [27, in Isabelle/HOL].

13-

Gordon and Melham's directly defined Aa [9], using a 
similarly directly defined /3-relation [ 17, in HOL4].

   a quotient with substitution and 3-reduction defined di-
   rectly [17, in HOL4].

  These systems are the various Aa in Figure 1 and, by 
this paper and its HOL4-verified development, we therefore 
have diagram-equivalence of all these systems and Avar 

  In future work, there are at least two other A-calculus 
systems that we would like to relate to war in the same 
way: terms using de Bruijn indices, and a weak HOAS style 

presentation with abstractions represented using functions.

6.2 Structural Proof Theory

  It is known that /3-reduction in the A-calculus is basi-
cally the same as Prawitz-style normalisation in a natural-
deduction, or N-system, presentation of intuitionistic logic 
[ 12, 20]. Other presentations of intuitionistic logic are also 
possible, notably logical-deduction, or L-system, style us-
ing a cut rule (aka sequent calculus) [7]. There are com-

pelling reasons why also /3-reduction/Prawitz-style normal-
isation and Gentzen-style cut-elimination should be related 

[15]. Indeed, the connection was first explored in [30] and 
then presented in an algebraic form consistent with our no-
tion of structural collapse in [19, "Normalization as a ho-
momorphic image of cut-elimination"]. The relevant notion



of structure is axiomatised by what is referred to as permu-
tative conversions [14] (covering also explicit-substitution 
[28] and pattern-matching issues [5] in their most general 
form). Although algebraically adequate, the early treat-
ments of the result were not sufficiently fine-grained to al-
low for a non-structural, or computational, understanding 
of (all) permutative conversions. A main reason is that ap-

plication in L-systems is best thought of as taking place 
"outside -in", as opposed to the "inside-out" of N-systems 
[10, 21] and of being of a generalised nature [29]. Follow-
ing this realisation, permutative conversions have been re-
worked [6, 25] and a tight but staged correspondence has 
finally been arrived at [23, 22, 24]. We will now apply our 
framework to the considered systems and establish their di-
agram equivalence; we consider term languages, only, and 
refer to [23, 22, 24] for the proof/typing rules they capture.

Definition 28 (Ag-Reduction 1211) Let s be meta-level 
substitution (of 92 for x in  91) and let Ag-reduction, 
be the contextual closure of the following contraction rule.

(Ax.g1)[92] >ps s(g2,x,g1)

Ag is, thus, a "notational variation" on the A-calculus [21].

Lemma 29 (StrColl-'g)id,, 
Proof [21, Theorem 6, Chapter 5] shows that Gentzen's 
mapping is an isomorphism. ^

Theorem 30 A-Eq(-40, -*/3c) A A-Eq(---*(3, -*13c ) 

Proof Theorems 15 and 22 with Lemma 29. ^

6.2.1 Preliminaries

We first note that Gentzen [7] proved that his L-systems 
were not more expressive than his N-systems by exhibiting 
a (conclusion-respecting) mapping from the latter in to the 
former. In the case of intuitionistic implication, the image 
of the mapping is as follows.

6.2.2 "A calculus of multiary sequent terms" [23, 241

As suggested above, a fuller computational account of cut 

elimination is possible when removing the two artificial re-

strictions on AC-terms.

Definition 31 (Aim-Terms [231)

Definition 27 (ACC-Terms 1211)

G VAV.c 
Lg ::= []

g(g, Lg, (z)z)

  The third clause in g, e.g., gi(g2, [], (z)z), captures 
Gentzen's target term for implication elimination, namely 
a cut on a left-introduction over an axiom. A term-model 
annotation for a general left-introduction of implication is 
let x := f ea in ec [28]. The reading is that f is the intro-
duced assumption of an implication; it takes the premise 
that typically sits on the left, ea, and converts it into a wit-
ness that can be used to discharge the assumption, x, in the 
premise that typically sits on the right, ec. The term ec is 
the context, or continuation, which in the above rule simply 
is the identity (z)z. Another way of writing 91(92, [], (z)z) 
is therefore as (let z:=f 92 in z)Q f :=g111, with "[f:=_]" 
standing for a cut against the assumption denoted by f. Re-
turning to the notation above, we note that the Lc-category, 
which for now consists of the empty list, [], only, is due 
to Herbelin [10] and, in the general case, can be used to 
stack left-implication rules on top of each other. This is 
what amounts to "outside-in" application in L-systems be-
cause the function-position, i.e., the term that sits outside 
the parentheses, gets applied to 92 inside the parentheses 
and then to any gs in Lc, in the general case. 

  As it turns out, c is closed under cut-elimination and, 
following [23], we write 91[g2] for 91(92, [], (z)z).

Jm V AV. Jm 

Lim Jm :: L~,n

Jm(Jm,L'n,(V)Jm)

I[

  The exact differences between Jm and g are i) in the 
third clause, e.g., jl (j2,1, (z) j3), the context (in the left 
rule), j3, need not be vacuous and ii) left implications can 
be stacked, j2, 1, to form a "multiary" application of j1.

Definition 32 (AJm-Reduction [231) Let s and @ be 
meta-level substitution and append functions and let AM' -
reduction, -i,31p2,i,,, be the contextual closure of the follow-
ing contraction rules.

(Ax.j1)(j2, [], (y)i3) 
s(s(j2, x, n ), g, i3) 

(Ax.jl)(j2,jo :: 1, (g)js) 
-4/32 s(j2, x, j1)00, 1, (0J3) 

/1(j2, 1, (g)j3)(j2, 1', (OA) 
                  02, 1, (g)J3(j2, 1, (g')J3)) 

.:11 02,1, (OVA ,1', (g')js)) 
jl(j2, ©(1,j2,1), (y')js)

In the p-rule, y must be fresh with respect to j2, 1', j3 [25].

Definition 33 (AJm-Permutative Conversions 1231) Let 
©2 be a meta-level append-and-apply function and let the
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permutative conversion relation,  -  >pq, be the contextual 
closure of the following contraction rules.

:1102,1, 

:1102, 1, 

j1(32,1,

jl(j2,jo

(x)y) 

P (x)Ay•33) 

p Ay.ji(j2, 1, (x)j3) 

(x)Jl(A,1', (y).13)) 

p 31(j2,1,(x)ji) 
0102, 1, (x)j2 ), ©2 01, j2, I, x, 1'), (OA) 

:: 1, (x)J3) 

q ji [j2] Uo,1, (x)j3)

The main results in [23, 22], bar one, are as follows.

Theorem 34 ([23]) *pq is strongly normalising and con-

fluent.

Theorem 35 (122, 241) -4Q~ is strongly normalising 
and -+X is confluent for X C {/9o, µ, 711, with /30 = 31(32.

6.2.3 Permutative Convertibility 

The following function from Jm to g provides a crucial step 
in the above, as well as a further interesting property.

Definition 36 (Permutative-Conversion Collapse [23])

¢(x) = x 

¢(Ax.j) = Ax.¢(j) 

¢(i1(j2, l (y)j3)) = ¢'(¢(j1), 002),1, y, ¢03))

¢'(g1, g2, [], y, g3) = s(gl [g2], y, g3) 
¢'(g1, g2,j :: /,Y, g3) = ¢'(g1[g2], ¢(j), 1, y, g3)

  Because of Theorem 34, we have a total function, .Lpq, 
sending Jm-terms to their (unique) 4„-normal forms. As 
it turns out, J,pq is implemented by ¢. 

Lemma 37 (1231) Vj E Jm . ¢(j) =.tpq 0) 

  From here, we get the final core property of AY" .

Theorem 38 (Permutative Convertibility 1231)

V31, j2 E JJn • j1 =pq 32 ¢01) = 002)

6.2.4 Diagram Equivalences and Consequences 

From our perspective, Theorem 38 means that we collapse 
Jm(-terms) to g(-terms) under permutative convertibility. 

Lemma 39 (Colle" )pq A (StrColl," )754, witnessed by ¢.
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  Remembering that g c Jm, we note that we have the 
following. 

Proposition 40 (1231) Vg E g.¢(g) = g. 

  This (fairly straightforwardly) implies that we have 
some-reflection. 

Lemma 41 (sRefh1,X), for any X C {/32, ir,,u}, witnessed 
by ¢ - 

  In order to get preservation, we note that permutative 
conversions can convert any Jm71(-term) into a g(-term) and 
that this either preserves or eliminates reduction steps. 

Proposition 42 (1241) 

  • Vj1, j2 E Jm ..11 '1302 32 ¢01) -(3q (1)02) 

  • dj1,j2 E Jm •.71 -'7rµ ,12001) = ¢02) 

Lemma 43 (PresxG.),for any X C{Nl,/32,7,0, wit- 
nessed by ¢. 

  In other words, )Jm and most of its sub-systems are 
diagram-equivalent with the A-calculus. 

Theorem 44 A-Eq(_-*1X~q,--Hp), for X C {/32, 7r,µ}. 
Proof Theorem 30andLemma 8 applied to Lemma 39, 
Lemma 41 (via 21), and Lemma 43 (via 17). ^ 

Among many other properties, we thus have the following. 

Theorem 45 X734 is confluent, for X C {/32 i 71, lc}. 
Proof The A-calculus is confluent and confluence is ex-
pressible as a diagram, cf. Lemma 3. ^ 

  We note that is not clear whether or not we are able to 
state any confluence property for the AP'-calculus that 
does not involve A. More Aim-specific lemmas would 
probably be needed, although a more general version of our 
results might also suffice.

  As a final remark, we note that [23, 22, 24] factor their 
work through two orthogonal, intermediary calculi. Our ap-

proach naturally applies there, too.

7 Extending the Language of Diagrams

  The formalised notion of diagram presented in Section 2 

is a simple, albeit expressive, one. In this section, we dis-

cuss a number of extensions to the formalisation, adding 

further to diagrams' expressivity, while retaining the ability 

to show diagram equivalence for relations that are not sim-

ply isomorphic. In other words, we seek diagram extensions 
that not only allow for a sensible definition of satisfiability 

with respect to a given relation, but which also retain the 

ability to show diagram equivalence by checking reflection 

and preservation properties of candidate homomorphisms.



7.1 Negated Links

  It is possible to add negated links to our diagrams. 

Graphically, we propose that these links be drawn with an 

x symbol super-imposed:

The above graph ("no terminal object") can be read

Another example is

 Vy. 3x. —,R(x, y)

      •

stating that no divergence has an immediate resolution. 
  Where before we represented links in the "forall" and 

"existential" relations as triples of the form (i , from, to), 
we extend these to 4-tuples: (i, from, to, pos?), where the 
fourth component is a boolean value indicating whether or 
not the link is negated (true indicating that it is not negated, 
say). For example, the triangular diagram above would be 
formally represented by ({1, 2, 3}, 0, F, E) with

F = {(0,1, 2, T), (0,1, 3, T)} 

E = {(0, inl(2), inl(3),1)}

The evaluation of such diagrams with respect to a particular 
relation is of the same basic shape as Definition 2, but where 
the homomorphisms f and g of that definition now respect 
the extra boolean. In the case of f, for example:

(i,bi,b2,T) E F Ri(f(bi), f(b2)) 
b2, 1) E F (bi),f(b2))

Lemma 46 (after Lemma 8)

(Presy) A (aRefly) 0-Eq(—>x, —'y)

where diagram-equivalence here means that the two rela-
tional structures are true for diagrams including negated 
links. 
Proof If f is our homomorphism, then the conditions 
(Pres) and (aRefly) together ensure that

u > v b f (u) —>y f (v)

while onto-ness gives us the inverse that allows various ho-

momorphisms to compose. The proof is identical to that of 

Lemma 8.^

7.2 (Reflexive and) Transitive Closure

  The following diagram arises as a proof obligation when 

showing that the diamond property for R implies the dia-

mond property for R*. 

          I•—  Ho

To capture this within our language of diagrams, we might 
treat —* and —* as two independent relations in the diagram, 
and to then evaluate the diagram with respect to two re-
lations, where the second was the reflexive and transitive 
closure of the first. 

  Unfortunately, if we wish to retain our preservation and 
reflection result, it is not possible to extend our diagrams 
so that the example above is evaluated with respect to just 
one relation, and where the —* links must correspond to the 
reflexive and transitive closure of that relation because

does not imply

u v a f(U) -'y f (v)

          u —4~ v f (u) f (v) 

(see also Proposition 1 8). 
  By way of contrast, transitive closures are preserved and 

reflected by strong homomorphisms, allowing us to add 
transitive links to our language of diagrams. Finally, the 
counter-examples in Proposition 18 prompt one last attempt 
to derive a treatment of equality that is not just preserved but 
also reflected by strong homomorphisms.

7.3 Axiomatising Equality

  If we extend our language so that diagrams can be com-

bined in a propositional way, we can add extra constraints to 

our diagrams. Such constraints can then attempt to directly 

characterise equality. We begin by defining a propositional 

language of diagrammatic formulas:

DF ::= d DF A DF ,DF

with d a diagram as already defined. Just as with diagrams, 

the evaluation of such formulas is with respect to a family 

of relations.

Definition 47 We write R f to mean that diagram-
matic formula cb is true of the family of relations R. This 
notion is simply defined:

R=fd = R =d 

(0A111) = Rfcl) and Rf 
R ,0 = R f~
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Lemma 48 (Any-Reflected DF-equivalence)

 (Presa) A (aRefla)

VO. b  

Proof By structural induction on the structure of 0, using 
Lemma 8 for the base case.^ 

  We can now construct diagrams asserting that a relation 
is both an equivalence and a congruence with respect to the 
other relations we are concerned with. Congruence on the 
left is the diagram 

R 
•— • 

E1 .R. 

•

(Here the labelling does not mean that the diagram is being 
evaluated with respect to a particular pair of relations. The 
labelling simply distinguishes the two different relations.) 

  Similarly, congruence on the right is 

                                    • R                • •
.1~E

  Diagrams asserting that E is reflexive, symmetric and 
transitive are easy to construct. Defining cb on dia-
grammatic formulas as —,(0 A -~ ), we can now express the 
determinism formula as

       reflexive(E) A symmetric(E) A 
       transitive(E) A congruent(R, E) 

~ • E 
• 

  Thanks to Lemma 48, we know that this formula will be 
preserved and reflected. Unfortunately, we can not be sure 
that we will have normal models for the diagrams. In other 
words, the constraints do not require E to be the identity, 
only that it be an equivalence relation that "respects" the 
various reduction relations we are interested in.

8 Conclusion

  We have formalised a language of diagrams of the sort 
that is widely used informally to express behavioural prop-
erties of rewrite relations. The language gives a simple se-
mantics for a variety of Ill-formulas, including negated re-
lationships. We have used this to give an algebraic proof 
that two rewrite relations that are related by a structural col-
lapse enjoy all the same properties, expressed as diagrams. 
The development includes results that lower the threshold 
for applying the core lemma to the point where diagram 
equivalence holds by construction when, e.g., doing an a-
collapse in the Hindley-Curry sense. The paper is partly jus-
tified by the large number of recently-proposed formalisms

for reasoning about languages with binding, and we have 
shown that at least four different types for the A-calculus 
are diagram equivalent. A completely differently-flavoured 
example shows diagram equivalence between 13-reduction 
and cut-elimination, modulo permutative conversions.
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tive closure links), diagrammatic formulas (from Sec-
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