
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Algebraic approaches to formal analysis of the

mondex electronic purse system

Author(s)
Kong, Weiqiang; Ogata, Kazuhiro; Futatsugi,

Kokichi

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2007-004: 1-43

Issue Date 2007-03-23

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8415

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Algebraic Approaches to Formal Analysis of

 the Mondex Electronic Purse System

 Weigiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi

 Graduate School of Information Science

 Japan Advanced Institute of Science and Technology
 March 23, 2007

 IS-RR-2007-004

Algebraic Approaches to Formal

 the Mondex Electronic Purse

Analysis

System

of

 Weigiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi

Japan

 Graduate School of Information Science

Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan

{ weigi ang, ogat a, kokichi } @ j ai st . ac . j p

March 23, 2007

 Abstract

 Mondex is a payment system that utilizes smart cards as electronic purses for financial
transactions. The paper first reports on how the Mondex system can be modeled, specified
and interactively verified using an equation-based method — the OTS/CafeOBJ method. Af-
terwards, the paper reports on, as a complementarity, a way of automatically falsifying the
OTS/CafeOBJ specification of the Mondex system, and how the falsification can be used to
facilitate the verification. Differently with related work, our work provides alternative ways
of (1) modeling the Mondex system using an OTS (Observational Transition System), a kind
of transition system, and (2) expressing and verifying (and falsifying) the desired security

properties of the Mondex system directly in terms of invariants of the OTS.

Keywords:

verification,

Mondex electronic purse, the OTS/CafeOBJ method, Maude search command,
falsification

1

Contents

1 Introduction

2 Overview of the Mondex Electronic Purse System

3 The OTS/CafeOBJ Method
 3.1 CafeOBJ: An Algebraic Specification Language

 3.2 Observational Transition Systems (OTSs)
 3.3 Specification of OTSs in CafeOBJ

 3.4 Verification of Invariants of OTSs

4 Formalization of the Mondex System
4.1 Basic Data Types

 4.2 OTS Model and Its CafeOBJ Specification......................

5 Verification of the Mondex System
 5.1 Formal Definitions of the Properties

 5.2 Verification of the Properties
 5.3 Summarization of the Specification and Verification.................

6 Falsification of the Mondex System
 6.1 Maude Specification of the Mondex System

 6.2 Falsification of the Mondex System
 6.3 Some Further Issues about Verification and Falsification

7 Related Work

8 Conclusion

A Mondex Specifications including Data Types

B Invariants Proved

C A Sample Proof Score

3

3

4

4

5

5

6

7

7

9

14

14

16

19

20

20

22

23

24

25

27

31

37

2

1 Introduction

Mondex [1] is a payment system that utilizes smart cards as electronic purses for financial
transactions. The system has recently been chosen as a challenge for formal methods [2, 4],
after it was originally specified and manually proved for correctness (of refinement) using the Z
notations described in [5] . The purpose of setting up this challenge is to see what the current
state-of-the-art is in mechanizing the specification, refinement, and proof, and ultimately to

contribute to the Grand Challenge — Dependable Software Evolution [2, 3, 4]. As a response,
different formal methods have been applied to tackle this same problem, which include, for

example, KIV [6, 7], RAISE [8], Alloy [9] etc.
 In this paper, we report on how this problem can be tackled by using an equation-based

method — the OTS/CafeOBJ method [10]. Specifically, we describe how the Mondex system is
modeled as an OTS (Observational Transition System), a kind of transition system that can be
straightforwardly written in terms of equations; and how to specify the OTS in CafeOBJ [11, 12],
an algebraic specification language; and finally how to express the desired security properties
of the Mondex system as invariants of the OTS, and to interactively verify the invariants by
writing and executing proof scores using CafeOBJ system.

 As a complementarity of the interactive verification of the OTS/CafeOBJ method, we also
report on a way of automatically falsifying (finding counterexamples) the OTS/CafeOBJ speci-
fication of the Mondex system by using Maude search command [13], which is achieved through
an automatic translation from the OTS/CafeOBJ specification into corresponding Maude one
[14, 15]. The falsification has been shown, from our experience, to be useful for facilitating the
the OTS/CafeOBJ method in its different verification stages.
 Differently with related work, our work provides an alternative way of modeling the Mondex

system in an operational style (in terms of transition system), which is inspired by the work [6, 7],
rather than in a relational style as used in [5, 8, 9]; and our work also provides an alternative
way of expressing and verifying (and falsifying) desired properties of the Mondex system directly
in terms of invariants of an OTS, rather than the refinement construction and proof that are
originally used in the Z methods [5] and then used in [6, 7, 8, 9] . This work therefore provides
a different way of viewing the Mondex analysis problem and can be used to compare different
modeling and proof strategies.

 The rest of the paper is organized as follows: Sect. 2 outlines the main part of the Mondex
electronic purse system. Sect. 3 introduces the OTS/CafeOBJ method. Sect. 4 and 5 describe
how to model and specify the Mondex system, and how to express the desired security prop-
erties of the Mondex system as invariants and their corresponding verification method. Sect.
6 discusses the motivation of falsifying the OTS/CafeOBJ specification of the Mondex system
and our proposed way to do this. Sect. 7 discusses related work. And finally Sect. 8 concludes
the paper and mentions future work.

2 Overview of the Mondex Electronic Purse System

In the Mondex system, the cards, which are used as electronic purses, store monetary value

as electronic information, and exchange value with each other through a communication device

without using a central controller (such as a remote database). The communication protocol,
which is used for transferring electronic value between two cards, say FromPurse (the paying
purse) and ToPurse (the receiving purse), is as follows:

1. The communication device ascertains a transaction by collecting cards' information and

 sending two messages startFrom and startTo.

3

 2. FromPurse receives the startFrom message that contains information of the ToPurse, and

 the amount of value to be transferred.

 3. ToPurse receives the startTo message that contains information of the

 FromPurse, and the amount of value to be transferred. As a result, ToPurse sends a

 Req message to FromPurse for requesting the amount of value.

 4. FromPurse receives the Req message and decreases its balance, and then sends a message

 Val to ToPurse for transferring value.

 5. ToPurse receives the Val message and increases its balance, and then sends a message Ack

 to FromPurse for acknowledging the transaction.

 Although the communication protocol seems to be simple, it is complicated by several facts

as pointed in [5, 9] : (1) the protocol can be stopped at any time, either due to internal reasons
of cards, or due to card-holders intentionally doing so; (2) a message can be lost and replayed in
the communication channel, and (3) a message can be read by any card. Note, however, that it
is assumed that the Req, Val and Ack messages cannot be forged, which is guaranteed by some

(unclear) means of cryptographic system [5].
 Two key security properties demanded by the Mondex system are that [5]

 (1) No value may be created in the system, namely that the sum of all purses' balances does
 not increase;

 (2) All value is accounted for in the system (no value is lost), namely that the sum of all
 purses' balances and lost components does not change.

 Note that in this paper, we omit another protocol of the Mondex system that deals with

uploading exception logs' onto a central archive, since it is not directly related to the above

properties.

3 The OTS/CafeOBJ Method

3.1 CafeOBJ: An Algebraic Specification Language

Abstract machines as well as abstract data types can be specified in CafeOBJ [11, 12] mainly
based on hidden and initial algebras. CafeOBJ has two kinds of sorts: visible and hidden
sorts that denote abstract data types and the state spaces of abstract machines, respectively.
There are two kinds of operators to hidden sorts: action and observation operators. Action
operators denote state transitions of abstract machines, and observation operators let us know
the situation where abstract machines are located. Both an action operator and an observation
operator take a state of an abstract machine and zero or more data, and return the successor
state of the state, and respectively, a value that characterizes the situation where the abstract
machine is located.

 Declarations of action and observation operators start with bop, and those of other operators
with op. Declarations of equations start with eq, and those of conditional ones with ceq. The
CafeOBJ system rewrites a given term by regarding equations as left-to-right rewrite rules. The
CafeOBJ command red is used to rewrite a given term.

 Basic units of CafeOBJ specifications are modules. The CafeOBJ built-in module BOOL that
specifies proposition logic is automatically imported by almost every module unless otherwise

1 Exception logs are used to record information of those failed transactions in which value may be lost (detailed
in Sect. 4).

4

stated. In the module BOOL, visible sort Bool denoting truth values, and the constants true and
false, and some logical operators such as not_ (negation), _and_ (conjunction), and _implies_

(implication) are declared. The operator if _then_else_f i is also available. An under-score _
indicates the place where an argument is put.

 BOOL plays an essential role in verification with the CafeOBJ system. If the equations

available in the module are regarded as left-to-right rewrite rules, they are complete wrt propo-

sitional logic [16] . Any term denoting a propositional formula that is always true (or false) is
surely rewritten to true (or false).

3.2 Observational Transition Systems (OTSs)

Observational Transition Systems (OTSs) [10] is a definition of transition systems that can be
straightforwardly written in equations. We assume that there exists a universal state space
called T, and also that data types used, including the equivalence relation (denoted by =) for
each data type, have been defined in advance. An OTS S consists of (0,1, T), where:

 • 0 : A finite set of observers. Each o E 0 is a function o : T —; D, where D is a data type
 and may differ from observer to observer. Given an OTS S and two states vi, v2 E T, the

 equivalence (denoted by v1 =8 v2) between them wrt S is defined as ̀ do E CO, o(vi) = o(v2)•

 • I: The set of initial states such that I C T.

 • T : A finite set of conditional transition. Each T E T is a function T : T —^ T, provided

 that T(vi) =8 T(v2) for each [v] E T/ =8 and each v1, v2 E [v]. r(v) is called the successor
 state of v E T wrt. T. The condition c,- of T is called the effective condition. For each

 v E T such that -1cr(v), v =s T(V).

 Reachable states wrt S are inductively defined: (1) each vo E I is reachable, and (2) for
each T ET, T(v) is reachable if v E T is reachable. Let Rs be the set of all reachable states
wrt S. An invariant wrt S is a state predicate p : T -f Bool, which holds in all reachable states
wrt S, namely that Vv E 1Zs.p(v).

 Observers and transitions may be parameterized. Generally, observers and transitions are
denoted by ° 1, •,im and T~ ... ~n, provided that m, n > 0 and there exists a data type Dk such
that kEDk(k=ii,...,im,j1,...,jn).

3.3 Specification of OTSs in CafeOBJ

The universal state space T is denoted by a hidden sort, say H. An observer oZl .., im E 0 is

denoted by a CafeOBJ observation operator and declared as bop o : H Vi, ... Vi,„ -> V, where

Vii, ... , Vi,,, and V are visible sorts.

 Any initial state in I is denoted by a constant, say init, which is declared as op init : -> H .

The equation expressing the initial value of is as follows:

eq o(init, Xi, ,...,Xi,,,) = f(X,,...,Xi,,)

Xk is a CafeOBJ variable of Vk, where k = i1, ... , im, and f (Xi1, ... , Xi,,,) is a CafeOBJ term

denoting the initial value of o21,.. ,2,,
 A transition Til,...,jn E T is denoted by a CafeOBJ action operator and declared as bop a :

H V31... V3,, -> H, where V3,, ... , V3„ are visible sorts. Ti1,...,~n may change the value returned
by o~1,.,. 2m if it is applied in a state v such that cT ~n (v), which can be written generally as
follows:

5

 ceq o(a(S,X,1,...,Xj„), Xi, ,...,Xi,„)
 = e-a(S,Xj1.....X)„, Xi, ,...,Xi„,) if c-a(S,X31,...,Xj„) .

S is a CafeOBJ variable for H and Xk is a CafeOBJ variable of Vk, where k = i1, • m, l, , jn•

a(S, X31, ... , X3„) denotes the successor state of S wrtTr,jn . e-a(S, X31, ... , X3„ , XZ1, ... , Xi) de-
notes the value returned by oi im in the successor state. c-a(S, X31, ... , X3„) denotes the effective

condition cT.
 31, 'in

 changes nothing if it is applied in a state v such that (v), which can be ~1,•••,7n
written generally as follows:

ceq a(S,X;1,...,X,,,) = S if not c-a(S,X,1,...,X,„) .

If the value returned by oi1 is not affected by applying Ti, i...,in in any state (regardless
of the truth value of ern , 7n), the following equation may be declared:

eq o (a (S, X31, ... , X 7 „) , X„, .. . , X i „,) = o(S, X„, . .. , Xi„,) .

3.4 Verification of Invariants of OTSs

We describe the verification method of invariants (safety properties) of OTSs and refer interested
readers to [17] for the verification method of liveness properties of OTSs.

 Some invariants may be proved by case analysis only, but we often need to do (structural)
induction on the reachable state space of an OTS 8, namely to show that the predicate to be
proved invariant holds on any initial state and is preserved by each transition of the OTS. We
describe how to prove a predicate p1 is invariant to S by such induction through writing proof
scores in CafeOBJ. The proof that p1 is invariant to S often needs other predicates. We suppose
that p2, .. , pn are such predicates. We then prove p1 A ... A pn invariant to S. Let x~, , ... , ximi
whose types are Al, . .. , Dim, be all free variables in pi (i = 1, ... , n) except for v whose type is
T.

 We first declare and define the operators denoting pl, ... , pn in a module INV (which imports
the module where S is described) as follows:

op invi : H Vil ... Vi,,, . -> Bool

eq invi(S, Xi, ,...,Xi,,,) = pi(S,Xi1,...,Xi„,;)

where i = 1, ... , n. S is a CafeOBJ variable for the hidden sort H, and Xk (k = il, ... , i n,) is
a CafeOBJ variable for the visible sort Vk. pi(S, Xi1, ... , Ximi) is a CafeOBJ term denoting pi.

 In the module INV, we also declare a constant xk denoting an arbitrary value of Vk (k =
1, ... , n). These constants are constrained with equations, which make it possible to split the
state space, or the case. For example, if we declare a constant x for Nat that is the visible sort
for natural numbers, x can be used to denote an arbitrary natural number. Suppose that the
case is split into two: one where x equals 0 and the other where x does not, namely that x is

greater than 0. The former is expressed by declaring the equation "eq x = 0 .", and the latter is
expressed by declaring the equation "eq (x > 0) = true ."

 We then declare the operators denoting basic formulas to show in the inductive cases (de-
noted by the transitions of 8) and their defining equations in a module ISTEP (which imports
INV) as follows:

6

gEMMI

op istepi Vil ... Vi -> Bool

eq istepi (Xii , ... , Xi,„;) = invi(s, X11 , ... , Xi,„,) implies invi (s', Xi„ ... , Xi„ ,i))

where i = 1, . , n. s and s' are constants of H, which denote an arbitrary state s and a successor

state of s.

 Now we are ready to show the way of conducting induction by writing proof scores in

CafeOBJ. A proof score is composed of proof passages, which are temporal CafeOBJ mod-

ules that are created by the CafeOBJ command open with a module name as a parameter,

and killed by the command close. In a proof passage, the reduction command red should be

included, which reduces (via term rewriting) a term denoting a proposition to its truth values,
and more generally to an exclusive-or normal form (in this case, case-splitting is needed).

 Let init denotes any initial state of the OTS concerned. All we have to do to show that pi
holds on any initial state is to write a proof passage as follows:

open INV

 red invi (init, xi, , ... , xi,,,) .

close

 The proof of each inductive case often needs case analysis. Let us consider the inductive

case where it is shown that T~~ preserves pi. Suppose that the state space is split into 1

sub-spaces for the proof of the inductive case and each sub-space is characterized by a predicate

casek (k = 1, ... , 1) such that (casei V ... V easel) true. Also suppose that T~l,... ~ is denoted
by an action operator a and visible sorts V~ ... , V~ correspond to data types D31, ... , D3n of

the parameters of T~1 ~ . The proof for case casek looks like:

open ISTEP
 -- arbitrary objects

oP Y31 : -> 1731op y:->,,,•
 -- assumptions

 Declarations of equations denoting casek.
 -- successor state

 eq s' = a(s, 1,...,)
 -- check if the predicate is true

 red SI Hi implies isteyi (xil , ... ,x,„, ,) .
close

where i = 1, ... , n. yil , ... , yin are constants that are used as parameters of the CafeOBJ
action operator a, and they denote arbitrary objects of intended sorts. The equation with s' as
its left-hand side specifies that s' is the successor state after applying any transition denoted by
a in the state s. SIHi is a CafeOBJ term denoting what strengthens the inductive hypothesis
invi(s, X~1, ... , Xj,,ni) and can be the (and) concatenation of different predicates ranging from
invi(...) to invi,,(...). A comment starts with -- and terminates at the end of the line.

4 Formalization of the Mondex System

4.1 Basic Data Types

Before describing the OTS model of the Mondex system (more precisely the communication
protocol introduced in Sect. 2, which is the core part of the Mondex system), we first describe

7

some key data types that are used in the OTS, which include: Purse, Message and Ether2.

Each Purse of the Mondex system is constructed using the CafeOBJ operator mk-purse that

takes the following seven arguments:

(1) Name: the name of the purse. This component is the identifier of a purse.

(2) Previous Balance: the balance before a coming transaction. Note that this component is
 introduced and used by us only with the purpose to express and verify (and falsify) the

 desired properties directly as invariants, while this component is not used in the Z methods
 and its follow-up work. The value of this component is set (updated) to be equal to the

 current balance whenever a transaction is going to happen.

(3) Current Balance: the current balance of the purse.

(4) Seqnum: the sequence number, which is globally unique and is to be used in next transac-
 tion. This number is increased (through the operator nextseqnum) during any transaction,

 and thus it is necessary for avoiding replay attacks.

(5) Status: the status of the purse. Possible status of a purse is: idle, epr, epv, and epa.
 idle denotes that a purse is in a status of either before or after a transaction. The other

 three status denotes that a purse is expecting value requesting message, expecting value
 transferring message, and expecting acknowledging message, respectively.

(6) Paydetail: the payment detail of a transaction that the purse is currently involved in
 or just finished. A payment detail is constructed using the CafeOBJ operator mk-pay

 that takes five arguments: the name of the from purse and its sequence number, the
 name of the to purse and its sequence number, and the amount of value (also of sort Bal
 for simplicity) to be transferred. Given a payment detail mk-pay (FN : Name , FS : Segnum,

 TN:Name, TS:Seqnum, V:Bal), projection operators from, fromno, to, tono, and value
 are defined to obtain each of its components.

(7) Exlog: the exception log, which is a list of payment details of failed transactions. A trans-
 action can be failed since a message may be lost and the cards may abort the transaction

 etc. If there are possibilities that money may be lost during a failed transaction, the cur-

 rent payment detail will be recorded into the exception log. A predicate _/inexlog _ is
 defined to check whether a payment detail is in the exception log or not.

Given a purse mk-purse (N : Name , PB : Bal , CB: Bal , SE : Segnum, ST : Status , P : Paydetail,
E:Exlog), projection operators name, pbal, bal, seq, sta, pay, and exlog are also defined to

obtain each of its components.
 According to the communication protocol, there are five kinds of Messages: startfrom (N : Name ,

V:Bal, S:Segnum),startto(N: Name , V:Bal, S:Segnum),req(P: Paydetail) ,val(P:Paydetail),
and ack (P : Paydetail) . For each kind of messages, there exists a predicate to check the attri-

bution of the messages, such as isstartfrom and isreq etc. For the first two kinds of messages,

projection operators nameofm, valueofm and seqofm are defined, and for the remaining three
kinds of messages, projection operators pdofm is defined. All of these projection operators return

the corresponding parts of the messages. Note that we also assume, as the Z work did, that
the messages can only be lost and replayed, but cannot be forged, which is guaranteed by some

cryptographic means that is not considered here.

2Besides denoting data types
, these names in Typewriter font (with capital initial) are also used, for simplicity,

to denote sort names of the corresponding data types.

8

 The Ether is considered as a bag (multi-set) of messages, which is used to formalize the
communication channel. All the messages sent by the communication device and purses are put
into the ether and the messages received by a purse are those selected from the ether. In this
way, we model the fact that a message can be read by any card as mentioned in Sect. 2. Data
constructors of Ether are CafeOBJ operators nil and _, _ (of Ethers, where Message is declared
as a subsort of Ether). Two predicates _/in_ and empty? are defined for Ether for checking
whether a message is in ether and whether the ether is empty. Another two operators get and
top are defined to remove the first element and obtain the first element of ether, respectively.

 All the above introduced data types, Purse, Message and Ether, together with those used
for defining the three data types, such as Name, Bal etc, are defined in CafeOBJ modules. We
describe the module defining data type Purse as a demonstration example, and others can be
found in the Appendix section.

mod! ETHER {
pr(MESSAGE)
 [Message
op nil :
op _,_ .

op _/in_
op get :
op top :
op

vars M
eq (M
ceq (M
ceq (M

eq
eq
eq
eq

 Ether]
-> Ether

Ether Ether -> Ether {assoc comm}

: Message Ether -> Bool

Ether -> Ether

Ether -> Message

: Ether -> Bool

[1 M2 :
.n nil)

/in (M2
/in (M2

Message
= false .

,E)) = true if
,E)) = (M1 /in

get(M) = nil .
top(M) = M .
empty?(nil) =
empty?(M,E) =

true .

false . }

vars E El E2 : Ether

(M1 = M2) .

E) if not (M1 = M2) .

eq get (M, E) = E .
eq top(M,E) = M .
eq empty?(M) = false .

 The keyword mod! indicates that the module is a tight semantics declaration, meaning the
smallest model (implementation) that respects all requirements written in the module. The
contents of the module are enclosed in the keywords { }. The keyword pr is used to import a
module, here the module MESSAGE. The term [Message < Ether] expresses that a sort Ether is
declared, and also that the sort Message declared in the imported module MESSAGE is a subsort
of sort Ether. A subsort represents a subset of the elements of the sort. The keywords assoc
and comm specifies that the operator _ , _ is associative and commutative.

4.2 OTS Model and Its CafeOBJ Specification

The OTS model of the Mondex system is defined in a CafeOBJ module with the name MONDEX
using the keyword mod*, which indicates that the module is a loose semantics declaration,
meaning an arbitrary model (implementation) that respects all requirements written in the
module. The module MONDEX imports all the data type modules defined in advance. A hidden
sort Sys is declared in the module as *[Sys]* by enclosing it with * [and] *, which denotes
the universal state space TI of the OTS model.

 In the MONDEX module, two observers denoted by CafeOBJ observation operators purse and
ether are declared as follows:

9

bop purse : Sys Name -> Purse .

bop ether : Sys -> Ether .

Given a state of the OTS and a purse name, observer purse returns the content (components)
of the purse in this state, and given a state of the OTS, observer ether returns the content

(messages) of the ether in this state.
 A constant init is declared as "op init : -> Sys" to denote any initial state of the OTS

model of the Mondex system. The initial state is characterized by the following two equations:

eq purse(init,P)
 = mk-purse(P ,ib(P,seedv),ib(P,seedv),is(P,seedn),idle,none,emptyexlog) .

eq ether(init) = nil .

In the first equation, variable P: Name denotes an arbitrary purse. The right-hand side of the

equation describes the components of the purse P, which are composed using the operator

mk-purse. ib (P, seedy) is a term denoting the previous balance of P, which is set to be equal to

its current balance in initial state; is (P, seedn) is a term denoting the initial sequence number

of P. The constants seedy and seedn, together with the variable P, are used as arguments of

operators ib and is to generate these initial values. In addition, any purse denoted by P is

initially in the status idle, and there are no payment detail and exception log for P, which are

denoted by none and emptylog, respectively. The second equation says that initially the ether

is empty (denoted by nil), namely that no message exists in the ether.
 Nine transitions, which characterize sending and/or receiving messages, and also the security

features of the Mondex system, are declared as follows:

bop startpay : Sys Name Name Bal -> Sys
bop recstartfrom : Sys Name Message -> Sys
bop recstartto : Sys Name Message -> Sys
bop recreq : Sys Name Message -> Sys
bop recval : Sys Name Message -> Sys
bop recack : Sys Name Message -> Sys
bop drop : Sys -> Sys
bop duplicate : Sys -> Sys
bop abort : Sys Name -> Sys

(1) Transition denoted by the CafeOBJ action operator startpay characterizes that the com-
munication device ascertains a transaction and sends the startfrom and startto messages.

op c-startpay : Sys Name Name Bal -> Bool
eq c-startpay(S,P1,P2,V)

 = sta(purse(S ,P1)) = idle and sta(purse(S,P2)) = idle and not(P1 = P2) .

ceq purse(startpay(S,P1,P2,V),Q) = purse(S,Q) if c-startpay(S,P1,P2,V) .
ceq ether(startpay(S,P1,P2,V))

 = startfrom(P2 ,V,seq(purse(S,P2))),
 startto(P1,V,seq(purse(S,P1))),ether(S) if c-startpay(S,P1,P2,V) .

ceq startpay(S,P1,P2,V) = Sif not c-startpay(S,P1,P2,V) .

 The effective condition (the first equation) denoted by c-startpay demands that: the two

purses denoted by P1 and P2 are in the idle status, namely that they are currently not involved
in any other transactions; and they are different purses since it is not permitted to perform a
transaction between a purse and itself. Note that we did not consider whether the two purses
are authentic or not in our modeling, although adding a predicate authentic to check this, as
other related work did, is simple. The reason is that no clear standards/constraints exist for

10

Alan

a purse being authentic, and we thus currently consider that all purses involved in our model
are authentic. The condition did not check whether one of the purses (which is to be the from

purse of this transaction) has enough value, and this checking is made in the next transition
 startfrom .

 If startpay is applied when the condition holds: the components of any purse denoted by Q
are not changed (the second conditional equation); and two messages startfrom and startto
are put into the ether (the third conditional equation). The last conditional equation says that
even if startpay is applied when the condition does not hold, nothing changes (For simplicity,
this last situation will not be explained in the following description of transitions).

(2) Transition denoted by
purse receives the message

op

eq

ceq

ceq

ceq

the CafeOBJ

startfrom.

action operator recstartfrom

c-recstartfrom : Sys Name Message -> Bool
c-recstartfrom(S,P,M)
= M /in ether(S) and isstartfrom(M) and sta(purse(S,P)) = idle and

 not(P = nameofm(M)) and valueofm(M) <= bal(purse(S,P)) .

purse(recstartfrom(S,P,M),Q)
= mk-purse(Q ,(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi),

 bal(purse(S,Q)),(if (P = Q) then nextsegnum(seq(purse(S,Q)))
 else seq(purse(S,Q)) fi),

 (if (P = Q) then epr else sta(purse(S,Q)) fi),
 (if (P = Q) then mk-pay(Q,seq(purse(S,Q)),

nameofm(M),seqofm(M),valueofm(M))
 else pay(purse(S,Q)) fi),

 exlog(purse(S,Q)))if c-recstartfrom(S,P,M) .
 ether(recstartfrom(S,P,M)) = ether(S) if c-recstartfrom(S,P,M) .

recstartfrom(S,P,M) = Sif not c-recstartfrom(S,P,M) .

characterizes that a

 The effective condition denoted by c-recstartfrom demands that: there exists a startfrom

message in the ether; the purse P that is going to receive the message is in the status idle; the

name argument of the startfrom message (which is assumed to be the to purse's name) is not
equal to P, namely that P is not going to do transaction with itself; and last P has enough value
for this value requesting.

 If recstartfrom is applied when the condition holds: the previous balance of P is updated
to its current balance, namely to record the current balance before a coming transaction as the

previous balance; increase the sequence number; change the status of P to epr; and generate a
payment detail. Note that two variables P and Q both denote purses. However, P denotes the
purse receiving the message startfrom (executing the transition recstartfrom), and Q denotes
the purse that the observer purse are "observing" on. After applying recstartfrom, P becomes
the from purse of a transaction denoted by its payment detail.

(3) Transition denoted by the
receives the message startto.

op

eq

ceq

CafeOBJ action operator recstartto

c-recstartto : Sys Name Message -> Bool
c-recstartto(S,P,M)
= M /in ether(S) and isstartto(M) and sta(purse(S,

 not(P = nameofm(M)) .

purse(recstartto(S,P,M),Q)
= mk-purse(Q,(if (P = Q) then

bal(purse(S,Q)),(if

P)) = idle and

characterizes that

bal(purse(S,Q)) else pbal(purse(S,Q)) fi),
 (P = Q) then nextsegnum(seq(purse(S,Q)))

 else seq(purse(S,Q)) fi),

a purse

11

 (if (P = Q) then epv else sta(purse(S,Q)) fi),
 (if (P = Q) then mk-pay(nameofm(M),segofm(M),

Q,seq(purse(S,Q)),valueofm(M))
 else pay(purse(S,Q)) fi),

 log(purse(S,Q)))if c-recstartto(S,P,M) .
ceq ether(recstartto(S,P,M))

 = req(pd(nameofm(M) ,segofm(M),P,seq(purse(S,P)),valueofm(M).)),
 ether(S)if c-recstartto(S,P,M) .

ceq recstartto(S,P,M) = Sif not c-recstartto(S,P,M) .

 Equations defining effective condition and application of transition recstartto are similar

to those of transition recstartfrom, except that: the condition demands a startto message in

the ether; the status of the purse is changed to epv; and a req message is put into the ether.

After applying recstartto, P becomes the to purse of the transaction denoted by its payment

detail.

(4) Transition denoted by the CafeOBJ action operator recreq characterizes that a purse re-
ceives the message req.

op c-recreq : Sys Name Message -> Bool
eq c-recreq(S,P,M)

 = M /in ether(S) and isreq(M) and sta(purse(S ,P)) = epr and

 pay(purse(S,P)) = pdofm(M) .

ceq purse(recreq(S,P,M),Q)
 = mk-purse(Q,pbal(purse(S,Q)),

 (if (P = Q) then (bal(purse(S,Q)) - value(pdofm(M)))
 else bal(purse(S,Q)) fi),

 seq(purse(S,Q)),

 (if (P = Q) then epa else sta(purse(S,Q)) fi),

 pay(purse(S,Q)),log(purse(S,Q))) if c-recreq(S,P,M) .
ceq ether(recreq(S,P,M)) = val(pdofm(M)),ether(S) if c-recreq(S,P,M) .
ceq recreq(S,P,M) = Sif not c-recreq(S,P,M) .

 The effective condition denoted by c-recreq demands that: there exists a req message in

the ether; the purse P that is going to receive the req message is in the status epr; and the

payment detail of the req message is equal to the payment detail of P. If recreq is applied when
the condition holds, the current balance of P is deceased with the requested amount of value;

the status of P is changed to epa; and a val message is put into the ether.

(5) Transition denoted by the CafeOBJ action operator recval characterizes
ceives the message val.

op c-recval : Sys Name Message -> Bool
eq c-recval(S,P,M)

 = M /in ether(S) and isval(M) and sta(purse(S ,P)) = epv and
 pay(purse(S,P)) = pdofm(M) .

ceq purse(recval(S,P,M),Q)
 = mk-purse(Q,pbal(purse(S,Q)),

 (if (P = Q) then (bal(purse(S,Q)) + value(pdofm(M)))
 else bal(purse(S,Q)) fi),

 seq(purse(S,Q)),
 (if (P = Q) then idle else sta(purse(S,Q)) fi),

 pay(purse(S,Q)),log(purse(S,Q))) if c-recval(S,P,M) .
ceq ether(recval(S,P,M)) = ack(pdofm(M)),ether(S) if c-recval(S,P,M) .
ceq recval(S,P,M) = Sif not c-recval(S,P,M) .

that a purse re-

12

 The effective condition denoted by c-recval demands that: there exists a val message in

the ether; the purse P that is going to receive the message is in the status epv; and the payment

detail of the val message is equal to the payment detail of the purse P. If recval is applied

when the condition holds: the current balance of P is increased with the transferred amount of

value; the status of P is changed to idle. which means that the transaction is completed at the

to purse's side; and a ack message is put into the ether.

(6) Transition denoted by
ceives the message ack.

the CafeOBJ action operator recack characterizes that a purse re-

op

eq

ceq

c-recack : Sys Purse
c-recack(S,P,M)
= M /in ether(S) and

 pay(purse(S,P)) =

ceq

ceq

Message -> Bool

 isack(M) and

pdofm(M) .

sta(purse(S,P)) = epa and

purse(recack(S,P,M),Q)
= mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),seq(purse(S,Q)),

 (if (P = Q) then idle else sta(purse(S,Q)) fi),

 pay(purse(S,Q)),log(purse(S,Q))) if c-recack(S,P,M)
ether(recack(S,P,M)) = ether(S)if c-recack(S,P,M)
recack(S,P,M) = Sif not c-recack(S,P,M)

 The effective condition denoted by c-recack demands that: there exists a ack message in

the ether; the purse P that is going to receive the ack message is in the status epa; and the

payment detail of the ack message is equal to the payment detail of P. If recack is applied when
the condition holds: the status of P is changed to idle, which denotes that a transaction is

successfully completed.

 In addition to the above described transitions that correspond to the sending and receiving

messages of the communication protocol of the Mondex system, there are three more transitions

to characterize security features of the Mondex system, which include: the ether is unreliable,

and a transaction can be stopped at any time.

(7) To characterize that the messages in the ether may be lost and replayed, we define two
more transitions: drop and duplicate. As long as the ether is not empty, transition drop can
remove a message from the ether, and transition duplicate can duplicate a message and put it
into the ether. Equations defining these two transitions are as follows:

op

eq

ceq

ceq

ceq

op

eq

ceq

ceq

ceq

c-drop : Sys ->

c-drop(S) = not

purse(drop(S),
ether(drop(S))
drop(S) = S

c-duplicate :
c-duplicate(S)

Bool
empty?(ether(S)) .

Q) = purse(S,Q)
= get(ether(S))

Sys -> Bool

not empty?(ether(S)) .

purse(duplicate(S),
ether(duplicate(S))
duplicate(S) = S

 if

 if

if not

Q) = purse(S,Q)if
= top(ether(S)),ether(S) if

 if not

c-drop(S)
c-drop(S)
c-drop(S)

c-duplicate(S)
c-duplicate(S)
c-duplicate(S)

(8) To
abort a

follows:

characterize

transaction

that a transaction

at any time as the

can be stopped at any

card-holder wishes, we

time, namely that a

define the transition

purse can
abort as

13

eq purse (abort (S,P) ,Q)
 = mk-purse(Q ,pbal(purse(S,Q)),bal(purse(S,Q)),

 (if (P = Q) then nextsegnum(seq(purse(S,Q)))
 else seq(purse(S,Q)) fi),

 (if (P = Q) then idle else sta(purse(S,Q)) fi),

pay(purse(S,Q)),
 (if (P = Q) then

 (if (sta(purse(S,Q)) = epa or sta(purse(S,Q)) = epv)
 then pay(purse(S,Q)) CO log(purse(S,Q))

 else log(purse(S,Q)) fi)
 else log(purse(S,Q)) fi)) .

eq ether(abort(S,P)) = ether(S) .

 Note that no effective condition is defined for transition abort, which means that the tran-

sition abort can be executed at any time. When a purse aborts the transaction, the status of

the purse is changed to idle, and its sequence number is increased. In addition, if the purse

aborts the transaction when it is in status of either epa or epv, which means that a from purse

has transferred value or a to purse is waiting for value being transferred (has not received the
value), namely that there exist possibilities that the value can be lost, the payment detail of this
transaction has to be recorded to the exception log of the aborting purse (through concatena-
tion operator @). Note that a same payment detail may be logged in both from and to purse,
although a value is only lost once. The purpose of this is to analyze the exception logs in the

future by comparing the two logs and refund value if value did be lost.

5 Verification of the Mondex System

5.1 Formal Definitions of the Properties

In the original Z work [5], and later in the KIV, RAISE and Alloy work [6, 7, 8, 9], the two
security properties of the Mondex system are defined respectively in the forms look like:

 (1) totalBalanceofPurse' < totalBalanceofPurse, which states that the sum of the before
 (transaction) balances of all purses is greater or equal to the sum of the after (transaction)

 balances of all purses.

 (2) totalBalanceofPurse' + totalLostofPurse' = totalBanlanceofPurse + totalLostofPurse,
 which states that the sum of the before balances and lost value of all purses is equal to

 the sum of the after balances and lost value (due to a possibly failed transaction) of all
 purses.

 In our work, through making use of the introduced component "previous balance" of purses,
we make the notion "before balance" explicit. In addition, we are also able to express the
"after balance" (through the component "current balance" of purses) and the execution of any

one transaction (through the components "status" and "payment detail" of purses) . The two

properties of the Mondex system can thus be defined as invariants of the OTS model following
the above forms of related work. Formal definitions of the two properties are in the following.

1. For any reachable state s, any two purses pi and p2:

(sta(purse(s,pl)) = idle and sta(purse(s,p2)) = idle and

pay(purse(s,pl)) = pay(purse(s,p2)) and not(pi = p2))
 implies

 (bal(purse(s,pi)) + bal(purse(s,p2)) <= pbal(purse(s,pi)) + pbal(purse(s,p2))).

14

 In the premise of property 1, two arbitrary different purses denoted by pi and p2 are both
in the status idle, which means that pi and p2 are currently not involved in any transactions;
additionally the equality between their payment details expresses that either they are never
involved in any transactions (thus their payment details are both none), or a transaction between
them is just finished (finished normally or abnormally by aborting the transaction does not
matter) . Therefore, property 1 can be read as: for two arbitrary different purses, (1) if no
transactions ever happen for each of the two purses, or (2) after any one transaction between
them, the sum of their current balances is not increased (less or equal to the sum of their balances
before the transaction). This implicitly implies the above description of property 1 that covers
all possible purses for any possible number of transactions.

2. For any reachable state s, any two purses pi and p2:

(sta(purse(s,pl)) = idle and sta(purse(s,p2)) = idle and
pay(purse(s,pl)) = pay(purse(s,p2)) and not(pi = p2))
implies

(if pay(purse(s,pi)) /inexlog log(purse(s,pi)) and

 pay(purse(s,p2)) /inexlog log(purse(s,p2))
then bal(purse(s,pi)) + bal(purse(s,p2)) + lost(pay(purse(s,pi)))

= pbal(purse(s,pi)) + pbal(purse(s,p2))

 else bal(purse(s,pi)) + bal(purse(s,p2))
 = pbal(purse(s,pi)) + pbal(purse(s,p2)) fi).

 The premise of property 2 is exactly same as property 1, which states that two arbitrary

different purses are either never involved in any transaction or a transaction between them is

just finished. To understand the conclusion part of property 2, let us see the following table,
which analyzes, under the property's premise, whether value is lost or not during a transaction.3

from to

abort
log

non-log

non-abort

abort

lost
(a

not lost
(c)

impossible (e)

non-abort

not lost
(b)

impossible (d)

not lost
(f)

 A from purse can be in the status idle, epr and epa, and a to purse can be in the status

idle and epv. Since aborting of either the from purse or the to purse in status idle only

increases its sequence number, and the current and previous balances remain unchanged, we

only analyze the situations that a purse aborts in the status epr, epa (for from purse) and epv

(for to purse). non-abort in the table denotes that a purse finished successfully the transaction
on its side, and abort denotes that a purse finished the transaction (on its side) by aborting it.
log and non-log are used to distinguish that from purse aborts the transaction on status epa
or epr (only aborting in epa will be logged). The to purse will always log the transaction when
aborting the transaction (in epv). The items of the table labeled with (a) - (f) are explained as
follows:

 (a) The from purse aborts the transaction after it decreases its current balance and sends the
 val message (in epa), and the to purse aborts the transaction before it receives the val
 message (in epv). Therefore value is lost.

 3As to the other situation denoted by the premise that two purses are never involved in any transactions , it is

obviously that no value is lost. So this situation is omitted in the following discussion.

15

 (b) The from purse aborts the transaction after it decreases its current balance and sends
 the val message, and the to purse does not abort the transaction. Since the to purse

 is in status idle (as the premise says), it has successfully received the val message and
 therefore no value is lost.

 (c) The from purse aborts the transaction before it decreases its current balance (in epr), and
 the to purse aborts when it is waiting the val message (in epv). Therefore no value is

 lost.

 (d) The from purse aborts the transaction before it decreases its current balance, and the
 to purse finishes the transaction successfully. This situation is impossible since no val

 message has ever been sent.

 (e) The from purse successfully finished the transaction, and the to purse aborts the transac-
 tion when it is waiting the val message. This situation is impossible since no ack message

 has ever been sent.

 (f) Both the from and the to purse finish the transaction successfully. Therefore no value is
 lost.

 The above analyzed situations from (a) — (f) are reflected in the formula for property 2, in
which lost is a function that counts the lost value of a transaction (denoted by the payment
detail). Therefore, for any one transaction between two arbitrary different purses, if value is
lost, the value is logged in the exception logs of both the from and to purses, and the sum of
their current balances plus the lost value is equal to the sum of their previous balances before
this transaction; otherwise, value is not lost, and the sum of their current balances is equal to
the sum of their previous balances before this transaction.

5.2 Verification of the Properties

We describe the inductive proof of property 2 by writing and executing proof scores using
CafeOBJ system. An inductive case of the proof, which shows that transition recack preserves
the property, is selected (from eight inductive cases corresponding to the transitions of the OTS)
and described as a demonstration example. The inductive case needs three other invariants4

(called here as properties 3, 4 and 5) to strengthen the inductive hypothesis of property 2.
Formal definition of properties 3, 4 and 5 are as follows:

3. For any reachable state s and any purse p :

 sta(purse(s,p)) = epa
 implies

 bal(purse(s,p)) = pbal(purse(s,p)) - value(pay(purse(s,p))) .

4. For any reachable state s, any two purses pi and p2, and any message m :

 m /in ether(s) and isack(m) and pay(purse(s,pl)) = pdofm(m) and
pay(purse(s,p2)) = pdofm(m) and not(pi = p2) and
sta(purse(s,pl)) = epa and sta(purse(s,p2)) = idle

 implies
 bal(purse(s,p2)) = pbal(purse(s,p2)) + value(pay(purse(s,p2))) .

 4Actually these three invariants are found during the proof of property 2
. The method of finding these

invariants is to be introduced in the following of this subsection, and also in Sect. 6.3.

16

5. For any reachable state s, any purse p :

sta(purse(s,p)) = epa implies not(pay(purse(s,p)) /inexlog log(purse(s,p))) .

 As introduced in Sect. 2, we declare the operators denoting properties 2, 3, 4 and 5 in

the module INV as follows:

mod INV {
pr(MONDEX)
 -- arbitrary objects

 ops p pi p2 : -> Name
 -- declare invariants to prove

 op inv2 : Sys Name Name -> Bool
 op inv4 : Sys Name Name Message -> Bool

-- CafeOBJ variables
 var S : Sys

 var P P1 P2 : Name
 -- equations defining invariants

 eq inv2(S,P1,P2) = ...
 eq inv4(S,P1,P2,M) = ...

op inv3 : Sys Name -> Bool

op inv5 : Sys Name -> Bool

var M : Message

eq inv3(S,P) = ...
eq inv5(S,P) = ... }

 The omitted part "..." in the right-hand sides of equation definitions of properties are the
corresponding terms for properties presented before (but replacing the symbols s, m, p1 and P2
with variables S, M, P1 and P2). In proof scores to be introduced later, although constants and
variables both denote arbitrary objects of intended sorts, the scope of a constant is to the end
of the proof score, while the scope of a variable is inside of an equation.

 We then declare the operator denoting the basic formula to prove in each inductive case of
the proof of property 2, and give their definitions in equation in the module ISTEP as follows:

mod ISTEP {
 pr(INV)

 -- arbitrary objects
 ops s s' : -> Sys
 -- declare predicates to proved in inductive cases

 op istep2 : Name Name -> Bool
-- CafeOBJ variables

 vars P P1 P2 : Namevar M : Message
 -- equations defining the inductive cases

 eq istep2(P1,P2) = inv2(s,P1,P2) implies inv2(s',P1,P2) .
 eq istep3(P) = inv3(s,P) implies inv3(s',P) .

 eq istep4(P1,P2,M) = inv4(s,P1,P2,M) implies inv4(s',P1,P2,M) .
 eq istep5(P) = inv5(s,P) implies inv5(s',P) . }

where s and s' are constants of sort Sys, and s denotes an arbitrary state and s' denotes a
successor state of s. Note that since properties 3, 4, and 5 should also be proved to complete
the proof of property 2, operator denoting inductive cases of the proofs of properties 3, 4 and 5
should also be declared and defined, however their proofs will not be described here.

 We show that property 2 holds on the initial state (the base case) by writing the following

proof scores:

open INV
 red inv2(init,pl,p2) .

close

where the constant init is declared in the module MONDEX, and constants p1 and p2 are declared

in the module INV. CafeOBJ system returns true for this proof score, meaning that property 2

holds on any initial state.

17

 We then show that property 2 is preserved by each transition of the

ductive cases. In the selected inductive case denoted by transition recack

sixteen sub-cases based on the following predicates:

OTS, namely the in-

, the case is split into

bpidef

bp2 def

bp3 def

bp4def

bp5 def

bp6 def

bp7 def

bp8 def

bp9 def

c-recack(s,q,m)

pl = q

p2 = q
sta(purse(s,p2)) = idle

pdofm(m) = pay(purse(s,p2))

pdofm(m) /inexlog log(purse(s,q)) and

pdofm(m) /inexlog log(purse(s,p2))

bal(purse(s,q)) = pbal(purse(s,q)) - value(pdofm(m))

bal(purse(s,p2)) = pbal(purse(s,p2)) + value(pdofm(m))

pay(purse(s,p1)) /inexlog log(purse(s,p1)) and

pay(purse(s,p2)) /inexlog log(purse(s,p2))

The constant s of sort Sys denoting an arbitrary state, is the one declared in module ISTEP;

the constants q, p1 and p2 are of sort Name denoting arbitrary purses, where pl and p2 are

declared in module INV; and the constant m of sort Message denotes an arbitrary message. The

case-splitting for the inductive case denoted by transition recack is shown in the following table.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

bpl

bp2

-'bp2

bD3

~bp3

bp3

-ibp3

-4b04

bp4

5

bp5

bD6

-~bp6

-bD7

bp7
-'bDB

bo8
-~bD4

bp4

-,bD5

bp5

bD6

-bp6

-ibD7

bp7
-bD8

bD8
-bo9

bD9
-'bnl

 Each case in the above table is denoted by the predicate obtained by connecting ones ap-

pearing in the row with conjunction. The proof passage for the sub-case 5, namely bpl A bp2 A
-ibp3 A bp4 A bp5 A —ibp6 A -ibp7, which uses property 3 to strengthen the inductive hypothesis,

is shown, as a demonstration example, as follows:

open ISTEP
-- arbitrary objects

 op q : -> Name .
-- assumption

-- eq c-recack(s ,q,m)
 eq (m /in ether(s)) =

 eq sta(purse(s,q)) =

 eq p1 = q .
 eq sta(purse(s,p2)) =

 eq (pdofm(m) /inexlog

 pdofm(m) /inexlog
 eq (bal(purse(s,q)) =

 = true .

 true .

epa .

op m : -> Message .

eq

eq

isack(m) = true .

pay(purse(s,q)) = pdofm(m) .

 eq (p2 = q) = false .
idle . eq pay(purse(s,p2)) = pdofm(m) .
log(purse(s,q)) and
log(purse(s,p2))) = false .

pbal(purse(s,q)) - value(pdofm(m))) = false .

18

-- successor state

 eq s' = recack(s,q,m) .
 -- check if the predicate is true.

 red inv3(s,q) implies istep2(pl,p2) .
close

 Note that the predicate "c-recack (s , q, m) = true" is expanded into the first four equations
to get more equations available for term rewriting. inv3 (s , q) is used to strengthen the inductive
hypothesis denoted by inv2 (p1, p2) . Proof passages for the remaining sub-cases of the inductive
case recack are written similarly. Property 4 is used in the proof passages for sub-cases 7 and
13, and property 5 is used in the proof passages for sub-cases 4 and 10.

 We briefly introduce the idea of coming up with property 3 to prove this sub-case. By as-
suming the equations characterizing the sub-case, we first try to let CafeOBJ system reduce the
inductive case istep2 (pl ,p2) directly. However CafeOBJ system does not return true as ex-

pected. By observing the equations of this sub-case, in particular the one "sta (purse (s , q)) = epa" ,
we notice that the status of the purse denoted by p is epa. Our knowledge about the Mondex
system tells us that whenever a purse is in the status epa, the purse has already payed money
and its current balance has been reduced (which is what property 3 states), and this fact (actu-
ally to be proved as a fact) is contrary to the last equation defining predicate bp7. We thus use

property 3 to strengthen the inductive hypothesis and this sub-case can be discharged.
 We last mention an important observation that is found during the verification of property

1. An invariant called here as property 6 is used to strengthen the inductive cases of property
1, which is as follows:

6. For any reachable state s, any two purses p1 and p2

pay(purse(s,p1)) = pay(purse(s,p2)) and not(pi = p2)
 implies

 bal(purse(s,pi)) + bal(purse(s,p2)) <= pbal(purse(s,pi)) + pbal(purse(s,p2))

Property 6 is interesting in the sense that it is stronger than the original property 1. It re-
veals the fact of our Mondex specification that: at any point of a transaction following the
communication protocol, the sum of the current balances of purses is equal or smaller than the
sum of their previous balances before the transaction. In other words, no value is created at any
point of a transaction (not only after the transaction as stated in property 1).

5.3 Summarization of the Specification and Verification

We give a brief summarization of the OTS/CafeOBJ specification and verification of the Mondex
system. The CafeOBJ specification of the OTS model of the Mondex system is approximately
1100 lines. And 55 other invariant properties are proved and used as lemmas to prove the two
desired properties of the Mondex system, and the whole proof scores are approximately 47000
lines. Although the proof scores seem to be long, most of the work is "copy-and-paste" work,
and the difficult task in verification is to come up with some of those 55 lemmas. It took about
5 minutes to have the CafeOBJ system load the CafeOBJ specification and execute all the proof
scores on a desktop computer with 3.2GHz processor and 2GB memory. It took a couple of weeks
to complete the case study. The system specification including those data type specifications,
and the definitions of the 55 invariants can be found from Appendix section.

19

6 Falsification of the Mondex System

As a complementarity of the interactive verification of the OTS/CafeOBJ method, we report
on a way of automatically falsifying the Mondex system by employing Maude model checking

facilities (in particular the Maude search command [13]) to take advantage of (1) the fully
automatic verification/falsification procedure, and (2) informative counterexamples.

 An implemented prototype translator [15] that translates the OTS/CafeOBJ specifications
into corresponding Maude ones is used as the basis for this falsification. As a sibling language
of CafeOBJ, Maude is a specification and programming language based on rewrite logic, which
is equipped with model checking facilities. The primary reason of choosing Maude is that it
supports model checking on abstract data types including inductively defined data types and
does not require the state space of a system to be finite, although the reachable state space of the
system should be finite. This finiteness restriction can be abandoned when using Maude search
command to explicitly explore a finite reachable state space of a system for counterexamples

(namely falsification) .
 One may wonder why we need falsification of the Mondex system since we have already

verified it using the OTS/CafeOBJ method. The reasons are that falsification can be used to
facilitate, in different stages, the interactive verification of the two security properties:

1. Before carrying out the interactive verification, falsifying the two properties can help obtain
 a certain degree of confidence of the correctness (within a finite reachable state space) of

 the system and property specifications.

2. During conducting the interactive verification, generating good and correct lemmas is not
 a simple task. Falsification can help, in this stage, filter out those generated but essentially

 incorrect lemmas.

6.1 Maude Specification of the Mondex System

The translated Maude specifications of data types are very similar to the original CafeOBJ ones

due to being as two sibling algebraic specification languages. We show, as an example, the

translated Maude functional module (for defining data types) of the data type Ether introduced
in Sect. 4.1 as follows:

fmod ETHER is

 pr MESSAGE .
 sort Ether .
 subsort Message < Ether .

 op nil : -> Ether .
 op _,_ : Ether Ether -> Ether [assoc comm]

 op _/in_ : Message Ether -> Bool .
 op get : Ether -> Ether .

 op top : Ether -> Message .
 op empty? : Ether -> Bool .

 vars M M1 M2 : Message .vars E El E2
 eq (M /in nil) = false .

 ceq (M1 /in (M2,E)) = true if (M1 = M2) .
 ceq (M1 /in (M2,E)) = (M1 /in E) if not(M1

 eq get (M) = nil .eq get (M,E)
 eq top(M) = M .eq top(M,E)

 eq empty?(nil) = true .eq empty?(M)
endfm

: Ether .

= M2) .

= E .

= M .

 = false . eq empty?(M,E) = false .

20

 The translation for OTS module is not straightforward as the one for data type modules.

We first briefly introduce the main idea of obtaining a finite model-checkable model from the

infinite OTS one, and then show some of the translated Maude specification. More technical

details (translation rules and soundness proof wrt counterexamples5) can be found in [14, 15].
 The reachable state space of an OTS is generally infinite. We carry out two steps to obtain

a finite model from a potentially infinite OTS to make use of Maude model-checking facilities:

(1) setting a bound to restrict the number of executions of transitions [18], namely to make
the depth of a rewriting tree finite, which is inspired by Bounded Model Checking [19]; and (2)
instantiating some necessary data types to make the number of observers and transitions finite,
namely to make the breadth of a rewriting tree finite.

 Consider two different purses denoted by Maude constants p1 and p2 of sort Name, the
translated Maude specification of the initial state of the OTS/CafeOBJ specification is as follows:

eq init = (purse[pi] : mk-purse(pi,ib(pl,seedv),ib(pl,seedv),is(pi,seedn),idle,none,emptyexlog))
 (purse[p2] : mk-purse(p2,ib(p2,seedv),ib(p2,seedv),is(p2,seedn),idle,none,emptyexlog))
 (ether : nil) (steps : 0) .

 The initial state consists of four terms of observations in the form (obName : obValue) ,
where obName is the observer name possibly with parameters enclosed with [and] , and obValue
is the value returned by the observer on a certain state. The first two terms describe the two

purses p1 and p2, and the third describes the ether. In the last term, steps is an newly
introduced observer with the purpose to restrict the number of executions of transitions, and its
initial value is 0.

 The translated Maude specification of transition recack of the OTS/CafeOBJ specification
is shown, as a demonstration example, as follows:

crl [recack_pi] :
(purse[pl] : PS1) (purse[p2] : PS2) (ether : (M,EH)) (steps : C)

 =>

(purse[pl] : mk-purse(pi,pbal(PS1),bal(PS1),seq(PS1),idle,pay(PS1),log(PS1)))
 (purse[p2] : mk-purse(p2,pbal(PS2),bal(PS2),seq(PS2),sta(PS2),pay(PS2),log(PS2)))
 (ether : (M,EH)) (steps : (C + 1))

if (isack(M) and sta(PS1) = epa and pay(PS1) = pdofm(M) and C < bound) .

 The set of equations of the OTS/CafeOBJ specification that characterizes the transition
recack is translated into Maude conditional rewrite rules. crl is the keyword to declare a

conditional rewrite rule, and recack_p1 in the bracket is the label of this rule, which denotes

that p1 receives the message ack.

 The left-hand side of the rule (before =>) denotes the current state of the OTS, which consists
of four terms of observations. Maude variables PS1 and PS2 of sort Purse denotes the return
values of observer purse on purses p1 and p2, respectively. The term (M , EH) of sort Ether
denotes that current ether consists of a message M and the remaining part EH of the ether. The
right-hand side of the rule (after =>) denotes the successor state of the OTS wrt the execution of
the rule. The component status of purse pl is changed to idle, and other components remain
unchanged. The return value of observer purse on purse p2, and the return value of observer
ether remain unchanged.

 Note that the return value of the newly introduced observer steps is added by 1 after the
execution of the rule. Through defining a predicate C < bound in the condition of the rule, we
can restrict execution of the OTS within finite steps (less than bound, which is a natural number

predetermined by human verifiers).
 5i.e. for any counterexample reported by Maude for the translated specification, there exists a corresponding

one in the original OTS/CafeOBJ specification.

21

 Predicates in the condition of the rule check that: there exists a ack message in the ether;
the purse p1 that is going to receive the message is in the status epa; and the payment detail of
the ack message is equal to the payment detail of p1.

 Another similar Maude rewrite rule is also generated to characterize the situation that purse

p2 receives the ack message. And the sets of equations describing the other seven transitions of
the OTS/CafeOBJ specification are translated similarly.

6.2 Falsification of the Mondex System

We show the translated Maude specification of property 1 of the Mondex system as follows and

property 2 is translated similarly:

search [1] in MONDEX :
init =>* (purse [P1] : PS1) (purse [P2] : PS2) S

 such that not((sta(PS1) = idle and sta(PS2) = idle and

 pay(PS1) = pay(PS2) and not(P1 = P2))
 implies

(bal(PS1) + bal(PS2) <= pbal(PS1) + pbal(PS2))) .

 Maude search command explores the tree of possible rewrites starting at an initial state
init to a final state that matches pattern (purse [P1] : PS1) (purse [P2] : PS2) S and
satisfies the condition denoted by the term after such that. In the above command, MONDEX
is a Maude module that describes the OTS of the Mondex system (in which equation defining
init and those rewrite rules are defined). P1 and P2 are variables of sort Name denoting two
arbitrary purses. S is a variable of sort Sys denoting the remaining terms of an arbitrary state
of the OTS. Note that in the condition part, we use the negation operator not in front of the
term denoting property 1 since we aim at falsification of the property.

 Setting bound to 9, and considering two purses p1 and p2 in the initial state init, we feed
the above search command into Maude system, and No Solution is returned, which denotes
that no counterexample is found.

 We now give a simple example showing that the falsification can help filter out a lemma

generated during interactive verification of the OTS/CafeOBJ method. The lemma named here
as property 7 is as follows:

7. For any reachable state s, any two purses denoted by pi and p2:

pay(purse(s,pl)) = none and from(pay(purse(s,p2))) = pi and not(pi = p2)
 implies

 fromno(pay(purse(s,p2))) = seq(purse(s,pl)).

 Intuitively property 7 says that: if a purse p1's payment detail is none, and the from com-
ponent of the payment detail of another purse p2 is equal to pl, then the fromno component of
the payment detail of p2 is equal to p1's current sequence number. This seems to be reasonable
since when p1's payment detail is none, it means that p1 has never involved in any transactions.
And thus p1's sequence number is never increased. The property describes the situation that
two purses p1 and p2 are going to have a transaction, and p2 has received the startto message,
but p1 has not received the startfrom message.

 However, property 7 is actually incorrect because that even if p1's payment detail is none,
it can execute the abort transition freely before it receives the startfrom message since no
condition is defined for abort. Therefore, p1's sequence number can be increased. A correct
conclusion of property 7 should be fromno(pay(purse(s,p2))) <= seq(purse(s,pl))•

22

 To realize this incorrectness of property 7 by using the interactive verification of the OTS/CafeOBJ
method, a certain amount of proof effort is needed, however, the incorrectness can be immedi-

ately reported by Maude system as a counterexample as follows:

 state

state

state

state

0: ...
===[crl ...

1: ...
===[crl ...

8: ...
===[crl ..

51: ...

[label startpay_pl_p2_con]]___>

[label recstartto_p2]]___>

[label abort_pl]]===>

where state 0 denotes the initial state and state 51 denotes the state (reached from state 0
by applying rewrite rules) where a counterexample is found. The omitted parts after each num-
bered states are terms denoting corresponding states, and the omitted parts after crl are terms

denoting the rewrite rules with corresponding labels. For example, the label startpay_p1_p2_con

denotes that two purses p1 and p2 are going to do a transaction with value con (a declared Maude
constant). In state 51, the f romno component of p2 is is (p1 ,seedn), but the sequence number
of p1 is nextsegnum(is(p1, seedn)), which is contrary to property 7.

6.3 Some Further Issues about Verification and Falsification

A possible question that one may ask about the above introduced falsification method is that:

what if the depth of an existing counterexample of a predicate is deeper than the predetermined

bound, namely that the counterexample cannot be found within the bounded reachable state

space? Trivially increasing the value of bound may not work due to the state-explosion problem.

 We have proposed a procedure called Induction-Guided Falsification (IGF) [20] to solve this
problem. Assume a state predicate p to be proved invariant wrt an OTS, which however, has
a counterexample of depth n + m, the procedure IGF first employs Maude search command

(or Maude model checker) to explore a bounded, say n, reachable state space of the OTS
for a counterexample. If no counterexample is found, IGF employs (structural) induction of
the OTS/CafeOBJ method to try to verify p, during which some other state predicates called
necessary lemmas may be obtained. When the CafeOBJ reduction result is false for a sub-case
of an inductive case of p in a proof passage, a necessary lemma can be constructed by negating
the conjunction of all the equations characterizing the sub-case. The necessary lemma can be
used to discharge this false case, and its basic idea is that the sub-case may not be possible,
or in other words, the states characterized by the sub-case may not be reachable.

 Two important features of necessary lemmas are briefly that: (1) If p has a counterexample
of length n + 1, then one of its necessary lemmas has a counterexample of length n, and (2)
if a necessary lemma has counterexamples, then p also has counterexamples. Based on these
two features of necessary lemmas, IGF repeats induction and searching counterexamples for
each of these state predicates (p and the recursively constructed necessary lemmas) until a
counterexample is found or p is proved.

 The procedure IGF can be used very systematically. An algorithm for IGF has been described
in [20], and we have also investigated several issues related to automating IGF in [21]. One
limitation of IGF is that it is not suitable for proving a state predicate is invariant, since

necessary lemmas used to discharge false cases are the weakest state predicates to strengthen

inductive hypothesis and may not be appropriate ones.

 We now briefly discuss a simple idea for systematically generating candidate lemmas (such
as those of properties 3, 4 and 5 in Sect. 5.2), in which falsification can be very useful. A
sub-case of an inductive case is characterized by a set of equations, say E. When CafeOBJ
system reduces to false for this sub-case, a necessary lemma in the form '(/ \eEE e) can be

23

constructed. Note that from this set E of equations, we can also systematically construct other
state predicates in the form i(/ \e,EE, e'), where E' E 2E A E' $ E, and these state predicates
are stronger than the necessary lemma since -'(Ae'EE' el) = '(AeEE e). Basically, all of these
state predicates are candidates that can be used, instead of the necessary lemma and maybe
more appropriately, to strengthen inductive hypothesis. Falsification can be used here to filter
out those incorrect candidates. This idea is part of a procedure called Combined Falsification
and Verification (CFV) described in [22].

7 Related Work

The Mondex system has been originally specified and manually proved for correctness using the Z

methods [5]. In [5], two models of the Mondex system are developed, where the first is an abstract
model that models value exchanges between purses as atomic transaction, and the second is
a concrete model that models value exchanges between purses following the communication
protocol. It is then proved that the two security properties hold for the abstract model, and the
concrete model is a refinement of the abstract one (actually an intermediate model is introduced
to ease the proof) .

 Following the original Z work, a number of other formal methods, such as KIV [6, 7], RAISE
[8] and Alloy [9] etc, have been employed to the Mondex problem. We discuss these related work
wrt the aspects of modeling, refinement proof (or verification) and falsification, respectively.

 The RAISE and Alloy work seem to intentionally follow closely the modeling methods of
the original Z work while keeping their own features. The KIV work provides an alternative
operational style formalization of the Mondex system using (two) abstract state machines, and
makes several simplifications and modifications, which include, for example: removed the global
input while obtaining the input from the ether; removed the ignore operation that does nothing

(which is needed by the refinement theory used in Z work); merged the purses' two idling status
eaFrom and eaTo into one idle status, etc.

 Our work of modeling the Mondex system as an OTS in an operational style is inspired
by the KIV work, which from our point of view is simpler to the Z modeling method (similar
statement is made in the KIV work). In addition, we made several further modifications to the
KIV modeling as follows:

1. Since messages existing in ether can be lost, we abandoned the assumption made in KIV

 modeling that startfrom and startto messages are always available in ether. In our

 modeling, no message exists in the initial ether.

2. To reflect that a purse can abort a transaction at any time as the card-holder wishes or

 due to purses' internal reasons, we did not define any effective condition for the transition

 abort, while a condition was defined for abort in KIV modeling.

3. We explicitly defined two transitions duplicate and drop to characterize that messages in

 the ether can be replayed and lost. The KIV modeling used ether' C ether to characterize

 that messages can be lost, but did not explicitly show that messages can be replayed.

 To show the correctness of the properties to the Mondex system, refinement proofs are devel-

oped in Z, KIV, RAISE and Alloy work in different forms and with different features. Although

the refinement construction and proof strategy is reasonable and suitable for the Mondex prob-

lem, we employ an alternative way of expressing and verifying the security properties of the

Mondex system directly as invariants of an OTS through using an introduced component "pre-

vious balance" of purses. Note, however, that even if different proof strategies are used, we share

24

some similar or exactly same proof obligations. First, for the property of payment details that

 from and to components should be different (Sect. 4.3.2 of [5]), and for the properties P-2 to
P-4 for purses (Sect. 4.6 of [5]), which are used in the refinement proofs of the Z and KIV work,
we have proved and used as lemmas exactly same properties in our verification; and second, for

some of the properties B-2 to B-12 expressing constraints on ether (Sect. 5.3 of [5]), we have
proved and used as lemmas very similar properties.

 In the RAISE and Alloy work, two different ways of falsification of the Mondex system
are described by means of translating the RSL (RAISE Specification Language) specification
of the Mondex system into the input of SAL model checker, and respectively, appealing the
Alloy analyzer (model-finding technique). In our work, Maude search command is used for
conducting falsification through a translation into Maude specification of the Mondex system.
Our work is similar to the above two work in the sense that we all consider a finite reachable
state space (called finite scope in Alloy terminology), such as finite number of purses. However,
our work is different with the RAISE work in the sense that we do not need to make those
changes of the Mondex system as RAISE work did: (1) the possible loss of messages was not
modeled in RAISE work to reduce possible changes to the ether, and (2) ranges of money and
sequence numbers were restricted to 0..3, etc. One possible reason for these may be that we are
able to do falsification on inductively defined data types. For example, Ether is defined using
data constructors nil and _ , _. This point is also a possible difference between our work and
the Alloy work.

8 Conclusion

We have described two algebraic approaches to both verification and falsification of the Mondex
system, and how the falsification can be used to facilitate the verification. We have employed
alternative ways of (1) modeling the Mondex system in an operational style, rather than in
a relational style, and (2) expressing and verifying (and falsifying) security properties of the
Mondex system directly in terms of invariants. This work therefore provides a different way of
viewing the Mondex analysis problem and can be used to compare different modeling and proof
strategies. In addition, our model of the Mondex system makes several simplifications to the
original Z model (as inspired by the KIV model), and several further modifications to the KIV
model to keep closer to the real problem.

 In our modeling and verification of the Mondex system, we did not consider intruder purses
that may send faked Req, Val and Ack messages based on possibly gleaned information. This
is because that it is assumed that those messages cannot be forged, which is guaranteed by
some (unclear) means of cryptographic system. In the KIV work, a possible communication

protocol using cryptographic algorithm is developed. Our first future work is to extend our
modeling and verification by considering possible intruder purses under a cryptographically
secured communication protocol, in which it should be proved that the three messages cannot
be forged rather than assuming it.

 Our second future work relates to falsification. We are going to investigate the technical
issue that how many entities (such as purses) are enough to uncover possible counterexamples
when the number of the entities has to be made finite for falsification. Furthermore, we are
also going to extensively investigate ways of utilizing falsification to facilitate verification of the
OTS/CafeOBJ method, and implement tools that automate the procedure IGF, and possibly
also the procedure CFV.

25

Acknowledgements

This research is conducted as a program for the "21st Century COE Program" in Special Coordi-
nation Funds for promoting Science and Technology by Ministry of Education, Culture, Sports,
Science and Technology. We would like to thank Chris George and Anne E. Haxthausen for
kindly sharing their RSL specification of the Mondex problem with us.

References

 [1] MasterCard International Inc. Mondex. URL: http://www.mondex.com/.

[2] Mondex Case Study. URL: http://qpq.csl.sri.com/vsr/private/repository/MondexCaseStudy.

[3] UK Computing Research Committee, Grand Challenges in Computer Research. URL:
 http://www.ukcrc.org.uk/grand_challenges/index.cfm

[4] J. Woodcock, Grand Challenges 6: Dependable Systems Evolution. URL: http://www.
 fmnet.info/gc6/.

[5] S. Stepney, D. Cooper and J. Woodcock. An electronic purse specification, refinement, and
 proof. Technical monograph PRG-126, Oxford University Computing Laboratory, July,

 2000.

[6] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The Mondex challenge: machine
 checked proofs for an electronic purse. Technical Report, University of Augsburg, 2006.

[7] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The Mondex challenge: machine
 checked proofs for an electronic purse. In: FM 2006, LNCS Vol.4085, Springer (2006),

 16-31

[8] A. Haxthausen, C. George, and M. Schiitz. Specification and proof of the Mondex electronic
 purse. In: AWCVS'06, UNU-IIST Report No. 347, 2006, 209-224

[9] T. Ramananandro. Mondex, An Electronic Purse: Specification and refine-
 ment checks with the Alloy model-finding method. Internship Report, 2006.

http://www.eleves.ens.fr/home/ramanana/work/mondex/.

[10] K. Ogata and K. Futatsugi: Proof scores in the OTS/CafeOBJ method. In: FMOODS
 2003, LNCS Vol.2884, Springer (2003), 170-184

[11] CafeOBJ Web Site. URL: http://www.ldl.jaist.ac.jp/cafeobj/, 2007

[12] R. Diaconescu and K. Futatsugi: CafeOBJ report. AMAST Series in computing, 6. World
 Scientific, Singapore, 1998.

[13] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott.
 Maude manual (Version 2.2). URL: http://maude.cs.uiuc.edu/maude2-manual/, 2007

[14] M. Nakamura, W. Kong, K. Ogata and K. Futatsugi. A complete specification translation
 from OTS/CafeOBJ into OTS/Maude. IEICE Technical Report, SS2006, 13, 2006, 1-6

[15] W. Kong, K. Ogata, and K. Futatsugi. A lightweight integration of theorem proving and
 model checking for system verification. In: APSEC'05, IEEE CS, 2005, 59-66

26

[16] J. Hsiang and N. Dershowitz. Rewrite methods for clausal and nonclausal theorem proving.
 In ICALP 1983, LNCS Vol.154. Springer (1983), 331-346

[17] K. Ogata and K. Futatsugi. Proof score approach to verification of liveness properties. In
 SEKE 2005, 608-613

[18] K. Ogata, W. Kong and K. Futatsugi. Falsification of OTSs by searches of bounded reach-
 able state spaces. In SEKE 2006, 440-445

[19] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu. Bounded Model Checking.
 Advances in Computers, Vol. 58, Academic Press, 2003.

[20] K. Ogata, M. Nakano, W. Kong and K. Futatsugi. Induction-Guided Falsification. In
 ICFEM 2006, LNCS Vol. 4260, Springer (2006), 114-131

[21] W. Kong, K. Ogata and K. Futatsugi. A review of Induction-Guided Falsification and
 towards its automation. In AWCVS 2006, UNU-IIST Technical Report 347, 2006, 48-59

[22] W. Kong. Facilitating inductive verification with counterexample discovery capability. PhD
 thesis, JAIST, 2006.

A Mondex Specifications including Data Types

-- Bal
, a subsort of Int, is used to represent balances of purses

mod! BAL {
 pr(INT)

 [Bal < Int]
 op seedy : -> Bal

 op ___ : Bal Bal -> Bool {comm}

vars I J M N : Bal
 eq (I = I) = true .

 eq (I >= 0) = true .
 ceq (I <= J) = true if (I = J) .

 eq (I - I) = 0 .
 ceq ((I + J) <= (M + N)) = true if ((I <= M) and (J <= N)) .

 op ___ : Int Int -> Bool {comm}
vars X Y P Q : Int

 eq (X = X) = true .
 ceq (X <= Y) = true if (X = Y) .

 ceq ((X + P) <= (Y + Q)) = true if ((X <= Y) and (P <= Q)) .
 eq (X = X - I) = false .

 ceq ((X - P) <= Y) = true if (X <= Y) .
}

-- Name is used to represent the name of purses
mod! NAME Name {

 [Name]
 op ___ : Name Name -> Bool {comm}
var N : Name

 eq (N = N) = true .

}

-- Ibal is used to generate the initial balance of purses .

mod! IBAL {
 pr(NAME + BAL)

 27

 [Ibal < Bal]
 op ib : Name Bal -> Ibal

 op nofibal : Ibal -> Name
 op valofibal : Ibal -> Bal

 op ___ : Ibal Ibal -> Bool {comm}

 var N : Namevar P : Bal
 vars I I1 I2 : Ibal

 eq nofibal(ib(N,P)) = N .
 eq valofibal(ib(N,P)) = P .

 eq (I = I) = true .
 eq (I1 = I2) = (nofibal(I1) = nofibal(I2) and valofibal(I1) = valofibal(I2)) .

}

-- Seqnum is used to represent the sequence number to be used by purses
-- in next transaction .

mod! SEQNUM {

pr (NAT)
 [Seqnum < Nat]

 op seedn : -> Seqnum
 op ___ : Seqnum Seqnum -> Bool {comm}
 op nextseqnum : Seqnum -> Seqnum

 vars S S1 : Seqnum
 eq (S = S) = true .

 eq (S = nextseqnum(S)) = false .
 eq (S < nextseqnum(S)) = true .

 eq (S < S) = false .
 ceq (S < nextseqnum(S1)) = true if (S < S1) .

 ceq (S < nextseqnum(S1)) = true if (S <= S1) .
 ceq (S = nextseqnum(S1)) = false if (S <= S1) .
 eq (nextseqnum(S) <= S) = false .

}

-- Inum is used to generate the initial seqnum of purses .

mod! INUM {
 pr(NAME + SEQNUM)

[Inum < Seqnum]
 op is : Name Seqnum -> Inum

 op nofinum : Inum -> Name
 op sofinum : Inum -> Seqnum
 op ___ : Inum Inum -> Bool {comm}

•

 vars I I1 I2 : Inum
 var N : Namevar S : Seqnum

 eq nofinum(is(N,S)) = N .eq sofinum(is(N,S)) = S .
 eq (I = I) = true .

 eq (I1 = I2) = (nofinum(I1) = nofinum(I2) and sofinum(I1) = sofinum(I2)) .

}

-- Status is used to represent the status of purses

mod! STATUS {
 [Status]

 ops idle epr epv epa : -> Status
 op ___ : Status Status -> Bool {comm}
 var PS : Status

 eq (PS = PS) = true .
 eq (idle = epr) = false .eq (idle = epv) = false .

 eq (idle = epa) = false .eq (epr = epv) = false .

28

 eq (epr = epa) = false .eq (epv = epa) = false .
 }

 -- Paydetail is used to represent the Paydetail of purses

mod! PAYDETAIL {
 pr(BAL + NAME + SEQNUM)

 [Emptypd < Paydetail]
 op none : -> Emptypd

 op ___ : Paydetail Paydetail -> Bool {comm}
 op mk-pay : Name Seqnum Name Seqnum Bal -> Paydetail

 op from : Paydetail -> Name
 op fromno : Paydetail -> Seqnum
 op to : Paydetail -> Name
 op tono : Paydetail -> Seqnum
 op value : Paydetail -> Bal

 vars F T : Namevars FN TN : Seqnum
 vars V : Balvar PD : Paydetail

 eq from(mk-pay(F,FN,T,TN,V)) = F .
 eq fromno(mk-pay(F,FN,T,TN,V)) = FN .

 eq to(mk-pay(F,FN,T,TN,V)) = T .
 eq tono(mk-pay(F,FN,T,TN,V)) = TN .

 eq value(mk-pay(F,FN,T,TN,V)) = V .

 eq (PD = PD) = true .
 eq (mk-pay(F,FN,T,TN,V) = none) = false .

}

-- Exlog is used to represent the exception log of purses,

-- Exlog is essentially is list of paydetails.

mod! EXLOG {
 pr(PAYDETAIL + INT)

 [Paydetail < Exlog]
 op emptyexlog : -> Exlog

 op _0_ : Exlog Exlog -> Exlog
 op _/inexlog_ : Paydetail Exlog -> Bool

 vars EXLOG El E2 : Exlog
 vars PD PD1 PD2 : Paydetail

 eq PD1 /inexlog emptyexlog = false .
 ceq PD1 /inexlog (PD2 @ EXLOG) = true if (PD1 = PD2) .

 ceq PD1 /inexlog (PD2 @ EXLOG) = PD2 /inexlog EXLOG if not(PD1 =

 op ___ : Exlog Exlog -> Bool
 eq (EXLOG = EXLOG) = true .

 ceq ((PD1 @ El) = (PD2 @ E2)) = false if not(PD1 = PD2) .
 ceq ((PD1 @ El) = (PD2 @ E2)) = (El = E2) if (PD1 = PD2) .
 eq ((PD @ El) = emptyexlog) = false .

 op lost : Paydetail Exlog -> Int
 eq lost(PD,EXLOG) = (if (PD /inexlog EXLOG) then value(PD) else 0

}

-- Purse is used to represent the purses themselves.
mod! PURSE {

 pr(STATUS + EXLOG + INT)
 [Purse]

 op mk-purse : Name Int Int Seqnum Status Paydetail Exlog -> Purse
 op ___ : Purse Purse -> Bool {comm}
 op name : Purse -> Name

 op pbal : Purse -> Int

PD2) .

fi) .

29

op bal : Purse -> Int

op seq : Purse -> Seqnum

op sta : Purse -> Status

op pay : Purse -> Paydetail

op log : Purse -> Exlog

var P

var N

var S

var PD

: Purse

: Name

: Seqnum

: Paydetail

vars

var

var

V1 V2 : Int

ST : Status

EXLOG : Exlog

eq name(mk-purse(N,V1,V2,S,ST,PD
eq pbal(mk-purse(N,V1,V2,S,ST,PD
eq bal(mk-purse(N,V1,V2,S,ST,PD,
eq seq(mk-purse(N,V1,V2,S,ST,PD,
eq sta(mk-purse(N,V1,V2,S,ST,PD,
eq pay(mk-purse(N,V1,V2,S,ST,PD,
eq log(mk-purse(N,V1,V2,S,ST,PD,

,EXLOG)) =
,EXLOG)) =
EXLOG)) =
EXLOG)) =
EXLOG)) =
EXLOG)) =
EXLOG)) =

N .

V1 .

V2 .

S .

ST .

PD .

EXLOG .

eq (P = P) = true .

}

-- Message is used to represent messages transferred
mod! MESSAGE {

pr(PAYDETAIL)
 [Message]
 op startfrom : Name Bal Seqnum -> Message

 op startto : Name Bal Seqnum -> Message
 op req : Paydetail -> Message

op val : Paydetail -> Message
 op ack : Paydetail -> Message

 op isstartfrom : Message -> Bool
 op isstartto : Message -> Bool

 op isreq : Message -> Bool
 op isval : Message -> Bool

op isack : Message -> Bool

 op nameofm : Message -> Name
 op valueofm : Message -> Bal
 op seqofm : Message -> Seqnum

 op pdofm : Message -> Paydetail

 op ___ : Message Message -> Bool {comm}
var N : Namevar I :
var S : Seqnumvar PD :

 vars M M1 M2 : Message

 eq isstartfrom(startfrom(N,I,S)) = true .

 eq isstartfrom(startto(N,I,S)) = false .
 eq isstartfrom(req(PD)) = false .

 eq isstartfrom(val(PD)) = false .
 eq isstartfrom(ack(PD)) = false .

 eq isstartto(startto(N,I,S)) = true .
 eq isstartto(startfrom(N,I,S)) = false .

 eq isstartto(req(PD)) = false .
 eq isstartto(val(PD)) = false .

 eq isstartto(ack(PD)) = false .

 eq isreq(req(PD)) = true .

Bal

Paydetail

30

eq isreq(startfrom(N,I,S)) = false .
eq isreq(startto(N,I,S)) = false .
eq isreq(val(PD)) = false .

eq isreq(ack(PD)) = false .

eq isval(val(PD)) = true .
eq isval(startfrom(N,I,S)) = false .
eq isval(startto(N,I,S)) = false .
eq isval(req(PD)) = false .
eq isval(ack(PD)) = false .

eq isack(ack(PD)) = true .
eq isack(startfrom(N,I,S)) = false .
eq isack(startto(N,I,S)) = false .
eq isack(req(PD)) = false .
eq isack(val(PD)) = false .

eq nameofm(startfrom(N,I,S)) = N .

eq nameofm(startto(N,I,S)) = N .
eq valueofm(startfrom(N,I,S)) = I .
eq valueofm(startto(N,I,S)) = I .
eq segofm(startfrom(N,I,S)) = S .
eq segofm(startto(N,I,S)) = S .
eq pdofm(req(PD)) = PD .
eq pdofm(val(PD)) = PD .
eq pdofm(ack(PD)) = PD .

eq (pdofm(M) = none) = false .

eq (M = M) = true .
ceq (M1 = M2) = (isstartfrom(M2) and nameofm(M1) = nameofm(M2) and

 valueofm(M1) = valueofm(M2) and seqofm(M1) = seqofm(M2))
 if isstartfrom(M1) .

ceq (M1 = M2) = (isstartto(M2) and nameofm(M1) = nameofm(M2) and
 valueofm(M1) = valueofm(M2) and seqofm(M1) = seqofm(M2))

 if isstartto(M1) .

ceq (M1 = M2) = (isreq(M2) and pdofm(M1) = pdofm(M2)) if isreq(M1) .
ceq (M1 = M2) = (isval(M2) and pdofm(M1) = pdofm(M2)) if isval(M1) .
ceq (M1 = M2) = (isack(M2) and pdofm(M1) = pdofm(M2)) if isack(M1) .

}

-- Ether contains

mod! ETHER {
 -- The remaining

}

messages, is used to represent the communication channel

parts are those introduced in Sect. 4.1.

-- The Mondex communication protocol
mod* MONDEX {

 pr(IBAL + INUM + PURSE + ETHER)
[Sys]
 -- The remaining parts are those introduced in Sect. 4.2.

}

B Invariants Proved

Property 1 shown in the paper corresponds to invl00 and property 2 to inv440. Besides, property

3, 4, 5 and 6 corresponds to invl30, inv140, inv470 and inv330. These invariants are defined in

module INV, and their definitions for basic formulas to be proved in inductives cases are defined

in module ISTEP.

31

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

proved with inv110, inv120, inv130, inv140, and inv330
inv100(S,P1,P2) =

((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and

pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
implies
((bal(purse(S,P1)) + bal(purse(S,P2)))

<_ (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

proved with inv600, inv610, inv620, inv650, inv150, inv160, inv200,
inv170 and inv180
inv110(S,P1,P2,M) =

(CM /in ether(S) and isval(M) and pay(purse(S,P1)) = pdofm(M) and
sta(purse(S,P1)) = epv and pay(purse(S,P2)) = pdofm(M) and
not(P1 = P2)) implies

(bal(purse(S,P2)) = (pbal(purse(S,P2)) - value(pay(purse(S,P2)))))) .

proved by itself
inv120(S,P) =

(sta(purse(S,P)) = epv

proved with inv150
inv130(S,P) =

((sta(purse(S,P)) =
implies

(bal(purse(S,P)) =

implies

epa)

(bal(purse(S,

pbal(purse(S, P)) -

P)) = pbal(purse(S,

value(pay(purse(S,

P)))) .

P))))) .

proved with inv260, inv120, inv160, inv200 and inv270
inv220, inv290, inv510, inv560, inv590
inv140(S,P1,P2,M) =
(CM /in ether(S) and isack(M) and pay(purse(S,P2)) = pdofm(M) and
sta(purse(S,P2)) = idle and sta(purse(S,P1)) = epa and

pay(purse(S,P1)) = pdofm(M) and not(P1 = P2))
implies

(bal(purse(S,P2)) = (pbal(purse(S,P2)) + value(pay(purse(S,P2)))))) .

proved by itself
inv150(S,P) =

((sta(purse(S,P)) =
implies (bal(purse(S

epr)

,P)) = pbal(purse(S,

proved with inv210
inv160(S,P,P1,P2,PD) =
((pay(purse(S,P1)) = PD and
and not(P1 = P2) and not(P =
implies not(pay(purse(S,P))

proved with inv190
inv170(S,P1,P2) =

((sta(purse(S,P1))

pay(purse(S,P1)) =

proved with inv150
inv180(S,P) =

((sta(purse(S,P)) =
implies

(bal(purse(S,P)) =

proved by itself
inv190(S,P) =

((sta(purse(S,P)) =

P)))) .

pay(purse(S,P2))
P1) and not(P =

= PD)) .

= epv and sta(purse(S ,P2))
pay(purse(S,P2))) implies

epa)

pbal(purse(S,

epv) implies

P)) -

= PD

P2))

(P1

and

epv

not (PD =

 and

P2)) .

value(pay(purse(S,

(to(pay(purse(S, P))) =

none)

P))))) .

P)) .

32

..r

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

proved by itself
inv200(S,P) =

((sta(purse(S,P)) = epv) implies not(pay(purse(S,P)) = none)) .

proved with inv220
inv210(S,P,P1,P2,PD) =

((not(P1 = P) and not(P2 = P) and pay(purse(S,P1)) = PD and

pay(purse(S,P2)) = PD and not(P1 = P2) and not(PD = none))
implies (not(from(PD) = P) and not(to(PD) = P))) .

proved by itself
inv220(S,P,PD) =

((pay(purse(S,P)) = PD and not(PD = none))
implies (from(PD) = P or to(PD) = P)) .

proved by itself
inv230(S,P) =

((sta(purse(S,P)) = epr) implies (from(pay(purse(S,P))) = P)) .

proved with inv220 and inv230
inv240(S,P1,P2) =

((sta(purse(S,P1)) = epr and pay(purse(S,P1)) = pay(purse(S,P2))
and not(P1 = P2)) implies (to(pay(purse(S,P2))) = P2)) .

proved by itself
inv250(S,P) =
((sta(purse(S,P)) = epa or sta(purse(S,P)) = epr)
implies not(pay(purse(S,P)) = none)) .

proved with inv280, inv120, inv160, inv200, inv230, and inv290
inv560, inv590
inv260(S,P1,P2,M) =
(((M /in ether(S)) and isack(M) and pay(purse(S,P1)) = pdofm(M) and
sta(purse(S,P1)) = idle and pay(purse(S,P2)) = pdofm(M) and
not(P1 = P2) and sta(purse(S,P2)) = epr)
implies (bal(purse(S,P1)) = (pbal(purse(S,P1)) + value(pdofm(M))))) .

proved with inv300
inv270(S,P1,P2) =

((sta(purse(S,P1)) = epa and sta(purse(S,P2)) = epa and

pay(purse(S,P1)) = pay(purse(S,P2))) implies (P1 = P2)) .

proved with inv120, inv320 and inv290, inv560, inv220, inv590
inv280(S,P,M) =

(((M /in ether(S)) and isack(M) and

pay(purse(S,P)) = pdofm(M) and sta(purse(S,P)) = idle and
not(P = from(pdofm(M))))
implies (bal(purse(S,P)) = (pbal(purse(S,P)) + value(pdofm(M))))) .

proved with inv230
inv290(S,P) =
((sta(purse(S,P)) = epa) implies (from(pay(purse(S,P))) = P)) .

proved with inv290 and inv310
inv300(S,P1,P2) =

((sta(purse(S,P1)) = epa and sta(purse(S,P2)) = epr and

pay(purse(S,P1)) = pay(purse(S,P2))) implies (P1 = P2)) .

proved with inv230
inv310(S,P1,P2) =
((sta(purse(S,P1)) = epr and sta(purse(S,P2)) = epr and

 33

pay(purse(S,P1)) = pay(purse(S, P2))) implies (P1 = P2)) .

-- proved with inv220

eq inv320(S,P1,P2) =
C(sta(purse(S,P1))
 and not(P1 = P2))

and inv190

= epv

implies

and pay(purse(S,P1)) = pay(purse(S,
 (from(pay(purse(S,P2))) = P2)) .

P2))

-- deduced with inv340 and inv350

eq inv330(S,P1,P2) =
((pay(purse(S,P1)) = pay(purse(S,P2)) and

 implies ((bal(purse(S,P1)) + bal(purse(S,
<_ (pbal(purse(S,P1)) +

not(P1 = P2))
P2)))

pbal(purse(S, P2))))) .

-- proved by itself

eq inv340(S,P1,P2) =

((pay(purse(S,P1))

 pay(purse(S,P1)) =
((bal(purse(S,P1))

= pay(purse(S ,P2)) and
none) implies
+ bal(purse(S,P2)))

<_ (pbal(purse(S,P1)) +

not(P1 = P2)

pbal(purse(S,

and

P2))))) .
ASIR

-- proved with inv360 ,
eq inv350(S,P1,P2) =

((pay(purse(S,P1)) =
not(pay(purse(S,P1))

((bal(purse(S,P1)) +
 <=

inv370 , inv110, inv120,

pay(purse(S,P2)) and
= none)) implies

bal(purse(S,P2)))

(pbal(purse(S,P1)) +

inv630, inv580.

not(P1 = P2)

pbal(purse(S,

and

P2))))) .

-- proved with inv230
, inv420

eq inv360(S,P1,P2) =

 ((from(pay(purse(S,P2))) = P1 and

 not(P1 = P2)) implies (bal(purse(S

pay(purse(S,P1)) = none and
,P2)) = pbal(purse(S,P2)))) .

-- proved with inv430 and

eq inv370(S,P1,P2) =

((to(pay(purse(S,P2)))
 not(P1 = P2)) implies

inv190.

= P1 and pay(purse(S,P1)) = none

(bal(purse(S,P2)) = pbal(purse(S,

 and

P2)))) .

-- proved with inv390

eq inv380(S,P1,P2) =

((from(pay(purse(S,P2))) =

 implies (fromno(pay(purse(S

P1 and

,P2)))

not(pay(purse(S
<= seq(purse(S,

,P2)) =
P1)))) .

none))

-- proved by itself

eq inv390(S,P,M) =
((M /in ether(S) and

 implies (seqofm(M) <_
isstartto(M)

seq(purse(S,

and nameofm (M) = P)

P)))) .

-- proved with inv410

eq inv400(S,P1,P2) =

((to(pay(purse(S,P2))) =
 implies (tono(pay(purse(S

P1 and

,P2)))

not(pay(purse(S
<= seq(purse(S,

,P2)) =
P1)))) .

none))

-- proved by itself

eq inv410(S,P,M) =

((M /in ether(S) and
 implies (seqofm(M) <_

isstartfrom(M) and nameofm(M) = P)

seq(purse(S,P)))) .

-- proved with inv230 , inv250
eq inv420(S,P,M) =

((M /in ether(S) and isval(M)
 implies not(pay(purse(S,P)) =

and from(pdofm(M))

none)) .

= P)

34

-- proved by itself

eq inv430(S,P,M) =

 ((M /in ether(S) and isreq(M)
 implies not(pay(purse(S,P)) =

and to (pdofm (M)) = P)
none)) .

-- proved with inv110 , inv120, inv130, inv140, inv150, inv470,
-- inv450 , inv520, inv220, inv200, inv190, inv510, inv530, inv180,
-- inv540 , inv550, inv560, inv570, inv480, inv250, inv290.
eq inv440(S,P1,P2) =

 ((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and

 pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2))
 implies

 (if (pay(purse(S,P1)) /inexlog log(purse(S,P1))) and
 (pay(purse(S,P2)) /inexlog log(purse(S,P2)))

 then ((bal(purse(S,P1)) + bal(purse(S,P2)) +
lost(pay(purse(S,P1)),log(purse(S,P1))))

 = (pbal(purse(S ,P1)) + pbal(purse(S,P2))))
 else ((bal(purse(S,P1)) + bal(purse(S,P2)))

 = (pbal(purse(S ,P1)) + pbal(purse(S,P2)))) fi)) .

-- proved with inv460

eq inv450(S,P) =
 (sta(purse(S,P)) = epv

 implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved with inv190 , inv200, inv220, inv250
-- inv490 , inv500 and inv510.
eq inv460(S,P,PD) =

 ((PD /inexlog log(purse(S,P)))
 implies (if from(PD) = P then (fromno(PD)

 else (tono(PD) <

, inv290, inv450, inv470,

< seq(purse(S,P)))

seq(purse(S,P))) fi)) .

-- proved with inv480

eq inv470(S,P) =

 (sta(purse(S,P)) = epa
 implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved with inv460

eq inv480(S,P) =
 (sta(purse(S,P)) = epr

 implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved by itself

eq inv490(S,P) =
 (sta(purse(S,P)) = epv

 implies tono(pay(purse(S, P))) < seq(purse(S, P))) .

-- proved with inv660

eq inv500(S,P) =
 (sta(purse(S,P)) = epa

 implies fromno(pay(purse(S, P))) < seq(purse(S, P))) .

-- proved by itself

eq inv510(S,P) =
(not(pay(purse(S,P))
not(from(pay(purse(S,

= none)

P))) =

 implies
to(pay(purse(S, P))))) .

-- proved with inv460

eq inv520(S,P) =
((pay(purse(S,P))

, inv480,

/inexlog

inv450, inv190

log(purse(S, P))

, inv200,

and

inv510 and inv130

35

from(pay(purse(S,P))) = P) implies
(bal(purse(S,P)) = pbal(purse(S,P)) - value(pay(purse(S,P))))) .

eq

eq

proved with inv580, inv170, inv590, inv560, inv150
inv530(S,P1,P2) =
((sta(purse(S,P2)) = idle and sta(purse(S,P1)) = epv

pay(purse(S,P1)) = pay(purse(S,P2)) and
not(pay(purse(S,P2)) /inexlog log(purse(S,P2))) and
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

proved with inv480, inv450,
inv540(S,P) =

((pay(purse(S,P)) /inexlog
to(pay(purse(S,P))) = P)
implies (bal(purse(S,P)) =

and

not(P1 = P2))

inv120, inv290, inv510, inv250

log(purse(S,P)) and

pbal(purse(S,P)))) .

eq
proved with inv560,
inv550(S,P) =
((sta(purse(S,P)) =
not(pay(purse(S,P))
and to(pay(purse(S,
implies

(bal(purse(S,P)) =

inv510, inv230, inv290, inv250, inv450, inv480, inv120

idle and
/inexlog log(purse(S,P)))

P))) = P and not(pay(purse(S,P)) = none))

pbal(purse(S,P)) + value(pay(purse(S,P))))) .

eq

proved by itself
inv560(S,P) =

(sta(purse(S,P)) = idle or
(if from(pay(purse(S,P))) = P
then (sta(purse(S,P)) = epr or sta(purse(S,P)) = epa)
else sta(purse(S,P)) = epv fi)) .

eq

eq

proved with inv630,
inv570(S,P1,P2) =

((sta(purse(S,P1)) =
and not(P1 = P2)) im

inv310, and inv640

epr and pay(purse(S,P1)) = pay(purse(S,P2))

plies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

proved with inv400, inv610 and inv620
inv580(S,P1,P2) =

((to(pay(purse(S,P2))) = P1 and
tono(pay(purse(S,P2))) = seq(purse(S,P1))
and not(P1 = P2) and not(pay(purse(S,P2)) = none))
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

eq

eq

proved with inv600 and inv170
inv590(S,P,M) =
((M /in ether(S) and isack(M) and pay(purse(S,P)) = pdofm(M))
implies (not(sta(purse(S,P)) = epv))) .

proved with inv610 and inv190
inv600(S,P,M) =

((M /in ether(S) and isack(M) and to(pdofm(M)) = P)
implies tono(pdofm(M)) < seq(purse(S,P))) .

eq

proved with inv250, inv230, inv510, inv620
inv610(S,P,M) =
((M /in ether(S) and isval(M) and to(pdofm(M)) = P)
implies tono(pdofm(M)) < seq(purse(S,P))) .

eq
proved by itself
inv620(S,P,M) =

((M /in ether(S) and isreq(M) and to(pdofm(M)) = P)

36

eq

eq

eq

eq

implies tono(pdofm(M)) < seq(purse(S,P))) .

proved with inv380, inv650 and inv230
inv630(S,P1,P2) =

((from(pay(purse(S,P2))) = P1 and
fromno(pay(purse(S,P2))) = seq(purse(S,P1))
and not(P1 = P2) and not(pay(purse(S,P2)) = none))
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

proved with inv650 and inv310
inv640(S,P,M) =

((M /in ether(S) and isval(M) and pay(purse(S,P)) = pdofm(M))
implies not(sta(purse(S,P)) = epr)) .

proved with.inv230 and inv660
inv650(S,P,M) =

((M /in ether(S) and isval(M) and from(pdofm(M)) = P)
implies fromno(pdofm(M)) < seq(purse(S,P))) .

proved by itself
inv660(S,P) =
(sta(purse(S,P)) = epr
implies fromno(pay(purse(S,P))) < seq(purse(S,P))) .

C A Sample Proof Score

To give an impression of the proof using proof score technique, we show the whole proof score
for inv120 that is proved without using other invariants. Each proof passage in the proof score
is labeled with Ex . y] . z, where x is the number of the property, y is the number of an inductive
case, and z is a list of bit numbers separated with dot " . " denoting sub-cases (1 denotes a
predicate is true, and 0 denotes a predicate is false).

-- eq inv120(S ,P) =
-- (sta(purse(S ,P)) = epv implies (bal(purse(S,P)) = pbal(purse(S,P)))) .

--> I) Base case
--> [120 .0] init
open INV

 red inv120(init,p) .
close

-- II) Inductive cases
--> [120 .1] startpay
--> [120 .1].1 c-startpay(s,g1,g2,v) = true .
open ISTEP
-- arbitrary objects

 ops q1 q2 : -> Name .
 op v : -> Bal .

-- assumption

 eq c-startpay(s,g1,g2,v) = true .

-- successor state

 eq s' = startpay(s,g1,g2,v) .
-- check if the predicate is true .

 red istep120(p) .
close

--> [120 .1].0 c-startpay(s,g1,g2,v) = false .
open ISTEP

37

-- arbitrary objects

 ops q1 q2 : -> Name .
 op v : -> Bal .

-- assumption

 eq c-startpay(s,g1,g2,v) = false .

-- successor state

 eq s' = startpay(s,g1,g2,v) .
-- check if the predicate is true .

 red istep120(p) .
close

--> [120 .2] recstartfrom
--> [120 .2].1 c-recstartfrom(s,q,m) = true .
--> [120 .2].1.1 p = q .
open ISTEP
-- arbitrary objects

 op q : -> Name .

 op m : -> Message .
-- assumption

 eq c-recstartfrom(s,q,m) = true .

eq p = q .
-- successor state

 eq s' = recstartfrom(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .2].1.0 (p = q) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recstartfrom(s,q,m) = true .

 eq (p = q) = false .
-- successor state

 eq s' = recstartfrom(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .210 c-recstartfrom(s,q,m) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recstartfrom(s,q,m) = false .

-- successor state

 eq s' = recstartfrom(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .3] recstartto
--> [120 .3].1 c-recstartto(s,q,m) = true .
--> [120 .3].1.1 p = q .

38

open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
-- eq c-recstartto(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isstartto(m) = true .

 eq sta(purse(s,q)) = idle .
 eq (q = nameofm(m)) = false .

eq p = q .
-- successor state

 eq s' = recstartto(s,q,m) .
 -- check if the predicate is true.

 red istep120(p) .
close

--> [120 .3] .1.0 (p = q) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
-- eq c-recstartto(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isstartto(m) = true .

 eq sta(purse(s,q)) = idle .
 eq (q = nameofm(m)) = false .

 eq (p = q) = false .
-- successor state

 eq s' = recstartto(s,q,m) .
 -- check if the predicate is true.

 red istep120(p) .
close

--> [120 .3].0 c-recstartto(s,q,m) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recstartto(s,q,m) = false .

-- successor state

 eq s' = recstartto(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .4] recreq
--> [120 .4].1 c-recreq(s,q,m) = true .
--> [120 .4] .1. 1 p = q .

open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
-- eq c-recreq(s ,q,m) = true .

 eq (m /in ether(s)) = true .

39

 eq isreq(m) = true .
 eq sta(purse(s,q)) = epr .

 eq pay(purse(s,q)) = pdofm(m) .

eq p = q .
-- successor state

 eq s' = recreq(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .4].1.0 (p = q) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
 -- eq c-recreq(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isreq(m) = true .

 eq sta(purse(s,q)) = epr .
 eq pay(purse(s,q)) = pdofm(m) .

 eq (p = q) = false .
-- successor state

 eq s' = recreq(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .4].0 c-recreq(s,q,m) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recreq(s,q,m) = false .

-- successor state

 eq s' = recreq(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .5] recval
--> [120 .5].1 c-recval(s,q,m) = true .
--> [120 .5].1.1 p = q .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
 -- eq c-recval(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isval(m) = true .

 eq sta(purse(s,q)) = epv .
 eq pay(purse(s,q)) = pdofm(m) .

eq p = q .
-- successor state

 eq s' = recval(s,q,m) .

40

 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .5].1.0 (p = q) = false .

open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
-- eq c-recval(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isval(m) = true .

 eq sta(purse(s,q)) = epv .

 eq pay(purse(s,q)) = pdofm(m) .

 eq (p = q) = false .
-- successor state

 eq s' = recval(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .5].0 c-recval(s,q,m) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recval(s,q,m) = false .

-- successor state

 eq s' = recval(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .6] recack
--> [120 .6].1 c-recack(s,q,m) = true .
--> [120 .6].1.1 p = q .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption
-- eq c-recack(s,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isack(m) = true .

 eq sta(purse(s,q)) = epa .
 eq pay(purse(s,q)) = pdofm(m) .

eq p = q .
-- successor state

 eq s' = recack(s,q,m) .
 -- check if the predicate is true.

 red istep120(p) .
close

--> [120 .61.1.0 (p = q) = false .
open ISTEP
-- arbitrary objects

41

 op q : -> Name .
 op m : -> Message .

-- assumption
 -- eq c-recack(s ,q,m) = true .

 eq (m /in ether(s)) = true .
 eq isack(m) = true .

 eq sta(purse(s,q)) = epa .
 eq pay(purse(s,q)) = pdofm(m) .

 eq (p = q) = false .
-- successor state

 eq s' = recack(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .6] .0 c-recack(s,q,m) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
 op m : -> Message .

-- assumption

 eq c-recack(s,q,m) = false .

-- successor state

 eq s' = recack(s,q,m) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .7] drop
--> [120 .7].1 c-drop(s) = true .
open ISTEP
-- arbitrary objects

-- assumption

 eq c-drop(s) = true .

-- successor state

 eq s' = drop(s) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .7] .0 c-drop(s) = false .
open ISTEP
-- arbitrary objects
-- assumption

 eq c-drop(s) = false .

-- successor state

 eq s' = drop(s) .
 -- check if the predicate is true .

 red istep120(p) .
close

--> [120 .8] duplicate
--> [120 .8].1 c-duplicate(s) = true .
open ISTEP
-- arbitrary objects
-- assumption

42

 eq c-duplicate(s) = true .

-- successor state

 eq s' = duplicate(s) .
 -- check if the predicate is

 red istep120(p) .
close

--> [120 .8].0 c-duplicate(s) =
open ISTEP
-- arbitrary objects
-- assumption

 eq c-duplicate(s) = false .

-- successor state

 eq s' = duplicate(s) .
 -- check if the predicate is

 red istep120(p) .
close

--> [120 .9] abort
--> [120 .91.1 p = q .
open ISTEP
-- arbitrary objects

 op q : -> Name .
-- assumption

eq p = q .
-- successor state

 eq s' = abort(s,q) .
 -- check if the predicate is

 red istep120(p) .
close

--> [120 .9] .0 (p = q) = false .
open ISTEP
-- arbitrary objects

 op q : -> Name .
-- assumption

 eq (p = q) = false .
-- successor state

 eq s' = abort(s,q) .
 -- check if the predicate is

 red istep120(p) .
close

-- Q.E.D --

 true.

 false .

 true.

 true.

 true.

43

