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                                Abstract 

  Mondex is a payment system that utilizes smart cards as electronic purses for financial 
transactions. The paper first reports on how the Mondex system can be modeled, specified 
and interactively verified using an equation-based method — the OTS/CafeOBJ method. Af-
terwards, the paper reports on, as a complementarity, a way of automatically falsifying the 
OTS/CafeOBJ specification of the Mondex system, and how the falsification can be used to 
facilitate the verification. Differently with related work, our work provides alternative ways 
of (1) modeling the Mondex system using an OTS (Observational Transition System), a kind 
of transition system, and (2) expressing and verifying (and falsifying) the desired security 

properties of the Mondex system directly in terms of invariants of the OTS.
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1 Introduction

Mondex [1] is a payment system that utilizes smart cards as electronic purses for financial 
transactions. The system has recently been chosen as a challenge for formal methods [2, 4], 
after it was originally specified and manually proved for correctness (of refinement) using the Z 
notations described in  [5]  . The purpose of setting up this challenge is to see what the current 
state-of-the-art is in mechanizing the specification, refinement, and proof, and ultimately to 

contribute to the Grand Challenge — Dependable Software Evolution [2, 3, 4]. As a response, 
different formal methods have been applied to tackle this same problem, which include, for 

example, KIV [6, 7], RAISE [8], Alloy [9] etc. 
  In this paper, we report on how this problem can be tackled by using an equation-based 

method — the OTS/CafeOBJ method [10]. Specifically, we describe how the Mondex system is 
modeled as an OTS (Observational Transition System), a kind of transition system that can be 
straightforwardly written in terms of equations; and how to specify the OTS in CafeOBJ [11, 12], 
an algebraic specification language; and finally how to express the desired security properties 
of the Mondex system as invariants of the OTS, and to interactively verify the invariants by 
writing and executing proof scores using CafeOBJ system. 

  As a complementarity of the interactive verification of the OTS/CafeOBJ method, we also 
report on a way of automatically falsifying (finding counterexamples) the OTS/CafeOBJ speci-
fication of the Mondex system by using Maude search command [13], which is achieved through 
an automatic translation from the OTS/CafeOBJ specification into corresponding Maude one 
[14, 15]. The falsification has been shown, from our experience, to be useful for facilitating the 
the OTS/CafeOBJ method in its different verification stages. 
  Differently with related work, our work provides an alternative way of modeling the Mondex 

system in an operational style (in terms of transition system), which is inspired by the work [6, 7], 
rather than in a relational style as used in [5, 8, 9]; and our work also provides an alternative 
way of expressing and verifying (and falsifying) desired properties of the Mondex system directly 
in terms of invariants of an OTS, rather than the refinement construction and proof that are 
originally used in the Z methods [5] and then used in [6, 7, 8, 9] . This work therefore provides 
a different way of viewing the Mondex analysis problem and can be used to compare different 
modeling and proof strategies. 

  The rest of the paper is organized as follows: Sect. 2 outlines the main part of the Mondex 
electronic purse system. Sect. 3 introduces the OTS/CafeOBJ method. Sect. 4 and 5 describe 
how to model and specify the Mondex system, and how to express the desired security prop-
erties of the Mondex system as invariants and their corresponding verification method. Sect. 
6 discusses the motivation of falsifying the OTS/CafeOBJ specification of the Mondex system 
and our proposed way to do this. Sect. 7 discusses related work. And finally Sect. 8 concludes 
the paper and mentions future work.

2 Overview of the Mondex Electronic Purse System

In the Mondex system, the cards, which are used as electronic purses, store monetary value 

as electronic information, and exchange value with each other through a communication device 

without using a central controller (such as a remote database). The communication protocol, 
which is used for transferring electronic value between two cards, say FromPurse (the paying 
purse) and ToPurse (the receiving purse), is as follows:

1. The communication device ascertains a transaction by collecting cards' information and 

  sending two messages startFrom and startTo.

3



  2. FromPurse receives the  startFrom message that contains information of the ToPurse, and 

    the amount of value to be transferred. 

  3. ToPurse receives the startTo message that contains information of the 

    FromPurse, and the amount of value to be transferred. As a result, ToPurse sends a 

    Req message to FromPurse for requesting the amount of value. 

  4. FromPurse receives the Req message and decreases its balance, and then sends a message 

    Val to ToPurse for transferring value. 

  5. ToPurse receives the Val message and increases its balance, and then sends a message Ack 

    to FromPurse for acknowledging the transaction. 

  Although the communication protocol seems to be simple, it is complicated by several facts 

as pointed in [5, 9] : (1) the protocol can be stopped at any time, either due to internal reasons 
of cards, or due to card-holders intentionally doing so; (2) a message can be lost and replayed in 
the communication channel, and (3) a message can be read by any card. Note, however, that it 
is assumed that the Req, Val and Ack messages cannot be forged, which is guaranteed by some 

(unclear) means of cryptographic system [5]. 
  Two key security properties demanded by the Mondex system are that [5] 

 (1) No value may be created in the system, namely that the sum of all purses' balances does 
    not increase; 

 (2) All value is accounted for in the system (no value is lost), namely that the sum of all 
    purses' balances and lost components does not change. 

  Note that in this paper, we omit another protocol of the Mondex system that deals with 

uploading exception logs' onto a central archive, since it is not directly related to the above 

properties.

3 The OTS/CafeOBJ Method 

3.1 CafeOBJ: An Algebraic Specification Language 

Abstract machines as well as abstract data types can be specified in CafeOBJ [11, 12] mainly 
based on hidden and initial algebras. CafeOBJ has two kinds of sorts: visible and hidden 
sorts that denote abstract data types and the state spaces of abstract machines, respectively. 
There are two kinds of operators to hidden sorts: action and observation operators. Action 
operators denote state transitions of abstract machines, and observation operators let us know 
the situation where abstract machines are located. Both an action operator and an observation 
operator take a state of an abstract machine and zero or more data, and return the successor 
state of the state, and respectively, a value that characterizes the situation where the abstract 
machine is located. 

  Declarations of action and observation operators start with bop, and those of other operators 
with op. Declarations of equations start with eq, and those of conditional ones with ceq. The 
CafeOBJ system rewrites a given term by regarding equations as left-to-right rewrite rules. The 
CafeOBJ command red is used to rewrite a given term. 

  Basic units of CafeOBJ specifications are modules. The CafeOBJ built-in module BOOL that 
specifies proposition logic is automatically imported by almost every module unless otherwise 

1 Exception logs are used to record information of those failed transactions in which value may be lost (detailed 
in Sect. 4).
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stated. In the module  BOOL, visible sort Bool denoting truth values, and the constants true and 
false, and some logical operators such as not_ (negation), _and_ (conjunction), and _implies_ 

(implication) are declared. The operator if _then_else_f i is also available. An under-score _ 
indicates the place where an argument is put. 

  BOOL plays an essential role in verification with the CafeOBJ system. If the equations 

available in the module are regarded as left-to-right rewrite rules, they are complete wrt propo-

sitional logic [16] . Any term denoting a propositional formula that is always true (or false) is 
surely rewritten to true (or false).

3.2 Observational Transition Systems (OTSs) 

Observational Transition Systems (OTSs) [10] is a definition of transition systems that can be 
straightforwardly written in equations. We assume that there exists a universal state space 
called T, and also that data types used, including the equivalence relation (denoted by =) for 
each data type, have been defined in advance. An OTS S consists of (0,1, T), where: 

  • 0 : A finite set of observers. Each o E 0 is a function o : T —; D, where D is a data type 
    and may differ from observer to observer. Given an OTS S and two states vi, v2 E T, the 

    equivalence (denoted by v1 =8 v2) between them wrt S is defined as ̀ do E CO, o(vi) = o(v2)• 

  • I: The set of initial states such that I C T. 

  • T : A finite set of conditional transition. Each T E T is a function T : T —^ T, provided 

    that T(vi) =8 T(v2) for each [v] E T/ =8 and each v1, v2 E [v]. r(v) is called the successor 
    state of v E T wrt. T. The condition c,- of T is called the effective condition. For each 

    v E T such that -1cr(v), v =s T(V). 

  Reachable states wrt S are inductively defined: (1) each vo E I is reachable, and (2) for 
each T ET, T(v) is reachable if v E T is reachable. Let Rs be the set of all reachable states 
wrt S. An invariant wrt S is a state predicate p : T -f Bool, which holds in all reachable states 
wrt S, namely that Vv E 1Zs.p(v). 

   Observers and transitions may be parameterized. Generally, observers and transitions are 
denoted by ° 1, •,im and T~ ... ~n, provided that m, n > 0 and there exists a data type Dk such 
that kEDk(k=ii,...,im,j1,...,jn).

3.3 Specification of OTSs in CafeOBJ 

The universal state space T is denoted by a hidden sort, say H. An observer oZl .., im E 0 is 

denoted by a CafeOBJ observation operator and declared as bop o : H Vi, ... Vi,„ -> V, where 

Vii, ... , Vi,,, and V are visible sorts. 

  Any initial state in I is denoted by a constant, say init, which is declared as op init : -> H . 

The equation expressing the initial value of is as follows:

eq o(init, Xi, ,...,Xi,,,) = f(X,,...,Xi,, )

Xk is a CafeOBJ variable of Vk, where k = i1, ... , im, and f (Xi1, ... , Xi,,,) is a CafeOBJ term 

denoting the initial value of o21,.. ,2,, 
  A transition Til,...,jn E T is denoted by a CafeOBJ action operator and declared as bop a : 

H V31... V3,, -> H, where V3,, ... , V3„ are visible sorts. Ti1,...,~n may change the value returned 
by o~1,.,. 2m if it is applied in a state v such that cT ~n (v), which can be written generally as 
follows:
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 ceq  o(a(S,X,1,...,Xj„), Xi,  ,...,Xi,„) 
          = e-a(S,Xj1.....X)„, Xi, ,...,Xi„,) if c-a(S,X31,...,Xj„) .

S is a CafeOBJ variable for H and Xk is a CafeOBJ variable of Vk, where k = i1, • m, l, , jn• 

a(S, X31, ... , X3„) denotes the successor state of S wrtTr,jn . e-a(S, X31, ... , X3„ , XZ1, ... , Xi ) de-
notes the value returned by oi im in the successor state. c-a(S, X31, ... , X3„) denotes the effective 

condition cT. 
                  31, 'in 

        changes nothing if it is applied in a state v such that (v), which can be ~1,•••,7n 
written generally as follows:

ceq a(S,X;1,...,X,,,) = S if not c-a(S,X,1,...,X,„) .

If the value returned by oi1 is not affected by applying Ti, i...,in in any state (regardless 
of the truth value of ern , 7n ), the following equation may be declared:

eq o (a (S, X31, ... , X 7 „) , X„,  .. . , X i „,) = o(S, X„,  . .. , Xi„,)  .

3.4 Verification of Invariants of OTSs

We describe the verification method of invariants (safety properties) of OTSs and refer interested 
readers to [17] for the verification method of liveness properties of OTSs. 

  Some invariants may be proved by case analysis only, but we often need to do (structural) 
induction on the reachable state space of an OTS 8, namely to show that the predicate to be 
proved invariant holds on any initial state and is preserved by each transition of the OTS. We 
describe how to prove a predicate p1 is invariant to S by such induction through writing proof 
scores in CafeOBJ. The proof that p1 is invariant to S often needs other predicates. We suppose 
that p2, .. , pn are such predicates. We then prove p1 A ... A pn invariant to S. Let x~, , ... , ximi 
whose types are Al, . .. , Dim, be all free variables in pi (i = 1, ... , n) except for v whose type is 
T. 

  We first declare and define the operators denoting pl, ... , pn in a module INV (which imports 
the module where S is described) as follows:

op invi : H Vil ... Vi,,, . -> Bool 

eq invi(S, Xi, ,...,Xi,,, ) = pi(S,Xi1,...,Xi„,;)

where i = 1, ... , n. S is a CafeOBJ variable for the hidden sort H, and Xk (k = il, ... , i n,) is 
a CafeOBJ variable for the visible sort Vk. pi(S, Xi1, ... , Ximi) is a CafeOBJ term denoting pi. 

  In the module INV, we also declare a constant xk denoting an arbitrary value of Vk (k = 
1, ... , n). These constants are constrained with equations, which make it possible to split the 
state space, or the case. For example, if we declare a constant x for Nat that is the visible sort 
for natural numbers, x can be used to denote an arbitrary natural number. Suppose that the 
case is split into two: one where x equals 0 and the other where x does not, namely that x is 

greater than 0. The former is expressed by declaring the equation "eq x = 0 .", and the latter is 
expressed by declaring the equation "eq (x > 0) = true ." 

  We then declare the operators denoting basic formulas to show in the inductive cases (de-
noted by the transitions of 8) and their defining equations in a module ISTEP (which imports 
INV) as follows:
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gEMMI

op  istepi  Vil  ...  Vi -> Bool 

eq istepi (Xii , ... , Xi,„;) = invi(s, X11 , ... , Xi,„,) implies invi (s', Xi„ ... , Xi„ ,i) )

where i = 1, . , n. s and s' are constants of H, which denote an arbitrary state s and a successor 

state of s. 

  Now we are ready to show the way of conducting induction by writing proof scores in 

CafeOBJ. A proof score is composed of proof passages, which are temporal CafeOBJ mod-

ules that are created by the CafeOBJ command open with a module name as a parameter, 

and killed by the command close. In a proof passage, the reduction command red should be 

included, which reduces (via term rewriting) a term denoting a proposition to its truth values, 
and more generally to an exclusive-or normal form (in this case, case-splitting is needed). 

  Let init denotes any initial state of the OTS concerned. All we have to do to show that pi 
holds on any initial state is to write a proof passage as follows:

open INV 

  red invi (init, xi, , ... , xi,,, ) .

close

  The proof of each inductive case often needs case analysis. Let us consider the inductive 

case where it is shown that T~~ preserves pi. Suppose that the state space is split into 1 

sub-spaces for the proof of the inductive case and each sub-space is characterized by a predicate 

casek (k = 1, ... , 1) such that (casei V ... V easel) true. Also suppose that T~l,... ~ is denoted 
by an action operator a and visible sorts V~ ... , V~ correspond to data types D31, ... , D3n of 

the parameters of T~1 ~ . The proof for case casek looks like:

open ISTEP 
  -- arbitrary objects 

oP Y31 : -> 1731 . ...op y:->,,,• 
  -- assumptions 

  Declarations of equations denoting casek. 
  -- successor state 

  eq s' = a(s, 1,..., ) 
  -- check if the predicate is true 

  red SI Hi implies isteyi (xil , ... ,x,„, ,)  . 
close

where i = 1, ... , n. yil , ... , yin are constants that are used as parameters of the CafeOBJ 
action operator a, and they denote arbitrary objects of intended sorts. The equation with s' as 
its left-hand side specifies that s' is the successor state after applying any transition denoted by 
a in the state s. SIHi is a CafeOBJ term denoting what strengthens the inductive hypothesis 
invi(s, X~1, ... , Xj,,ni) and can be the (and) concatenation of different predicates ranging from 
invi(...) to invi,,(...). A comment starts with -- and terminates at the end of the line.

4 Formalization of the Mondex System

4.1 Basic Data Types 

Before describing the OTS model of the Mondex system (more precisely the communication 
protocol introduced in Sect. 2, which is the core part of the Mondex system), we first describe
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some key data types that are used in the OTS, which include: Purse, Message and Ether2. 

Each Purse of the Mondex system is constructed using the CafeOBJ operator mk-purse that 

takes the following seven arguments:

(1) Name: the name of the purse. This component is the identifier of a purse.

(2) Previous Balance: the balance before a coming transaction. Note that this component is 
  introduced and used by us only with the purpose to express and verify (and falsify) the 

   desired properties directly as invariants, while this component is not used in the Z methods 
  and its follow-up work. The value of this component is set (updated) to be equal to the 

   current balance whenever a transaction is going to happen.

(3) Current Balance: the current balance of the purse.

(4)  Seqnum: the sequence number, which is globally unique and is to be used in next transac-
   tion. This number is increased (through the operator nextseqnum) during any transaction, 

   and thus it is necessary for avoiding replay attacks.

(5) Status: the status of the purse. Possible status of a purse is: idle, epr, epv, and epa. 
   idle denotes that a purse is in a status of either before or after a transaction. The other 

   three status denotes that a purse is expecting value requesting message, expecting value 
   transferring message, and expecting acknowledging message, respectively.

(6) Paydetail: the payment detail of a transaction that the purse is currently involved in 
   or just finished. A payment detail is constructed using the CafeOBJ operator mk-pay 

   that takes five arguments: the name of the from purse and its sequence number, the 
   name of the to purse and its sequence number, and the amount of value (also of sort Bal 
   for simplicity) to be transferred. Given a payment detail mk-pay (FN : Name , FS : Segnum, 

   TN:Name, TS:Seqnum, V:Bal), projection operators from, fromno, to, tono, and value 
   are defined to obtain each of its components.

(7) Exlog: the exception log, which is a list of payment details of failed transactions. A trans-
   action can be failed since a message may be lost and the cards may abort the transaction 

   etc. If there are possibilities that money may be lost during a failed transaction, the cur-

   rent payment detail will be recorded into the exception log. A predicate _/inexlog _ is 
   defined to check whether a payment detail is in the exception log or not.

Given a purse mk-purse (N : Name , PB : Bal , CB: Bal , SE : Segnum, ST : Status , P : Paydetail, 
E:Exlog), projection operators name, pbal, bal, seq, sta, pay, and exlog are also defined to 

obtain each of its components. 
  According to the communication protocol, there are five kinds of Messages: startfrom (N : Name , 

V:Bal, S:Segnum),startto(N: Name , V:Bal, S:Segnum),req(P: Paydetail) ,val(P:Paydetail), 
and ack (P : Paydetail) . For each kind of messages, there exists a predicate to check the attri-

bution of the messages, such as isstartfrom and isreq etc. For the first two kinds of messages, 

projection operators nameofm, valueofm and seqofm are defined, and for the remaining three 
kinds of messages, projection operators pdofm is defined. All of these projection operators return 

the corresponding parts of the messages. Note that we also assume, as the Z work did, that 
the messages can only be lost and replayed, but cannot be forged, which is guaranteed by some 

cryptographic means that is not considered here. 

2Besides denoting data types
, these names in Typewriter font (with capital initial) are also used, for simplicity, 

to denote sort names of the corresponding data types.
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  The Ether is considered as a bag (multi-set) of messages, which is used to formalize the 
communication channel. All the messages sent by the communication device and purses are put 
into the ether and the messages received by a purse are those selected from the ether. In this 
way, we model the fact that a message can be read by any card as mentioned in Sect. 2. Data 
constructors of Ether are CafeOBJ operators nil and  _, _ (of Ethers, where Message is declared 
as a subsort of Ether). Two predicates _/in_ and empty? are defined for Ether for checking 
whether a message is in ether and whether the ether is empty. Another two operators get and 
top are defined to remove the first element and obtain the first element of ether, respectively. 

  All the above introduced data types, Purse, Message and Ether, together with those used 
for defining the three data types, such as Name, Bal etc, are defined in CafeOBJ modules. We 
describe the module defining data type Purse as a demonstration example, and others can be 
found in the Appendix section.

mod! ETHER { 
pr(MESSAGE) 
  [Message
op nil : 
op _,_ . 

op _/in_ 
op get : 
op top : 
op 

vars M 
eq (M 
ceq (M 
ceq (M 

eq 
eq 
eq 
eq

 Ether] 
-> Ether 

Ether Ether -> Ether {assoc comm}

: Message Ether -> Bool 

Ether -> Ether 

Ether -> Message 

: Ether -> Bool

[1 M2 : 
.n nil) 

/in (M2 
/in (M2

Message 
= false . 

,E)) = true if 
,E)) = (M1 /in

get(M) = nil . 
top(M) = M . 
empty?(nil) = 
empty?(M,E) =

true . 

false . }

vars E El E2 : Ether

(M1 = M2) . 

E) if not (M1 = M2) .

eq get (M, E) = E . 
eq top(M,E) = M . 
eq empty?(M) = false .

  The keyword mod! indicates that the module is a tight semantics declaration, meaning the 
smallest model (implementation) that respects all requirements written in the module. The 
contents of the module are enclosed in the keywords { }. The keyword pr is used to import a 
module, here the module MESSAGE. The term [Message < Ether] expresses that a sort Ether is 
declared, and also that the sort Message declared in the imported module MESSAGE is a subsort 
of sort Ether. A subsort represents a subset of the elements of the sort. The keywords assoc 
and comm specifies that the operator _ , _ is associative and commutative.

4.2 OTS Model and Its CafeOBJ Specification

The OTS model of the Mondex system is defined in a CafeOBJ module with the name MONDEX 
using the keyword mod*, which indicates that the module is a loose semantics declaration, 
meaning an arbitrary model (implementation) that respects all requirements written in the 
module. The module MONDEX imports all the data type modules defined in advance. A hidden 
sort Sys is declared in the module as *[Sys]*  by enclosing it with * [ and ] *, which denotes 
the universal state space TI of the OTS model. 

  In the MONDEX module, two observers denoted by CafeOBJ observation operators purse and 
ether are declared as follows:

9



bop purse : Sys Name -> Purse  . 

bop ether : Sys -> Ether  .

Given a state of the OTS and a purse name, observer purse returns the content (components) 
of the purse in this state, and given a state of the OTS, observer ether returns the content 

(messages) of the ether in this state. 
   A constant  init is declared as "op init : -> Sys" to denote any initial state of the OTS 

model of the Mondex system. The initial state is characterized by the following two equations: 

eq purse(init,P) 
   = mk-purse(P ,ib(P,seedv),ib(P,seedv),is(P,seedn),idle,none,emptyexlog) . 

eq ether(init) = nil . 

In the first equation, variable P: Name denotes an arbitrary purse. The right-hand side of the 

equation describes the components of the purse P, which are composed using the operator 

mk-purse. ib (P, seedy) is a term denoting the previous balance of P, which is set to be equal to 

its current balance in initial state; is (P, seedn) is a term denoting the initial sequence number 

of P. The constants seedy and seedn, together with the variable P, are used as arguments of 

operators ib and is to generate these initial values. In addition, any purse denoted by P is 

initially in the status idle, and there are no payment detail and exception log for P, which are 

denoted by none and emptylog, respectively. The second equation says that initially the ether 

is empty (denoted by nil), namely that no message exists in the ether. 
   Nine transitions, which characterize sending and/or receiving messages, and also the security 

features of the Mondex system, are declared as follows: 

bop startpay : Sys Name Name Bal -> Sys 
bop recstartfrom : Sys Name Message -> Sys 
bop recstartto : Sys Name Message -> Sys 
bop recreq : Sys Name Message -> Sys 
bop recval : Sys Name Message -> Sys 
bop recack : Sys Name Message -> Sys 
bop drop : Sys -> Sys 
bop duplicate : Sys -> Sys 
bop abort : Sys Name -> Sys 

(1) Transition denoted by the CafeOBJ action operator startpay characterizes that the com-
munication device ascertains a transaction and sends the startfrom and startto messages. 

op c-startpay : Sys Name Name Bal -> Bool 
eq c-startpay(S,P1,P2,V) 

  = sta(purse(S ,P1)) = idle and sta(purse(S,P2)) = idle and not(P1 = P2) . 

ceq purse(startpay(S,P1,P2,V),Q) = purse(S,Q) if c-startpay(S,P1,P2,V) . 
ceq ether(startpay(S,P1,P2,V)) 

    = startfrom(P2 ,V,seq(purse(S,P2))), 
     startto(P1,V,seq(purse(S,P1))),ether(S) if c-startpay(S,P1,P2,V) . 

ceq startpay(S,P1,P2,V) = Sif not c-startpay(S,P1,P2,V) . 

  The effective condition (the first equation) denoted by c-startpay demands that: the two 

purses denoted by P1 and P2 are in the idle status, namely that they are currently not involved 
in any other transactions; and they are different purses since it is not permitted to perform a 
transaction between a purse and itself. Note that we did not consider whether the two purses 
are authentic or not in our modeling, although adding a predicate authentic to check this, as 
other related work did, is simple. The reason is that no clear standards/constraints exist for

10
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a purse being authentic, and we thus currently consider that all purses involved in our model 
are authentic. The condition did not check whether one of the purses (which is to be the from 

purse of this transaction) has enough value, and this checking is made in the next transition 
 startfrom  . 

  If startpay is applied when the condition holds: the components of any purse denoted by Q 
are not changed (the second conditional equation); and two messages startfrom and startto 
are put into the ether (the third conditional equation). The last conditional equation says that 
even if startpay is applied when the condition does not hold, nothing changes (For simplicity, 
this last situation will not be explained in the following description of transitions).

(2) Transition denoted by 
purse receives the message

op 

eq

ceq

ceq 

ceq

the CafeOBJ 

startfrom.

action operator recstartfrom

c-recstartfrom : Sys Name Message -> Bool 
c-recstartfrom(S,P,M) 
= M /in ether(S) and isstartfrom(M) and sta(purse(S,P)) = idle and 

 not(P = nameofm(M)) and valueofm(M) <= bal(purse(S,P)) . 

purse(recstartfrom(S,P,M),Q) 
= mk-purse(Q ,(if (P = Q) then bal(purse(S,Q)) else pbal(purse(S,Q)) fi), 

          bal(purse(S,Q)),(if (P = Q) then nextsegnum(seq(purse(S,Q))) 
                                   else seq(purse(S,Q)) fi), 

          (if (P = Q) then epr else sta(purse(S,Q)) fi), 
           (if (P = Q) then mk-pay(Q,seq(purse(S,Q)), 

nameofm(M),seqofm(M),valueofm(M)) 
                     else pay(purse(S,Q)) fi), 

           exlog(purse(S,Q)))if c-recstartfrom(S,P,M) . 
 ether(recstartfrom(S,P,M)) = ether(S) if c-recstartfrom(S,P,M) . 

recstartfrom(S,P,M) = Sif not c-recstartfrom(S,P,M) .

characterizes that a

  The effective condition denoted by c-recstartfrom demands that: there exists a startfrom 

message in the ether; the purse P that is going to receive the message is in the status idle; the 

name argument of the startfrom message (which is assumed to be the to purse's name) is not 
equal to P, namely that P is not going to do transaction with itself; and last P has enough value 
for this value requesting. 

  If recstartfrom is applied when the condition holds: the previous balance of P is updated 
to its current balance, namely to record the current balance before a coming transaction as the 

previous balance; increase the sequence number; change the status of P to epr; and generate a 
payment detail. Note that two variables P and Q both denote purses. However, P denotes the 
purse receiving the message startfrom (executing the transition recstartfrom), and Q denotes 
the purse that the observer purse are "observing" on. After applying recstartfrom, P becomes 
the from purse of a transaction denoted by its payment detail.

(3) Transition denoted by the 
receives the message startto.

op 

eq

ceq

CafeOBJ action operator recstartto

c-recstartto : Sys Name Message -> Bool 
c-recstartto(S,P,M) 
= M /in ether(S) and isstartto(M) and sta(purse(S, 

 not(P = nameofm(M)) .

purse(recstartto(S,P,M),Q) 
= mk-purse(Q,(if (P = Q) then 

bal(purse(S,Q)),(if

P)) = idle and

characterizes that

bal(purse(S,Q)) else pbal(purse(S,Q)) fi), 
 (P = Q) then nextsegnum(seq(purse(S,Q))) 

        else seq(purse(S,Q)) fi),

a purse
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             (if (P = Q) then epv else sta(purse(S,Q)) fi), 
              (if (P = Q) then  mk-pay(nameofm(M),segofm(M), 

Q,seq(purse(S,Q)),valueofm(M)) 
                        else pay(purse(S,Q)) fi), 

             log(purse(S,Q)))if c-recstartto(S,P,M) . 
ceq ether(recstartto(S,P,M)) 

   = req(pd(nameofm(M) ,segofm(M),P,seq(purse(S,P)),valueofm(M).)), 
   ether(S)if c-recstartto(S,P,M) . 

ceq recstartto(S,P,M) = Sif not c-recstartto(S,P,M) . 

  Equations defining effective condition and application of transition recstartto are similar 

to those of transition recstartfrom, except that: the condition demands a startto message in 

the ether; the status of the purse is changed to epv; and a req message is put into the ether. 

After applying recstartto, P becomes the to purse of the transaction denoted by its payment 

detail.

(4) Transition denoted by the CafeOBJ action operator recreq characterizes that a purse re-
ceives the message req. 

op c-recreq : Sys Name Message -> Bool 
eq c-recreq(S,P,M) 

  = M /in ether(S) and isreq(M) and sta(purse(S ,P)) = epr and 

    pay(purse(S,P)) = pdofm(M) . 

ceq purse(recreq(S,P,M),Q) 
    = mk-purse(Q,pbal(purse(S,Q)), 

             (if (P = Q) then (bal(purse(S,Q)) - value(pdofm(M))) 
                         else bal(purse(S,Q)) fi), 

             seq(purse(S,Q)), 

              (if (P = Q) then epa else sta(purse(S,Q)) fi), 

              pay(purse(S,Q)),log(purse(S,Q))) if c-recreq(S,P,M) . 
ceq ether(recreq(S,P,M)) = val(pdofm(M)),ether(S) if c-recreq(S,P,M) . 
ceq recreq(S,P,M) = Sif not c-recreq(S,P,M) . 

  The effective condition denoted by c-recreq demands that: there exists a req message in 

the ether; the purse P that is going to receive the req message is in the status epr; and the 

payment detail of the req message is equal to the payment detail of P. If recreq is applied when 
the condition holds, the current balance of P is deceased with the requested amount of value; 

the status of P is changed to epa; and a val message is put into the ether.

(5) Transition denoted by the CafeOBJ action operator recval characterizes 
ceives the message val. 

op c-recval : Sys Name Message -> Bool 
eq c-recval(S,P,M) 

  = M /in ether(S) and isval(M) and sta(purse(S ,P)) = epv and 
    pay(purse(S,P)) = pdofm(M) . 

ceq purse(recval(S,P,M),Q) 
   = mk-purse(Q,pbal(purse(S,Q)), 

             (if (P = Q) then (bal(purse(S,Q)) + value(pdofm(M))) 
                         else bal(purse(S,Q)) fi), 

             seq(purse(S,Q)), 
             (if (P = Q) then idle else sta(purse(S,Q)) fi), 

             pay(purse(S,Q)),log(purse(S,Q))) if c-recval(S,P,M) . 
ceq ether(recval(S,P,M)) = ack(pdofm(M)),ether(S) if c-recval(S,P,M) . 
ceq recval(S,P,M) = Sif not c-recval(S,P,M) .

that a purse re-
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  The effective condition denoted by c-recval demands that: there exists a val message in 

the ether; the purse P that is going to receive the message is in the status epv; and the payment 

detail of the val message is equal to the payment detail of the purse P. If recval is applied 

when the condition holds: the current balance of P is increased with the transferred amount of 

value; the status of P is changed to idle. which means that the transaction is completed at the 

to purse's side; and a ack message is put into the ether.

(6) Transition denoted by 
ceives the message ack.

the CafeOBJ action operator recack characterizes that a purse  re-

op 

eq

ceq

c-recack : Sys Purse 
c-recack(S,P,M) 
= M /in ether(S) and 

 pay(purse(S,P)) =

ceq 

ceq

Message -> Bool

 isack(M) and 

pdofm(M) .

sta(purse(S,P)) = epa and

purse(recack(S,P,M),Q) 
= mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),seq(purse(S,Q)), 

          (if (P = Q) then idle else sta(purse(S,Q)) fi), 

          pay(purse(S,Q)),log(purse(S,Q))) if c-recack(S,P,M) 
ether(recack(S,P,M)) = ether(S)if c-recack(S,P,M) 
recack(S,P,M) = Sif not c-recack(S,P,M)

  The effective condition denoted by c-recack demands that: there exists a ack message in 

the ether; the purse P that is going to receive the ack message is in the status epa; and the 

payment detail of the ack message is equal to the payment detail of P. If recack is applied when 
the condition holds: the status of P is changed to idle, which denotes that a transaction is 

successfully completed. 

  In addition to the above described transitions that correspond to the sending and receiving 

messages of the communication protocol of the Mondex system, there are three more transitions 

to characterize security features of the Mondex system, which include: the ether is unreliable, 

and a transaction can be stopped at any time.

(7) To characterize that the messages in the ether may be lost and replayed, we define two 
more transitions: drop and duplicate. As long as the ether is not empty, transition drop can 
remove a message from the ether, and transition duplicate can duplicate a message and put it 
into the ether. Equations defining these two transitions are as follows:

op 

eq 

ceq 

ceq 

ceq

op 

eq 

ceq 

ceq 

ceq

c-drop : Sys -> 

c-drop(S) = not

purse(drop(S), 
ether(drop(S)) 
drop(S) = S

c-duplicate : 
c-duplicate(S)

Bool 
empty?(ether(S)) .

Q) = purse(S,Q) 
= get(ether(S))

Sys  -> Bool 

not empty?(ether(S)) .

purse(duplicate(S), 
ether(duplicate(S)) 
duplicate(S) = S

   if 

   if 

if not

Q) = purse(S,Q)if 
= top(ether(S)),ether(S) if 

                     if not

c-drop(S) 
c-drop(S) 
c-drop(S)

c-duplicate(S) 
c-duplicate(S) 
c-duplicate(S)

(8) To 
abort a 

follows:

characterize 

transaction

that a transaction 

at any time as the

can be stopped at any 

card-holder wishes, we

time, namely that a 

define the transition

purse can 
abort as
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eq  purse  (abort  (S,P)  ,Q) 
  = mk-purse(Q ,pbal(purse(S,Q)),bal(purse(S,Q)), 

            (if (P = Q) then nextsegnum(seq(purse(S,Q))) 
                       else seq(purse(S,Q)) fi), 

            (if (P = Q) then idle else sta(purse(S,Q)) fi), 

pay(purse(S,Q)), 
            (if (P = Q) then 

                (if (sta(purse(S,Q)) = epa or sta(purse(S,Q)) = epv) 
                            then pay(purse(S,Q)) CO log(purse(S,Q)) 

                            else log(purse(S,Q)) fi) 
                       else log(purse(S,Q)) fi)) . 

eq ether(abort(S,P)) = ether(S) . 

  Note that no effective condition is defined for transition abort, which means that the tran-

sition abort can be executed at any time. When a purse aborts the transaction, the status of 

the purse is changed to idle, and its sequence number is increased. In addition, if the purse 

aborts the transaction when it is in status of either epa or epv, which means that a from purse 

has transferred value or a to purse is waiting for value being transferred (has not received the 
value), namely that there exist possibilities that the value can be lost, the payment detail of this 
transaction has to be recorded to the exception log of the aborting purse (through concatena-
tion operator @). Note that a same payment detail may be logged in both from and to purse, 
although a value is only lost once. The purpose of this is to analyze the exception logs in the 

future by comparing the two logs and refund value if value did be lost.

5 Verification of the Mondex System 

5.1 Formal Definitions of the Properties 

In the original Z work [5], and later in the KIV, RAISE and Alloy work [6, 7, 8, 9], the two 
security properties of the Mondex system are defined respectively in the forms look like: 

 (1) totalBalanceofPurse' < totalBalanceofPurse, which states that the sum of the before 
    (transaction) balances of all purses is greater or equal to the sum of the after (transaction) 

    balances of all purses. 

 (2) totalBalanceofPurse' + totalLostofPurse' = totalBanlanceofPurse + totalLostofPurse, 
    which states that the sum of the before balances and lost value of all purses is equal to 

    the sum of the after balances and lost value (due to a possibly failed transaction) of all 
     purses. 

  In our work, through making use of the introduced component "previous balance" of purses, 
we make the notion "before balance" explicit. In addition, we are also able to express the 
"after balance" (through the component "current balance" of purses) and the execution of any 

one transaction (through the components "status" and "payment detail" of purses) . The two 

properties of the Mondex system can thus be defined as invariants of the OTS model following 
the above forms of related work. Formal definitions of the two properties are in the following.

1. For any reachable state s, any two purses pi and p2: 

(sta(purse(s,pl)) = idle and sta(purse(s,p2)) = idle and 

pay(purse(s,pl)) = pay(purse(s,p2)) and not(pi = p2)) 
  implies 

  (bal(purse(s,pi)) + bal(purse(s,p2)) <= pbal(purse(s,pi)) + pbal(purse(s,p2))).
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  In the premise of property 1, two arbitrary different purses denoted by  pi and p2 are both 
in the status idle, which means that pi and p2 are currently not involved in any transactions; 
additionally the equality between their payment details expresses that either they are never 
involved in any transactions (thus their payment details are both none), or a transaction between 
them is just finished (finished normally or abnormally by aborting the transaction does not 
matter) . Therefore, property 1 can be read as: for two arbitrary different purses, (1) if no 
transactions ever happen for each of the two purses, or (2) after any one transaction between 
them, the sum of their current balances is not increased (less or equal to the sum of their balances 
before the transaction). This implicitly implies the above description of property 1 that covers 
all possible purses for any possible number of transactions.

2. For any reachable state s, any two purses pi and p2:

(sta(purse(s,pl)) = idle and sta(purse(s,p2)) = idle and 
pay(purse(s,pl)) = pay(purse(s,p2)) and not(pi = p2)) 
implies 

(if pay(purse(s,pi)) /inexlog log(purse(s,pi)) and 

   pay(purse(s,p2)) /inexlog log(purse(s,p2)) 
then bal(purse(s,pi)) + bal(purse(s,p2)) + lost(pay(purse(s,pi))) 

= pbal(purse(s,pi)) + pbal(purse(s,p2)) 

 else bal(purse(s,pi)) + bal(purse(s,p2)) 
     = pbal(purse(s,pi)) + pbal(purse(s,p2)) fi).

  The premise of property 2 is exactly same as property 1, which states that two arbitrary 

different purses are either never involved in any transaction or a transaction between them is 

just finished. To understand the conclusion part of property 2, let us see the following table, 
which analyzes, under the property's premise, whether value is lost or not during a transaction.3

from to

abort
log

non-log

non-abort

abort

lost
(a

not lost
(c)

impossible (e)

non-abort

not lost
(b)

impossible (d)

not lost
(f)

  A from purse can be in the status idle, epr and epa, and a to purse can be in the status 

idle and epv. Since aborting of either the from purse or the to purse in status idle only 

increases its sequence number, and the current and previous balances remain unchanged, we 

only analyze the situations that a purse aborts in the status epr, epa (for from purse) and epv 

(for to purse). non-abort in the table denotes that a purse finished successfully the transaction 
on its side, and abort denotes that a purse finished the transaction (on its side) by aborting it. 
log and non-log are used to distinguish that from purse aborts the transaction on status epa 
or epr (only aborting in epa will be logged). The to purse will always log the transaction when 
aborting the transaction (in epv). The items of the table labeled with (a) - (f) are explained as 
follows:

 (a) The from purse aborts the transaction after it decreases its current balance and sends the 
    val message (in epa), and the to purse aborts the transaction before it receives the val 
    message (in epv). Therefore value is lost. 

  3As to the other situation denoted by the premise that two purses are never involved in any transactions , it is 

obviously that no value is lost. So this situation is omitted in the following discussion.
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 (b) The from purse aborts the transaction after it decreases its current balance and sends 
    the val message, and the to purse does not abort the transaction. Since the to purse 

    is in status idle (as the premise says), it has successfully received the val message and 
    therefore no value is lost. 

 (c) The from purse aborts the transaction before it decreases its current balance (in epr), and 
    the to purse aborts when it is waiting the val message (in epv). Therefore no value is 

 lost. 

 (d) The from purse aborts the transaction before it decreases its current balance, and the 
    to purse finishes the transaction successfully. This situation is impossible since no val 

     message has ever been sent. 

 (e) The from purse successfully finished the transaction, and the to purse aborts the transac-
    tion when it is waiting the val message. This situation is impossible since no ack message 

     has ever been sent. 

 (f) Both the from and the to purse finish the transaction successfully. Therefore no value is 
     lost. 

  The above analyzed situations from (a) — (f) are reflected in the formula for property 2, in 
which lost is a function that counts the lost value of a transaction (denoted by the payment 
detail). Therefore, for any one transaction between two arbitrary different purses, if value is 
lost, the value is logged in the exception logs of both the from and to purses, and the sum of 
their current balances plus the lost value is equal to the sum of their previous balances before 
this transaction; otherwise, value is not lost, and the sum of their current balances is equal to 
the sum of their previous balances before this transaction. 

5.2 Verification of the Properties 

We describe the inductive proof of property 2 by writing and executing proof scores using 
CafeOBJ system. An inductive case of the proof, which shows that transition recack preserves 
the property, is selected (from eight inductive cases corresponding to the transitions of the OTS) 
and described as a demonstration example. The inductive case needs three other invariants4 

(called here as properties 3, 4 and 5) to strengthen the inductive hypothesis of property 2. 
Formal definition of properties 3, 4 and 5 are as follows: 

3. For any reachable state s and any purse p : 

  sta(purse(s,p)) = epa 
  implies 

  bal(purse(s,p)) = pbal(purse(s,p)) - value(pay(purse(s,p))) . 

4. For any reachable state s, any two purses pi and p2, and any message m : 

  m /in ether(s) and isack(m) and pay(purse(s,pl)) = pdofm(m) and 
pay(purse(s,p2)) = pdofm(m) and not(pi = p2) and 
sta(purse(s,pl)) = epa and sta(purse(s,p2)) = idle 

  implies 
  bal(purse(s,p2)) = pbal(purse(s,p2)) + value(pay(purse(s,p2))) .

  4Actually these three invariants are found during the proof of property 2
. The method of finding these 

invariants is to be introduced in the following of this subsection, and also in Sect. 6.3.
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5. For any reachable state s, any purse  p  :

sta(purse(s,p)) = epa implies not(pay(purse(s,p)) /inexlog log(purse(s,p))) .

  As introduced in Sect. 2, we declare the operators denoting properties 2, 3, 4 and 5 in 

the module INV as follows:

mod INV { 
pr(MONDEX) 
  -- arbitrary objects 

  ops p pi p2 : -> Name 
  -- declare invariants to prove 

  op inv2 : Sys Name Name -> Bool 
  op inv4 : Sys Name Name Message -> Bool 

-- CafeOBJ variables 
  var S : Sys 

  var P P1 P2 : Name 
  -- equations defining invariants 

  eq inv2(S,P1,P2) = ... 
  eq inv4(S,P1,P2,M) = ...

op inv3 : Sys Name -> Bool 

op inv5 : Sys Name -> Bool

var M : Message

eq inv3(S,P) = ... 
eq inv5(S,P) = ... }

  The omitted part "..." in the right-hand sides of equation definitions of properties are the 
corresponding terms for properties presented before (but replacing the symbols s, m, p1 and P2 
with variables S, M, P1 and P2). In proof scores to be introduced later, although constants and 
variables both denote arbitrary objects of intended sorts, the scope of a constant is to the end 
of the proof score, while the scope of a variable is inside of an equation. 

  We then declare the operator denoting the basic formula to prove in each inductive case of 
the proof of property 2, and give their definitions in equation in the module ISTEP as follows:

mod ISTEP { 
 pr(INV) 

  -- arbitrary objects 
  ops s s' : -> Sys 
  -- declare predicates to proved in inductive cases 

  op istep2 : Name Name -> Bool 
-- CafeOBJ variables 

 vars P P1 P2 : Namevar M : Message 
  -- equations defining the inductive cases 

  eq istep2(P1,P2) = inv2(s,P1,P2) implies inv2(s',P1,P2) . 
 eq istep3(P) = inv3(s,P) implies inv3(s',P) . 

  eq istep4(P1,P2,M) = inv4(s,P1,P2,M) implies inv4(s',P1,P2,M) . 
 eq istep5(P) = inv5(s,P) implies inv5(s',P) . }

where s and s' are constants of sort Sys, and s denotes an arbitrary state and s' denotes a 
successor state of s. Note that since properties 3, 4, and 5 should also be proved to complete 
the proof of property 2, operator denoting inductive cases of the proofs of properties 3, 4 and 5 
should also be declared and defined, however their proofs will not be described here. 

  We show that property 2 holds on the initial state (the base case) by writing the following 

proof scores:

open INV 
 red inv2(init,pl,p2) . 

close

where the constant init is declared in the module MONDEX, and constants p1 and p2 are declared 

in the module INV. CafeOBJ system returns true for this proof score, meaning that property 2 

holds on any initial state.
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  We then show that property 2 is preserved by each transition of the 

ductive cases. In the selected inductive case denoted by transition recack 

sixteen sub-cases based on the following predicates:

OTS, namely the  in-

, the case is split into

bpidef 

bp2 def 

bp3 def 

bp4def 

bp5 def 

bp6 def

bp7 def 

bp8 def 

bp9 def

c-recack(s,q,m) 

pl = q 

p2 = q 
sta(purse(s,p2)) = idle 

pdofm(m) = pay(purse(s,p2)) 

pdofm(m) /inexlog log(purse(s,q)) and 

pdofm(m) /inexlog log(purse(s,p2)) 

bal(purse(s,q)) = pbal(purse(s,q)) - value(pdofm(m)) 

bal(purse(s,p2)) = pbal(purse(s,p2)) + value(pdofm(m)) 

pay(purse(s,p1)) /inexlog log(purse(s,p1)) and 

pay(purse(s,p2)) /inexlog log(purse(s,p2))

The constant s of sort Sys denoting an arbitrary state, is the one declared in module ISTEP; 

the constants q, p1 and p2 are of sort Name denoting arbitrary purses, where pl and p2 are 

declared in module INV; and the constant m of sort Message denotes an arbitrary message. The 

case-splitting for the inductive case denoted by transition recack is shown in the following table.

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15

16

bpl

bp2

-'bp2

bD3

~bp3

bp3

-ibp3

-4b04

bp4

5

bp5

bD6

-~bp6

-bD7

bp7
-'bDB

bo8
-~bD4

bp4

-,bD5

bp5

bD6

-bp6

-ibD7

bp7
-bD8

bD8
-bo9

bD9
-'bnl

  Each case in the above table is denoted by the predicate obtained by connecting ones ap-

pearing in the row with conjunction. The proof passage for the sub-case 5, namely bpl A bp2 A 
-ibp3 A bp4 A bp5 A —ibp6 A -ibp7, which uses property 3 to strengthen the inductive hypothesis, 

is shown, as a demonstration example, as follows:

open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
-- assumption 

-- eq c-recack(s ,q,m) 
 eq (m /in ether(s)) = 

 eq sta(purse(s,q)) = 

 eq p1 = q . 
 eq sta(purse(s,p2)) = 

 eq (pdofm(m) /inexlog 

     pdofm(m) /inexlog 
 eq (bal(purse(s,q)) =

 = true . 

 true . 

epa .

op m : -> Message .

eq 

eq

isack(m) = true . 

pay(purse(s,q)) = pdofm(m) .

           eq (p2 = q) = false . 
idle . eq pay(purse(s,p2)) = pdofm(m) . 
log(purse(s,q)) and 
log(purse(s,p2))) = false . 

pbal(purse(s,q)) - value(pdofm(m))) = false .
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-- successor state 

  eq s' = recack(s,q,m)  . 
  -- check if the predicate is true. 

 red inv3(s,q) implies  istep2(pl,p2) . 
close

  Note that the predicate "c-recack (s , q, m) = true" is expanded into the first four equations 
to get more equations available for term rewriting. inv3 (s , q) is used to strengthen the inductive 
hypothesis denoted by inv2 (p1, p2) . Proof passages for the remaining sub-cases of the inductive 
case recack are written similarly. Property 4 is used in the proof passages for sub-cases 7 and 
13, and property 5 is used in the proof passages for sub-cases 4 and 10. 

  We briefly introduce the idea of coming up with property 3 to prove this sub-case. By as-
suming the equations characterizing the sub-case, we first try to let CafeOBJ system reduce the 
inductive case istep2 (pl ,p2) directly. However CafeOBJ system does not return true as ex-

pected. By observing the equations of this sub-case, in particular the one "sta (purse (s , q)) = epa" , 
we notice that the status of the purse denoted by p is epa. Our knowledge about the Mondex 
system tells us that whenever a purse is in the status epa, the purse has already payed money 
and its current balance has been reduced (which is what property 3 states), and this fact (actu-
ally to be proved as a fact) is contrary to the last equation defining predicate bp7. We thus use 

property 3 to strengthen the inductive hypothesis and this sub-case can be discharged. 
  We last mention an important observation that is found during the verification of property 

1. An invariant called here as property 6 is used to strengthen the inductive cases of property 
1, which is as follows:

6. For any reachable state s, any two purses p1 and p2 

pay(purse(s,p1)) = pay(purse(s,p2)) and not(pi = p2) 
  implies 

  bal(purse(s,pi)) + bal(purse(s,p2)) <= pbal(purse(s,pi)) + pbal(purse(s,p2))

Property 6 is interesting in the sense that it is stronger than the original property 1. It re-
veals the fact of our Mondex specification that: at any point of a transaction following the 
communication protocol, the sum of the current balances of purses is equal or smaller than the 
sum of their previous balances before the transaction. In other words, no value is created at any 
point of a transaction (not only after the transaction as stated in property 1).

5.3 Summarization of the Specification and Verification 

We give a brief summarization of the OTS/CafeOBJ specification and verification of the Mondex 
system. The CafeOBJ specification of the OTS model of the Mondex system is approximately 
1100 lines. And 55 other invariant properties are proved and used as lemmas to prove the two 
desired properties of the Mondex system, and the whole proof scores are approximately 47000 
lines. Although the proof scores seem to be long, most of the work is "copy-and-paste" work, 
and the difficult task in verification is to come up with some of those 55 lemmas. It took about 
5 minutes to have the CafeOBJ system load the CafeOBJ specification and execute all the proof 
scores on a desktop computer with 3.2GHz processor and 2GB memory. It took a couple of weeks 
to complete the case study. The system specification including those data type specifications, 
and the definitions of the 55 invariants can be found from Appendix section.
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6 Falsification of the Mondex System

As a complementarity of the interactive verification of the OTS/CafeOBJ method, we report 
on a way of automatically falsifying the Mondex system by employing Maude model checking 

facilities (in particular the Maude search command [13]) to take advantage of (1) the fully 
automatic verification/falsification procedure, and (2) informative counterexamples. 

  An implemented prototype translator [15] that translates the OTS/CafeOBJ specifications 
into corresponding Maude ones is used as the basis for this falsification. As a sibling language 
of CafeOBJ, Maude is a specification and programming language based on rewrite logic, which 
is equipped with model checking facilities. The primary reason of choosing Maude is that it 
supports model checking on abstract data types including inductively defined data types and 
does not require the state space of a system to be finite, although the reachable state space of the 
system should be finite. This finiteness restriction can be abandoned when using Maude search 
command to explicitly explore a finite reachable state space of a system for counterexamples 

(namely  falsification)  . 
  One may wonder why we need falsification of the Mondex system since we have already 

verified it using the OTS/CafeOBJ method. The reasons are that falsification can be used to 
facilitate, in different stages, the interactive verification of the two security properties:

1. Before carrying out the interactive verification, falsifying the two properties can help obtain 
  a certain degree of confidence of the correctness (within a finite reachable state space) of 

  the system and property specifications. 

2. During conducting the interactive verification, generating good and correct lemmas is not 
  a simple task. Falsification can help, in this stage, filter out those generated but essentially 

  incorrect lemmas.

6.1 Maude Specification of the Mondex System 

The translated Maude specifications of data types are very similar to the original CafeOBJ ones 

due to being as two sibling algebraic specification languages. We show, as an example, the 

translated Maude functional module (for defining data types) of the data type Ether introduced 
in Sect. 4.1 as follows:

fmod ETHER is 

 pr MESSAGE . 
  sort Ether . 
  subsort Message < Ether . 

  op nil : -> Ether . 
  op _,_ : Ether Ether -> Ether [assoc comm] 

  op _/in_ : Message Ether -> Bool . 
  op get : Ether -> Ether . 

  op top : Ether -> Message . 
  op empty? : Ether -> Bool . 

 vars M M1 M2 : Message .vars E El E2 
 eq (M /in nil) = false . 

 ceq (M1 /in (M2,E)) = true if (M1 = M2) . 
 ceq (M1 /in (M2,E)) = (M1 /in E) if not(M1 

 eq get (M) = nil .eq get (M,E) 
 eq top(M) = M .eq top(M,E) 

 eq empty?(nil) = true .eq empty?(M) 
endfm

: Ether .

= M2) .

= E . 

= M . 

 = false . eq empty?(M,E) = false .
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  The translation for OTS module is not straightforward as the one for data type modules. 

We first briefly introduce the main idea of obtaining a finite model-checkable model from the 

infinite OTS one, and then show some of the translated Maude specification. More technical 

details (translation rules and soundness proof wrt counterexamples5) can be found in [14, 15]. 
  The reachable state space of an OTS is generally infinite. We carry out two steps to obtain 

a finite model from a potentially infinite OTS to make use of Maude model-checking facilities: 

(1) setting a bound to restrict the number of executions of transitions [18], namely to  make 
the depth of a rewriting tree finite, which is inspired by Bounded Model Checking [19]; and (2) 
instantiating some necessary data types to make the number of observers and transitions finite, 
namely to make the breadth of a rewriting tree finite. 

  Consider two different purses denoted by Maude constants p1 and p2 of sort Name, the 
translated Maude specification of the initial state of the OTS/CafeOBJ specification is as follows:

eq init = (purse[pi] : mk-purse(pi,ib(pl,seedv),ib(pl,seedv),is(pi,seedn),idle,none,emptyexlog)) 
          (purse[p2] : mk-purse(p2,ib(p2,seedv),ib(p2,seedv),is(p2,seedn),idle,none,emptyexlog)) 
         (ether : nil) (steps : 0) .

  The initial state consists of four terms of observations in the form (obName : obValue) , 
where obName is the observer name possibly with parameters enclosed with [ and ] , and obValue 
is the value returned by the observer on a certain state. The first two terms describe the two 

purses p1 and p2, and the third describes the ether. In the last term, steps is an newly 
introduced observer with the purpose to restrict the number of executions of transitions, and its 
initial value is 0. 

  The translated Maude specification of transition recack of the OTS/CafeOBJ specification 
is shown, as a demonstration example, as follows:

crl [recack_pi] : 
(purse[pl] : PS1) (purse[p2] : PS2) (ether : (M,EH)) (steps : C) 

    => 

(purse[pl] : mk-purse(pi,pbal(PS1),bal(PS1),seq(PS1),idle,pay(PS1),log(PS1))) 
  (purse[p2] : mk-purse(p2,pbal(PS2),bal(PS2),seq(PS2),sta(PS2),pay(PS2),log(PS2))) 
  (ether : (M,EH)) (steps : (C + 1)) 

if (isack(M) and sta(PS1) = epa and pay(PS1) = pdofm(M) and C < bound) .

  The set of equations of the OTS/CafeOBJ specification that characterizes the transition 
recack is translated into Maude conditional rewrite rules. crl is the keyword to declare a 

conditional rewrite rule, and recack_p1 in the bracket is the label of this rule, which denotes 

that p1 receives the message ack. 

  The left-hand side of the rule (before =>) denotes the current state of the OTS, which consists 
of four terms of observations. Maude variables PS1 and PS2 of sort Purse denotes the return 
values of observer purse on purses p1 and p2, respectively. The term (M , EH) of sort Ether 
denotes that current ether consists of a message M and the remaining part EH of the ether. The 
right-hand side of the rule (after =>) denotes the successor state of the OTS wrt the execution of 
the rule. The component status of purse pl is changed to idle, and other components remain 
unchanged. The return value of observer purse on purse p2, and the return value of observer 
ether remain unchanged. 

  Note that the return value of the newly introduced observer steps is added by 1 after the 
execution of the rule. Through defining a predicate C < bound in the condition of the rule, we 
can restrict execution of the OTS within finite steps (less than bound, which is a natural number 

predetermined by human verifiers). 
  5i.e. for any counterexample reported by Maude for the translated specification, there exists a corresponding 

one in the original OTS/CafeOBJ specification.
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  Predicates in the condition of the rule check that: there exists a ack message in the ether; 
the purse  p1 that is going to receive the message is in the status epa; and the payment detail of 
the ack message is equal to the payment detail of p1. 

  Another similar Maude rewrite rule is also generated to characterize the situation that purse 

p2 receives the ack message. And the sets of equations describing the other seven transitions of 
the OTS/CafeOBJ specification are translated similarly.

6.2 Falsification of the Mondex System 

We show the translated Maude specification of property 1 of the Mondex system as follows and 

property 2 is translated similarly:

search [1] in MONDEX : 
init =>* (purse [P1] : PS1) (purse [P2] : PS2) S 

        such that not((sta(PS1) = idle and sta(PS2) = idle and 

                    pay(PS1) = pay(PS2) and not(P1 = P2)) 
                       implies 

(bal(PS1) + bal(PS2) <= pbal(PS1) + pbal(PS2))) .

  Maude search command explores the tree of possible rewrites starting at an initial state 
init to a final state that matches pattern (purse [P1] : PS1) (purse [P2] : PS2) S and 
satisfies the condition denoted by the term after such that. In the above command, MONDEX 
is a Maude module that describes the OTS of the Mondex system (in which equation defining 
init and those rewrite rules are defined). P1 and P2 are variables of sort Name denoting two 
arbitrary purses. S is a variable of sort Sys denoting the remaining terms of an arbitrary state 
of the OTS. Note that in the condition part, we use the negation operator not in front of the 
term denoting property 1 since we aim at falsification of the property. 

  Setting bound to 9, and considering two purses p1 and p2 in the initial state init, we feed 
the above search command into Maude system, and No Solution is returned, which denotes 
that no counterexample is found. 

  We now give a simple example showing that the falsification can help filter out a lemma 

generated during interactive verification of the OTS/CafeOBJ method. The lemma named here 
as property 7 is as follows:

7. For any reachable state s, any two purses denoted by pi and p2: 

pay(purse(s,pl)) = none and from(pay(purse(s,p2))) = pi and not(pi = p2) 
  implies 

  fromno(pay(purse(s,p2))) = seq(purse(s,pl)).

  Intuitively property 7 says that: if a purse p1's payment detail is none, and the from com-
ponent of the payment detail of another purse p2 is equal to pl, then the fromno component of 
the payment detail of p2 is equal to p1's current sequence number. This seems to be reasonable 
since when p1's payment detail is none, it means that p1 has never involved in any transactions. 
And thus p1's sequence number is never increased. The property describes the situation that 
two purses p1 and p2 are going to have a transaction, and p2 has received the startto message, 
but p1 has not received the startfrom message. 

  However, property 7 is actually incorrect because that even if p1's payment detail is none, 
it can execute the abort transition freely before it receives the startfrom message since no 
condition is defined for abort. Therefore, p1's sequence number can be increased. A correct 
conclusion of property 7 should be fromno(pay(purse(s,p2))) <= seq(purse(s,pl))•
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  To realize this incorrectness of property 7 by using the interactive verification of the OTS/CafeOBJ 
method, a certain amount of proof effort is needed, however, the incorrectness can be immedi-

ately reported by Maude system as a counterexample as follows:

 state

state

state

state

0: ... 
===[ crl ... 

1: ... 
===[ crl ... 

8: ... 
===[ crl .. 

51: ...

[label startpay_pl_p2_con] ]___>

[label recstartto_p2] ]___>

[label abort_pl] ]===>

where state 0 denotes the initial state and state 51 denotes the state (reached from state 0 
by applying rewrite rules) where a counterexample is found. The omitted parts after each num-
bered states are terms denoting corresponding states, and the omitted parts after crl are terms 

denoting the rewrite rules with corresponding labels. For example, the label startpay_p1_p2_con 

denotes that two purses p1 and p2 are going to do a transaction with value con (a declared Maude 
constant). In state 51, the f romno component of p2 is is (p1 ,seedn), but the sequence number 
of p1 is nextsegnum(is(p1, seedn)), which is contrary to property 7.

6.3 Some Further Issues about Verification and Falsification

A possible question that one may ask about the above introduced falsification method is that: 

what if the depth of an existing counterexample of a predicate is deeper than the predetermined 

bound, namely that the counterexample cannot be found within the bounded reachable state 

space? Trivially increasing the value of bound may not work due to the state-explosion problem. 

  We have proposed a procedure called Induction-Guided Falsification (IGF) [20] to solve this 
problem. Assume a state predicate p to be proved invariant wrt an OTS, which however, has 
a counterexample of depth n + m, the procedure IGF first employs Maude search command 

(or Maude model checker) to explore a bounded, say n, reachable state space of the OTS 
for a counterexample. If no counterexample is found, IGF employs (structural) induction of 
the OTS/CafeOBJ method to try to verify p, during which some other state predicates called 
necessary lemmas may be obtained. When the CafeOBJ reduction result is false for a sub-case 
of an inductive case of p in a proof passage, a necessary lemma can be constructed by negating 
the conjunction of all the equations characterizing the sub-case. The necessary lemma can be 
used to discharge this false case, and its basic idea is that the sub-case may not be possible, 
or in other words, the states characterized by the sub-case may not be reachable. 

  Two important features of necessary lemmas are briefly that: (1) If p has a counterexample 
of length n + 1, then one of its necessary lemmas has a counterexample of length n, and (2) 
if a necessary lemma has counterexamples, then p also has counterexamples. Based on these 
two features of necessary lemmas, IGF repeats induction and searching counterexamples for 
each of these state predicates (p and the recursively constructed necessary lemmas) until a 
counterexample is found or p is proved. 

  The procedure IGF can be used very systematically. An algorithm for IGF has been described 
in [20], and we have also investigated several issues related to automating IGF in [21]. One 
limitation of IGF is that it is not suitable for proving a state predicate is invariant, since 

necessary lemmas used to discharge false cases are the weakest state predicates to strengthen 

inductive hypothesis and may not be appropriate ones. 

  We now briefly discuss a simple idea for systematically generating candidate lemmas (such 
as those of properties 3, 4 and 5 in Sect. 5.2), in which falsification can be very useful. A 
sub-case of an inductive case is characterized by a set of equations, say E. When CafeOBJ 
system reduces to false for this sub-case, a necessary lemma in the form '(/ \eEE e) can be
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constructed. Note that from this set E of equations, we can also systematically construct other 
state predicates in the form  i(/  \e,EE, e'), where E' E 2E A E' $ E, and these state predicates 
are stronger than the necessary lemma since -'(Ae'EE' el) = '(AeEE e). Basically, all of these 
state predicates are candidates that can be used, instead of the necessary lemma and maybe 
more appropriately, to strengthen inductive hypothesis. Falsification can be used here to filter 
out those incorrect candidates. This idea is part of a procedure called Combined Falsification 
and Verification (CFV) described in [22].

7 Related Work

The Mondex system has been originally specified and manually proved for correctness using the Z 

methods [5]. In [5], two models of the Mondex system are developed, where the first is an abstract 
model that models value exchanges between purses as atomic transaction, and the second is 
a concrete model that models value exchanges between purses following the communication 
protocol. It is then proved that the two security properties hold for the abstract model, and the 
concrete model is a refinement of the abstract one (actually an intermediate model is introduced 
to ease the proof) . 

  Following the original Z work, a number of other formal methods, such as KIV [6, 7], RAISE 
[8] and Alloy [9] etc, have been employed to the Mondex problem. We discuss these related work 
wrt the aspects of modeling, refinement proof (or verification) and falsification, respectively. 

  The RAISE and Alloy work seem to intentionally follow closely the modeling methods of 
the original Z work while keeping their own features. The KIV work provides an alternative 
operational style formalization of the Mondex system using (two) abstract state machines, and 
makes several simplifications and modifications, which include, for example: removed the global 
input while obtaining the input from the ether; removed the ignore operation that does nothing 

(which is needed by the refinement theory used in Z work); merged the purses' two idling status 
eaFrom and eaTo into one idle status, etc. 

  Our work of modeling the Mondex system as an OTS in an operational style is inspired 
by the KIV work, which from our point of view is simpler to the Z modeling method (similar 
statement is made in the KIV work). In addition, we made several further modifications to the 
KIV modeling as follows:

1. Since messages existing in ether can be lost, we abandoned the assumption made in KIV 

  modeling that startfrom and startto messages are always available in ether. In our 

  modeling, no message exists in the initial ether.

2. To reflect that a purse can abort a transaction at any time as the card-holder wishes or 

  due to purses' internal reasons, we did not define any effective condition for the transition 

  abort, while a condition was defined for abort in KIV modeling.

3. We explicitly defined two transitions duplicate and drop to characterize that messages in 

  the ether can be replayed and lost. The KIV modeling used ether' C ether to characterize 

  that messages can be lost, but did not explicitly show that messages can be replayed.

  To show the correctness of the properties to the Mondex system, refinement proofs are devel-

oped in Z, KIV, RAISE and Alloy work in different forms and with different features. Although 

the refinement construction and proof strategy is reasonable and suitable for the Mondex prob-

lem, we employ an alternative way of expressing and verifying the security properties of the 

Mondex system directly as invariants of an OTS through using an introduced component "pre-

vious balance" of purses. Note, however, that even if different proof strategies are used, we share
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some similar or exactly same proof obligations. First, for the property of payment details that 

 from and to components should be different (Sect. 4.3.2 of [5]), and for the properties P-2 to 
P-4 for purses (Sect. 4.6 of [5]), which are used in the refinement proofs of the Z and KIV work, 
we have proved and used as lemmas exactly same properties in our verification; and second, for 

some of the properties B-2 to B-12 expressing constraints on ether (Sect. 5.3 of [5]), we have 
proved and used as lemmas very similar properties. 

  In the RAISE and Alloy work, two different ways of falsification of the Mondex system 
are described by means of translating the RSL (RAISE Specification Language) specification 
of the Mondex system into the input of SAL model checker, and respectively, appealing the 
Alloy analyzer (model-finding technique). In our work, Maude search command is used for 
conducting falsification through a translation into Maude specification of the Mondex system. 
Our work is similar to the above two work in the sense that we all consider a finite reachable 
state space (called finite scope in Alloy terminology), such as finite number of purses. However, 
our work is different with the RAISE work in the sense that we do not need to make those 
changes of the Mondex system as RAISE work did: (1) the possible loss of messages was not 
modeled in RAISE work to reduce possible changes to the ether, and (2) ranges of money and 
sequence numbers were restricted to 0..3, etc. One possible reason for these may be that we are 
able to do falsification on inductively defined data types. For example, Ether is defined using 
data constructors nil and _ , _. This point is also a possible difference between our work and 
the Alloy work.

8 Conclusion

We have described two algebraic approaches to both verification and falsification of the Mondex 
system, and how the falsification can be used to facilitate the verification. We have employed 
alternative ways of (1) modeling the Mondex system in an operational style, rather than in 
a relational style, and (2) expressing and verifying (and falsifying) security properties of the 
Mondex system directly in terms of invariants. This work therefore provides a different way of 
viewing the Mondex analysis problem and can be used to compare different modeling and proof 
strategies. In addition, our model of the Mondex system makes several simplifications to the 
original Z model (as inspired by the KIV model), and several further modifications to the KIV 
model to keep closer to the real problem. 

  In our modeling and verification of the Mondex system, we did not consider intruder purses 
that may send faked Req, Val and Ack messages based on possibly gleaned information. This 
is because that it is assumed that those messages cannot be forged, which is guaranteed by 
some (unclear) means of cryptographic system. In the KIV work, a possible communication 

protocol using cryptographic algorithm is developed. Our first future work is to extend our 
modeling and verification by considering possible intruder purses under a cryptographically 
secured communication protocol, in which it should be proved that the three messages cannot 
be forged rather than assuming it. 

  Our second future work relates to falsification. We are going to investigate the technical 
issue that how many entities (such as purses) are enough to uncover possible counterexamples 
when the number of the entities has to be made finite for falsification. Furthermore, we are 
also going to extensively investigate ways of utilizing falsification to facilitate verification of the 
OTS/CafeOBJ method, and implement tools that automate the procedure IGF, and possibly 
also the procedure CFV.
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A Mondex Specifications including Data Types 

-- Bal
, a subsort of Int, is used to represent balances of purses 

mod! BAL { 
 pr(INT) 

  [Bal < Int] 
  op seedy : -> Bal 

  op ___ : Bal Bal -> Bool {comm} 

vars I J M N : Bal 
  eq (I = I) = true . 

  eq (I >= 0) = true . 
 ceq (I <= J) = true if (I = J) . 

  eq (I - I) = 0 . 
 ceq ((I + J) <= (M + N)) = true if ((I <= M) and (J <= N)) . 

  op ___ : Int Int -> Bool {comm} 
vars X Y P Q : Int 

  eq (X = X) = true . 
  ceq (X <= Y) = true if (X = Y) . 

 ceq ((X + P) <= (Y + Q)) = true if ((X <= Y) and (P <= Q)) . 
  eq (X = X - I) = false . 

  ceq ((X - P) <= Y) = true if (X <= Y) . 
} 

-- Name is used to represent the name of purses 
mod! NAME Name { 

  [Name] 
  op ___ : Name Name -> Bool {comm} 
var N : Name 

  eq (N = N) = true . 

} 

-- Ibal is used to generate the initial balance of purses . 

mod! IBAL { 
 pr(NAME + BAL) 

                             27



 [Ibal < Bal] 
  op ib : Name Bal -> Ibal 

  op nofibal : Ibal -> Name 
  op valofibal : Ibal -> Bal 

  op ___ : Ibal Ibal -> Bool {comm} 

 var N : Namevar P : Bal 
  vars I I1 I2 : Ibal 

  eq nofibal(ib(N,P)) = N . 
  eq valofibal(ib(N,P)) = P . 

  eq (I = I) = true . 
  eq (I1 = I2) = (nofibal(I1) = nofibal(I2) and valofibal(I1) = valofibal(I2)) . 

} 

-- Seqnum is used to represent the sequence number to be used by purses 
-- in next transaction . 

mod! SEQNUM { 

pr (NAT) 
  [Seqnum < Nat] 

  op seedn : -> Seqnum 
  op ___ : Seqnum Seqnum -> Bool {comm} 
  op nextseqnum : Seqnum -> Seqnum 

  vars S S1 : Seqnum 
  eq (S = S) = true . 

  eq (S = nextseqnum(S)) = false . 
  eq (S < nextseqnum(S)) = true . 

  eq (S < S) = false . 
  ceq (S < nextseqnum(S1)) = true if (S < S1) . 

  ceq (S < nextseqnum(S1)) = true if (S <= S1) . 
  ceq (S = nextseqnum(S1)) = false if (S <= S1) . 
  eq (nextseqnum(S) <= S) = false . 

} 

-- Inum is used to generate the initial seqnum of purses . 

mod! INUM { 
 pr(NAME + SEQNUM) 

[Inum < Seqnum] 
  op is : Name Seqnum -> Inum 

  op nofinum : Inum -> Name 
  op sofinum : Inum -> Seqnum 
  op ___ : Inum Inum -> Bool {comm} 

• 

  vars I I1 I2 : Inum 
 var N : Namevar S : Seqnum 

 eq nofinum(is(N,S)) = N .eq sofinum(is(N,S)) = S . 
  eq (I = I) = true . 

 eq (I1 = I2) = (nofinum(I1) = nofinum(I2) and sofinum(I1) = sofinum(I2)) . 

} 

-- Status is used to represent the status of purses 

mod! STATUS { 
  [Status] 

  ops idle epr epv epa : -> Status 
  op ___ : Status Status -> Bool {comm} 
  var PS : Status 

 eq (PS = PS) = true . 
 eq (idle = epr) = false .eq (idle = epv) = false . 

 eq (idle = epa) = false .eq (epr = epv) = false .
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 eq (epr = epa) = false .eq (epv = epa) = false  . 
 } 

 -- Paydetail is used to represent the Paydetail of purses 

mod! PAYDETAIL { 
 pr(BAL + NAME + SEQNUM) 

  [Emptypd < Paydetail] 
  op none : -> Emptypd 

  op ___ : Paydetail Paydetail -> Bool {comm} 
  op mk-pay : Name Seqnum Name Seqnum Bal -> Paydetail 

  op from : Paydetail -> Name 
  op fromno : Paydetail -> Seqnum 
  op to : Paydetail -> Name 
  op tono : Paydetail -> Seqnum 
  op value : Paydetail -> Bal 

 vars F T : Namevars FN TN : Seqnum 
 vars V : Balvar PD : Paydetail 

  eq from(mk-pay(F,FN,T,TN,V)) = F . 
  eq fromno(mk-pay(F,FN,T,TN,V)) = FN . 

  eq to(mk-pay(F,FN,T,TN,V)) = T . 
  eq tono(mk-pay(F,FN,T,TN,V)) = TN . 

  eq value(mk-pay(F,FN,T,TN,V)) = V . 

  eq (PD = PD) = true . 
  eq (mk-pay(F,FN,T,TN,V) = none) = false . 

} 

-- Exlog is used to represent the exception log of purses, 

-- Exlog is essentially is list of paydetails. 

mod! EXLOG { 
 pr(PAYDETAIL + INT) 

  [Paydetail < Exlog] 
  op emptyexlog : -> Exlog 

  op _0_ : Exlog Exlog -> Exlog 
  op _/inexlog_ : Paydetail Exlog -> Bool 

 vars EXLOG El E2 : Exlog 
  vars PD PD1 PD2 : Paydetail 

  eq PD1 /inexlog emptyexlog = false . 
  ceq PD1 /inexlog (PD2 @ EXLOG) = true if (PD1 = PD2) . 

  ceq PD1 /inexlog (PD2 @ EXLOG) = PD2 /inexlog EXLOG if not(PD1 = 

  op ___ : Exlog Exlog -> Bool 
  eq (EXLOG = EXLOG) = true . 

 ceq ((PD1 @ El) = (PD2 @ E2)) = false if not(PD1 = PD2) . 
 ceq ((PD1 @ El) = (PD2 @ E2)) = (El = E2) if (PD1 = PD2) . 
  eq ((PD @ El) = emptyexlog) = false . 

  op lost : Paydetail Exlog -> Int 
  eq lost(PD,EXLOG) = (if (PD /inexlog EXLOG) then value(PD) else 0 

} 

-- Purse is used to represent the purses themselves. 
mod! PURSE { 

 pr(STATUS + EXLOG + INT) 
  [Purse] 

  op mk-purse : Name Int Int Seqnum Status Paydetail Exlog -> Purse 
  op ___ : Purse Purse -> Bool {comm} 
  op name : Purse -> Name 

  op pbal : Purse -> Int

PD2) .

fi) .
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op bal : Purse ->  Int 

op seq : Purse -> Seqnum 

op sta : Purse -> Status 

op pay : Purse -> Paydetail 

op log : Purse -> Exlog

var P 

var N 

var S 

var PD

: Purse 

: Name 

: Seqnum 

: Paydetail

vars 

var 

var

V1 V2 : Int 

ST : Status 

EXLOG : Exlog

eq name(mk-purse(N,V1,V2,S,ST,PD 
eq pbal(mk-purse(N,V1,V2,S,ST,PD 
eq bal(mk-purse(N,V1,V2,S,ST,PD, 
eq seq(mk-purse(N,V1,V2,S,ST,PD, 
eq sta(mk-purse(N,V1,V2,S,ST,PD, 
eq pay(mk-purse(N,V1,V2,S,ST,PD, 
eq log(mk-purse(N,V1,V2,S,ST,PD,

,EXLOG)) = 
,EXLOG)) = 
EXLOG)) = 
EXLOG)) = 
EXLOG)) = 
EXLOG)) = 
EXLOG)) =

N . 

V1 . 

V2 . 

S . 

ST . 

PD . 

EXLOG .

eq (P = P) = true .

}

-- Message is used to represent messages transferred 
mod! MESSAGE { 

pr(PAYDETAIL) 
  [Message] 
  op startfrom : Name Bal Seqnum -> Message 

  op startto : Name Bal Seqnum -> Message 
  op req : Paydetail -> Message 

op val : Paydetail -> Message 
  op ack : Paydetail -> Message 

  op isstartfrom : Message -> Bool 
  op isstartto : Message -> Bool 

  op isreq : Message -> Bool 
  op isval : Message -> Bool 

op isack : Message -> Bool 

  op nameofm : Message -> Name 
  op valueofm : Message -> Bal 
  op seqofm : Message -> Seqnum 

 op pdofm : Message -> Paydetail 

  op ___ : Message Message -> Bool {comm} 
var N : Namevar I : 
var S : Seqnumvar PD : 

 vars M M1 M2 : Message 

  eq isstartfrom(startfrom(N,I,S)) = true . 

 eq isstartfrom(startto(N,I,S)) = false . 
 eq isstartfrom(req(PD)) = false . 

 eq isstartfrom(val(PD)) = false . 
 eq isstartfrom(ack(PD)) = false . 

 eq isstartto(startto(N,I,S)) = true . 
 eq isstartto(startfrom(N,I,S)) = false . 

 eq isstartto(req(PD)) = false . 
 eq isstartto(val(PD)) = false . 

 eq isstartto(ack(PD)) = false . 

 eq isreq(req(PD)) = true .

Bal 

Paydetail
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eq isreq(startfrom(N,I,S)) = false  . 
eq isreq(startto(N,I,S)) =  false . 
eq isreq(val(PD)) = false . 

eq isreq(ack(PD)) = false . 

eq isval(val(PD)) = true . 
eq isval(startfrom(N,I,S)) = false . 
eq isval(startto(N,I,S)) = false . 
eq isval(req(PD)) = false . 
eq isval(ack(PD)) = false . 

eq isack(ack(PD)) = true . 
eq isack(startfrom(N,I,S)) = false . 
eq isack(startto(N,I,S)) = false . 
eq isack(req(PD)) = false . 
eq isack(val(PD)) = false . 

eq nameofm(startfrom(N,I,S)) = N . 

eq nameofm(startto(N,I,S)) = N . 
eq valueofm(startfrom(N,I,S)) = I . 
eq valueofm(startto(N,I,S)) = I . 
eq segofm(startfrom(N,I,S)) = S . 
eq segofm(startto(N,I,S)) = S . 
eq pdofm(req(PD)) = PD . 
eq pdofm(val(PD)) = PD . 
eq pdofm(ack(PD)) = PD . 

eq (pdofm(M) = none) = false . 

eq (M = M) = true . 
ceq (M1 = M2) = (isstartfrom(M2) and nameofm(M1) = nameofm(M2) and 

               valueofm(M1) = valueofm(M2) and seqofm(M1) = seqofm(M2)) 
                if isstartfrom(M1) . 

ceq (M1 = M2) = (isstartto(M2) and nameofm(M1) = nameofm(M2) and 
               valueofm(M1) = valueofm(M2) and seqofm(M1) = seqofm(M2)) 

               if isstartto(M1) . 

ceq (M1 = M2) = (isreq(M2) and pdofm(M1) = pdofm(M2)) if isreq(M1) . 
ceq (M1 = M2) = (isval(M2) and pdofm(M1) = pdofm(M2)) if isval(M1) . 
ceq (M1 = M2) = (isack(M2) and pdofm(M1) = pdofm(M2)) if isack(M1) .

}

-- Ether contains 

mod! ETHER { 
  -- The remaining 

}

messages, is used to represent the communication channel

parts are those introduced in Sect. 4.1.

-- The Mondex communication protocol 
mod* MONDEX { 

 pr(IBAL + INUM + PURSE + ETHER) 
*[Sys]* 
         -- The remaining parts are those introduced in Sect. 4.2. 

}

B Invariants Proved

Property 1 shown in the paper corresponds to invl00 and property 2 to inv440. Besides, property 

3, 4, 5 and 6 corresponds to invl30, inv140, inv470 and inv330. These invariants are defined in 

module INV, and their definitions for basic formulas to be proved in inductives cases are defined 

in module ISTEP.
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eq

eq

eq

eq

eq

eq

eq

eq

eq

eq

proved with  inv110, inv120, inv130, inv140, and inv330 
inv100(S,P1,P2) = 

((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and 

pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2)) 
implies 
((bal(purse(S,P1)) + bal(purse(S,P2))) 

<_ (pbal(purse(S,P1)) + pbal(purse(S,P2))))) .

proved with inv600, inv610, inv620, inv650, inv150, inv160, inv200, 
inv170 and inv180 
inv110(S,P1,P2,M) = 

(CM /in ether(S) and isval(M) and pay(purse(S,P1)) = pdofm(M) and 
sta(purse(S,P1)) = epv and pay(purse(S,P2)) = pdofm(M) and 
not(P1 = P2)) implies 

(bal(purse(S,P2)) = (pbal(purse(S,P2)) - value(pay(purse(S,P2)))))) .

proved by itself 
inv120(S,P) = 

(sta(purse(S,P)) = epv

proved with inv150 
inv130(S,P) = 

((sta(purse(S,P)) = 
implies 

(bal(purse(S,P)) =

implies

epa)

(bal(purse(S,

pbal(purse(S, P)) -

P)) = pbal(purse(S,

value(pay(purse(S,

P)))) .

P))))) .

proved with inv260, inv120, inv160, inv200 and inv270 
inv220, inv290, inv510, inv560, inv590 
inv140(S,P1,P2,M) = 
(CM /in ether(S) and isack(M) and pay(purse(S,P2)) = pdofm(M) and 
sta(purse(S,P2)) = idle and sta(purse(S,P1)) = epa and 

pay(purse(S,P1)) = pdofm(M) and not(P1 = P2)) 
implies 

(bal(purse(S,P2)) = (pbal(purse(S,P2)) + value(pay(purse(S,P2)))))) .

proved by itself 
inv150(S,P) = 

((sta(purse(S,P)) = 
implies (bal(purse(S

epr) 

,P)) = pbal(purse(S,

proved with inv210 
inv160(S,P,P1,P2,PD) = 
((pay(purse(S,P1)) = PD and 
and not(P1 = P2) and not(P = 
implies not(pay(purse(S,P))

proved with inv190 
inv170(S,P1,P2) = 

((sta(purse(S,P1)) 

pay(purse(S,P1)) =

proved with inv150 
inv180(S,P) = 

((sta(purse(S,P)) = 
implies 

(bal(purse(S,P)) =

proved by itself 
inv190(S,P) = 

((sta(purse(S,P)) =

P)))) .

pay(purse(S,P2)) 
P1) and not(P = 

= PD)) .

= epv and sta(purse(S ,P2)) 
pay(purse(S,P2))) implies

epa)

pbal(purse(S,

epv) implies

P)) -

= PD 

P2))

(P1

and

epv

not (PD =

 and 

P2)) .

value(pay(purse(S,

(to(pay(purse(S, P))) =

none)

P))))) .

P)) .
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eq 

eq

eq

eq 

eq

eq

eq

eq

eq

eq 

eq

eq

proved by itself 
inv200(S,P) = 

((sta(purse(S,P)) = epv) implies not(pay(purse(S,P)) = none))  . 

proved with  inv220 
inv210(S,P,P1,P2,PD) = 

((not(P1 = P) and not(P2 = P) and pay(purse(S,P1)) = PD and 

pay(purse(S,P2)) = PD and not(P1 = P2) and not(PD = none)) 
implies (not(from(PD) = P) and not(to(PD) = P))) . 

proved by itself 
inv220(S,P,PD) = 

((pay(purse(S,P)) = PD and not(PD = none)) 
implies (from(PD) = P or to(PD) = P)) . 

proved by itself 
inv230(S,P) = 

((sta(purse(S,P)) = epr) implies (from(pay(purse(S,P))) = P)) . 

proved with inv220 and inv230 
inv240(S,P1,P2) = 

((sta(purse(S,P1)) = epr and pay(purse(S,P1)) = pay(purse(S,P2)) 
and not(P1 = P2)) implies (to(pay(purse(S,P2))) = P2)) . 

proved by itself 
inv250(S,P) = 
((sta(purse(S,P)) = epa or sta(purse(S,P)) = epr) 
implies not(pay(purse(S,P)) = none)) . 

proved with inv280, inv120, inv160, inv200, inv230, and inv290 
inv560, inv590 
inv260(S,P1,P2,M) = 
(((M /in ether(S)) and isack(M) and pay(purse(S,P1)) = pdofm(M) and 
sta(purse(S,P1)) = idle and pay(purse(S,P2)) = pdofm(M) and 
not(P1 = P2) and sta(purse(S,P2)) = epr) 
implies (bal(purse(S,P1)) = (pbal(purse(S,P1)) + value(pdofm(M))))) . 

proved with inv300 
inv270(S,P1,P2) = 

((sta(purse(S,P1)) = epa and sta(purse(S,P2)) = epa and 

pay(purse(S,P1)) = pay(purse(S,P2))) implies (P1 = P2)) . 

proved with inv120, inv320 and inv290, inv560, inv220, inv590 
inv280(S,P,M) = 

(((M /in ether(S)) and isack(M) and 

pay(purse(S,P)) = pdofm(M) and sta(purse(S,P)) = idle and 
not(P = from(pdofm(M)))) 
implies (bal(purse(S,P)) = (pbal(purse(S,P)) + value(pdofm(M))))) . 

proved with inv230 
inv290(S,P) = 
((sta(purse(S,P)) = epa) implies (from(pay(purse(S,P))) = P)) . 

proved with inv290 and inv310 
inv300(S,P1,P2) = 

((sta(purse(S,P1)) = epa and sta(purse(S,P2)) = epr and 

pay(purse(S,P1)) = pay(purse(S,P2))) implies (P1 = P2)) . 

proved with inv230 
inv310(S,P1,P2) = 
((sta(purse(S,P1)) = epr and sta(purse(S,P2)) = epr and 
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pay(purse(S,P1)) =  pay(purse(S, P2))) implies (P1 = P2)) .

-- proved with inv220 

eq inv320(S,P1,P2) = 
C(sta(purse(S,P1)) 
  and not(P1 = P2))

and inv190

= epv 

implies

and pay(purse(S,P1)) = pay(purse(S, 
 (from(pay(purse(S,P2))) = P2)) .

P2))

-- deduced with inv340 and inv350 

eq inv330(S,P1,P2) = 
((pay(purse(S,P1)) = pay(purse(S,P2)) and 

  implies ((bal(purse(S,P1)) + bal(purse(S, 
<_ (pbal(purse(S,P1)) +

not(P1 = P2)) 
P2))) 

pbal(purse(S, P2))))) .

-- proved by itself 

eq inv340(S,P1,P2) = 

((pay(purse(S,P1)) 

  pay(purse(S,P1)) = 
((bal(purse(S,P1))

= pay(purse(S ,P2)) and 
none) implies 
+ bal(purse(S,P2))) 

<_ (pbal(purse(S,P1)) +

not(P1 = P2)

pbal(purse(S,

and

P2))))) .
ASIR

-- proved with inv360 , 
eq inv350(S,P1,P2) = 

((pay(purse(S,P1)) = 
not(pay(purse(S,P1)) 

((bal(purse(S,P1)) + 
                         <=

inv370 , inv110, inv120,

pay(purse(S,P2)) and 
= none)) implies 

bal(purse(S,P2))) 

(pbal(purse(S,P1)) +

inv630, inv580.

not(P1 = P2)

pbal(purse(S,

and

P2))))) .

-- proved with inv230
, inv420 

eq inv360(S,P1,P2) = 

  ((from(pay(purse(S,P2))) = P1 and 

  not(P1 = P2)) implies (bal(purse(S

pay(purse(S,P1)) = none and 
,P2)) = pbal(purse(S,P2)))) .

-- proved with inv430 and 

eq inv370(S,P1,P2) = 

((to(pay(purse(S,P2))) 
  not(P1 = P2)) implies

inv190.

= P1 and pay(purse(S,P1)) = none 

(bal(purse(S,P2)) = pbal(purse(S,

 and 

P2)))) .

-- proved with inv390 

eq inv380(S,P1,P2) = 

((from(pay(purse(S,P2))) = 

  implies (fromno(pay(purse(S

P1 and 

,P2)))

not(pay(purse(S 
<= seq(purse(S,

,P2)) = 
P1)))) .

none))

-- proved by itself 

eq inv390(S,P,M) = 
((M /in ether(S) and 

  implies (seqofm(M) <_
isstartto(M) 

seq(purse(S,

and nameofm (M) = P) 

P)))) .

-- proved with inv410 

eq inv400(S,P1,P2) = 

((to(pay(purse(S,P2))) = 
  implies (tono(pay(purse(S

P1 and 

,P2)))

not(pay(purse(S 
<= seq(purse(S,

,P2)) = 
P1)))) .

none))

-- proved by itself 

eq inv410(S,P,M) = 

((M /in ether(S) and 
  implies (seqofm(M) <_

isstartfrom(M) and nameofm(M) = P) 

seq(purse(S,P)))) .

-- proved with inv230 , inv250 
eq inv420(S,P,M) = 

((M /in ether(S) and isval(M) 
  implies not(pay(purse(S,P)) =

and from(pdofm(M)) 

none)) .

= P)
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-- proved by itself 

eq  inv430(S,P,M) = 

  ((M /in ether(S) and isreq(M) 
  implies not(pay(purse(S,P)) =

and to (pdofm (M)) = P) 
none)) .

-- proved with inv110 , inv120, inv130, inv140, inv150, inv470, 
-- inv450 , inv520, inv220, inv200, inv190, inv510, inv530, inv180, 
-- inv540 , inv550, inv560, inv570, inv480, inv250, inv290. 
eq inv440(S,P1,P2) = 

  ((sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and 

  pay(purse(S,P1)) = pay(purse(S,P2)) and not(P1 = P2)) 
  implies 

  (if (pay(purse(S,P1)) /inexlog log(purse(S,P1))) and 
      (pay(purse(S,P2)) /inexlog log(purse(S,P2))) 

   then ((bal(purse(S,P1)) + bal(purse(S,P2)) + 
lost(pay(purse(S,P1)),log(purse(S,P1)))) 

                = (pbal(purse(S ,P1)) + pbal(purse(S,P2)))) 
   else ((bal(purse(S,P1)) + bal(purse(S,P2))) 

                = (pbal(purse(S ,P1)) + pbal(purse(S,P2)))) fi)) .

-- proved with inv460 

eq inv450(S,P) = 
  (sta(purse(S,P)) = epv 

  implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved with inv190 , inv200, inv220, inv250 
-- inv490 , inv500 and inv510. 
eq inv460(S,P,PD) = 

  ((PD /inexlog log(purse(S,P))) 
  implies (if from(PD) = P then (fromno(PD) 

                          else (tono(PD) <

, inv290, inv450, inv470,

< seq(purse(S,P))) 

seq(purse(S,P))) fi)) .

-- proved with inv480 

eq inv470(S,P) = 

  (sta(purse(S,P)) = epa 
  implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved with inv460 

eq inv480(S,P) = 
   (sta(purse(S,P)) = epr 

  implies not(pay(purse(S, P)) /inexlog log(purse(S, P)))) .

-- proved by itself 

eq inv490(S,P) = 
  (sta(purse(S,P)) = epv 

  implies tono(pay(purse(S, P))) < seq(purse(S, P))) .

-- proved with inv660 

eq inv500(S,P) = 
  (sta(purse(S,P)) = epa 

  implies fromno(pay(purse(S, P))) < seq(purse(S, P))) .

-- proved by itself 

eq inv510(S,P) = 
(not(pay(purse(S,P)) 
not(from(pay(purse(S,

= none) 

P))) =

 implies 
to(pay(purse(S, P))))) .

-- proved with inv460 

eq inv520(S,P) = 
((pay(purse(S,P))

, inv480,

/inexlog

inv450, inv190

log(purse(S, P))

, inv200,

and

inv510 and inv130
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from(pay(purse(S,P))) = P) implies 
(bal(purse(S,P)) = pbal(purse(S,P)) - value(pay(purse(S,P)))))  .

eq

eq

proved with  inv580, inv170, inv590, inv560, inv150 
inv530(S,P1,P2) = 
((sta(purse(S,P2)) = idle and sta(purse(S,P1)) = epv 

pay(purse(S,P1)) = pay(purse(S,P2)) and 
not(pay(purse(S,P2)) /inexlog log(purse(S,P2))) and 
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

proved with inv480, inv450, 
inv540(S,P) = 

((pay(purse(S,P)) /inexlog 
to(pay(purse(S,P))) = P) 
implies (bal(purse(S,P)) =

and

not(P1 = P2))

inv120, inv290, inv510, inv250

log(purse(S,P)) and

pbal(purse(S,P)))) .

eq
proved with inv560, 
inv550(S,P) = 
((sta(purse(S,P)) = 
not(pay(purse(S,P)) 
and to(pay(purse(S, 
implies 

(bal(purse(S,P)) =

inv510, inv230, inv290, inv250, inv450, inv480, inv120

idle and 
/inexlog log(purse(S,P))) 

P))) = P and not(pay(purse(S,P)) = none))

pbal(purse(S,P)) + value(pay(purse(S,P))))) .

eq

proved by itself 
inv560(S,P) = 

(sta(purse(S,P)) = idle or 
(if from(pay(purse(S,P))) = P 
then (sta(purse(S,P)) = epr or sta(purse(S,P)) = epa) 
else sta(purse(S,P)) = epv fi)) .

eq

eq

proved with inv630, 
inv570(S,P1,P2) = 

((sta(purse(S,P1)) = 
and not(P1 = P2)) im

inv310, and inv640

epr and pay(purse(S,P1)) = pay(purse(S,P2)) 

plies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

proved with inv400, inv610 and inv620 
inv580(S,P1,P2) = 

((to(pay(purse(S,P2))) = P1 and 
tono(pay(purse(S,P2))) = seq(purse(S,P1)) 
and not(P1 = P2) and not(pay(purse(S,P2)) = none)) 
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) .

eq

eq

proved with inv600 and inv170 
inv590(S,P,M) = 
((M /in ether(S) and isack(M) and pay(purse(S,P)) = pdofm(M)) 
implies (not(sta(purse(S,P)) = epv))) .

proved with inv610 and inv190 
inv600(S,P,M) = 

((M /in ether(S) and isack(M) and to(pdofm(M)) = P) 
implies tono(pdofm(M)) < seq(purse(S,P))) .

eq

proved with inv250, inv230, inv510, inv620 
inv610(S,P,M) = 
((M /in ether(S) and isval(M) and to(pdofm(M)) = P) 
implies tono(pdofm(M)) < seq(purse(S,P))) .

eq
proved by itself 
inv620(S,P,M) = 

((M /in ether(S) and isreq(M) and to(pdofm(M)) = P)

36



eq

eq

eq

eq

implies tono(pdofm(M)) < seq(purse(S,P)))  . 

proved with inv380,  inv650 and inv230 
inv630(S,P1,P2) = 

((from(pay(purse(S,P2))) = P1 and 
fromno(pay(purse(S,P2))) = seq(purse(S,P1)) 
and not(P1 = P2) and not(pay(purse(S,P2)) = none)) 
implies (bal(purse(S,P2)) = pbal(purse(S,P2)))) . 

proved with inv650 and inv310 
inv640(S,P,M) = 

((M /in ether(S) and isval(M) and pay(purse(S,P)) = pdofm(M)) 
implies not(sta(purse(S,P)) = epr)) . 

proved with.inv230 and inv660 
inv650(S,P,M) = 

((M /in ether(S) and isval(M) and from(pdofm(M)) = P) 
implies fromno(pdofm(M)) < seq(purse(S,P))) . 

proved by itself 
inv660(S,P) = 
(sta(purse(S,P)) = epr 
implies fromno(pay(purse(S,P))) < seq(purse(S,P))) .

C A Sample Proof Score 

To give an impression of the proof using proof score technique, we show the whole proof score 
for inv120 that is proved without using other invariants. Each proof passage in the proof score 
is labeled with Ex . y] . z, where x is the number of the property, y is the number of an inductive 
case, and z is a list of bit numbers separated with dot " . " denoting sub-cases (1 denotes a 
predicate is true, and 0 denotes a predicate is false). 

-- eq inv120(S ,P) = 
-- (sta(purse(S ,P)) = epv implies (bal(purse(S,P)) = pbal(purse(S,P)))) . 

--> I) Base case 
--> [120 .0] init 
open INV 

  red inv120(init,p) . 
close 

-- II) Inductive cases 
--> [120 .1] startpay 
--> [120 .1].1 c-startpay(s,g1,g2,v) = true . 
open ISTEP 
-- arbitrary objects 

  ops q1 q2 : -> Name . 
  op v : -> Bal . 

-- assumption 

  eq c-startpay(s,g1,g2,v) = true . 

-- successor state 

  eq s' = startpay(s,g1,g2,v) . 
-- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .1].0 c-startpay(s,g1,g2,v) = false . 
open ISTEP
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-- arbitrary objects 

  ops  q1 q2 : -> Name . 
  op v : -> Bal . 

-- assumption 

  eq c-startpay(s,g1,g2,v) = false . 

-- successor state 

  eq s' = startpay(s,g1,g2,v) . 
-- check if the predicate is true . 

  red istep120(p) . 
close 

--> [120 .2] recstartfrom 
--> [120 .2].1 c-recstartfrom(s,q,m) = true . 
--> [120 .2].1.1 p = q . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 

  op m : -> Message . 
-- assumption 

  eq c-recstartfrom(s,q,m) = true . 

eq p = q . 
-- successor state 

  eq s' = recstartfrom(s,q,m) . 
  -- check if the predicate is true . 

  red istep120(p) . 
close 

--> [120 .2].1.0 (p = q) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recstartfrom(s,q,m) = true . 

  eq (p = q) = false . 
-- successor state 

  eq s' = recstartfrom(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .210 c-recstartfrom(s,q,m) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recstartfrom(s,q,m) = false . 

-- successor state 

  eq s' = recstartfrom(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .3] recstartto 
--> [120 .3].1 c-recstartto(s,q,m) = true . 
--> [120 .3].1.1 p = q .
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open ISTEP 
-- arbitrary objects 

  op q : -> Name  . 
  op  m : -> Message . 

-- assumption 
-- eq c-recstartto(s ,q,m) = true . 

 eq (m /in ether(s)) = true . 
  eq isstartto(m) = true . 

 eq sta(purse(s,q)) = idle . 
  eq (q = nameofm(m)) = false .

eq p = q . 
-- successor state 

  eq s' = recstartto(s,q,m) . 
  -- check if the predicate is true. 

 red istep120(p) . 
close

--> [120 .3] .1.0 (p = q) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
-- eq c-recstartto(s ,q,m) = true . 

 eq (m /in ether(s)) = true . 
  eq isstartto(m) = true . 

 eq sta(purse(s,q)) = idle . 
 eq (q = nameofm(m)) = false . 

 eq (p = q) = false . 
-- successor state 

  eq s' = recstartto(s,q,m) . 
  -- check if the predicate is true. 

 red istep120(p) . 
close

--> [120 .3].0 c-recstartto(s,q,m) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recstartto(s,q,m) = false . 

-- successor state 

  eq s' = recstartto(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close

--> [120 .4] recreq 
--> [120 .4].1 c-recreq(s,q,m) = true . 
--> [120 .4] .1. 1 p = q . 

open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
-- eq c-recreq(s ,q,m) = true . 

 eq (m /in ether(s)) = true .
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  eq isreq(m) = true  . 
  eq sta(purse(s,q)) = epr  . 

  eq pay(purse(s,q)) = pdofm(m)  . 

eq p = q . 
-- successor state 

  eq s' = recreq(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .4].1.0 (p = q) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
  -- eq c-recreq(s ,q,m) = true . 

  eq (m /in ether(s)) = true . 
  eq isreq(m) = true . 

  eq sta(purse(s,q)) = epr . 
  eq pay(purse(s,q)) = pdofm(m) . 

  eq (p = q) = false . 
-- successor state 

  eq s' = recreq(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .4].0 c-recreq(s,q,m) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recreq(s,q,m) = false . 

-- successor state 

  eq s' = recreq(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .5] recval 
--> [120 .5].1 c-recval(s,q,m) = true . 
--> [120 .5].1.1 p = q . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
  -- eq c-recval(s ,q,m) = true . 

 eq (m /in ether(s)) = true . 
  eq isval(m) = true . 

  eq sta(purse(s,q)) = epv . 
 eq pay(purse(s,q)) = pdofm(m) . 

eq p = q . 
-- successor state 

  eq s' = recval(s,q,m) .
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  -- check if the predicate is true . 

 red  istep120(p) . 
close 

--> [120 .5].1.0 (p = q) = false . 

open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
-- eq c-recval(s ,q,m) = true . 

 eq (m /in ether(s)) = true . 
  eq isval(m) = true . 

  eq sta(purse(s,q)) = epv . 

 eq pay(purse(s,q)) = pdofm(m) . 

 eq (p = q) = false . 
-- successor state 

  eq s' = recval(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .5].0 c-recval(s,q,m) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recval(s,q,m) = false . 

-- successor state 

  eq s' = recval(s,q,m) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .6] recack 
--> [120 .6].1 c-recack(s,q,m) = true . 
--> [120 .6].1.1 p = q . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 
-- eq c-recack(s,q,m) = true . 

  eq (m /in ether(s)) = true . 
  eq isack(m) = true . 

  eq sta(purse(s,q)) = epa . 
  eq pay(purse(s,q)) = pdofm(m) . 

eq p = q . 
-- successor state 

  eq s' = recack(s,q,m) . 
  -- check if the predicate is true. 

  red istep120(p) . 
close 

--> [120 .61.1.0 (p = q) = false . 
open ISTEP 
-- arbitrary objects
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  op q : -> Name  . 
  op m : -> Message  . 

-- assumption 
  -- eq c-recack(s ,q,m) = true  . 

  eq (m /in ether(s)) = true . 
  eq isack(m) = true . 

  eq sta(purse(s,q)) = epa . 
  eq pay(purse(s,q)) = pdofm(m) . 

  eq (p = q) = false . 
-- successor state 

  eq s' = recack(s,q,m) . 
  -- check if the predicate is true . 

  red istep120(p) . 
close 

--> [120 .6] .0 c-recack(s,q,m) = false . 
open ISTEP 
-- arbitrary objects 

  op q : -> Name . 
  op m : -> Message . 

-- assumption 

  eq c-recack(s,q,m) = false . 

-- successor state 

  eq s' = recack(s,q,m) . 
  -- check if the predicate is true . 

  red istep120(p) . 
close 

--> [120 .7] drop 
--> [120 .7].1 c-drop(s) = true . 
open ISTEP 
-- arbitrary objects 

-- assumption 

  eq c-drop(s) = true . 

-- successor state 

  eq s' = drop(s) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .7] .0 c-drop(s) = false . 
open ISTEP 
-- arbitrary objects 
-- assumption 

  eq c-drop(s) = false . 

-- successor state 

  eq s' = drop(s) . 
  -- check if the predicate is true . 

 red istep120(p) . 
close 

--> [120 .8] duplicate 
--> [120 .8].1 c-duplicate(s) = true . 
open ISTEP 
-- arbitrary objects 
-- assumption
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  eq c-duplicate(s) = true  . 

-- successor state 

 eq s' = duplicate(s)  . 
 -- check  if  the  predicate  is 

 red istep120(p) . 
close 

--> [120 .8].0  c-duplicate(s)  = 
open ISTEP 
-- arbitrary  objects 
-- assumption 

  eq c-duplicate(s)  =  false . 

-- successor  state 

  eq s' =  duplicate(s) . 
  -- check  if  the  predicate  is 

 red istep120(p) . 
close 

--> [120 .9]  abort 
--> [120 .91.1  p  =  q . 
open ISTEP 
-- arbitrary  objects 

  op q :  ->  Name . 
-- assumption 

eq p = q . 
-- successor  state 

  eq s' =  abort(s,q) . 
  -- check  if  the  predicate  is 

 red istep120(p) . 
close 

--> [120 .9] .0  (p  =  q)  =  false . 
open ISTEP 
-- arbitrary  objects 

  op q :  ->  Name . 
-- assumption 

  eq (p =  q)  =  false . 
-- successor  state 

  eq s' =  abort(s,q) . 
  -- check  if  the  predicate  is 

 red istep120(p) . 
close 

-- Q.E.D  --

 true.

 false .

 true.

 true.

 true.
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