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PAPER

LP-BASED METHOD OF BLIND RESTORATION TO

IMPROVE INTELLIGIBILITY OF

BONE-CONDUCTED SPEECH

Thang TAT VU†a), Massashi UNOKI†b), and Masato AKAGI†c),

SUMMARY Bone-conducted (BC) speech can be used in-
stead of air-conducted (AC) speech in an extremely noisy envi-
ronment. However, its intelligibility is degraded when transmit-
ted through bone-conduction. Therefore, voice quality and the
intelligibility of BC speech need to be blindly improved in ac-
tual communication through speech and this is a challenging new
topic in the field of speech signal processing. We proposed a lin-
ear prediction (LP) based model to restore BC speech to improve
voice quality in a previous study. While other methods such as
Long-term Fourier transform need to use numerous AC speech
parameters to restore BC speech, the model we proposed demon-
strated the expressed ability of blindly restoring BC speech by
predicting AC-LP coefficients from BC-LP coefficients. We im-
proved the previous model by (1) extending long-term process-
ing to frame-basis processing, (2) using line spectral frequency
(LSF) coefficients on an LP representation, and (3) using a recur-
rent neural network for predicting parameters. We evaluated the
improved model in comparison with others to find out whether
it could adequately improve voice quality and the intelligibility
of BC speech, using objective measures (i.e., LSD, MCD, and
LCD) and carrying out a subjective measure — a Japanese-word
intelligibility test (JWIT). The experimental results proved sig-
nificant improvements to our newly proposed models (LSF and
LSF-SRN). The LSF model demonstrated it had significant ca-
pabilities for improving BC speech, i.e., both voice quality and
intelligibility of speech. Our proposed model, LSF-SRN, demon-
strated an expressed capability for improving the intelligibility of
BC speech even when using blind restoration.
key words: Speech intelligibility, Bone-conducted speech, Sim-
ple recurrent network, Blind restoration.

1. Introduction

It is very difficult for automatic speech recognition
(ASR) systems or people to communicate through
speech in extremely noisy environments. This is be-
cause of the poor sound quality and intelligibility of
speech due to the influence the transmission environ-
ments have on speech features.

There have been many different complex models
and/or algorithms that have been used to cancel or
reduce the effects of interfering noise [1]. These ap-
proaches have only been efficient at low- and medium-
noise levels and have been ineffective when these have
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been too high.
Another possible solution has been to use a spe-

cial microphone to record the speech signals transmit-
ted through the speaker’s head and face [2], [3]. This
recorded signal is referred to as “bone-conducted (BC)
speech”. Its stability against interfering noise from
noisy environments makes BC speech more advanta-
geous than noisy air-conducted (AC) speech.

Although BC speech is not affected by external
noise while AC speech is, there is a drawback to us-
ing BC speech in that the signal is complexly attenu-
ated when it is transmitted through bone conduction.
BC speech is generally attenuated stronger at higher
frequencies and the attenuation seems to be low-pass
filtering with a cut-off frequency of about 1 kHz [2],
[3]. The characteristics of BC vary for different pick-up
points (BC microphones) and the distribution of fre-
quency components varies with syllables and speakers
who pronounce syllables differently [2], [3]. This causes
the attenuation changed on different pick-up points,
speakers, and pronounced syllables

The attenuation causes the voice quality to be de-
graded in BC speech, which means both the intelli-
gibility of speech in human-hearing systems and the
robustness for ASR systems. If the voice quality of
BC speech can be improved, the restored signals can
be used in speech applications in noisy environments
with greater efficiency instead of using noisy AC speech.
There are several studies on BC speech for applica-
tions such as human-hearing aids and machine-hearing
systems but the results are still limited. A Gaussian
Mixture Model (GMM)-based voice conversion model
was applied to restore body-transmitted speech, which
is like BC speech [4]. However, due to the difficulty
of dealing with F0 features that might cause synthesis
problems, this approach has only been applied to un-
voiced speech such as whispered speech. BC speech has
been used as an additional source to noisy AC speech
and helps to reduce external noise [5], [6] in other ap-
proaches such as when air-and-bone conductive micro-
phones are used.

The purpose of our approach is to restore BC
speech to enable restored speech to be applied directly
such as to human-hearing systems and to the front-end
of ASR systems. Since it is very difficult to blindly re-
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store the signals of BC speech and improve voice quality
and the intelligibility of speech without using any other
information, this topic is extremely challenging in the
field of speech-signal processing.

The straightforward method of restoring BC
speech is to emphasize these attenuated frequency com-
ponents by using high-pass filtering (inverse of the low-
pass filtering previously described). However, it is diffi-
cult to adequately design one unique form of high-pass
filtering that is independent of speakers, pronounced
syllables, or pick-up points. Although there are various
methods of deriving inverse filtering such as the cross-
spectrum [7], short-term Fourier transform [8] and the
long-term Fourier transform [9], [10], these yield re-
stored signals with artifacts such as musical noise and
echoes, so that there are only slight improvements in
voice quality [7]–[10].

We proposed MTF-based and LP-based models in
our previous papers [12]–[16], which overcame the draw-
backs of previous methods and yielded a restored sig-
nals that had better intelligibility. Both models, in fact,
was based on the same concept for restoring the ob-
served BC signal as in their representations of source
and filter information. The MTF-based model tries to
restore the temporal power envelope in each channel,
while the LP-based model tries to restore the spectrum
envelope. Thus, the difference here is just the process-
ing domain, the first processing in the time domain,
and the other processing in the frequency domain.

The MTF-based model compensated for the re-
duced values of temporal power envelopes in the chan-
nels of the filterbank model. It overcame the drawbacks
with previous methods and yielded a restored signal
with enhanced voice quality [12]. Although its aim was
to restore BC for human-hearing, no consideration was
given to improving ASR systems. The LP-based model
originates from the idea that the LP residue informa-
tion corresponding to the source (glottal) characteris-
tics is the same for both BC and AC speech signals.
Therefore, adaptive inverse filtering was primarily de-
rived from the LP coefficients, which are related to the
filter (vocal tract) characteristics. This model showed
its ability to yield restored signals that were not only
more intelligible to human-hearing systems in experi-
ments but it also enabled ASR systems to achieve bet-
ter recognition [12]–[15].

Information on AC speech is needed to construct
the inverse filtering in restoration models [7]–[14] and
this is a serious drawback in practice when we have
no information on AC speech. Inverse filtering using
cross-spectrum and Fourier transform methods [7], [9],
[10] depends on the AC spectrum. The gain values for
the power envelope in the MTF-based model [12] and
the LP coefficients of AC speech in the LP-based one
[12]–[14] are essential to construct inverse filtering. Av-
eraged gains or averaged LP coefficients can be chosen
for these methods using averaged filtering [8]. However,

the model that is achieved will be difficult to adapt to
BC speech signal.

A recurrent neural network was shown to be effec-
tive in designing an inverse filter from BC to AC speech
in one study [11] to adapt an inverse filter with a BC
speech signal. We proposed an LP-based model with
the ability of blind restoration in our previous study by
predicting various parameters [15], [16] from the fact
that model only depends on a few unknown parame-
ters, i.e., the LP coefficients of AC speech (AC-LP co-
efficients). Machine learning methods were applied to
predicting AC-LP coefficients from BC-LP coefficients.
The results from this study revealed that the existing
relationship between the LP coefficients of AC and BC
speech signals is helpful for blindly restore BC speech
[15].

Although reasonable results were obtained to im-
prove the voice quality and intelligibility of BC speech,
the LP-based model [15] suffered from some serious lim-
itations. The LP coefficients were not stable or suitable
to enable prediction with statistical models due to the
different roles played by LP coefficients and their rela-
tively large dynamic ranges. Even small prediction er-
rors of AC-LP coefficients could easily cause problems
with filter instability [16], [20]. Also, inverse filtering
was only determined to remain unchanged for an entire
BC speech signal as in long-term processing.

We improved the model of LP-based blind restora-
tion by (1) extending long-term processing to frame-
based processing, (2) using LSF coefficients on LP rep-
resentations, and (3) predicting LSF parameters on a
frame-by-frame basis via a recurrent neural network.
Since LSF coefficients play the same role in the pre-
sentation of the spectrum envelope and their values
are limited within a range (0, π), these coefficients
could help alleviate the limitations with LP coefficients
in prediction using statistical methods. The processes
of restoration on a frame-by-frame basis could also be
adapted to inverse filtering in real time. Since a speech
signal contains a series of speech frames, the restoration
of neighboring frames should be related; a simple recur-
rent network (Elman network) was applied to predict
BC-LSF coefficients to complete the blind restoration
system.

This paper is organized as follows: Section 2
describes the AC/BC speech database that we con-
structed. Section 3 describes the framework and the
algorithm for LP-based BC speech restoration. Section
4 explains how we implemented the proposed model
as a blind restoration model. Section 5 discusses how
we evaluated the models using objective and subjec-
tive evaluations. Section 6 draws conclusions and gives
perspectives regarding further work.

2. AC/BC speech database

We assumed that there were existing relationships be-
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Table 1 List of equipments.

Measurement site Soundproof room
Number of pick-up points 5
Number of speakers 10
Recorder MARANZ, PMD671
Coding method PCM
Sampling frequency 48 kHz
Sample size 16 bits
Number of channels 2 (Left:AC, Right:BC)
Mic. A for AC speech SONY, C536P
Mic. power supply A SONY, AC148F
Mic. B for BC speech TEMCO, HG-17
Mic. C for BC speech TEMCO, SK-1
Mic. amp. B & C Handmade

tween AC and BC speech that were significant in restor-
ing BC speech. Therefore, a database was essential for
analyzing the relationships and differences between BC
speech and clean AC speech signals before any mod-
els were used to restore BC speech. We constructed a
large-scale database containing pairs of BC and clean
AC speech signals recorded simultaneously using a DAT
system (2 channels).

Figure 1 and Table 1 show the environment and
equipment used to construct this database. The BC
speech was collected at five different pick-up points on
the head and face: the (1) mandibular angle, (2) tem-
ple, (3) philtrum, (4) forehead, and (5) calvaria. These
points were chosen among other several pick-up points
since their pick-up signals was clearer and better qual-
ity than that of the others [19]. One pick-up point was
associated with one pair of clean AC and BC speech.
Microphone B was only used at point 5 and microphone
C was used at the other pick-up point. Ten speakers
(five males and five females) participated in the record-
ing of speech pronouncing 100 Japanese words and all
101 Japanese syllables.

The database was divided into two parts. The first
was (i) a Japanese word dataset of 100 Japanese words
selected from Japanese word lists by NTT-AT (2003)
[17]. With 10 speakers, 100 words, and 5 pick-up points,
there were 5000 pairs of wave files. The second part
was a (ii) Japanese syllable dataset of all 101 Japanese
syllables. With 10 speakers, 101 syllables, and 5 pick-
up points, there were 5050 pairs of wave files. The
selected words in the Japanese word dataset were cho-
sen by the degree of familiarity with the NTT database
[17]. Word familiarity in the NTT database was ranked
from 1 (low familiarity) to 7 (high familiarity) for all
80, 000 entry words and subtitles in the Shinmeikai
Japanese Dictionary (Fourth Ed.). The population of
words was then divided into four groups in different
familiarity ranges [18]. There were R1(1.0,2.5) – low
familiarity range, R2(2.5,4.0) – medium low familiar-
ity range, R3(4.0,5.5) – medium high familiarity range,
and R4(5.5,7.0) – high familiarity range. Since there is
complementary relationship between the familiarity of
a word and its intelligibility [17], [18], it is often difficult
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Fig. 1 Environment for recording AC/BC speech.

even for a Japanese to recognize what a low familiar-
ity word is in clean condition. We selected 100 words
with 25 words chosen for each familiarity range from
the Japanese word dataset.

3. LP-based BC Speech Restoration

3.1 Signal Restoration Diagram Based on LP

LP is one of the most powerful techniques for analyzing
speech. The all-pole model provides a good representa-
tion of almost all speech sounds when the order of LP
is sufficiently high [20]. Let x(t) and y(t) be AC and
its associated BC speech. The signals x(n) and y(n)
are discrete signals of x(t) and y(t) with a sampling
frequency of 16 kHz. Thus, the two signals x(n) and
y(n) are represented by the LP model in the z-domain
[12]–[16] as

−Gx(z) = X(z)
P∑

i=0

ax(i)z−i, ax(0) = −1, (1)

−Gy(z) = Y (z)
Q∑

i=0

ay(i)z−i, ay(0) = −1, (2)

where X(z) and Y (z) are the z-transforms of x(n) and
y(n), P and Q are LP orders, and ax(i) and ay(i) are
i-th LP coefficients. Here, Gx(z) is the z-transforms of
the LP residues of gx(n) and Gy(z) is that of gy(n).

Since the LP residues, gx(n) and gy(n), are re-
lated to the source information (glottal information) of
x(n) and y(n), this kind of information may remain un-
changed in both AC and BC speech signals. Figure 2
has a typical example of the relation between AC and
BC speech signals. The AC and BC vowel /i/ signals,
which have been recorded simultaneously, are in Figs.
2(a) and 2(b). Figure 2(c) shows that the correlation
between gx(n) and gy(n) is very high. Each correlation
value here is associated with an AC/BC speech pair at
4−ms frames. Figure 2(d) shows that the ratio of LP
residues in the frequency domain is almost constant.
These facts suggest that the AC and BC residues are
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Fig. 2 Ratio of AC-BC residues: (a)AC speech, (b) BC speech,
(c)residue correlation Corr(gx(n), gy(n)), and (d)residue ratio
Gy(z)/Gx(z).

almost the same except for magnitude. We can repre-
sent this approximately as a constant factor, k, as

Gx(z)/Gy(z) = k. (3)

Let us assume that the mathematical description
of transfer function h(n) from x(n) to y(n) is an M -
order FIR filter. In the z-domain, it is represented as

H(z) =
Y (z)
X(z)

=
M∑
i=0

h(i)z−i. (4)

Figure 3 outlines a typical conversion from AC to BC
speech with transfer function H(z). The inverse filter
H−1(z) can be found as the inverse of H(z) and used
to restore BC to AC speech in a straightforward way.
All equations in the figure have been derived from Eqs.
(1)-(3). We can obtain the equation for H−1(z) simply
from these as

H−1(z) =
1

H(z)
= k ·

Q∑
i=0

ay(i)z−i

P∑
i=0

ax(i)z−i

. (5)

We should obtain restored speech from observed
BC speech with inverse filtering H−1(z) which can be
decomposed into two parts. In the first, the constant
value, k, can be chosen manually and used to control
the magnitude of restored speech. The second part pri-
marily depends on the LP coefficients of signals. There-
fore, the relation between the LP coefficients of AC and
BC speech signals in the LP-based model is essential to
restore BC speech [12]–[14]. Moreover, these LP coeffi-
cients in the LP-based model have to be predicted from

H(z) = 
Y(z)

X(z)

AC speech BC speech

H   (z)

X(z) = 
G (z)

a (i). zΣ -i

i=0

P

x

Y(z) = 
G (z)

a (i). zΣ -i

i=0

Q

y

x y

G (z)x

G (z)y

= k (const.)

X(z) Y(z)

-1

Fig. 3 Transfer function of LP-based model.

observed BC speech. Although LP coefficients could be
predicted with the previous LP-based model with some
good result [15], they were inappropriate parameters
for statistical models of prediction because they played
different roles and had a relatively wide dynamic range.
LSF coefficients are thus used as more appropriate pa-
rameters in this paper.

3.2 LSF Representation

While LP coefficients are known to be inappropriate for
statistical models because of their different roles and
their relatively large dynamic range, LSFs would be a
better choice. LSFs are an alternative representation of
LP coefficients with the same spectral information, such
as reflection coefficients and log area ratios, but reduce
the above problems with LP coefficients. LSF parame-
ters have both a well-behaved dynamic range and filter
stability, and can be used to encode LP spectral infor-
mation more efficiently than any other parameters [20].
The almost equivalent roles of LSF coefficients, on the
other hand, would be suitable for statistical models.

Let A(z) be a general LP filter on an LP represen-
tation. The LSF coefficients, φ and θ, can be derived
from a symmetric polynomial and an anti-symmetric
polynomial, U(z) and V (z), as the phase of conjugated
zeros.

A(z) =
P∑

i=0

a(i)z−i, a(0) = −1 (6)

U(z) = A(z) + z−(P+1)A(z−1), (7)

V (z) = A(z)− z−(P+1)A(z−1), (8)

where U(z) has a root of z = −1 and V (z) has a root
of z = 1. U(z) and V (z) have conjugated zeros that
can be expressed as e±jφ and e±jθ. Phases φi and θi

of the conjugated zeros of U(z) and V (z) are interlaced
with each other in the interval (0, π). There are LSF
coefficients in this case:

0 < φ1 < θ1 < φ2 < θ2 < · · · < π (9)

Because of the interlacing properties of these frequen-
cies, LSF coefficients exclusively determine U(z) and
V (z), then A(z). We can equivalently turn the coeffi-
cients of A(z) into the phases φi and θi of the zeros of
U(z) and V (z).
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3.3 LSF Transfer Function

Substituting Eqs. (6)-(8) into Eq. (5), we can obtain
the equation for the inverse filtering as

H−1(z) = k
Uy(z) + Vy(z)
Ux(z) + Vx(z)

. (10)

Here, Uy(z) and Vy(z) are (Q + 1) order symmetric
and anti-symmetric polynomials for BC speech that are
determined from conjugated zeros or LSF coefficients.
Ux(z) and Vx(z) are also similar (P + 1) order polyno-
mials for AC speech. Here, the inverse filtering depends
on the LSF coefficients of speech signals, instead of the
LP coefficients in Eq. (5).

We usually chose k = 1, set the LP-orders to
P = Q = 20, and the order of transfer function h(n)
to M = 20 in our experiments. These values for P ,
Q and M were chosen after considering the sampling
frequency, 16 kHz, of the signals. We need to automat-
ically predict AC-LSF coefficients from BC-LSF coeffi-
cients to blindly restore BC speech. The relation be-
tween the LSF coefficients of AC and BC speech signals
is essential to restoring BC speech. Let us consider the
problem of predicting AC-LSF in the next section.

4. Blind BC restoration model

All restoration models [7]–[14] needed some information
of AC speech to construct inverse filtering to restore
BC speech signals. We proposed an LP-based blind
restoration model in a previous study with the ability of
blind restoration [15] as shown in the block diagram in
Fig. 4(a). However, this model has serious limitations
due to the mentioned inadequacies of LP coefficients.
As this model estimates the inverse filtering based on
long-frame of BC speech signal, the inverse filtering is
can not be adapted to real-time changes.

We introduced LP representation and LSF coeffi-
cients in the previous section. This section proposes
an LP-based model using LSF coefficients to estimate
inverse filtering. Figure 4(b) is a block diagram of the
proposed model. We need to predict the LSF coeffi-
cients of AC speech for each respective frame to obtain
a blind restoration model as restoration was processed
on a frame basis. Since there is overlap between every
two neighbors in the series of frames, their restoration
should be related. Therefore, a recurrent neural net-
work (RNN) may be a good choice for automatically
predicting AC-LSF coefficients on a series of frames.
Using RNN, we could predict AC-LSF coefficients from
the BC-LSF coefficients of current and previous frames.
We propose the application of an Elman network to the
problem of prediction.

4.1 Prediction of AC-LSF coefficients

Problem: Let VY be the observed vector of BC-
LSF coefficients VY (ly(1), ly(2), ..., ly(Q)), and let
VX be the associated vector of AC-LSF coefficients
VX(lx(1), lx(2), ..., lx(P )). We need to approximately
predict the best match series of output vector VX from
the series of input vector VY . Since the characteristics
of LSF coefficients are those in Eq. (9), the LSF co-
efficients in vectors VX and VY have to be satisfied
as

0 < lx(1) < lx(2) < ... < lx(P ) < π, (11)
0 < ly(1) < ly(2) < ... < ly(Q) < π. (12)

LSF differentials have positive values in the range of
(0, π).

Δ(i) =

{
l(1) if i = 1,
l(i)− l(i− 1) if i > 1.

(13)

Using LSF differentials can help simplify the require-
ments as in Eqs. (11) and (12) for the prediction prob-
lem instead of directly using LSF coefficients. The
dynamic range of LSF differentials also varies less
widely. Let ΔVY be the observed vector of BC-
LSF differences ΔVY (Δy(1),Δy(2), ...,Δy(Q)), and let
ΔVX be the predicted vector of AC-LSF differential
ΔVX(Δx(1),Δx(2), ...,Δx(P )). We need an Ω model
that enables the best match series of output vector
ΔVX to be approximately predicted from a series of
input vector ΔVY as: ΔVX ← Ω(ΔVY ).

4.2 Elman - simple recurrent network

A RNN is a feed back network, i.e., a model with bi-
directional data flow. While a feed-forward network
such as a multilayer perception network (MLP) prop-
agates data linearly from input to output, RNN also
propagates data from later to earlier processing stages.
Using RNN could help us model the relationship be-
tween output with current input and also with previous
inputs.

The Elman network, which is also called as simple
recurrent network (SRN), has one hidden layer as in
Fig. 5, with connections back to a special copy layer.
The copy layer is a memory of hidden units, delayed for
one time step, and treated as partial inputs. Therefore,
standard back-propagation learning techniques for feed-
forward networks can be used for training the network
[21]. Back-propagation algorithm was used for training
then helps to modify network weights with respect to
minimize error by the stochastic gradient descent error.
A simple calculation of forward-propagation was also
used to compute the outputs as the same as in a com-
mon MLP network [22], [23]. Here, the S-shaped hy-
perbolic tangent function was used in the hidden layer,
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Fig. 4 Block diagrams for (a) previous LP-based blind model and (b) proposed model

Fig. 5 Simple recurrent network structure.

but linear functions were used at the input and output
layers.

Since we chose both LP-orders as P = Q = 20, this
means that the input and output vectors of SRN had
20 dimensions. The SRN structure is outlined in Fig.
5. There were 20 nodes for the input layer, 20 for the
output layer, and 20 for the hidden layer. We then had
1200 connection in this Elman topology. Our proposed
model could restore BC speech for every speech frame
in real time. We chose a frame length of 250 ms, and
the overlap between two neighbors was 125 ms. These
values were selected optimally for model’s performance,
to keep the frame-length sufficiently short, and also to
reduce the number of LSF differential vectors (approxi-
mately 10.000 samples) to train a small LSF prediction
model, as will be discussed in the next section.

5. Evaluation

We discuss the feasibility of models restoring BC speech
signals in this section. The main aim of our evaluation
was to investigate whether the proposed model could
adequately restore BC speech to attain better voice
quality and speech intelligibility in human-hearing sys-
tems and/or ASR systems and whether this could work
well blindly. Moreover, this evaluation was done to find
what a significant model for prediction should be.

We evaluated the previous long-term Fourier trans-
form model [4], [5] and the two LP-based models (the
first was non-blind model and the second was blind
model). In these three models, there were two non-
blind models: (1) a long-term Fourier transform (LTF)
and (2) an LP-based model using LSF coefficients and
frame-based processing (LSF). The blind restoration
model was (3) LP-based blind restoration - applying
SRN to LSF (LSF-SRN).

LSD (log-spectrum distortion) and JWIT were
used to evaluate the improvement in intelligibility,
and LCD (LP coefficient distance) and MCD (Mel-
frequency cepstral coefficient (MFCC) distance) were
used to evaluate the improvements in the cepstral dis-
tance of restored speech signals. The Japanese syllable
dataset from the AC/BC database was used for the
evaluation with objective measures (LSD, LCD, and
MCD). JWIT was a subjective measure which is used
to estimate intelligibility based on the average recogni-
tion accuracy score of subjects. Eighty words (20 words
for each familiarity range) were chosen randomly from
Japanese word dataset and were used in JWIT as men-
tioned in Section 5.2.
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Table 2 Average improvements of restored speech signals.
(Improvement is distance of BC& AC minus that of restored & AC )

Objective Un-blind models Blind model
Measures LTF LSF LSF-SRN

Improved LSD 0.75 1.70 0.87
Improve MCD 1.15 2.99 1.13
Improve LCD 0.29 0.96 0.21

Table 3 Stimulus lists for Japanese-word intelligibility test.
Five groups: A, B, C, D, E. Four familiarity ranges: R1, R2, R3,
R4 (familiarity value effects on speech intelligibility).

Word Index BC LTF LSF LSF-SRN AC

1–4 A B C D E
R1 (1.0–2.5) 5–8 E A B C D

low 9–12 D E A B C
familiarity 13–16 C D E A B

17–20 B C D E A

21–24 A B C D E
R2 (2.5–4.5) 25–28 E A B C D
medium low 29–32 D E A B C
familiarity 33–36 C D E A B

37–40 B C D E A

41–44 A B C D E
R3 (4.5–5.5) 45–48 E A B C D
medium high 49–52 D E A B C
familiarity 53–56 C D E A B

57–60 B C D E A

61–64 A B C D E
R4 (5.5–7.0) 65–68 E A B C D

high 69–72 D E A B C
familiarity 73–76 C D E A B

77–80 B C D E A

5.1 Objective evaluations

We used LSD, LCD, and MCD for the Japanese syllable
dataset to objectively evaluate the four methods. These
three objective measures were computed as:

LSD =

√√√√ 1
W

W∑
ω

[
20 log10

(
|S(ω)|
|Ŝ(ω)|

)]2

, (14)

LCD =

√√√√ 1
P

P∑
i=1

(ax(i)− ay(i))2, (15)

MCD =
12∑

i=0

(cx,i − cy,i)
2
, (16)

where W is the upper frequency (8 kHz here), S(ω) and
Ŝ(ω) are the amplitude spectra obtained by 1024-point
FFT calculation of 25-ms frames, and the overlapping
time for these frames is 15-ms. The ax(i) and ay(i)
are the i-th LP coefficients of signals with the LP order
being set P = 20, and cx,i and cy,i are the i-th MFCC
of the signals.

LSD, LCD and MCD carried out the differen-
tial between two speech signals (i.e., restored and AC
speech signals). Improved LSD in Table 2 means LSD

Fig. 6 Japanese-word intelligibility test results.

Fig. 7 Average results for Japanese-word intelligibility test.

between original BC and AC speech minus LSD be-
tween restored speech and AC speech. This value shows
the improvement of restored speech from BC toward
AC speech. The calculations were as the same for Im-
proved MCD and Improved LCD. Table 2 showed us
average improvements of restored speech signals that
are yielded by the restoration models. The LSF model
generally produced the best results, due to the shorter
distances between restored and AC speech. Thus, the
LSF model should be a significant restoration model
that improves both voice quality in human-hearing sys-
tems and spectral distance for the front-end of ASR
systems.

5.2 Subjective evaluation

We carried out JWIT with forty subjects who had nor-
mal hearing for the subjective evaluation. The speech
signals of eighty words were played in random order
in the tests. The subjects had not heard these words
previously and had not been trained before the exper-
iment. They were asked to listen to each word only
once and write down what they heard in Hiragana to
avoid training effects in determining words with lower
familiarity.

We used five types of audio (AC speech, BC speech
and three types of restored signals using the three mod-
els). We intended to evaluate the intelligibility of these
signals in four different familiarity ranges (R1, R2, R3,
and R4 as mentioned in Section 2). Since subjects only
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Table 4 Japanese-word speech intelligibility test (correction
(%)).

Familiarity BC LTF LSF LSF-SRN AC

R1 (1.0–2.5) 3.5 3.5 26.0 14.5 66.0

R2 (2.5–4.5) 3.0 3.0 37.0 19.0 63.0

R3 (4.5–5.5) 13.0 21.0 58.0 43.0 71.5

R4 (5.5–7.5) 20.5 36.0 64.5 43.5 77.5

Avg. (1.0–7.5) 10.0 15.9 46.4 30.0 69.5

heard each word once, we divided them into five lis-
tening groups, i.e., A, B, C, D, and E to listen to 400
stimuli (20 words for each couple in the four familiarity
ranges and five audio types). Table 3 shows how the
400 stimuli for the five listening groups were arranged.
There were eight subjects in each listening group. Intel-
ligibility could generally be evaluated using the average
recognition accuracy scored by all subjects.

Table 4 lists the recognition accuracy scores for the
five different audio types in the four ranges, and also the
averages. The LSF model is also the best for subjective
evaluation followed by LSF-SRN. The subjective evalu-
ation again confirms the restoration of intelligibility of
BC speech with the models based on LP.

5.3 Discussion

The non-blind LP-based model, i.e., the LSF model,
significantly restored BC speech signals according to
the results of evaluation listed in Tables 2 and 4, both in
terms of intelligibility in human-hearing systems (with
LSD and JWIT) and the spectral distance for the front
end of ASR systems. From Fig. 7, the LSF model im-
proved the average recognition accuracy scores of BC
speech by more than 36.4% The LSF-SRN model im-
proved the average recognition accuracy scores of BC
speech by more than 20.0%.

Figure 6 gives more detail on the improved intelli-
gibility of models in different familiarity ranges. We
generally found that it was more difficult to restore
BC speech signals in low-familiarity ranges. The LTF
model demonstrated no improvements in low familiar-
ity ranges (R1 and R2). The results improved quickly
with greater familiarity. The LSF model even improved
the average recognition accuracy by about 45% in high
familiarity ranges (R3 and R4). The LSF-SRN model
improved BC speech in these familiarity ranges up to
almost the same average recognition accuracy scores
of about 43%. LSF-SRN, even as a blind model, gen-
erally improved the intelligibility of BC speech signals.
This means that SRN was adequately trained to predict
AC-LSF coefficients to enable the LSF-SRN model to
restore the intelligibility of BC speech signals as almost
the same as that using non-blind AC-LSF coefficients.

As previously mentioned, LSD and JWIT were
used to evaluate improvements in the intelligibility of
speech, which is necessary for human-hearing systems.
LCD and MCD were used to evaluate cepstral dis-

tances, which are important in ASR systems. We found
that although LSF-SRN significantly improved the in-
telligibility of BC speech signals from LCD and MCD
measures (Table 2), it only demonstrated the same im-
provement in spectral distance as the LTF method.
However, LSF demonstrated sufficient ability to im-
prove the spectral distance. Thus, these results suggest
better results for the spectral distance of LSF-SRN can
be attained by more SRN training. The blind restora-
tion LSR-SRN model should therefore be able to suc-
cessfully restore BC speech signals, i.e., not only intelli-
gibility in human-hearing systems but also the spectral
distances for the front-end of ASR systems.

6. Conclusions

We improved the LP-based model by (1) extending
long-term processing to frame-basis processing, (2) us-
ing LSF features, and (3) using a simple recurrent net-
work to predict parameters. Using LSF features helped
alleviate the limitations with LP coefficients in predic-
tion using statistical methods. Then, the frame-basis
processing with ability of SRN helped LP-based model
easily adapt predict inverse filtering to BC speech in
real time.

The improved model (LSF) was very efficient in
restoring BC speech, both in terms of intelligibility for
human-hearing systems and for the spectrum features
of ASR systems. Our evaluations demonstrated LSF
outperformed the previous LTF model. SRN was then
applied to predict the AC-LSF differentials, which are
needed to achieve LSF inverse filtering. The results
of evaluation confirmed that we could blindly predict
these LSF differentials and then use them for a sig-
nificant restoration model (LSF-SRN). The improved
blind restoration model, LSF-SRN, can currently sig-
nificantly improve the intelligibility of BC speech. Its
ability to improve the spectral distance for front-end
of ASR systems was the same as that of the previous
non-blind LTF model.

We intend to examine this model over a larger
AC/BC dataset by considering different pick-up points
and also discover what effect it has on restoring dif-
ferent syllables and speakers. The next challenge is to
improve the spectral distances since the blind restora-
tion model we propose is still limited in this regard. We
intend to achieve an LP-based blind restoration model
to vastly improve BC speech signals. Significant im-
provements in both intelligibility and spectral distances
remain problems that needs to be solved to construct a
blind restoration model that will be as good as the LSF
model. Moreover, the LSF model can be even further
improved such as by considering the changing of k since
this factor currently is assumed as constant. Besides,
BC speech maybe effected by other effects in particular
environments. These problems should be considered as
the next stage in our future studies.
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