
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A framework of a support environment for

cooperative works over distributed computing

system based on a decision management

Author(s) Ochimizu, Koichiro; Kadowaki, Chie

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-97-0013S: 1-16

Issue Date 1997-03-24

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8429

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

 A Framework of a Support Environment for

Cooperative Works over Distributed Computing

 System based on a Decision Management

Koichiro Ochimizu and Chie Kadowaki

 March 24, 1997

 IS-RR-97-0013S

 School of Information Science
Japan Advanced Institute of Science and Technology, Hokuriku

 Asahidai 1-1, Tatsunokuchi
 Nomi, Ishikawa, 923-12, JAPAN

 ochimizu,kadowaki©jaist.ac.jp

©Koichiro Ochimizu, 1997

ISSN 0918-7553

A Framework of a Support Environment

 over a Distributed Computing System

 Management

for Cooperative Works

based on a Decision

 Koichiro OCHIMIZU and Chie KADOWAKI

Japan Advanced Institute of Science and Technology, Hokuriku
 1-1 Asahidai, Tatsunokuchi, Noumi, Ishikawa 923-12, Japan

 Phone: +81-761-51-1260

 Fax: +81-761-51-1149

 e-mail: {ochimizu,kadowaki}©jaist.ac.jp

1 Introduction

In this paper, we will propose the framework for supporting cooperative works over distributed computing

systems. Supposing the existence of the ideal distributed computing system that can resolve the problems

peculiar to distributed computing systems such as resource sharing, location transparency, consistency
management, security, fault-tolerance, and load balancing, there still remain problems to be solved be-

cause of the geographical dispersion of participants being engaged in co-operative works. One of them

is the management of the state of their co-operative activities. For example, a decision management

support is important to make conversations smooth, and managing the state of artifacts/products is also
essential to control a software process enactment.

 We believe one of the goals of the future SDEs is the enhancement of pleasantness featured by several

parameters such as definiteness, independentness, smoothness and portability[1]. Definiteness means
that we can follow a design method in a concrete and definite manner with an evaluation of design

artifacts. Independentness or asynchronus mode of works means that we can keep the individual's

working environment independent from the others but with necessary communication. Smoothness

means that every member of the team can communicate with each other smoothly. Portability or

arbitrary selection of working places means that we can quickly access the necessary information from

any places where we will be, or information can follow after us to every place we will visit.

The Plesantness of
 - Definiteness

 - Independentness

 - Smoothness
 - Portability

SDEs

CSCSD Model(Functional View of SDEs)
 - a reference model for cooperative

 - clues to find the object libraries
works

Management of the states of cooperative works
 -decision management for smooth communication

 -artifacts/products management for controlling

 an enactment of a software process

Ideal Distributed Computing Environments

Fig ure 1 : The role of the CSCSD model

 In this paper, we will propose a framework(i.e. a functional view of support environments)
cooperative works, being able to satisfy the goal mentioned above and being able to help us

for the

manage

1

the state of the cooperative works. The framework is called the CSCSD model(Computer Supported
Cooperative Software Development model). We expect that the CSCSD model will play a role of a
reference model of the SDEs for cooperative works over distributed computing systems and also will be
able to give us clues to find the object libraries to construct the SDEs.

2 The enhancement of pleasantness of SDEs

2.1 Groupware related issues

 • Merging repository control technologies, especially for decision-management, into the
 current state of the arts of groupwares is important to make long-term discussions

 smooth and to help us produce a feeling of togetherness

 Groupwares gave us useful communication tools to conquer time and space distribution of our com-

munication by developing the following technologies: enhancement of realtime synchronous interaction

and a feeling of togetherness made by realtime groupwares; proper presentation of information using

multi-media; reduction of coordination cost of face-to-face meetings by e-mails. Effectiveness of the

asynchronous communication (e.g. e-mail) that guarantee a communication from/to the other without
interrupting one's own work is also widely accepted.

 However, if they are the only benefits got back from huge investment for networks as a social infras-
tructure, the benefit is too small. We should explore the new application areas where we can use networks
and computers to the full as a tool of intelligence augmentation in the communication.

 One of the keys to exploit the new application area exists in dealing with background information
of communication explicitly in the foreground. In the software development process, for example, most
of the conversations are related to some part of the large amount of documents and/or knowledges of
designers/programmers. Although existing groupwares can support well the activities such as noticing,
asking, explaining and so on, but as for treatment of the documents, what we can do now is to display
one of them on the screen and to manipulate it together. Taking large amount of documents and complex
interrelationships among contents of the documents into consideration, capabilities of existing groupwares
seem to be insufficient. Groupwares should provide the capabilities that can deal with a large amount of
background information explicitly in the foreground, sharing them among participants.

 There is a paper that point out this problem clearly. C. Ellis suggests us the research direction of
groupwares in his paper(2], by defining and discussing the three user-oriented models of groupwares based
on the research results in software modelling. They are; ontological model that is a static description
of objects manipulated by users; coordination model that is a structural representation of activities
performed by users; user interface model that is an interface representation between a system and users,
or among users.

 According to the ontological model, we can define necessary static information to be stored in a
repository that plays a role of background information during our conversations. No one can know
everything. In most of the situations, every participant has partial knowledge on the content of the
repository and some of them are shared by the others. The motivation of the communication happens
when someone is aware that there exists the gap of the knowledge between/among people. And then
conversation would happen to remove the gap. The content of a conversation is understood by the context
that each participant has. Structural context is a representation of the dynamic state of a repository.
The social context and the organizational context are representation of dynamic mental states of the
participants and their social background respectively. The flow of the conversation is controlled by the
the context. The procedures, rules and common sense are represented by the coordination model. User
Interface Model provides us the related documents, contents of communication, state of the progress of
a conversation using visual representation of them.

2.2 Software process modeling related issues

 • Managing the state of artifacts/products is essential to control a software process
 enactment by formulating tasks and responsibilities for them, and by providing the

 mechanisms for sharing artifacts/products with network-wide change/failure control
 supports

2

 The larger the scale of software is, the more serious the weakness of a human being become. It is
difficult to predict and reproduce behaviors of human beings because human being is not a machine and

can not make a perfect one at a time. We must take these human factors into account in software process

modeling.

 In our approach, we put our primary concern in defining the context of one's task instead of writing

the procedures they must obey. Admitting the iterations as natural ones, goal of the task(e.g. quality
level of products), constraints and regulations not to be violated, inter-relationships of tasks(e.g shared
documents) to the other and their priorities are placed around the individual's working environment.
Quality level of products, constrains, regulations and relationships are the attributes of task interfaces.
One of the important technical issues to be studied is a coordination support mechanism among related
people when they are violated.

 We should also solve the coordination problem between the individual's activity and the goal of the
a team. There is a big gap between the goal of individuals and the goal of the project team. The former
admits a self-centered type of work that means one goes on with one's work within one's capability,
making oneself consent, to make a good result. The latter requires a self-sacrificial type of work that
means one tries to finish one's duty on a limited time. Some one can do both but it is a rare case. We
need yet another process model for coordination supports that can bridge between the goal of individuals
and the goal of a project team.

2.3 New computing environments related issues

 • Portability of environments or arbitrary selection of working places is
 for improving plesantness

also important

 An infrastructure for the new computing environment such as internetworking, mobile computing

environment, ubiquitous information environment are growing now. What kinds of new possibilities will

these environment bring us ? In a word, we can quickly access the necessary information from any places

where we will be, or information can follow after us to every place we will visit.

2.4 Necessity of the new kind of software tools

 • The SDEs should give us a chance to improve the quality of our work by supporting

 the acquisition of the unknown resources and the unknown knowledges dynamically

 Technical innovation of information retrieval technologies will occur in near future based on informa-

tion filtering techniques that support us to find and use only necessary information from huge amount of

data scattered over a computer network. Various kinds of information is now being accumulated on world-
wide spread nodes of networks due to popularization of WWW. We call these information ubiquitous

information. It will be one of important applications that supports exploratory learning or on-demand

learning, where a user with limited knowledge on information acquisition can find necessary information

from ubiquitous information scattered over a computer network with help of a computer. We call the

application(i.e. a tool that support exploral learning) an active channel. A channel means a link for
information filtering generated dynamically for each information retrieval request. Term active means

that increase in information useful for information retrieval.

3 Supposing the ideal distributed computing system

Distributed systems have several merits, both technical and economic[3];

 • Better reflection of inherent geographical dispersion of many applications and their users

 • Performance gains achieved by solving complex problems in parallel across multiple computers

 • Improved throughput from executing independent jobs concurrently on different processors

 • Enhanced resource utilization from sharing information, programs, and processors

 • Increased availability from replicating data and program resources

3

• Extensibility to handle increased workload

 mentally
s by adding processors and storage components incre-

• Enhanced reliability by virtue of redundant computing resources

 Distributed architectures provide advantages such as concurrency, availability, and fault tolerance.

However, these benefits are achieved at the price of increased architectural complexity and performance

overhead(See the lower part of Fig.2). Research efforts related to these issues can be structured as shown
in the upper part of Fig.2.

Distributed Computing Environment(Tools)
 -Object-Oriented Model

 -Process Group Model
 -Language Model

Functional Services for Distributed Systems
 -Client-Server Model

 -Common Services

 location transparency by a name server
 access control by an authentication serve

 resource management
 fault-torelant service by checkpointing

Models for Distribted Communication
 -Function call model(RPC)

 -Message-passing model

 with help of Data Translation
 Error Handling

Issues on distributed computing environments
 -Locating programs and data resouces across

 computers in a network
-Establishing inter-program communication

 over a network to interact with remote
 applications or data resources

-Coordinating the execution of programs

 across distributed processors
-Maintaining consistency across distributed

,
 replicated data stores

-Managing recovery from partial failures in

 an ordely and preditable manner(reliability)
-Protecting programs and data from

 unauthorized access(security)

Figure 2: Issues on distributed computing environments and research efforts to them

 Supposing the existence of the ideal distributed computing systems that can resolve the problems
mentioned above, there would still remain problems to be solved with respect to another level of abstrac-
tions such as resource sharing, location transparency, consistency management, security, fault-tolerance,
and load balancing among participants being engaged in co-operative works because of the geographical
dispersion. We think one of the important issues to be studied is the management of the state of their
co-operative works. For example, a decision management support to make conversation smooth, and
managing the state of artifacts/products is also essential to control a software process enactment.

• We need a

 of artifacts

 exactly.

information repository for
and/or decisions reflecting

cooperative works that can manage the state

the state of the outside world of the system

4

4 The CSCSD model for cooperative works

4.1 Integration of a process model and a communication support based on a
 decision management

We will consider here how to record and manage the decisions, especially for decisions made through
conversations, by examining the relationships between products/communication and decisions produced
through a software process enactment.

 A software development process can be regarded as a decision making process. Everyone manages
the decisions made by him/herself based on the range of responsibility of his/her task. For examples,
a software designer makes a specification related to design artifacts by him/herself and passes it to a
programmer. A programmer designs data structures and control structures of a program referring the
specification and then writes a code. The decision (i.e. the specification related to design artifacts)
should be shared between the designer and the programmer from the time of delivery. A various kinds of
conversation would happen if there is a gap in understanding the content of the delivered thing. Second
example is a communication between a project manager and designers/programmers. A project manager
should communicate with designers and programmers on the subjects mainly related to the decisions
related to time resource management.

 Therefore it is important to integrate communication supports into a process model based on a decision
management by recording the following information.

• Structural representation of whole decisions

• The state of the progress to the project goal

• Accumulative structure of partial decisions for each subject, and pre-conditions necessary for each

 partial decision

• Uncertainty and cost of each decision

 These requirements suggests that it is necessary for us to develop a repository that can help us manage

decisions systematically, from coarse-grained decisions to fine-grained decisions to promote a consensus

making and to support change control of decisions. We must also take into account of temporal features
of decisions in modeling the repository. In the most of the situations, decisions are temporarily. It means

an agreement would become a disagreement and a disagreement would also become an agreement as the
time passes and the situation changes.

 There are two kinds of decisions in software development activities. One of them is an artifact or

a product itself made by a designer or programmer and verified by a test team. The other is a result

of choice from design alternatives made through developing an artifact or a product. The former one is

formed by structuring the latter ones.

 The latter type of decisions, the design rationale, tend to be made by conversations because of low

cost of communication. For this reason, the most of researchers take a stand that it is sufficient to
record the contents of conversations themselves along the flow of conversations in order to manage design

rationales. I think, however, it is redundant because these conversations include a lot of paraphrases and

question-answering routines to achieve a good mutual understanding.
 It is important for every participant to be able to look at the topic of a current conversation in the

proper perspective to the final goal to make communication smooth. A decision tends to be changed so
often because human beings can not make a perfect one at a time. So decisions are usually momentary
and there is no perfect decision. We need a recording scheme that supports us to change decisions and

to analyze the ripple effect of changes.

 Decision management means to manage the content mentioned above in addition to the artifacts/products
and their dependency relationships. How can we record and manage both types of decisions ? This is
the main subject of defining the CSCSD model.

 We should refer to, here, the other factors that make communication smooth. They are a paraphrasing
process and a feeling of togetherness. One's ability to achieve something usually differs from ability
of another person with respect to speed and quality when they are engaged in the same cooperative
problem solving activity. It is a usual case that one who achieves a goal first of all explains a point
to the others carefully and throughly considering the others' ability. We call it a paraphrasing process.
The paraphrasing process also occurs when they are aware of a discrepancy caused by either difference

5

of understanding or gap of understanding. They try to resolve the discrepancy by paraphrasing their

standpoints.

 It seems to be useless to record conversations of a paraphrasing process because the contents of

the conversation depend on ones' experience, knowledge and physical conditions. Needless to say, it is

important to support a paraphrasing process because it helps us form a feeling of togetherness and help

us share the state of progress and issues to be discussed next(i.e. what are decided and what are not).
We think support of paraphrasing processes is a role groupwares and/or user interface.

4.2 On adopting Coarse-grained dependency-relationships among artifacts
 as a basis of integration

Modeling and designing activities transform input artifacts into output artifacts/products with referring
to materials such as existing products, standardized rules and quality criteria using software tools and/or
human beings' thought processes. It means that there are input-output dependency relationships among
artifacts/products.
 Coarse-grained dependency relationships define input-output relationships among documents such

as specifications, design documents and program codes. We can define a software process by adding a
temporal order to the coarse-grained dependency relationships among artifacts/products. Fine-grained
dependency relationships define use/used or refer-to/referred-to relationships among items included in the
documents and give us a basis to understand design rationales. We adopt the coarse-grained dependency-
relationships among artifacts/products as a basis for integrating definition of software process models and
for recording communications.

 We do not think that the coarse-grained dependency is a necessary and sufficient thing as a basis of the
integration. It is, however, one of the major basis for the integration, because it provides us constraints
in designing the execution order of task and gives us outline of expected conversations.

4.3 On defining a task and a software process based on the coarse-grained
 dependency-relationships

A subset of artifacts/products is assigned to one of team members according to his/her role and range
of responsibility. We call this subset a task. Each task has attributes, for example, rules and forms
for describing artifacts/products, constraints on performing the task, interface definitions to the others'
tasks, pre/post conditions of the task, quality criteria. As the details of an attribute definition depends on
organizations or projects, we consider here the general features common to every task attribute definition
to be useful for promoting a cooperation. We think, at least, we need information required by the
following functions.

• Constraints not to be violated should be reasonable and should be expressed clearly.

• A system should be able to detect constraint violations.

• A system should be able to give us an instruction in the case of constraint violations.

• A system should be able to support coordinations among related people if a treatment would cause

 wrong side-effects to the other people,

 We define a software process as a lattice of tasks by adding a temporal order to the coarse-grained
dependency relationship among artifacts/products. In defining the software process, there is a strong
difficulty in balancing time resource assigned to the project and time resource required by the individual
depending on one's capability and capacity.

4.4 On recording the content of communication

4.4.1 Recording the progress and the reasoning of deliberations

The flow of conversations represents a transition of participants' concerns. At beginning of the flow, a
conversation starts from the the most concerned issue and goes on. In the middle of the conversation,
it sometimes occurs to move to the other subject for a time because someone is aware of existing of
unsatisfied pre-conditions for the original issue. At the end of the conversation, another issue to be

6

discussed successively is raised when the original issue is solved. It also the usual case that we can

not get to the conclusion during the conversation and suspend it. Talking another issue, we sometime

suddenly recognized the solution, then we resume the suspended conversation again. How can we record

the decisions made through the flow of conversations mentioned above ? It is easy to record conversation

itself along the flow of conversations like a diary. It is, however, the worst style of recording because it

can not represent a cause-effect relationship among decisions explicitly.

 We often experience the situation during a conversation where we review the conversations so far

by arranging what are solved or not and what to be discussed next. We usually arrange the following

information at this situation.

• A whole view of decisions made or to be made

• Proper perspective of the current situation in the whole view

• The state of progress for the final goal

• Issues to be discussed next

 It is better to record the above four items.
 Now we must take it into account that the structure and the content mentioned above may change

in progress of the discussion. It also often occurs we can become aware of the imperfection of some
decisions later. We should record the following information that can support restructuring of discussion
or resteaming of a previous discussion.

 • For each subject, an accumulative structure of partial decisions, and pre-conditions required to
 make each partial decision

 • Uncertainty of each decision and cost required for it

 Moreover, it is obviously necessary to record

 • A correspondence between conversations and software objects

 because a subject of conversation is caused by software object.
 We introduce here a framework and schematic representations to record the progress and the reasoning

of deliberations[4,5]. Our framework is organized into a hierachy consisting of three layers: a deliberation
type; a deliberation process; a deliberation space as shown in Fig. 3.

Deliberation Space

Deliberation Process

Deliberation Type

Raw Data

Figure 3: Three layers model

4.4.2 Deliberation space

We represent a cause-effect relationships among decisions to each subject as a deliberation space. The
role of a deliberation space is to give us a whole view of decisions and to help us understand both proper

perspective of the current conversation to the final goal and the degree of achievement or state of progress
to the final goal.

 A deliberation space is a graph of deliberation processes connected by several relationships between
deliberation processes.

 Fig. 4 shows an example of a deliberation space. A rectangular symbol represents a deliberation

process. A square symbol also represents a deliberation process. We introduced three kinds of relationship
represented by arrows;

7

T1~~ f ,1'1 i~Fy~;
 ,''yi',,',".%f1i'~1'yGo~i':~/3'.V1,i•,;,,..,,,„„4,-..,:/,'•„'f/"M,H`.4•e.":"'h/ry/3i.",...,',/,'~~%,i~~,,,.,,.„',Jii, ,.,,`~rbiY, i„'is,..,5,,..,tu,q/irr;r/".'} i•'",a;,,,/5:rr~s;!,,r/-;,~3~„r,

 F-4,,..,.Y'~r,/.;'Rrt ;,,, ,..°t.,,J.,',~s3,„yijd,%
f~':"~,i2r;'•.tu;,?,.'~'i',,,"'~w{4'riv.1.:•-',+4 .1y',iila%`,',/;-:o,1r~,fuj;9„ ,,,, r,' %4,:.-A.,..,/.y,Y:1„,'n:,nyzrS,%Yds"//~`'/m}f,'sr~<;,~',q,~oS}6."is•:;.iu//s:,1.~,;,~„'~•,ar,.,,,,n i,A~'F,/~,,.FN,4%~`/,/"'rf9','h%,r,.'”"~:' --------dj~''•/ryfj ^rfY"',—vx, ,,r..~yr,2r.'f"%y`f.,/•!;x~2'r,.,„4,,%:}%fit~„f,,;lrl''!%/?55„.,.../rTrr,r;,yn,,~•,,,L,,,u..,w;,,,,,..-,~~yY`;,ty-

 „"%£i!rv~)~,ftyg"r•/3r .t...'Gr"-i.,,i~g

5'~%r„y~'L'a,n~'~`;..w,r,r,o~'~,~,,~j%ics”•~.?'r~^.~'f'/',~,/,rf..,,,~jf~.~1~~..3~'y./~r•,~v>:; ..fy,ytd,./,,fJf,o'Gr,r'3/~.i.fjyr%~x'rJ/,,•,1/, Ff/_::::009.y~av-,
/," rs/x9',.0-,-4 ie,-,,lf,,Fs.W.41-V,4.,.4.l~,r's• ~_A,-.'r,•,',/j.,%cfi."f."`i7; ,..

 ,y,y..',„..~;iB~/~~`~''"eryr`<t`'~ra"/•'rif.;'„r~,r,?`,9<,.`r9r`}s` ',.111/414k...sr'3~~f%rf.;•r,g`r,f,S%,*,r,%,1,,~r.<(j~'r/'~,rti^y~,/•n,~yy/2,G•'.9iv^r'+r 7'.'.0ljff;:4i.$=40'1y hGyY,w'r9.%1~TeAgit'~/~`,`ifa,-,'."/.,r'.,~..'' ,. S,r.~y/r~~'^n.•";,r,'Ni•. ,..'r„<„Y,r1~it,~,,,~_,y,''//./•

 ,4f~~1~tTM;5 JI7 I„if,,,A`r'y`rFj~'v''i"3` ;%r'J ,.,5wid,,..diJ4,x,,,o4::woub::'lf,.,,:,,f,,..L§:,,,..f"i~{'y"f'•
 ;5•,a,a;!'~,~,~is^~~/'y~ ,y`rsr,~~,,/~,,;/,~i;;n~r, rsri rstr,,.r.~~,%~'~',

 •

s
r, _ _

Figure 4: Deliberation Space

succesion a deliberation process follows another deliberation process successively

refinement a deliberation for some subject requires deliberation of several sub subjects. This relation-
 ship is represented by an arrow between a rectangular symbol and a square symbol.

co-related Two deliberation process run concurrently sharing some contents

 Number assigned to a deliberation process is process ID. Deliberation processes numbered 1 to 8 are

at the state " documenting the decisions. Others are in progress. Other state can be distinguished by

the colour. By clicking a box, we can examinig the content of utterances grouped by deliberation types.

Some of utterances are directly connected to a box. A ellipse symbol is called a "context" that holds the

utterances happened outside the groupware used here.

4.4.3 Deliberation process

We manage a series of conversations for subject as a deliberation process. The role of the deliberation

process is to manage an accumulative structure of partial decisions and pre-conditions required to make
each partial decision by recording conversations made on a subject

 There are a lot of subjects to be discussed in a group, and each subject produces a deliberation.
Deliberations for subjects are usually interleaved. It is helpful for the paticipants of deliberations to

grasp the progress and the reasoning of a deliberation for each subject. We introduce a deliberation
process to group the utterances and conversations related to the same subject.

 The deliberation process has the state transition as shown in Fig. 5. A deliberation process is created
for each subject and is alive during the deliberation. A deliberation is started when several preconditions
are satisfied. Examples of preconditions are preparing the necessary documents, attendance of related

people, appointed time if any and so on. Several conversation will be held at the state "deliberation".
Someone who has the authority declares the end of deliberation and the results(decisions made through
deliberation) are documented.

4.4.4 Deliberation type

We manage a series of utterance in a conversation by a deliberation type such as transmitting and
adjustment, decision and creation. Most of conversations during a software development process can be
represented by the following three types: transmitting some decision or knowledge from the person who
know it well to the person who does not know it well; selecting a candidate for the solution from several
alternatives by hearing what the other has to say each other; creating some new information by combining
the partial knowledges each participant has. The role of a deliberation type is to manage attributes of

8

Lrecognition of
 subject

a A

Starting the
deliberation

 Deliberation
(conversations)

1
c

Ending of
deliberation

(activate the
deliberation process)

Documenting
the decisions

d
(de activate the
deliberation process)

Figure 5: State transition of a deliberation process

a decision such as uncertainty of a decision and cost required for a decision. Each deliberation type has

several states and we can judge uncertainty of a decision and/or degree of achievement by seeing at what
state the conversation suspended or finished. Time attribute and numbers of utterances can represent a
cost of decision.

 We categorize conversations into three types based on the work studied by Tanaka[6]: Transmission
and Adjustment; Decision; Creation. Each of types explained here is essential one to record the reasoning
of conversation, but do not cover the all of the conversation types.

Schematic Representation for Transmission and Adjustment

The purpose of "Transmission and Adjustment" is to reach the state sharing the information or knowledge
by performing some question-answering routines. Fig.6 shows a schematic representation for Transmission
and Adjustment represented by a state transition diagram.

 The conversation initially triggerd by a delivery of something such as an idea, an instruction or an
artifact. The reciever examines the content of delivery. If the reciever can understand the content, he/she
accepts it and both the transmitter and the reciever become the state "common understanding". If the
reciever does not clarify the attitude, there are possibility of disagreement. Then reciever ask something
to the transmmitter. At this stage, the transmitter and the reciever become the state "disagreement".
Then the effort to fill the gap between transmitter and reciever start, i.e. adjustment, by performing
several question-answering routines. The conversation would finish either accepted or disagreement.
Former means the success of transmission and adjustment, and the later means the fail of transmission
and adjustment.

delivery
 of

something
-----------• examining

 the conten

withholdin

as

accept common
understandin

answer

 (disagreement
ca cel .

ask

potentiality of
,disagreement i

Figure 6: Transmission and Adjustment

Example 1: Delivering an Aritifact

Suppose there exist two persons. Each of them has own role. Fig. 7 shows an example from software
development domain. The software designer defines a specification and delivers it to the programmer. In
this situation, "Transmission and Adjustment" happens at the initial stage of communication to make a
common understanding about the contents of the specification.

 It is useful for both people or even the others to record the content of conversation to make clear what
is agreed and what is not. This type of information is usually disappeared after delivery, and it makes
the situation worse.

9

 define a
specifica----------------develop
tion a progr

conversatio

 record

delivery of a
specification

withholdin

examining
the conten

ca

accept

ask
answer

(disagreement

cel

 common
understandin

ask

potentiality of
,disagreement _/

Figure 7 : product delivery

Schematic Representation for Decision

The purpose of Decision is to select a proper solution among several candidates for a solution as shown in
Fig. 8 This type of conversation starts from need for adjustment among several candidates for a solution.

 Initial state is a "existence of multiple candidates". Someone expresses an opinion with reasoning to
narrow down the scope of discussion.

 By examining the opinion, sometimes it would be rejected, and sometimes it would be accepted. In
the former case, another opinion would be expressed. After several discussion, the conversation would be
converged and one of the candidates is selected as a soltion.

the
examining

 goodness o
candidate

accept

\selection

selection
completed

reject

need for
decision

 narrow down the
 cope of discussio

 eject a propose
 proposal solution

 existence of
multiple candidates

for a solution

a

Figure 8: Decision

Example 2: Software Review

The example shown in Fig.9 is also from software development domain. Software review process is a
decision making communication process among software designers and reviewers.

 Initially, there are two possibilities; acceptance or rejection. Opinions are mainly expressed by reveal-
ing all of the defects exhaustively. If the result is rejection, some of those opinions become the reason
why the artifact is rejected.
Schematic Representation for Creation

 The purpose of creation is to produce something new. Schematic representation for creation is com-

posed by "decision" and "tranmission and adjustment" as shown in Fig. 10.

10

artifact

 acceptance

 review

 rejection
 reasons

conversation)

the

 examining -•

 goodness o
candidate

accept selection
completed

selection

reject narrow
cope of

down the
discussio

need for
decision

eject a propose a
proposal solution

existence of
multiple candidates
\for a solution

Figure 9: decision

/idea

 come to
the surfac

transmission
 and
adjustment, existence

 of
candidate

 decision
(acceptance)

success

proposal

try
 and

errors

need for creation

decision
(rejection)

Figure 10: Creation

11

Combination of Deliberation Types

We can see several combinations of deliberation types as follows.
Decision and Notification

 Some of decisions are made by several major staff of the team. After deciding something, the result
is notified to the other member of the team to make a global consensus with a lot of transmission and
adjustment efforts.
Delivering an Aritifact

 In the example shown in Fig. 7, conversation would not end only by transmission and adjustment.
If there is severe confrontation between the transmitter and the reciever, the decision type conversation
would begin leaving the state of transmission and adjustment "disagreement".

4.4.5 Groupware base

We call a repository with the above scheme groupware base. Groupware base is a collection of man-

agement pages shown in Fig. 11. A management page is defined for each deliberation process. Item 5 in

Fig. 11 keeps information to support resteaming. Item 12 keeps links to instances of deliberation types.

Values of Item 14 are completed, prolonged, closed, canceled and not-started.

2

 4

 5
6

 7

8

9

11

subject
goal of a
deliberation

preconditions
Iar...a..deliherati oii
resteaming _
coordinator
decision maker
particip__ is

time resources
a deliberation

for

starting time

12

14
15

16
7

18
19
20

history of the
deliberation(types)

eactivation time

achivement level
the time for
documenting the
decisions
decisions

-R.a:Cent.. Rz e.as.
child process ID
successive process
ID

co-related process

Figure 11: Management page: a recording unit of a groupware base

4.5 On relation between an enactment of a software process and communi-

 cations occurred

Does a cause-effect relationship among decisions made through conversations have the same structure
as an execution order of tasks has ? A structure of a deliberation process does not always match to
a structure of an execution order of tasks because some issues happen depending a state of a software
development as mentioned later. Therefore we manage a cause-effect relationships among decisions and
an execution order of tasks separately.

4.6 the CSCSD model

The central issues for modeling the CSCSD model are as follows:

 • Management of tasks that define individuals' responsibility and management of an execution or-

 der of tasks(software process) based on the coarse-grained dependency relationship among arti-
 facts/products.

 • Management of cause-effect relationships among decisions (groupware base) based on fine-grained
 dependency relationships among the items included in the documents.

 We organize the above functions as a hierarchical structure as shown in Fig. 12.

 • At the lowest layer we put the CSCSD server that can help us use various kinds of distributed

 computing services in an integrated manner(e.g. enabling us a network transparent data access
 with resolving heterogeneity of data).

12

for works

 User interface

and context understanding

CASE tools for production and communication

Process server
(for defining

 order of
 execution)

Distribution
 server(for
controlling
shared artifacts

Grouware base
(for recording

 reasoning of
 decisions)

Definition of tasks and constraints

Management of

relationsips

 coarse-grained
among artifacts

dependency

CSCSD server linked to functional

for distributed computing systems

services

Figure 12: the CSCSD model

• At the first layer from the bottom, we manage the dependency relationships among artifacts/products.
 Functions of this layer support to define guidelines of works and constraints related to tasks for

 constructing the distribution server in the upper layer and also give a groupwares the basis for

 recording the contents of communication by keeping links between contents of conversations and

 artifacts or dependency relationships of artifacts.

• At the second
 constraints.

layer from the bottom, tasks are defined according to one's responsibility with

• At the third layer from the bottom, we put a process server and a distribution server on them, and

 a groupware base. The process server defines an execution order of tasks, and resources available.

 The distribution server defines a group of related artifacts according to one's responsibility(we call
 it a workspace) and manage shared data between tasks(i.e. an intersection of workspaces)[7,8]. The

 groupware base keeps a cause-effect relationship among decision made through conversations with
 respect to tasks and input/output dependency-relationships among artifacts/products[5].

• At the fourth layer from the bottom, we put CASE tools and groupwares to support both producing

 artifacts and making conversations like consensus making or delegation.

• At the

 tools.

top layer), we put a UIMS to display information related to various kinds
Context information proposed by Ellis will be displayed if necessary.

of servers and

5 Current state of the progress of JIZAI prototyping

In this section, we will introduce our prototyping efforts. The name of the prototype is JIZAI[7] 1 , which
consists of two subsystems named GUNBU 2 and SIORI 3. The former is a prototype of a distribution
server and the latter is a prototype of groupware base.

5.1 A Distribution Server to guarantee Independentness

We are studying management of shared information as one of the necessary conditions to achieve the
goal 'independentness'. We have already succeeded in developing a prototype named GUNBU. GUNBU
is constructed by two types of objects named a workspace-manager and an autonomous-mediator which
can support us to manage shared data in distributed software development[8,9]. The major features of
them are as follows;

1JIZAI is a Japanese word which means we can do everything freely
2GUNBU is a Japanese word which means group dancing
SSIORI is a Japanese word which means a bookmark

13

 1. A workspace-manager object and an artifact object which can support us(i.e. software engineers
) to manage their range of responsibility and control of data sharing.

 2. An autonomous-mediator object can support negotiation among software engineers occurred
 through the modification of shared data.

 3. Each object has a meta-object that supports us to select an available proper action dynamically
 according to the situation.

 Using these objects, a software engineer will proceed his work, only using both the directly related
knowledge to his own responsibility and the direct relationships to the others who share data with him.
Our environment will support us to change policies related to data sharing in a cooperative and flexible
manner.

 Another type of object, named coordinator is also being studied as a collaborative work with profes-
sor Carlo Ghezzi at Politecnico di Milano. One of the stable ways to control an enactment of a cooperative
software process is to observe the state of arifacts/products objects. The coordinator object monitor the
states of

 • entities that change their states concurrently along a time axis with interacting each other under
 some constraints on their behavior

 Monitoring the state, the coordinator object tries to

 • maintain the consistency among the states of several artifact objects(external constraints) and
 among the states of an artifact object(internal constraints).

 • find the culprit of abnormal state by using inference rules that use dependency relationships, con-
 straints, and an activities record of entities.

 The coordinator object uses a database that consists of

 • a structure used for defining the constraints

 • a history record of state transitions of entities and events happened to them

 In our modeling,

 1. Entities are design artifact/product objects. Each object is formulated as an autonomous object
 containing a state transition diagram that represents a state of progress of each artifact. Time-

 related constraints are assigned to each state-transition of STDs to express permitted/ inhibited
 transitions and exception handling(internal constraints).

 2. A structure is an input/output dependency graph among artifact/product objects that is used for
 defining external constraints.

 3. An activities record of artifact objects contains events/states sequences actually happened to them
 with a version control mechanism.

 We now try to define constraints among STDs which can deal with the following semantics.

 1. group roll-back: it eliminates all of the wrong side-effects caused by the culprit when it is detected.

 2. deviation[10]: some object proceeds its transitions without waiting the occurrence of actual events
 postulating the happening of proper events. After happening the real event, if some contradictions

 are observed, it makes roll-back.

5.2 A Groupware Base to provide Smoothness

We have already designed and implemented a prototype system SIORI[11], for electronic meetings using
mailing lists, based on the groupwarebase model. Its purpose is to facilitate the coordination among par-
ticipants and to reduce the possibility of occurrence of redundant conversations caused from an insufficient

management of decisions.

 Though E-mail and NetNews are useful tools for communication over a network, it still has room to
be improved especially for classifying and grasping the communication contents. By adding groupware

base to a mailling list tool, we can expect following support functions that enable us to grasp the progress

and the reasoning from the vast mails exchanged through a mailing list.

14

 • to understand a deliberation history and decisions made in the past

 • to clarify a deliberation condition and a point of an argument in the present

 • to coordinate and plan the future discussion to be made

The system consists of "SIORI" server and "SIORI" clients. The "SIORI" server manages a groupware

base. The "SIORI" client provides us the functions to refer the groupware base (Fig. 13).

..f6:~~'i~l~/,.,;a,.~

 ,. ,

.

 „.',',,,''''!';f,,,4 Ǹ/..,o ,'r°,%i`,y"'9"J:,,,,,!/.y:,:.if{::'rrvro::;y~%va,sGY,:r~;<il,,,o/xs#"s,'s:y^;'f, ,c , : sI`I, .:s—!,cw>.,~!'a'~:ac.:%I:`-•;/4vw.5~s.,:k:';,F.r.,:,e<%,'xca.fu.::sk„,.: ,s:,:y,;o

1111:: f,:1"'9'yr,- ,,,,":ffz;;,„~:x:v;~;^:;:v'~,^c.,'y5a'.;y,:a:,
f:, ;:i',.,' ,%ili'f`f~„~,:<,s,x/^.f..4T~,`+,;:,::c:,,,mn.'!a•"zs'',,.it/F;!-,``'„F,';,.,.`H:~xi:fkG:H,.;, .,~G;f/y~~~~.go''/.~.^$`,-'~~k,r`~.yy,~:~'2b,.~<';

 s'1,%-:,',';-"j4f0041.f?:%v.v~,eg'xx`s;``.,,,S .,Fydr„: ,i%//'I(14:Yry Yfr.h%.'?:+i7'GfE >l,f'Y~''
 ::1i :„);f/ ','z4,`-~i, ,,,<r~~,,-:1,4,,.,,,,,,,,,•Ce<dis''''!~z1q::

 ,
,43,g''':'!~S',f.`<"A:Yf:'.'.':f_~.....y'..yCGh',Q`!•2,f,%IC `r:d:`x,7'i,;h-.

 ;f„'<El/xf).:~f.4! '%l"fA.,:::,x,,,.hr,/,~v-1~/7:,,r,%%,,'.y,ze:.:r:.,3xvisa:.y,:i'rx°;rS~,.,1:'•'F
 /.4f,:~G<'•:•ii,fAs:.%i',.x2':',PI";Ir

a''°~'?'jf%'„a^,y+ `~l ~Ir,ti,„`,a;G<y'f4'•?~s.5;,,,::,:nr./,,;^v:4',•"'/j'/,' '%;.bszf.o,.:va~w1,:>w,~:k~'.So,,nF~~f°0"~h~F%=,.•':„''

+

 7.'

 'r,r' ,`N.ys.'xa'%,rr~::3<}':3~E 8Ci''4

 ~,.ai'%r:.'%r!~,/'s.vah~:.~6',~k4?"iktaxa'u'E+:,"ry~~,.,~~'~e.0;,'3#:~<.' '.f'.',f'/.`'^./'+.c,~2e''`'~f'^:
F111;~~m3%:wa.--04-#`x.l.i'/f:a~<¢l'

 ;

 is,3f';f3;"„"fy:.:c,"- 'ig,. ..s.r.,54,749:zf/'w,;;f+,B ,f~;G~,

 s''i'~f/rrrji;''''t.-:,;';'feo,j"y/,yz.I';-:'a`A'-'0s~,~~f', f''.•f! %'.,,~fy.,z~rav~•<,,:,~,.: ~y,.;.y.,S`':¢ ,'%,~'4+6z,~'.^~3t''f,'S~`:'~w,;:,s„”15_ 1t ':,,~~,':,''":`„e2w/:--,.,,•r'f',,-#-'-:,s<`,'.`,.•°r~:7,:,.--"~-:,Yt','~,w:~,~.,^,'!,r:',,`'~''S:o'~•f"~~,
 :i'...f...:.,.,,/S_,.5-S„ewL,ziin`%:ao'c''::'wsai^,2F.,;:li,/'n,..Y

Figure 13: "Shiori” clients

6 Summary

1. JIZAI can support the cooperative works overs distributed computing environments by managing
 the state of the cooperative works, especially for a decision management

2. CSCSD model will play a role of a reference model for cooperative works over distributed computing
 systems and also will be able to give us clues to find the object libraries to construct the SDEs.

7 Acknowledgements

I appreciate professor Carlo Ghezzi and Mr. Gianpaolo Cugola at Politecnico di Milano for their useful
discussions and comments on the coordinator object.
References

 1. K.Ochimizu:"Constructing a Support Environment for Cooperative Works over a Computer Net-
 work by Integrating Software Process Enactment Support and Communication Support", Jaist
 Research Report, IS-RR-97-0012S, ISSN 0918-7553, March 1997.

 2. Clarence Ellis, Jacques Wainer: "A Conceptual Model of Groupware", Proc. of CSCW 94, pp.79-88,
 1994.

15

3. R.M.Adler and R.C.Paslay,"Design of Distributed Systems", Encyclopedia of Software Engineering,
 John Wiley and Sons.

4. C.Kadowaki, K.Ochimizu: "Recording the Progress and the Reasoning of Deliberations".

5. C.Kadowaki, K.Ochimizu:"Systematic Support of Communication in Enacting a Software Pro-
 cess",Jaist Research Report, IS-97-0009S, ISSN 0918-7553, March 1997.

6. H.Tanaka, K.Araki, Y.Masuda:"Relationship between Interpersonal Communication and Effects of
 Communication Media", IPSJ SIG on GW 93-GW-4, pp.53-60, 1993(in Japanese).

7. K.Ochimizu, C.Kadowaki, K.Fujieda, M.Hori:"Design of A Software Development Environment
 JIZAI for Distributed Software Development", Technical Report of IEICE SS94-18, 1994 (in Japanese).

8. M.Hori, K.Ochimizu:"Shared Data Management Mechanism for Software Development Based on a
 Reflective Object-Oriented Model", Computer Software,Vol.13, NO.1, pp.37-54, 1996 (in Japanese).

9. M.Hori, Y.Shinoda, K,Ochimizu: "Shared Data Management Mechanism for Distributed Software
 Development Based on a Reflective Object-Oriented Model", LNCS 1080, Advanced Information

 Systems Engineering, pp.362-382, 1996.

10. G.Cugola, E.Di Nitto Frank, C.Ghezzi: "How to deal With Deviations During Process Model
 Enactment", Proc. of ICSE 17, pp.265-273, April 1995.

11. S.Konno,C.Kadowaki,K.Ochimizu:"Supporting Situation understanding and Documentation of Com-
 munication in Electric Meeting by Groupwarebase, Siori", IPSJ SIG on SE, 107-12, 1996.

16

