JAIST Repository

https://dspace.jaist.ac.jp/

K Generating a Workflow for| Change Suj
Document s

Author(s) Kotani, Masayuki; Ochimizp, Koichir
Research report (School of I nformat.

Citation Japan Advanced Institute pf Science
Technology), | S-RR-2003-0p7: 1-7

Issue Date 2003-08-26

Type Techni cal Report

Text version publ i sher

URL http://hdl.handle.net/ 10109/ 8433

Rights

L 00000000 DbO0O0OO0O0O0OO0obOOoDoobOoog

Description

ogoooon

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Generating a Workflow for Change Support
of UML Documents

Masayuki Kotani* and Koichiro Ochimizu*

August 26, 2003
IS-RR-2003-007

“School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)
Asahidai 1-1, Tatsunokuchi
Ishikawa, 923-1292 Japan

m-kotani@jaist.ac.jp, ochimizu@jaist.ac.jp

Generating a Workflow for Change Support of UML Documents

Masayuki Kotani ,

Koichiro Ochimizu

Japan Advanced Institute of Science and Technology
Department of Information Science
E-mail: {m-kotani, ochimizu}@jaist.ac.jp

Abstract

In this paper, we propose a method to generate a
workflow for the change of UML diagrams. We take
model based translation approach to generate
dependency relationships between model elements in
UML diagrams. In drawing UML diagrams, a modeler or
a designer should define various kinds of dependency
relationships such as refine and trace, by themselves
based on the traceability policy. This work is very error-
prone and time consuming especially in a maintenance
phase. We propose the meta model of UML to produce
dependency relationships among model elements of UML
diagrams automatically. We can generate a workflow for
change support from the database containing UML
diagrams with dependency relationships. We examined
the effectiveness of our method. We found several
dependency relationships not defined by the examinee.

1. Introduction

In a software development, a developer creates an
artifact referring other artifacts. There are various kinds
of dependencies’ among them, such as refine and trace.

In creating or changing an artifact, the developer should
define those dependency relationships by themselves
based on the traceability policy. This work is very error-
prone and time consuming especially in a maintenance
phase. In this paper, we propose a method of producing
dependency relationships among model elements of UML
diagrams automatically, using Meta model of UML for
Change (MUC). A group of artifacts connected by
dependency relationships can be considered as an order of
changing artifacts. We also propose a method to generate
a workflow for change support. There are three kinds of
change such as “Add”, “Delete” and “Modify”. Semantics
of tracing is different from each change type. We propose
the method of creating the workflow for each change type,
taking into account the characteristic of dependency
relationships.

" “X depends on Y” means that we must change X if we
change Y.

2. The method of generating Dependency
relationships among the model elements of
UML diagrams

We take model based translation approach[1] to
generate dependency relationships between model
elements in UML diagrams* as shown in Fig. 1. An input
of a translator is a group of UML diagrams and an output
of the translator are dependency relationships among
model elements of the UML diagrams. When the
translator gets inputs, it examines correspondence
between a meta element of a meta model and a model
element of a UML diagram. The translator generates the
dependency relationships between the model elements
based on the meta relations between meta elements.

meta model UML for change
(MUG)

!

dependencies
a group of meta model based among UML
UML diagrams > translation) 9
diagrams

Figure 1. Qutline of the method
for generating dependency relationships

2.1. Meta relations to generate dependency

We show the meta relations of MUC in Table 1.
In Table 1, there are three meta relations we have defined
as follows;

2.1.1. Exist Together. A meta relation “Exist Together”
means that when B exists together with A, we must delete
B when we delete A. But, the reverse is not true. We need
not to delete A when we delete B. We define its notation
as an association with a solid filled diamond.

* UML version 1.5[2]

2.1.2. Instance Of. A meta relation “Instance of”” shows a
relation between a class and an instance. We define its
notation as an arrow with broken line.

sequence diagram.

Table 2. Meta elements of UML diagram

meta UML diagram
2.1.3. Copy Of. “Copy Of” shows that elements of each elements °
ends are the same. We also define its notation as a broken . .| usecase diagram, class diagram, object
line with two arrows. Relgnonshlp diagram, component diagram,
Diagram H
© deployment diagram
Table 1. Kinds of meta relations Behavior | statechart diagram, activity diagram
Diagram
notation meta relation Interaction | sequence diagram, collaboration
AQp— B | Exist Together Diagram | diagram
D — Instance Of 2.2.2. Defining Meta Elements of UML model
<--------> | Copy Of elements.

2.2. Defining meta elements

In this section, we define the meta elements of MUC.

2.2.1. Defining meta elements of UML Diagram.

We classified nine UML diagrams into three
categories. There are nine UML diagrams such as a
usecase diagram, a class diagram, an object diagram, a
component diagram, a deployment diagram, a statechart
diagram, an activity diagram, a sequence diagram and a
collaboration diagram. We classified them into three
based on the Classifier as shown in Table 2 where the
Classifier is one of meta elements of MUC and it is an
abstraction of a usecase, an actor, a class, a package, a
component and a node.

Meta element “Relationship diagram” shows a relation
between Classifiers. Relationship Diagram is an
abstraction of a usecase diagram, a class diagram, an
object diagram, a component diagram and a deployment
diagram.

Meta element “Behavior Diagram” shows a behavior of
the Classifier. Behavior Diagram is an abstraction of a
statechart diagram and an activity diagram.

Meta element “Interaction Diagram” shows
communication between Classifiers. Interaction Diagram
is an abstraction of a collaboration diagram and a

We define seven meta elements as an abstraction of
model elements of UML diagrams. They are Classifier,
Meta Object, Relation, Meta State, Meta Transition, Meta
Instance and Meta Message as shown in Table 3.
Classifier, Meta object and Relation are elements of a
Relation Diagram. We already explained Classifier. Meta
object is a meta element and it is an abstraction of an
object. Relation is a meta element and it is an abstraction
of an association, a link, a dependency, a generalization
and an aggregation.

Meta State and Meta Transition are elements of Behavior
Diagram. Meta State is a meta element and it is an
abstraction of a state and an action state. Meta Transition
is a meta element and it is an abstraction of a transition, an
action and an event. :

Meta Instance and Meta Message are elements of
Interaction Diagram. Meta Instance is a meta element and
it is an abstraction of an instance. Meta Message is a meta
element and it is an abstraction of message.

We define “Model Element” as a super class of all meta
elements as shown in Fig. 2. The role of Model Element is
to define “Copy Of”” meta relation among any meta
elements of MUC (Fig. 3).

2.2.3. A relation between a UML diagram and a group
of meta elements.

We define a domain: “Relationship Diagram Domain”
by packaging Relation Diagram, Classifier, Meta Object

Table 3. Meta elements of model elements of UML diagrams

meta elemen .
- 15 model elements of UML diagram
diagrams components
. . Classifier actor, usecase, class, package, component, node
Relationship - - P 2 P
: Meta object | object
Diagram - — — : -
Relation association, generalization, aggregation, link, dependency
. Meta State state, action state
Behavior
. Meta . .
Diagram .. transition, event, action
Transition
Interaction | Meta Instance | object
Diagram Meta Message | message

Mata
Element

Behavior
Diagram

Interaction
Diagram

Meta
Message

Meta
Transition

Meta

((Hassirlerl Meta r —
Instance

Obiject

Figure 2. Meta Elements of MUC

Relalion} ’Meta State{ (

CopyOf
Meta <
Element

Figure 3. A recursive meta relation of Meta Element

and Relation; “Behavior diagram Domain” by packaging
Behavior Diagram, Meta State and Meta Transition;
“Interaction Diagram Domain” by packaging Interaction
Diagram, Meta Instance and Meta Message as shown in
Fig.4. The meaning of a package is to package a UML
diagram and model elements in the diagram together. For
an example, a statechart diagram is a UML diagram
.instantiated from Behavior Diagram and states and
transitions in the statechart diagram are instantiated from
Meta State and Meta Transition respectively. We need to
package the statechart diagram, states in the diagram and
transitions in the diagram together to group the model
elements and the UML diagram.

2.3. Definition of the MUC

We show the MUC in Fig. 4 summarizing the
consideration so far. In Fig. 4, there is a meta relation
“Exist Together” between Classifier and Behavior
Diagram because Behavior Diagram shows the behavior
of Classifier. There is a meta relation “Instance Of”
between Classifier and Meta Instance, because Meta
Instance is an instance of Classifier. There is a meta
relation “Copy Of” between Meta Instanceand Meta
Object.

Table 4. The result of the examination

Automatically Manually
A number of 50 4
dependencies
A number of
matched 35
dependencies

2.4. Confirming the effectiveness of the MUC

We performed an experiment to confirm the
effectiveness of the MUC and to improve it. We
compared dependency relationships created by an
examinee with ones generated by a tool. We used 15
UML diagrams described in Cruise Control & Monitoring
System{3]. Results of the experiment is shown in Table 4.
There are 50 dependency relationships generated by a tool.
There are 42 dependency relationships that were
recognized by the examinee. There are 35 dependency
relationships common to both.

2.4.1. Dependencies that cannot be generated
automatically but recognized by the examinee. There
are 7 dependency relationships that cannot be generated
by the tool. But all of them have the same type. They are
the dependency relationships between a usecase diagram
and a collaboration diagram. The examinee created them
as the dependency relationships between a usecase and a
collaboration diagram. In MUC, we need the meta relation
between Classifier and Interaction Diagram to generate
those dependency relationships automatically (Fig. 5).
This problem is solved if we add a meta relation
between Classifier and Interaction Diagram in Fig. 5. We
can instantiate a dependency relationship between a
usecase and a collaboration diagram based on the meta
relation. But it causes another problem. There is another
meta relation between Classifier and Meta Instance in Fig.
5. It can instantiate a dependency relationship between a
class and an instance in base level. Existence of two meta
relations enable the tool create wrong dependency
between a class and a collaboration diagram. We divide
Classifier into two, Static Classifier and Dynamic
Classifier (Fig. 6). Static Classifier has a meta relation
“Instance Of” with Meta Instance and Dynamic Classifier
has a meta relation “Exist Together” with Interaction
Diagram. We need a super class Classifier of both to keep
the meta relation between Classifier and Behavior
Diagram. We show the improved meta model in Fig. 6.

Relationship Diagram
CopyOt Domain
W,
Meta <o
Element Relationship
Diagram
i) Meta
Classifier || Relation Object
N IAY
Behavior Diagram : CopyOft Interaction Diagram
Domain Domain
Behavior . . Interaction
Diagram : Diagram
. InstanceOf 7
Meta Meta : Meta Meta
State Transition) Instance Message
Figure 4. Meta model of UML for Change
Relationship Diagram
CopyOt Domain
v
Meta. |<-
Element Relationship
Diagram
Not defined e \ Meta
meta relationships Classifler Relation — Object
. ? AN FAY
Behavior Diagram : CopyOf | Interaction Diagram
Domain : Domain
Behavior . : Interaction
Diagram - Diagram
. Ny
* InstanceOf
teta Meta : Meta Meta
State Transition Instance Message

Figure 5. Meta relation between Classifier and Interaction Diagram

Relationship Diagram

Copyot Domain

.
Meta
Element

<

Relationship
Diagram

4

[

|

2.4.2, The dependency relationships generated by a
tool, but not created by the examinee. The examinee
failed to define a lot of dependency relationships between
the same model elements. As shown in Fig. 7, some class
in a class diagram is copied to another class diagram. All
of them should have dependency relationships with the
same collaboration diagram, depending on his policy or
his careless miss. The tool, however can create all of the
necessary dependency relationships completely. This is
one of advantages of our method.

3. Generating a workflow automatically

In this section, we will discuss how we can generate a
workflow for change support. We can show an outline of
our system which can generate the workflow as shown in
Fig. 8. Inputs of a generator are: dependency
relationships; the original UML diagrams and their model
elements; change part of the UML diagram. The output of
the generator is a workflow.

" . Meta
—-‘* Classifier || Relation —ro| Object
FAN
CopyOf
Static Dynamic
Classifier Classifier
B $
Behavior Diagram InstanceOt Interaction Diagram
Domain ERRRPE) Domain
Behavior Interaction
Diagram Diagram
v
Meta Meta Meta Meta
State Transition ["7 Instance Message

Figure 6. Improved MUC

Class diagram)

Class diagram2

Collakoration diagram

-——
The dependency

generated by examinee

stff—

The dependency

generated automatically

Figure 7. Dependency relationships that are
generated automatically,
but not created by the examinee

The Dependenties
amorg UML diagrams

Charged UML diagram

—

Generating ‘Workflow
for supporting
the change work

Workflow for
L, supportng the
change work

Figure 8. An Outline of the method for generating a

workflow

3.1. Reexamination of semantics of meta

relations from a viewpoint of change

We reexamine semantics of meta relations from the
viewpoint of change support.

A meta relation “Exists Together” shows that an
obeying one is deleted by deletion of an obeyed one'.

A meta relation “Instance Of” shows that an instance is
deleted when a class is deleted. .

A meta relation “Copy Of” shows that a meta element
of one end is the same with the other end. When one meta
element is modified, the other should be modified.

Meta relation can have the following four

characteristics.

® obey: one is obeying element, and the other is
obeyed one

@ delete: If one is deleted, the other should be deleted

® attribute name: both sides have the same attributes

@ attribute value: both sides have the same attributes

and their values
We show that which characteristics each meta relation has
in Tab 5. For an example, “Exist Together” has two
characteristics, “obey” and “delete”.

3.2. Generating dependency relationships for
each change type

- We define usage of the characteristics to generate
dependencies for tracing to each change type such as
Delete and Modify :

3.2.1. Delete. We generate dependency relationships only
for the meta relations, “Exist together” and “Instance Of”
because change type Delete has two characteristics,
“obey” and “delete”.

3.2.2. Modify. We generate dependency relationships
only for the meta relations, “Instance Of” and “Copy Of”
because change type Modify has at least one characteristic
among “attribute name” and “attribute value”.

Definition for change type Add is under consideration.
We show relations between change types and meta

relations in Table 6.
Table 6. Related meta relations
for each change type

change type related meta relations
Delete Exist Together, Instance Of
Modify Instance Of, Copy Of

3.3. Generating a workflow for change

In this section, we show simple examples of
workflow generation. We use four UML. diagrams as an
example of a workflow generation. They are: two class
diagrams; a collaboration diagram; and a statechart
diagram. A translator finds meta relations among model
elements as shown in Fig 9.

Suppose that “Cruise Control” in “speed control” diagram
is deleted. A workflow generator generates dependency
relationships based on meta relations “Exist together” and
“Instance Of” as shown in Fig 10.

We show another example in Fig. 11. Suppose “Cruise
Control” in “speed control” diagram is modified, the
workflow generator generates dependency relationships
based on meta relations “Instance Of “and “Copy Of” as

shown in Fig. 11.
spead control l
ollaboration of

RN I Cruise

v ~-4-3| Control [
speed control . !

c: W S
Cruise Control | - - -,
¢+, |control classes

vie-ly Cruise |
t..-L.3{ Control

e -0 O3

Exist together Instance Of Copy Of
Figure 9. an example of model elements
and meta relations among them

statechart. of
Cruise Control

| statechart of
Cruise Controf

Table 5. Characteristics of meta relations

obey delete attribute name attribute value
Exist Together O O — —
Instance Of O O O —
Copy Of ©) — @) O
O : has a characteristic, — : not has a characteristic

¥ obeyed one @ obeying one

statechart of
Cruise Control

statechart of
spead control / Cruise Control
Cruise
Control §

ollaboration of|

\ speed control

Cruise Control

i

Figure 10. Generated workflow for deleting
“Cruise Control” in speed control diagram

control classes

Cruise
Control

gl

speed control /

Cruise
Control <

ccollaboration of
\ speed control
C:
fnsr oo
Figure 11. Generated workflow for modifying
“Cruise Control” in speed control diagram

4. Supporting Tool

In this section, we explain a prototype system of our

tool. The tool has three functions: creating meta elements
from UML Diagrams; generating meta relations; and
generating a workflow for change: This tool shows a list
of model elements (Fig. 12) and the workflow for
changing support (Fig. 13).
The tool generates dependency relationships by using the
information created by a CASE tool. They are project files,
information about diagrams, and XMI. We used IIOSS[4]
as the CASE tool that is functionally compatible for
Rational Rose. The tool shows a list of model elements as
shown in Fig. 12 and a user can select one from the list.
Then the tool generates a workflow for change as shown
in Figure 13.

5. Conclusion and Future Works

In this paper, we proposed a method of generating
dependency relationships among model elements of UML
diagrams, and generating a workflow for change support.

We must refine our meta model especially for meta
relations by abstracting the all of dependencies in UML
such as derivation, refinement, trace, binding, extend,
become, copy, include, instanceOf, powertype, access,
friend, import, call, instantiate, parameter and send{5].

\Cruisaconzol Ak
&[] Collabaration cisgram far Resst 3nd Cajsuiat® Tep Spaed usecases(l 4) 3
O~ Collabarstion disgram for Undats
@ “CruisecContrer starechan(l)
] Collabaration diagr
o Cruiss Centrel and Mo
@ (] Coliaboration ciagram
@ () Cruisa Cortrot & M ing Jyymer
-] coilaboration hag for Qantral Spagsd use casz2(10)
@ (7 Static modal of prokiem gamaingy
(1 Collabaration dizgram fr Datermne Distancs and Speed Use case(d)
O3 Statechsn for CakbrarenCertra® 50;2713)
O~ Cruise Control 3 Manitoring Syatem: inmal determi
] =1 Use case madsl. Twiss Seawoiiise Saze Zackage(2}
© DY mimer

[oriver

[y snar

[qu=s100258)

O aa= 81002533

[} ad=51002803

- qd=81002473

e

ot COURt USE £a32(8)

r R2921 2ng Caicllate Trp Fuel Censumption use ¢
m3)ar subsvsiemn relaticnshipe(?)

oTmajor

i [l

v s |

H

st of CruisaContred 1
Didgenm name : sialechan of cuw:m}

<

Figure 13. an example of a generated workflow

We are also developing a theory and a tool to
generate a workflow that can handle multi-threaded
changes.

Reference

[1] Dragan Miliev: “Automatic Model Transformations
Using Extended UML Object Diagrams in Modeling
Environments”, IEEE Trans. Software Eng., vol. 28, no. 4,
pp.413-431, April. 2002.

[2] Object Management Group: “Unified Modeling Language
(UML), version 1.5, http://www.omg.org/ technology/
documents/formal/uml.htm

[3] Hassan Gomaa: “Designing Concurrent. Distributed, and
RealTime Applications with UML”, Addison-Wesley,
2000.

[4] The IHOSS Consortium. : “TIOSS”, http://www.iioss.org/

{5] Grady Booch: “The Unified Modeling Language User
Guide”, Addison Wesley Longman, Inc, 1999.

