
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Generating a Workflow for Change Support of UML

Documents

Author(s) Kotani, Masayuki; Ochimizu, Koichiro

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2003-007: 1-7

Issue Date 2003-08-26

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8433

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Generating a Workflow for Change Support

 of UML Documents

Masayuki Kotani* and Koichiro Ochimizu*

 August 26, 2003

 IS-RR-2003-007

*Sch
ool of Information Science

Japan Advanced Institute of Science and Technology (JAIST)

 Asahidai 1-1, Tatsunokuchi

 Ishikawa, 923-1292 Japan

m-kotani@jaist.ac.jp, ochimizu@jaist.ac.jp

Generating a Workflow for Change Support of UML Documents

 Masayuki Kotani , Koichiro Ochimizu
Japan Advanced Institute of Science and Technology

 Department of Information Science
 E-mail: { m-kotani, ochimizu}@jaistac.jp

Abstract

 In this paper, we propose a method to generate a
workflow for the change of UML diagrams. We take
model based translation approach to generate
dependency relationships between model elements in
UML diagrams. In drawing UML diagrams, a modeler or
a designer should define various kinds of dependency
relationships such as refine and trace, by themselves
based on the traceability policy. This work is very error-
prone and time consuming especially in a maintenance
phase. We propose the meta model of UML to produce
dependency relationships among model elements of UML
diagrams automatically. We can generate a workflow for
change support from the database containing UML
diagrams with dependency relationships. We examined
the effectiveness of our method. We found several
dependency relationships not defined by the examinee.

1. Introduction

2. The method of generating

relationships among the model

UML diagrams

Dependency

elements of

 We take model based translation approach[1] to

generate dependency relationships between model
elements in UML diagrams= as shown in Fig. 1. An input
of a translator is a group of UML diagrams and an output
of the translator are dependency relationships among
model elements of the UML diagrams. When the
translator gets inputs, it examines correspondence
between a meta element of a meta model and a model
element of a UML diagram. The translator generates the
dependency relationships between the model elements
based on the meta relations between meta elements.

meta model UML for change

(MUG)

 In a software development, a developer creates an
artifact referring other artifacts. There are various kinds
of dependencies' among them, such as refine and trace.
In creating or changing an artifact, the developer should
define those dependency relationships by themselves
based on the traceability policy. This work is very error-

prone and time consuming especially in a maintenance
phase. In this paper, we propose a method of producing
dependency relationships among model elements of UML
diagrams automatically, using Meta model of UML for
Change (MUC). A group of artifacts connected by
dependency relationships can be considered as an order of
changing artifacts. We also propose a method to generate
a workflow for change support. There are three kinds of
change such as "Add", "Delete" and "Modify". Semantics
of tracing is different from each change type. We propose
the method of creating the workflow for each change type,
taking into account the characteristic of dependency
relationships.

 a group ofmeta model baseddependencies
UML diagrams-~translationamong UML -~ diagrams

 Figure 1. Outline of the method

 for generating dependency relationships

2.1. Meta relations to generate dependency

 We show the meta relations of MUC in Table 1.
In Table 1, there are three meta relations we have defined
as follows;

2.1.1. Exist Together. A meta relation "Exist Together"
means that when B exists together with A, we must delete
B when we delete A. But, the reverse is not true. We need
not to delete A when we delete B. We define its notation
as an association with a solid filled diamond.

"X depends on Y" means that we must change X if we

change Y. UML version 1.5[2]

2.1.2. Instance Of. A meta relation "Instance of' shows a

relation between a class and an instance. We define its
notation as an arrow with broken line.

2.1.3. Copy Of. "Copy Of' shows that elements of each
ends are the same. We also define its notation as a broken
line with two arrows.

Table 1. Kinds of meta relations

sequence diagram.

notation

A ̂ --- B
meta relation

Exist Together

Table 2. Meta elements of UML diagram

 meta

elements

Relationship
 Diagram

Instance Of

Copy Of

Behavior

Diagram

Interaction
Diagram

2.2. Defining meta elements

UML diagram

usecase diagram, class diagram, object
diagram, component diagram,
deployment diagram
statechart diagram, activity diagram

sequence diagram, collaboration
diagram

In this section, we define the meta elements of MUC.

2.2.1. Defining meta elements of UML Diagram.
 We classified nine UML diagrams into three

categories. There are nine UML diagrams such as a
usecase diagram, a class diagram, an object diagram, a
component diagram, a deployment diagram, a statechart
diagram, an activity diagram, a sequence diagram and a
collaboration diagram. We classified them into three
based on the Classifier as shown in Table 2 where the
Classifier is one of meta elements of MUC and it is an
abstraction of a usecase, an actor, a class, a package, a
component and a node.

 Meta element "Relationship diagram" shows a relation
between Classifiers. Relationship Diagram is an
abstraction of a usecase diagram, a class diagram, an
object diagram, a component diagram and a deployment
diagram.
 Meta element "Behavior Diagram" shows a behavior of
the Classifier. Behavior Diagram is an abstraction of a
statechart diagram and an activity diagram.

 Meta element "Interaction Diagram" shows
communication between Classifiers. Interaction Diagram
is an abstraction of a collaboration diagram and a

2.2.2. Defining Meta Elements of UML model
elements.
 We define seven meta elements as an abstraction of
model elements of UML diagrams. They are Classifier,
Meta Object, Relation, Meta State, Meta Transition, Meta
Instance and Meta Message as shown in Table 3.
Classifier, Meta object and Relation are elements of a
Relation Diagram. We already explained Classifier. Meta
object is a meta element and it is an abstraction of an
object. Relation is a meta element and it is an abstraction
of an association, a link, a dependency, a generalization
and an aggregation.
Meta State and Meta Transition are elements of Behavior
Diagram. Meta State is a meta element and it is an
abstraction of a state and an action state. Meta Transition
is a meta element and it is an abstraction of a transition, an
action and an event.
Meta Instance and Meta Message are elements of
Interaction Diagram. Meta Instance is a meta element and
it is an abstraction of an instance. Meta Message is a meta
element and it is an abstraction of message.
We define "Model Element" as a super class of all meta
elements as shown in Fig. 2. The role of Model Element is
to define "Copy Of' meta relation among any meta
elements of MUC (Fig. 3).

2.2.3. A relation between a UML diagram and a group
of meta elements.

 We define a domain: "Relationship Diagram Domain"
by packaging Relation Diagram, Classifier, Meta Object

Table 3. Meta elements of model elements of UML diagrams

meta elements

diagrams

Relationship

 Diagram

Behavior

Diagram

Interaction

Diagram

components

Classifier

Meta obiect

Relation
Meta State

 Meta
Transition

Meta Instance

Meta Message

model elements of UML diagram

actor, usecase, class, package, component, node

obiect

association, generalization, aggregation, link, dependenc

state, action state

transition, event, action

object

message

 Meta

Element 2.4. Confirming the effectiveness of the MUC

 Relationshi

Diagram

Classifier

Behavior

Diagram

Interaction

Diagram

` ete(Relation I !Meta StateI
 Meta

IMeta ObjectITransitionIInstance
Figure 2. Meta Elements of MUC

Meta

Message

CopyOf

v Meta ~•-
 Element

Figure 3. A recursive meta relation of Meta Element

and Relation; "Behavior diagram Domain" by packaging
Behavior Diagram, Meta State and Meta Transition;
"Interaction Diagram Domain" by packaging Interaction

Diagram, Meta Instance and Meta Message as shown in

Fig.4. The meaning of a package is to package a UML
diagram and model elements in the diagram together. For
an example, a statechart diagram is a UML diagram
instantiated from Behavior Diagram and states and
transitions in the statechart diagram are instantiated from
Meta State and Meta Transition respectively. We need to

package the statechart diagram, states in the diagram and
transitions in the diagram together to group the model
elements and the UML diagram.

2.3. Definition of the MUC

 We show the MUC in Fig. 4 summarizing the
consideration so far. In Fig. 4, there is a meta relation
"Exist Together" between Classifier and Behavior

Diagram because Behavior Diagram shows the behavior
of Classifier. There is a meta relation "Instance Of"
between Classifier and Meta Instance, because Meta
Instance is an instance of Classifier. There is a meta
relation "Copy Of" between Meta Instanceand Meta
Object.

 We performed an experiment to confirm the
effectiveness of the MUC and to improve it. We
compared dependency relationships created by an
examinee with ones generated by a tool. We used 15
UML diagrams described in Cruise Control & Monitoring
System[3]. Results of the experiment is shown in Table 4.
There are 50 dependency relationships generated by a tool.
There are 42 dependency relationships that were
recognized by the examinee. There are 35 dependency
relationships common to both.

2.4.1. Dependencies that cannot be generated
automatically but recognized by the examinee. There
are 7 dependency relationships that cannot be generated
by the tool. But all of them have the same type. They are
the dependency relationships between a usecase diagram
and a collaboration diagram. The examinee created them
as the dependency relationships between a usecase and a
collaboration diagram. In MUC, we need the meta relation
between Classifier and Interaction Diagram to generate

those dependency relationships automatically (Fig. 5) .
 This problem is solved if we add a meta relation

between Classifier and Interaction Diagram in Fig. 5. We
can instantiate a dependency relationship between a
usecase and a collaboration diagram based on the meta
relation. But it causes another problem. There is another
meta relation between Classifier and Meta Instance in Fig.
5. It can instantiate a dependency relationship between a
class and an instance in base level. Existence of two meta
relations enable the tool create wrong dependency
between a class and a collaboration diagram. We divide
Classifier into two, Static Classifier and Dynamic
Classifier (Fig. 6). Static Classifier has a meta relation
"Instance Of" with Meta Instance and Dynamic Classifier

has a meta relation "Exist Together" with Interaction
Diagram. We need a super class Classifier of both to keep
the meta relation between Classifier and Behavior
Diagram. We show the improved meta model in Fig. 6.

Table 4. The result of the examination

A number of
dependencies

A number of
matched

dependencies

Automaticall

50

Manuall

42

35

 CopyOf

\^
 Meta <..

Element

Relationship Diagra

 Domain

Relationship

 Diagram

Classifier Relation

Behavior Diagram

 Domain

Behavior

Diagram

Meta

 Transition

Meta
Object

A

Meta

State

•

•

•

•

•

•

CopyOf Interaction Diagram

 Domain

InstanceOf
 Meta

Instance

Interaction

Diagram

Meta

 Message

 CopyOf

V •
 Meta <..

 Element

Not defined
meta relationships

Behavior Diagram
 Domain

Figure 4. Meta model of UML for Change

elationship Diagra
Domain

Relationship

 Diagram

Classifier

^ /\

Meta

State

Relation

Behavior

Diagram

t

-----IMeta Transition

Meta
Object

CopyOf

InstanceOf

Figure 5.

Interaction Diagram

 Domain

• • -------- r Meta
I Instance

Interaction

Diagram

f

Meta

 Message

Meta relation between Classifier and Interaction Diagram

CopyOf

 Meta

Element

Relationship Diagra

 Domain

Relationship

 Diagram

Behavior Diagram

 Domain

Classifier Relation

 Static

Classifier

Dynamic

Classifier

Meta

Object

InstanceOf

CopyOf

 i.~

Behavior

Diagram

Meta

State

 Meta

Transition

Interaction Diagram

 Domain

Interaction

Diagram

Meta

Instance

Meta

Message

Figure 6. Improved MUC

2.4.2. The dependency relationships generated by a
tool, but not created by the examinee. The examinee

failed to define a lot of dependency relationships between
the same model elements. As shown in Fig. 7, some class
in a class diagram is copied to another class diagram. All
of them should have dependency relationships with the
same collaboration diagram, depending on his policy or
his careless miss. The tool, however can create all of the
necessary dependency relationships completely. This is
one of advantages of our method.

3. Generating a workflow automatically

 A

Class diagram I

 In this section, we will discuss how we can generate a
workflow for change support. We can show an outline of
our system which can generate the workflow as shown in

Fig. 8. Inputs of a generator are: dependency
relationships; the original UML diagrams and their model
elements; change part of the UML diagram. The output of
the generator is a workflow.

 A

Class diagrarnz

a : A

Collaboration diagram

 The dependencyThe dependency

 generated by examinee generated automatically
Figure 7. Dependency relationships that are

 generated automatically,
 but not created by the examinee

 The Dependencies

among UML diagrams

Chanced UML

Figure 8

diagram

Generating Workflow

 for supporting

 the change work

Workflow for

supporting the

change work

. An Outline of the method for generating a
 workflow

3.1. Reexamination of semantics of meta

relations from a viewpoint of change

 We reexamine semantics of meta relations from the
viewpoint of change support.

 A meta relation "Exists Together" shows that an
obeying one is deleted by deletion of an obeyed one.

 A meta relation "Instance Of' shows that an instance is
deleted when a class is deleted.

 A meta relation "Copy Of" shows that a meta element
of one end is the same with the other end. When one meta
element is modified, the other should be modified.

 Meta relation can have the following four
characteristics.
•

•

•

•

relations in Table 6.

 Table 6. Related meta relations
 for each change type

change type

Delete

Modify

related meta relations

Exist Together, Instance Of
Instance Of, Copy Of

obey: one is obeying element, and the other is
obeyed one
delete: If one is deleted, the other should be deleted
attribute name: both sides have the same attributes
attribute value: both sides have the same attributes
and their values

We show that which characteristics each meta relation has
in Tab 5. For an example, "Exist Together" has two
characteristics, "obey" and "delete".

3.2. Generating dependency relationships for

each change type

 We define usage of the characteristics to generate
dependencies for tracing to each change type such as

Delete and Modify

3.2.1. Delete. We generate dependency relationships only
for the meta relations, "Exist together" and "Instance Of"
because change type Delete has two characteristics,
"obey" and "delete" .

3.2.2. Modify. We generate dependency relationships

only for the meta relations, "Instance Of" and "Copy Of"
because change type Modify has at least one characteristic
among "attribute name" and "attribute value".

 Definition for change type Add is under consideration.

We show relations between change types and meta

3.3. Generating a workflow for change

 In this section, we show simple examples of
workflow generation. We use four UML diagrams as an
example of a workflow generation. They are: two class

diagrams; a collaboration diagram; and a statechart
diagram. A translator finds meta relations among model
elements as shown in Fig 9.
Suppose that "Cruise Control" in "speed control" diagram
is deleted. A workflow generator generates dependency
relationships based on meta relations "Exist together" and
"Instance Of' as shown in Fig 10 .
We show another example in Fig. 11. Suppose "Cruise

Control" in "speed control" diagram is modified, the
workflow generator generates dependency relationships
based on meta relations "Instance Of "and "Copy Of" as
shown in Fig. 11.

ollaboration of

speed control

c:

Cruise Control

speed control

Cruise

Control

statechart of
Cruise Control

control classes

-1 Cruise

Control

statechart of

Cruise Control

CD* Lit - - ---- LJ<--
Exist together Instance OfCopy Of

 Figure 9. an example of model elements
 and meta relations among them

Table 5. Characteristics of meta relations

Exist Together

Instance Of

Copy Of

obey

0

0

0

delete

0

0

attribute name

0

0

attribute value

0

0 : has a characteristic, — : not has a characteristic

 obeyed one— obeying one

speed control

Cruise

Control

 statechart of

Cruise Control

statechart of

Cruise Control

ollaboration of
speed control

C.

Cruise Control

Figure 10. Generated workflow for deleting
"Cruise Control" in speed control diagram

speed control

Cruise

Control

control classes

Cruise

Control

ollaboration of

speed control

C.
Cruise Control

Figure 11. Generated workflow for modifying
 "Cruise Control" in speed control diagram

4. Supporting Tool

 In this section, we explain a prototype system of our
tool. The tool has three functions: creating meta elements
from UML Diagrams; generating meta relations; and

generating a workflow for change: This tool shows a list
of model elements (Fig. 12) and the workflow for
changing support (Fig. 13).
The tool generates dependency relationships by using the
information created by a CASE tool. They are project files,
information about diagrams, and XMI. We used IIOSS[4]
as the CASE tool that is functionally compatible for
Rational Rose. The tool shows a list of model elements as
shown in Fig. 12 and a user can select one from the list.
Then the tool generates a workflow for change as shown
in Figure 13.

5. Conclusion and Future Works

 In this paper, we proposed a method of generating
dependency relationships among model elements of UML

diagrams, and generating a workflow for change support.

 We must refine our meta model especially for meta
relations by abstracting the all of dependencies in UML
such as derivation, refinement, trace, binding, extend,
become, copy, include, instanceOf, powertype, access,
friend, import, call, instantiate, parameter and send[5].

System

s h~ix'

1Cruiseconrrol1".

• O'
,JLngCollabor tionciarr:m<:srResetandf_uiculsyTspSpeeausecase_(14) 0'L: Collaboration diagram for Update 't;a8 Rotation Count use case(8) '1?I 3e

cn "CruiseContrcr sterechart;1 t if
<ii Collaboration diagram forRs stsndC;.ecr 04 Maintenance use cases(18) i"I

r ' Crutse Cortrcl and Mcnitonno r133aa tiagtem(5)
0' =Collaboration diagram fix Reset and 3:3ic ovate Tnp Fuel consumption use c3 #1 i
d-C7 cruise Control 3: Morrs;un) g '':yi=err,_~-na~:s^ut~,r;tefn relationships(77
'3 l~ Collaboration dlaerial ror CartITO3 Speed use c ysa(1
~' d Static model of problem aemairo)

I~ Collaboration diagram for-D enrrrse Elistancs and Speed use case(9)
Statechart `or'CalibrascnCertrru ustes"13)

0Li Cruise Control & MeenFOring :Systern: inmal detenninat?on of major subsystem
CI Use case model. Cruise CG:i'3£ Use Case Pa£kage(2)

DTimer
D Driver
[start
D (id =s."oa256)
D (id =i S.'t oo:53)
D (id= too256)

Qd = B. K16247

Defete i .hicul v, e .

it '
r1r

s tl

Figure 12. List of model elements

(

uwsaCammi

Ot.ro mr imama : crroci rbw+urs

•

4041,

Diagram neene: ,eeed!ao o: eouse:eeusl

Figure 13. an example of a generated workflow

 We are also developing a theory and a tool to

generate a workflow that can handle multi-threaded
changes.

Reference

[1] Dragan Milicev: "Automatic Model Transformations
 Using Extended UML Object Diagrams in Modeling

Environments", IEEE Trans. Software Eng., vol. 28, no. 4,
 pp.413-431, April. 2002.

[21 Object Management Group: "Unified Modeling Language
(UML), version 1.5", http://www.omg.org/ technology/
documents/formal/uml.htm

[3] Hassan Gomaa: "Designing Concurrent, Distributed, and
 RealTime Applications with UML " , Addison-Wesley,

 2000.
[4] The HOSS Consortium. : "HOSS", http://www.iioss.org/
[5] Grady Booch : "The Unified Modeling Language User

 Guide", Addison Wesley Longman, Inc, 1999.

