
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Definition and realization of software

accountability

Author(s) Ochimizu, Koichiro; Hayasaka, Ryo

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2007-010: 1-12

Issue Date 2007-07-20

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8440

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Definition and Realization

of Software Accountability

 Koichiro Ochimizu and Ryo Hayasaka

 July 20, 2007

 IS-RR-2007-010

 School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

 {ochimizu,ryoh} Aj aist. ac. jp

©Koichiro Ochimizu and Ryo Hayasaka, 2007

ISSN 0918-7553

 Definition and Realization of Software Accountability

 Koichiro Ochimizut and Ryo Hayasakat

 School of Information Science, Japan Advanced Institute of Science and Technology
 Asahidai 1-1, Noumi City, Ishikawa, 923-1292 Japan

 E-mail: { ochimizu, ryoh } @ jaist.ac.jp

 Abstract In this paper, we propose the new concept "Software Accountability". Our daily life heavily depends on
various kinds of e-society systems. Therefore the system should be designed, implemented, operated and maintained to
assure us that e-society systems are dependable and trustworthy. Software accountability is one of such requirements for
Trustworthy e-Society. We try to define the concept, software accountability, based on the research results both in
Software Engineering field and in Legal Theory. In the paper, we show the definition of software accountability,
software accountability functions, software accountability tree, software accountability module in turn and then a
realization mechanism of software accountability functions, presenting the architecture to combine the software
accountability module with the existing information system. We also show the result of a case study by developing the
course management system with software accountability functions that shows the feasibility of our approach.

1. Introduction

 In recent years, the range of computerization of social

systems has been rapidly expanding including

e-governments/local-governments. The infrastructure of

our social activities: administration; finance; medicine;

transportation; education; business; are computerized, and

all of them are connected by a network to form an

e-society.

 Our daily life heavily depends on such e-society

systems. Therefore the system should be designed,

implemented, operated and maintained to assure us that

e-society systems are dependable and trustworthy in

addition to the traditional services.

Katayama[1] proposed the five requirements for

Trustworthy e-Society in the 2l" century COE project

"Verifiable and evolvable e-society system".

 They are correctness, accountability, security,

fault-tolerance and evolvability. Our research target is to

define and realize Software Accountability and

Ease-of-Evolution. The term Ease-of-Evolution means

evolution with low cost.

 In our society, there are a lot of laws, regulations and

rules of some organizations we must obey. We call them

social rules. In general, a social rule is a document

described in some natural language, consisting of articles,

clauses or sections.

 An e-society system should support the application of

some specific social rule, and such a system should be

constructed to satisfy the social rule fully. Moreover, we

need to certify and confirm that the e-society system is

made satisfying the corresponding social rule correctly.

Our society is always evolving, and social rules should be

changed to catch up the evolution. An e-society system

should evolve immediately after the change of a social

rule. So we should be able to evolve the e-society system

with low cost.

 We call e-society systems that have the features

mentioned above Law-Enforcing Information Systems

(abbreviated as LEIS).

 A social rule includes: the purpose of the rule;

 definition of legal terms; fact description; work-flow

description; definition of constraints and conditions;

 equations to calculate something; data definition. All of

 them are effective in the target domain of the rule. In

 general, an e-society system relates part of those

 described in a social rule. LEIS can be classified into

 two categories, work-flow type and constraint-imposing

 type.

2. On Software Accountability

 Accountability is defined as "Responsibility for the

effects of one's actions and willing to explain or be

criticized for them. For examples: Managers must be

accountable for their decisions; the country will be held

accountable for its treatment of American diplomats;

corporate management is accountable to the company's

shareholders."[2].

 Here, we define "Software Accountability"[3]

intuitively based on the above description.

1

 "LEIS it
self can explain the reason why it made such

 decisions or calculations to the user of the system. In

 other word, LEIS should answer the question from

 the stakeholders of LEIS who have some doubts

 about the decisions or value of calculation made by

 LEIS. LEIS need to make an answer using its

 execution histories to satisfy the stakeholders.

 We used the word stakeholder to represent: people who

made the social rule; people who developed the LEIS;

people who operate the LEIS to show output of the LEIS;

people who received the results from the LEIS. We show

some examples of LEISs and their stakeholders below.

• Curricnlum nf some university includes rules fot

•

•

 Curriculum of some university includes rules for

 qualifications for completion based on its idea of

 education. It shows the conditions to be cleared to

 get qualifications. Course Management system is a
 LEIS that supports students to register subjects to be

 studied and show that how is the state of their

 progress. Students, teachers, administrators, system

 developers are typical types of stakeholders.

 Local government has a lot of regulations. There are

 several types of stakeholders such as lawmakers,

 system developer, civil service , and citizens.

 A company has a lot of in-house regulations based

 on its management policy. There are several types of

 stakeholders such as managers, and employees.

• Accountability
 I have done the lax payment using I IS just now. Hut I

 have a doubt to the results. It is too high. How does the
 system get these results based on related regulations and

computation?

 CI)------------------- • Correctness Law-Enforced I
s

'?there anycontradictionbetween the new --- \ Information System I 0law and the existing one
 Citizensfun, ton ~------

 CD 0Laws and Sanctions Law maker

 4iy—%-w

Administrators / • Evolvability
 We want to evolve the system . How is the relationships

 between laws and system component?

 System Developer

Fig. 1 Three requirements of trustworthy e-society related

to our projects

 We show four types of stakeholders and their typical

questions to the LEIS of an e-local-government system

(Fig.1).
• The lawmaker of a local government is interested in

 the integrity between the new law and the existing

 laws in addition to the content of the new law when

 they establish the new law. This is one of

 requirements of trustworthy e-society, correctness.

 Here a stakeholder may have the question that is "Is

 there any contradiction between new law and

 existing one?"

• The system developers are originally interested in

 exactly reflecting all of the content of a law into the

 system when they are engaged in software

 development. At the time, they may have questions

 such that "Does our system satisfy the law fully and

 exactly?" When they must maintain the system after

 law evolution, they may have a question that "We

 want to evolve the system. How is the

 correspondence between laws and system

 components?" That means software accountability

 strongly relates to the issue of evolvability of LEIS.

• Civil service and citizens are interested in the result

 of system execution. They may have a question that
 "We have done the e -application and e-registration

 of some information using an e-society system, for

 an example, a tax payment, but I have a doubt to the

 result shown by the system. It is too high. How does

 the system get these results based on what

 regulations and computation?".

 We classify those questions of stakeholders into three

categories based on the viewpoint that how does each

stakeholders' question relate to what aspects of the LEIS.

In Fig. 2,

Results

Three types of stakeholders'
 interests to LEIS

Type 3

Interest to the

results done by the

system

Ay

O

 Type 2 Type 1

Interest to correspondence

between laws and system

components

Interest to law itself

Fig

•

•

•

. 2 Three types of stakeholders' questions

Type 1 question relates to the social rule itself.

Type 2 question relates to the correspondence

between the social rule and the system components.

Type 3 question relates to the execution results of

the system.

2

 Based on the problem setting mentioned above, we will

discuss the following issues and will show our solution in

the following sections.

 In section 3, we will make clear our position to define

the new concept, software accountability, by considering

the issue both from software engineering standpoint and

legal theory standpoint. In section 4, we will discuss how

to implement the software accountability functions. In

section 5, we will discuss the software architecture that

enables us to attach software accountability module to the

existing LEIS. And we will show the realization of

software accountability functions especially for type 3

through the case study of a course management system.

3. Defining the Software Accountability

 In this section, we will examine the related research

results both on software engineering and legal theory to

make our position clear and to define the brand new idea
"software accountability"

3.1 Consideration from the Software Engineering

standpoint

 The research results on Requirement Engineering in

Software Engineering field heavily relate to our current

interests. We recognized the requirement elicitation phase

as follows;
"All of the stakeholders have their own interests to

their domain and LEIS directly or indirectly. They

finally arrive at the understanding of the targeted

world through learning efforts of the world and

express the results in their own languagest."

 According to the above understanding, we make clear

our position on defining software accountability and we

try to define what the software accountability is.
" E

ach stakeholder

• has his/her own interest in the social rule

 and/or the system and

• learns and understand the related world and

• renresents the result of learning in his/her own

•

•

 has his/her own interest in the social rule

 and/or the system and

 learns and understand the related world and

 represents the result of learning in his/her own

 language before the social rule is established

 and the system is developed and

 have interest in the learning result again and

 try to acquire the learning result again after the

 social rule is established and the system is

 developed (Fig. 3) "

t This un

obtained

Kumagai

derstanding of requirement elicitation phase was

through the private discussion with Mr. Akira

of Tokyo Electron Software technologies.

Each stakeholder has his/her own semantics and languge

Each stakeholder has his/her own interest and understanding of
the related world and express them in his/her own language
before/after the social rule and/or the system development

I)iil r nl US I_i L n i,n, ..in f I.0 ,u.i

 Interest
— andd-----------_Social Rules

 understanding
Civil Service

System Developer

 Interest

 and

understanding

Citizen

 Interest

 and

understanding

LEIS

•

•

Fig. 3 Interest and understanding of each stakeholder

should be recorded and shared by stakeholders

 These learning results should be shared by the system

and can be retrieved if needed to realize the software

accountability.

 From this viewpoint, traditional requirement

engineering approach has some problem (Fig. 4).

 Traditional Approach in Requirement Engineering

1 ,t 4 irni onant hr I„t

Civil Service

 Interest

 And

Understanding

 Citizen
 Interest
 And

Most of im

accountabilii

Engineering

and it has a

define softw, Understanding In traditi(result of r

 Software

Reyirements

ystem Analyst

 Interest

 And

 Understanding

System Developer

0

0

}
User(Citizen)

Problems in traditional approach

 In traditional requirement engineering approach, the

result of requirement elicitation is tranformed into

on-functional requirements of the system.

Most of important information that supports software

accountability may be lost. Goal-Oriented Requirement

Engineering approach [4,5] has been studied recently,

and it has a strong relationship to our aim and approach to

define are accountability 1: .

$ Mr. Shuichiro Yamamoto of NTT data
the strong relationship between GORE

consideration I did so far

taught

 and

me

the

3

 In the Goal-Oriented Requirement Engineering (GORE)

approach, non-functional requirements such as Ease-of

Maintenance and Goodness of Usability are defined first

as goals. And then the goals are unfolded by an AND-OR

tree with defining the sub goals. Functional requirement

is allocated at the leaf of the tree.

 One of the features of this approach is in "Soft Goal".

Different from the definition of goal in Artificial

Intelligence research area, they have different definition

on satisfiability of a sub goal.

• A sub goal is satisfied if there are enough

 affirmative evidences and there are few negative

 evidences.

• A sub goal is not satisfied if there are enough

 negative evidences and there are few affirmative

 evidences.

 Adopting GORE enables us to represent the semantics

understood by stakeholders and their relations, with

forming the layer structure as shown in Fig.S.

Organizing a goal tree based on the world that

 stakeholders understood

 We show the examples of elements of each layer in

Fig.6 based on the idea shown in Fig.S,. We took an

example from the curriculum of our Institute, JAIST. The

goals and sub goals in Fig.6 are considered and decided

by the stakeholders who were related to the establishment

of JAIST.

•

•

Goals and sub goals shown in Fig.6 is useful for

 Controlling the evolution of our curriculum, an

 example of a social rule

 Answering the questions that ask us the origin of our

 rule establishment

3.2 Consideration from legal theory standpoint

 According to the legal theory by Torstein Eckoff [6],

Legal System consists of Norms and Acts and there are

various kinds of relations among them. In this section, we

summarize his theory with citing the related part of [6].

 Norm is a generic term for rule, principle, regulation,

standard, pattern, guide, criterion and classified into

Direction , Qualification , Authorization. Linguistic

representation of normative expression is called

Normative Statement.

Description of the world that lawmaker intended.

understood and represented

Social Laws

Functional requirements of Law-Enforced Information

System

Fig. 5 Organization of a goal tree

 Representation of semantics that designer of our education system had

 <AcceptStueemtRe~oet/CldtivMi~RomotinQud~^of8ontCResetto_ultivsing>red Reszxcbeof erae buckarood HaimmnFiaished students

\o-wnttenStudents
EntranceCenteredClass room withResearch

ExaminationEducation .system 'mall number of student Proposal
System

LayeringMultiple
 of lecturesSyllabus

 for
diverser studentsandoffice hour Adctsor oovledgt,e 1'mtSystem With

 I/\ Ewe types of Courses`Minor research proje, S1amr research prow

Midterm defense
credits fromFtnaldet.nse \ Must acquireAchiesofforfor 2t1NinorresrarcemrnthMajor research Major rek arch/ projectProjectProject four types of courses

Fig.6 Layers of goals / sub goals consideredby the

stakeholders of our education system

•

•

•

Direction is a generic term for order, demand,

entreaty, advice, warning, and promise. It directly

represents intention to make someone's mind

changed.

Qualification is a concept that corresponds to a

deductive rule in mathematics. It shows what

phenomenon belongs to which category.

Authorization is an official permission to do

something. It confers power to someone to give

rights, to qualify, and to command. Authorization

plays a central role in legal system. Examples are:

enactment of a basic law on legislative power and

judicature; law that confer the power of decision to

the Civil Service.

linguistic

four sub groups. Those are order, prohibition, permissi

exemption.

obliged

ordered

prohibited)
discretion (neither ordered nor prohibited) act.

 Subjects of Duty Norm are categorized into two.

 One of them is individual or persons who is

imposed the duty. Another is a group that is directed

Norm that includes direction or negative direction as

istic elements is calledDuty Norm. Dutyhas

sub groups. Those are order, prohibition, on,

ption. We are obliged to start the ordered act. We are

ed to stop the prohibited act. Permitted act ides
.ed act and discretion (neither ordered nor

bited) act. Exempted act includes prohibited act and

/are

the

4

duty. The latter position is often characterized by the

word "right".

 Direction can be understood as either Duty Norm or

Qualification depending on the standpoint we take.

 There are relations between Norms, and between Norm

and Act. Relation between Norms has two types, static

relation and dynamic relation.

Static relation is a relation that is not affected by the

change in the legal system.

• Coupling relation When two or more norms are

 composed into a whole perfect normative statement,

 those norms are connected by the coupling relations.

 Some law has a definition of something. And the

 definition appears in many other laws. They have

 coupling relation. For an example, many laws refer

 the law that defines the term "relative".

• More-than-one-semantics Some expression carries

 more than one statement. Suppose some law

 expresses that the authorities concerns can direct

 something. This expression means not only "the

 authority has power" but "the decision whether to

 exercise the power or not is left to the authority".

• Logical relation logical equivalence, inclusion,

 contradiction between norms

Dynamic relation is the relation between steps in the

flow of real or imaginary act

• Causal relation A relation between the first step

 where some event occurs (cause) and the second step

 where the other event occurs (effect). The cause

 causes the effect. Causal relation can link only facts

 (status, act, event)
• Normative relation A relation between facts. But it

 is not a causal relation but a relation based on norm.

 The fact "Mr. A stole" and the fact "Mr. A received a

 sentence of a two-year prison" are connected by a

 norm. Normative relation between facts sometime

 means that there is Causal relation too.

• Operational relation If norm applied at some step

 decide the norm to be applied at the next step, there

 is a operational relation between two norms.

 Act is an element of a legal system too. The major

 activities performed by some legal organization are:

 prepare for the various kinds of decisions; decide; and
 explaining those decisions. Legal system accepts two

 inputs. Those are "support the realization of legal

 claims" and "change the legal system itself". There are

 two dynamic processes, Application of Law and

 Enactment of Law.

• Application of Law The characteristic of this

 process is that norms and evaluation of norms form

 the evidence of decisions.

• Enactment of Law means creation, change, and

 abolish of norms.

 Deliberation Process is important in both enacting and

applying laws. Deliberation process inputs the problem

and data, and outputs Position and Explaining.

• Position is a statement to something, such as "what

 should it be", "What should not it be" and "what

 should be done".

• Deliberation is a psychological process that brings

 someone into some Position.

• Explaining explains, expands, and supplements

 some Position.

 We can type the social rules by using legal theory.

And it enables us to give a basis for realizing the

method to extract properly related subset of social

rules for a question.

3.3 On realizing the software accountability

function

 We can define and realize the software accountability

function of LEIS by applying the results discussed in

section 3.1 and section 3.2

• We can organize the semantics of the world

 understood by stakeholders as a goal-oriented tree.

•

•

 We can organize the semantics of the world

 understood by stakeholders as a goal-oriented tree.

 It is possible to define the world intended,

 understood, and represented by lawmakers in the

 first layer of Fig. 5, using the input and output of

 dynamic processes, application of law and enactment

 of law, described in section 3.2. We can define goals

 based on: relations between "problems and data" and
 "position and explaining" or "explaining the

 position" itself.
 For examples, the goals of our education system and

 major sub goals shown in Fig.6: Accept students

 from diverse areas; Respect to course work;

 Cultivating person with broad horizons; Promoting

 advanced researches; Quality Assurance of finished

 students; Non-written examination; Office hour;

 Major and Minor research projects; and so on; were

 considered and decided by the top level

 governmental committee. Some of sub goals were
 considered and decided by the internal committee of

 our institute. Those are, for examples, Research

 proposal system; Syllabus and related knowledge

5

 •

 •

•

•

the elements in Fig.6 by a goal-oriented tree in GORE and

each

theory.

Fig.7.

Cultivating
 Persons with Subject: Master course student
Broad Horizons= Duty mode: Direction

 TAction: should acquire credits
 from four types of courses

 _-Cultivating;
 researchers and senior engineers

 whohave balanced knowledge
 andare special in the research Subject Master course student

Duty mode: Direction
 Action: Complete Minor research

 project
Five types of .Acquiring four areas

,,:,courses

 Subject: supervisor of
 Finishing theminor research project - Mi

nor Research '- Minor ProjectCommission: certification
 Project inof completion of minor -

Different arearesearch project

 units; and so on.

 Finally the rule for completion was established to

 give directions to student as a curriculum. They

 were: Must acquire 20 credits from four types of

 courses; Achievement of major and minor research
- projects; Pass for midterm and final defenses and so

 on along a time schedule for completion.

 The information existing in upper layers are

 essential and important information for our institute

 to evaluate and revise the curriculum. That is to say,

 information related to Deliberation, Position and

 Explaining has a strong relation with the

 stakeholders' interest, and necessary information

 source to generate answer for the questions.

 So far, we discuss how to organize the layer

 structure, but it is important to discuss how to set the

 relationships between rules in specific layer,

 especially for the second layer in Fig.5.

 There is a strong relationship between this topic and

 consideration in section 3.2 in structuring the

 information at some layer. That means we can

 answer the question like "Why can I not submit my

 research proposal?" by using the causal relationships

 and/or normative relationships set among rules.

We define the Accountability tree here that organizes

 elements in Fig.6 by a goal-oriented tree in GORE and

::11 leaf of the accountability tree is typed by the legal

!ory. We show an example of an accountability tree in

 Fig.7 An example of the accountability tree

4. Consideration on realizing the software

accountability function

 If some LEIS itself can answer the question from

various types of stakeholders, we say the LEIS has

accountability functions. In this section, we first consider

where the necessary information exists in the

development process of LEIS. We show the supposed

process in Fig.8.

 Information source to make the answer

 in the LEIS development process

`Revision--•

question Social translation
 Logical Analysis andHContradiction

 rulesI:xression verification

 Correspondence question

 Stakeholders' Re, K Use FindinC Design of
 .r,~C,g--'ClassArchitecture and

 workflowsProblemComponents

1Idomain Diagramshased on classes^3layers Model
Analize andj

 Revise
 questionMDA

 Result 4--I Execution 4— Program
 cn.m

 Fig.8 Information sourceto produce theanswer for

three types of questions in the LEIS development process

 Outline of LEIS development process is shown below.

• Social rules written in natural language are

 automatically translated into logical expressions.

• The logical expression is analyzed by using legal

 inference to detect contradictions. Resolution is done

 manually. We call this cycle legal debugging.

• The logical expression is also an input to LEIS

 design. We consider two ways as follows;

^ Generate a class diagram from logical

 expressions.

^ Define stakeholders' workflow to apply a social

 rule first. Then define a use case model using

 both workflow and the logical expression.

 Finally problem-domain classes are found

 following the use-case driven software

 development approach.

• Generate a system based on MDA approach, adopting

 Three-Tiered model.

 In the process mentioned above, Information related to

software accountability is obtained from the points

depicted in Fig.8.

• Logical Expression is primary information for type

1 software accountability.

• Correspondence between the logical expression and

 the class diagram is primary information for type 2

 software accountability.

• Logical expression, Correspondence and execution

6

 history of the system is primary information for

 type 3 software accountability.

 Software accountability functions of LEIS are realized

 as follows;

• Type 1 software accountability

 Realized as one of the functions of legal debugger.

Type 2 software accountability

 Providing the Database and a query system

• Type 3 software accountability

 We provide the software accountability module as

 shown in Fig.9.

Question from the user

 Interceptor

Proxy

Execution History

Of the System

Question with enough content

Types of rules

Accountability Tree implemented by RDB

Types of rules

 Fig.9 Internal Structure of the Accountability Module

 We provide the interceptor proxy introduced in the

next section that can record the execution history of the

LEIS. We generate the question with enough content by

combining stakeholders' question with the execution

history. We extract the corresponding social rule and

related ones by retrieving the accountability tree using

the vector space method. And generate the proper answer

to the question.

5. Realization of Software Accountability Functions in

 the Course Management System

 In this section, we show the result of the feasibility
study to realize software accountability functions for type
3 in the course management system.

 It is common that LEIS is a web-based system which

is modeled as a three-tier architecture [9] including the

user system interface tier, the process management tier,

and the database management tier. We proposed the

reference architecture to realize software accountability

function based on the three-tier architecture [8] (Fig.10).

 A feature of the reference architecture is in the

extensible mechanism which enables us to attach an

Use Service Staff Law Maker System Developer

User Interface Service Staff Interface Law Maker Interface System Developer Interface

User Interface Subsystem

Interceptor Proxy Execution History

Existing System Accountability Module

 Data I IVersion ManagementII Development Artifacts Management
Jof Social LawJ(uML Model, Source Code, Document, etc)

Fig.10 The reference architecture to realize the software
 accountability function based on the three-tier

 architecture

 accountability module to an existing system, by placing
 the interceptor proxy between the user system interface

 tier and the process management tier. Accountability
 functions are realized by using the two databases. Those

 are the execution history of the system and the social laws
 with a version management mechanism.

 We have done a case study for a course management
 system.

 • Firstly, we have developed the course management
 system using a use case driven development
 approach. The system is a web-based application of

 a client-server style using the Java EE (Java
 Platform, Enterprise Edition 5) platform.

 • Then, we have attached an accountability module to
 it based on the reference architecture.

 In this section, we show the mapping between the
 reference architecture and Java EE platform, and the
 realization method for JBoss Seam web application

 framework [11], which is one of the implementation of
 Java EE.

 We describe an overview of the course management
 system we have developed and the system structure of it

 in section 5.1. In section 5.2, we discuss a realization
 method of accountability functions in the system. In

 section 5.3, we show an execution example of
 accountability functions in the system.

 5.1 The Course Management System

 We have developed the course management system
 using COMET [12], use case driven object-oriented

 development methodology. The system supports us to
 apply the registration rules of our institute. We show the

 overview of the course management system and the
 structure of the system using the development artifacts,.

 5.1.1 Use Case Diagram and Use Case Description

 We started from capturing the needs by sending

 questionnaires to the students of our school. They are the
 expected users of our system. Analyzing the

questionnaires, we obtained the functional requirements
 of the system.

7

package Data ioursebtanageme,dS,stem

4-
 Student

Fig. 11

system

CourseManagementSystem

Register theme lectures_:,

' inc lude> r

Confirm registered lectures

Confirm scores
 extension points checkpoints checlpdMS---("Mend" -,P -`'checkpoints)

Use case diagram of the course management

 Part of the use case model we defined is shown in

Fig 11. Although we need to model all of the stakeholders

such as students, staff of the institute, rule makers, and

system developers as actors, we model only students in

the master's program as an actor in this case study.

 A student can register or change the courses that
he/she wants to take, and then confirm the contents of the
registration. "Confirm scores" use case shows a list of
the courses the student has been acquired. The list
consists of a course name, the units of a course, and a
score of a course.

 "Check checkpoints" use case (Fig . 12) is executed
when a student requests to check the checkpoints in
"Confirm scores" use case .

 In order to complete the master's program of our
institute, student should clear all of the check points.
There are four checkpoints defined in the registration
rules: "the requirement to start a minor project", "the
requirement to submit a research proposal", "the
requirement to take job-recommendations", and "the
requirement to complete the master's program". Students
cannot pass each of the checkpoints unless he/she
satisfies the requirement of the checkpoint. "Check
checkpoints" use case gives a student the checked result
using him/her scores.

 • Use case name: Check checkpoints
 • Actor: Student

 • Precondition: Student is logged in. DB of registration rules is available.
 • Description:

 1. A student selects a checkpoint from a list of the checkpoints.
 2. The system queries student's score from a DB of student scores.

 3. For all the conditions of the checkpoint
 1. The system checks whether student's score satisfies the condition or not.

 2. The result is put into the check_vector.
 4. The system outputs the check_vector and the result of checking the checkpoint. • Postcondition: Student obtains information of the vector and the result.

Definitions of terms:
• check_vector = (check result check_item check_difference)'
• check_result:: = true I false
• check item:: = number of course types I number of units for each course types I number

 of total units I number of units for each course layers I units of minor research project
• check_differnce ::= the value of check_item specified by the rule minus the value of

 check_item of student's scores
• checkpoint:: = beginning minor project I submitting research proposal I accepting job

 recommendations I graduating master's program

Fig. 12 Description of
"Check checkpoints" use case

5.1.2 Page Transition Diagram

L.. Pa.

Oa.w P~l

Ilc ~

I

 q

Coarse Table

Schecule Taal.

Lim Paw

laen falare

 arar . P•11.
.era a.11abua IP.Pr)

c

on fem zcv.¢

ro o~

.. ~ba..e

ivrz.

a.IrMl w.rr.+
O^.m. Pr

Schedule Table

s.11abu.

Mow, MO

cmfem ecwee

-.•o M~.d•awa

rofw eelabue

°Mk OwW.YI. Pr
(re)

Mnwr roz.arcb pol.ct

V.Mrtian
 ResJt e

PAt P~I

Schedule Table

Fig. 13 Page Transition Diagram

 The design of page transitions andpage layouts is
necessary for web applications. The course management
system is a web application, so we designed the page
transition diagram (Fig. 13) after defining the use case
models.
 Each of the use cases in the use case model

 corresponds to each item in Menu page. All pages
 except Login page have a Menu button which navigates

 a logged-in student to Menu page at anytime.

5.1.3 Platforms and Web Application Frameworks

 There are several web application frameworks we can
use now. In this development, we selected the Java EE

platform and JBoss Seam as a web application
framework. JBoss Seam unifies and integrates JSF

(JavaServer Faces) for a presentation tier and EJB
(Enterprise JavaBeans) 3.0 as a distributed component
technology. It also provides multiple stateful contexts
and declarative state management.

5.1.4 Class Diagram

 The class diagram is shown in Fig.14. The local

interfaces of EJB Session Bean are omitted.

~r3a

Fig. 14 Class Diagram of the Course Management System

S

 In Fig.14, <<EJB Entity Bean» stereotype means the
O/R (Object / Relational) mapped classes, which
properties are persisted into relational databases. «EJB
Session Bean» stereotype means the classes
implementing business logics which methods are called
when events in the presentation tier like page transition
occur. Some of properties in the stereotyped classes
<<EJB Session Bean» are implemented by using DI
(Dependency Injection) mechanism provided by JBoss
Seam.

5.2 Realization of Accountability Functions

 Course Management System

 We discuss a method to attach the

accountability module mentioned in the previous

to the course management system.

in the

type 3

section

5.2.1 Accountability Functions and Realization
Approach

 The reference architecture (Fig. 10) shows that
accountability functions are realized by using a database
of execution history of the system and social rules
database. We consider two methods to get the history.

 Accountability functions realized is different from
each other because the information can be different for
each method.

 The first way is to get the history only from an
interceptor proxy inserted between the user system
interface tier and the process management tier. The
interceptor proxy can get the data on method calling
between two tiers, and store the data into the database.
Using this way, accountability functions can be added to
the existing system with no modification to the system,
but the history executed in the process management tier
in the system cannot be collected. Therefore, the only
data about method calling (method name, arguments,
return value) from the user system interface tier to the

process management tier can be used as the history. The
accountability functions realized is limited.

 The second way is to get the history from the process
management tier in the existing system. in addition to an
interceptor proxy. For an example, if the existing system
is implemented by Java, applying AOP (Aspect-Oriented
Programming) technology can get the history from the

process management tier without modification of code. It
is possible to get the history from the Java VM using JDI

(Java Debug Interface), which is provided mainly for
debuggers. Using this way, the history such as execution

paths of business logics, change history of observed
variables etc can be collected. It, however, requires us to
understand the code of the existing system. Therefore,
richer accountability functions could be realized than the
first one.

 This time, we adopted the first method. The
accountability functions of the course management
system are defined below.

 Clicking one of the items of checkpoints, the system
checks whether the student's scores satisfy the conditions
of the checkpoint or not, and shows the result of checking
on Check Checkpoints Page in Fig. 13. If a student does
not satisfy the result shown by the system and ask a

question to the system, the system explains the following
reasons why it made such decisions or calculation using
the accountability functions.

•

•

•

•

The origin of the rule establishment
Registration rules related to the checkpoint
The student's scores
The conclusions led from applying the rules to the
situations (the scores)

5.2.2 Mapping between the Reference Architecture
 and Java EE architecture

 The reference architecture (Fig. 10) is based on tree
tier architecture so that it can be mapped to Java EE
architecture because Java EE architecture is also based on
tree tier architecture. Fig. 15 shows the Java EE
architecture to realize accountability.

 The Java EE architecture showed in Fig. 15 does not
need an interceptor proxy because Java EE includes an
interceptor mechanism in its specification. The
architecture only needs interceptor components collecting
execution history. In Java EE, an call of accountability
function is mapped to an call of the method of session
beans of the accountability module in the process
management tier.

User Service Staff Law Maker System Developer

Java EE S rver

User Interlace Service Staff Interface Law Maker Interface System Developer Interface

Common user Interface Components

Web Container

Existing System

Session

Bean

Entity

Bean

EJB Container

Accoufttapility Module

Session

Bean

Entity

Bean

Interceptor

Data
Version Management I I Development Artifacts Management
Of Social LawI I (UML Model, Source Code, Document, etc) Execution History

 Fig. 15 JavaEE architecture to realize

 accountability

5.2.3 Realization Method of Accountability Functions

Using JBoss Seam

 In this section, we discuss how the accountability

functions are realized in the course management system

using JBoss Seam, which is an implementation of a web

application on Java EE platform.

User Interfaces

 A part of modifications for the user interface is

necessary to accept requests of calling accountability

functions and to present the explanations generated by

the accountability functions. We adopted the buttons

form of user interfaces for accountability functions, but

we think we need more discussions about the user

interface design. The buttons are placed on the page on

 which the system displays some results of executions,

and if a user clicks the button, the corresponding

accountability function is invoked. The explanation for

the question is presented on a popped up window.

 In the course registration system, "Why?" buttons that

invoke the accountability functions are added to the part

of presenting the result on Checking checkpoints page. To

implement this, xhtml files defining the view part of

9

presenting the result on the page are modified to a few
lines only. The lines include the name of methods of

session beans which are called by clicking the buttons.

When a student clicks a "Why?" button, a popped up

window is open, then the explanation about the reason

why the student satisfies the checkpoint or not is

displayed on the window.

Interceptors

 JBoss Seam supports interceptor mechanisms which
enables the system to collect an execution history.

 This is done by the following steps. Firstly, the
interceptees which are components called from the user
system interface tier are specified in the ejb-jar.xml file.
Then, defining interceptor classes shown in Fig. 16, the
pre processing and the post processing log the invoking
component name, the method name, the argument values
of the method, and the return values of the method into
the execution history database.

 @Interceptor(type=InterceptorType.CLIENT)

 public class LoggingInterceptor {
@AroundInvoke

 public Object logging

(InvocationContext invocation)
 throws Exception

// PRE PROCESSING

 Object result = invocation.proceedO;

// POST PROCESSING

 }

 Fig. 16 Coding Example of Interceptors

Accountability Module

 The accountability module providing accountability
functions is also implemented using EJB components on
the Java EE platform. We designed each of "Why?"
buttons which corresponds to a session bean,
implementing the logic to explain the reason in the
accountability module.

 For example, when a student has a question about the
result of checking the requirement of "Starting a minor

project" on "Check checkpoints" page, clicking the "Why?" button next to the link of the checkpoint items ,
the method of the session bean which implements the
explanation logics about the requirement in the
accountability module is invoked.

 This method implements the logics described in the
section 5.2.1 which explain the reason why the decisions
or calculations are made. The first and second of the
explanation logics use the social rules database, and the
third uses students' scores database which is one of the
database of the existing system. The fourth composes the
satisfactory explanation sentences using the data
retrieving from the databases, and returns the explanation
to the user system interface tier.

Social Rule Database
 We realized the accountability tree defined in section

3.3 as a relational database. We defined the
accountability tree for the rules-for-completion of our

institute first. And then design the database scheme as
shown in Fig.17 based on the accountability tree we
defined [13].

Business Goal Table Duty Norm Table

•Rule ID

'Content

•Rule II)
'Subject
•Duty Norm category
•Behavior

Rule-requesting table

•Rule ID
*Subject
*Content

'Rule II)

•Category

•Content

Authorization Norm Table Qualification Norm Table

 Fig.17 Implementationof an accountability tree by
relational database scheme

 We explain the tables in Fig.17 below.

• Business Goal Table
 This table contains the goals and sub goals (nodes

 in Fig.7) of the accountability tree.
• Rule Table

 This table contains the leaf of the accountability
 tree in Fig.7. Each leaf contains the directions to

 student, for examples: Must acquire 20 credits from
 four types of courses; Achievement of major and

 minor research projects; Pass for midterm and final
 defenses.

• Duty Norm Table
 This table contains rules that belong to the Duty

 Norm category. Attributes of this table are subject,
 duty category and behavior.

• Qualification Norm Table
 This table contains rules that belong to the

 Qualification Norm category. Attributes of this table
 are category name and content of category. For an

 example, category name: Supervisor of minor research
 project; content of category: professor or associate

 professor assigned by Dean at the beginning of the
 research.

• Authorization Norm Table
 This table contains rules that belong to

 Authorization Norm. Attributes are subject and content
 of authority.

 The accountability module composes the "question
with enough content" by adding the data collected by the
interceptor proxy to the question that student wrote
freely(see Fig.9). The accountability module computed
the similarity between the question and the content of
database. Then the module retrieved the most related
rules with the question [14]. Most of question and rules
do not include the subject of behavior. The module
supplements it.

 The conclusion of the experiment is that it is better to
calculate the similarity of "the subject of behavior" and
"content of behavior" independently .

 Providing the version control mechanism for social

10

rule database to support the evolution of social rules is a
future issue to be studied.

5.3 An Example of Executing the Accountability
Functions

 The "Check checkpoints" page in the page transition
diagram (Fig.13) implements "Check checkpoints" use
case. When a student clicks an item of the four
checkpoints, the result of the checks is presented. The
student can ask the system about the result by clicking
the corresponding "Why?" button, invoking the
accountability functions. Fig. 18 shows an example of
executing the accountability function.

I Weba1 tl@MIRi.T1L

` SC CheckPoint

 20,7 ,01,114 CM -'~-~ Yaar c 7 i

 ay

 ® A.

 We also showed the case study by developing the

course management system that proves the feasibility of

our approach. We adopted Java EE architecture and JBoss

Seam to build the system.

 We are now studying the elaboration of our theory at

the following points.

• Refinement of attributes of an accountability tree to

 support the evolution of the social rule.

• Finding heuristics related to the vector space

 method to improve the performance.
• Refinement of data collected by an interceptor

 proxy and improving its performance.

 Course management system with software

accountability itself is being improved for real use.

An Answer by Using Accountabilty

:i 4d 41 L7 ^~

x g Ru1ea .,-i.

 OM

Ru. S+tualion Eaplanalion

•

•

}

Acknowledgement

 We thank to Professor Takuya Katayama for his useful

suggestion to promote this research. We also give many

thanks to Professor Mitsuru Ikeda, Associate Professor

Masato Suzuki, Assistant Professor Kazuhiro Fujieda, and

Assistant Professor Satoshi Hattori for their useful

discussion.

Fig. 18 Example of Executing Accountability Functions

 In Fig.18, the "CheckPoint" window displays the result
of checking the "Starting a minor project" checkpoint. A
student can ask the system about the result by clicking the
"Why?" button next to the link of "Starting a minor

project."
 When the student clicks this "Why?" button, the
explanation of the execution result as a table format is
presented in a popped up window. The table includes four
columns: the origin and purpose of registration rules
related to starting a minor project, the rules, student's
situations (student's scores), and the explanation
statements. The rules and their origin and purpose are
retrieved from the social rule database. The student's
scores are retrieved from the execution history database.
In this way, the accountability module produces
satisfactory explanations using these data from the
databases.

 It is necessary for considering and improving the
explanation format rather than the table format though
the system we developed is still a prototype system. The
student knows and understands the reason why he/she
can start a minor project. This accountability function
helps students satisfy the result of the checks done by the
system.

6. Conclusion

 In this paper, we defined the software accountability

and discussed the architecture to combine the software

accountability module with LEIS.

 We showed the organization of the software

accountability module that is structured by GORE and

is typed by the legal theory.

References

[1] Takuya Katayama, "Verifiable and Evolvable
e-Society — Realization of Trustworthy e-Society by

Computer Science", The Current status of the Art of the

21" COE Programs in the Information Science Field(2),

Journal of Information Processing Society Japan, Vol.46

No.5, pp.515-521, 2005. (in Japanese)

[2] Longman, Advanced American Dictionary.

[3] Koichiro Ochimizu, "Defining Software Accoun

tability" The Institute of Electronics, Information and

Communication, IEICE Technical Report, S52006-33,

pp.49-54, 2006. (in Japanese)

[4] John Mylopoulos, Lawrence Chung, and Eric Yu, "
From Object-Oriented to Goal-Oriented Requirements

Analysis", CACM, Vol.42 No.1, January 1999.

[5] Shuichiro Yamamoto, "Goal-Oriented Requirement

Management Techniques of Information System",

Software Research Center, 2006. (in Japanese)

[6] Torstein Eckoff and Nils Kristian Sundby,
"RechtsSysteme" , 1988. Japanese Translation by Hiromi

Tuzuki, Kazuyosi Nozaki, Takahiro Hattori, Itaru

Matumura, Mineruba Shobou, 1997.

[7] Ryo Hayasaka, Hirotoshi Akiyama, Hayato Sugimori,

Sintaro Kitayama, Masato Suzuki, Koichiro Ochimizu,
"The Design and Implementation of Software

Accountability Functions for Course Registration System",

The Institute of Electronics, Information and

Communication, IEICE Technical Report, SS2007-14,

11

pp.29-34, 2007. (in Japanese)

[8] Ryo Hayasaka, Masakazu Hori, Kazuhiro Fujieda,

Koichiro Ochimizu, "Applying the Software Architecture

with Accountability and Ease-of- Evolution to the

Three-Tier Model", Information Processing Society of

Japan, IPSJ SIG Technical Report, 2005-SE-150, pp.1-8,

2005. (in Japanese)

[9] G.Schussel: "Client/server: Past, present and future"

(1995) online.

[10] D.C.Schmitdt, M.Stal, H.Rohnert and F.Bushmann :
"Pattern -Oriented Software Architecture Volume2 —

Networked and Concurrent Objects", John Wiley and

Sons(2000).

[11] JBoss.org:"JBossSeam",

http://labs.jboss.com/jbossseam/

[12] H.Gomma: "Designing Concurrent, Distributed, and
Real-time Application with UML", Addison-Wesley

(2000).

[13] Hayato Sugimori, Koichiro Ochimizu, " Report on

Realizing Software Accoountability by using GORA and

Legal theory, JAIST Research Report, IS-RR-2007-005,

2007. (in Japanese)

[14] Shintaro Kitayama, Koichiro Ochimizu, "Primary
Experiment on retrieving social rules using the Vector

Space Method", JAIST Report, 2007. (in Japanese)

12

