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Abstract This paper proposes a distributed algorithm by which a collec-
tion of mobile robots roaming on a plane move to form a circle. The algo-
rithm operates under the premises that robots (1) are unable to recall past
actions and observations (i.e., oblivious), (2) cannot be distinguished from
each others (i.e., anonymous), (3) share no common sense of direction, and
(4) are unable to communicate in any other ways than by observing each
others position.

Keywords Distributed algorithms, Cooperative mobile robots, Pattern for-
mation, Self-stabilization, Computational geometry

1 Introduction

Mobile computing systems, devices, and applications are gradually becoming more and
more pervasive, while the theoretical foundations are still not yet fully established. Cur-
rent researches addressing the principles of mobile computing are mostly aimed at sys-
tems in which mobility occurs as an external factor, such as mobile ad hoc networking,
mobile information systems, or ubiquitous computing. Our research however addresses
systems for which the mobility must be controlled. More specifically, we consider the
family of cooperation problems among groups of autonomous mobile robots, such as
autonomous transport vehicles (ATV), micro-electromechanical systems (MEMS), or
nanomachines [5]. We believe that both aspects of mobile computing must be studied
conjointly, and we hope, in the long run, to establish the link between mobile networking
and mobile robotics.

In this paper, we consider a system in which robots are modeled as points that move
on the plane. The robots have no identity, no memory of past actions, no common sense

An earlier version of this paper appeared in Proc. 2nd ACM Annual Workshop on Principles of Mobile
Computing (POMC’02). This report refines some of the constraints and corrects a couple of unfortunate
mistakes.



of distance and direction, and execute the same deterministic algorithm. Besides, robots
are unable to communicate directly, and can only interact by observing each others
position. In this model, we address the problem which consists in making the robots
form a circle, for which we give a self-stabilizing distributed algorithm. This problem
is important because, forming a circle provides a way for robots to agree on both a
common origin and a common unit distance [14]. From a more practical standpoint,
pattern formation problems provide a first step toward flocking, i.e., allowing a group
to move in formation [10]. The formation of geometrical patterns and flocking are both
useful, for instance, for the self-positioning of mobile base stations in a mobile ad hoc
network environment, e.g., as considered by Chatziagiannakis et al. [3].

Our principal motivation for studying the problem of circle formation is however
different. We indeed intend to use this problem as a starting point for studying the role
and strengths of several different communication models. For instance, the algorithm
presented in this paper relies exclusively on the fact that robots can detect each others
position, as is the case with vision (with unlimited range). It is now interesting to see
whether replacing vision with other communication models (e.g., ad hoc networking
with directional antennas) still allows for solving the circle formation problem. This
question is however not addressed here and left for later studies.

As already mentioned, the main contribution of this paper is to propose a distributed
algorithm by which a group of mobile robots eventually form a circle. The algorithm
deterministically forms a circle within finite time, and asymptotically converges toward
a situation wherein all robots are uniformly distributed on the boundary of that circle.
Beside, the algorithm does not require robots to memorize past actions, and hence it is
self-stabilizing,1 provided that no two robots are exactly identical (i.e., having both the
same initial position and the same local coordinate system).2

Related work A vast amount of researches exist in the context of cooperative mobile
robotics. Most of it uses diverse heuristics such as free market optimization (e.g., [6])
or swarm intelligence (e.g., [11]). However, only few studies take the problem from a
computational standpoint. This can be partly explained by the difficulty of the task, and
the fact that heuristics are perceived as a way to circumvent that difficulty. Debest [4]
briefly discusses the formation of a circle by a group of mobile robots as an illustra-
tion of self-stabilizing distributed algorithms. He discusses the problem, but does not
really provide an algorithm. Sugihara and Suzuki [13] propose several algorithms for
the formation of various geometrical patterns. They propose an algorithm for the for-
mation of an approximation of a circle, based on heuristics. In some cases, the shape
obtained with their algorithm is a Reuleaux triangle (a hybrid shape, between a triangle
and a circle) rather than a circle. Suzuki and Yamashita [15] propose a non-oblivious

1Self-stabilization is the property of a system which, started in an arbitrary state, always converges
toward a desired behavior [7].

2In fact, the first part of the algorithm is self-stabilizing without this assumption, but the second part
might not always converge if two robots with the same coordinate system happen to have the same initial
position. This is because it would be impossible to separate them in a deterministic manner.
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algorithm for the formation of a regular polygon. In other words, the robots eventually
reach a configuration in which they are arranged at regular intervals on the boundary of
a circle. To achieve this, they must however require the robots to be able to remember
all past actions. Our paper actually builds upon their work and, most notably, inherits
from the definition of their model. Under the same model, Ando et al. [1] propose an al-
gorithm by which robots with a limited range of vision gather to a point. Flocchini et al.
[9] give an algorithm to solve the same problem in a slightly different model; dropping
the assumption of instantaneous computation and movement, but assuming a common
sense of direction as given by compasses. Flocchini et al. [8] study the solvability of the
formation of arbitrary patterns, depending on how much common knowledge the robots
initially have about a global coordinate system. Uny Cao et al. [16] provide a wide sur-
vey of researches in cooperative mobile robotics, and observe that only few researches
take the problem from a computational point of view. This observation is later echoed
by Flocchini et al. [9].

Structure The rest of the paper is structured as follows. Section 2 presents the system
model, the definition of the problem, and the notation. Section 3 gives an intuition of
the algorithm and a decomposition into two subproblems: the formation of a circle (de-
tailed in Sect. 4) and the convergence toward a uniform distribution (detailed in Sect. 5).
Finally, Section 6 discusses future directions and several possible optimizations.

2 System Model and Definitions

2.1 System Model

The system model considered in this paper, defined by Suzuki and Yamashita [15],
considers a collection of anonymous mobile robots evolving asynchronously on the
Euclidean plane, with no common origin, unit distance, or sense of direction. More
precisely, the model is defined as follows.

Each robot ri is modeled as a mobile processor with infinite memory, and a sensor
to detect the instantaneous position of all robots. The robots move in an unbounded
two dimensional space devoid of any landmark. Each robot ri uses its own local x-
y coordinate system (origin, orientation, distance) and has no particular knowledge of
the local coordinate system of other robots, nor of a global coordinate system. It is
assumed that robots are infinitely small (i.e., points), never collide, and that two or more
robots may simultaneously occupy the same physical location. Further, it is assumed
that robots can observe, compute, and move with infinite decimal precision.

Robots are anonymous in the sense that they are unable to uniquely identify them-
selves, neither with a unique identification number nor with some external distinctive
mark (e.g., color, flag). Besides, all robots execute the same deterministic algorithm,3

3By deterministic, we mean that any two independent executions of the algorithm with identical input
values always yield the same output. In particular, this rules out the use of randomization.
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and thus have no way to generate a unique identity for themselves.
Time is represented as an infinite sequence of time instants t0, t1, t2, . . ., during

which each robots can be either active or inactive. Each time instant during which a
robot becomes active, the robot computes a new position using a given algorithm, and
moves toward that position. Conversely, when a robot is inactive, it stays still. It is
further assumed that initially all robots occupy a different position.

The activation of robots is determined by an activation schedule, unpredictable and
unknown to robots. At each time instant, a subset of the robots become active, with
the guarantees that (1) every robot becomes active at infinitely many time instants, and
(2) at least one robot is active during each time instant.4 As a special case, robots are
said to be synchronized when all of them become active at every time instant.

In this model, the algorithm consists of a deterministic function ϕ that is executed
by every robot ri each time it becomes active. The arguments to ϕ consist of the current
position of the robot, and a multiset of points containing the observed position of all
robots at the corresponding time instant. All positions are of course expressed in terms
of the local coordinate system of ri. The value returned by ϕ is the new position for
ri, which must be within one distance unit of the previous position, as measured by
ri’s own coordinate system. For simplicity, it is assumed that obtaining the information
about the system, computing the new position, and moving toward it is instantaneous.
Note that arguments to ϕ include only current information and thus the algorithm can
use no knowledge of the past. We hence say that the robots are oblivious because they
are unable to remember any past actions or observations. It can be argued [15] that, as
a result, the algorithm defined by ϕ is self-stabilizing. This is however not necessarily
true, as this largely depends on the exact definition of self-stabilization.

2.2 Activation Schedule and Livelock

In the Suzuki-Yamashita model [15], it is difficult for the robots to coordinate their
actions. This is largely because of of the dilemma caused by the unpredictability of the
activation schedule. Let us illustrate this point by an example.

In a system with two robots r1 and r2 that occupy distinct positions initially, consider
the problem of having them eventually move to the same location. We can now see the
dilemma that r1 faces (also r2 by symmetry) by considering the naive solution that
follows. When it is activated, robot r1, assuming that the other robot is inactive, moves
directly to the position occupied by r2. In this case, the problem is solved in one step
if r2 indeed remains stationary. However, if r2 happens to be active simultaneously, it
takes the same action as r1 and hence moves to occupy the position that r1 has just left.
Consequently, if the activation schedule is such that the two robots are always activated
at the same time, the system remains caught in a livelock with the two robots swapping
positions endlessly.

4As the duration of the interval between two time instants is by no means fixed, the second condition
incurs no loss of generality. It is in fact only required for convenience.
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2.3 Problem Definition

The problem addressed in this paper is the formation of a circle by a set of mobile robots.
We define the circle formation problem as follows.

Problem 2.1 (UNIFORM CIRCLE FORMATION)
Given a group of n robots r1, r2, . . . , rn with distinct positions and located arbitrarily
on the plane, eventually arrange them at regular intervals on the boundary of a non
degenerate circle (i.e., with finite radius greater than zero).

In the remainder of this paper, we decompose Problem 2.1 into two subproblems.
The first subproblem (Prob. 2.2) is a weaker version of Problem 2.1, wherein a circle
is formed without the requirement for uniform intervals between consecutive robots.
The second subproblem (Prob. 2.3) consists in transforming a configuration in which
robots are arranged arbitrarily on the boundary of a circle, into one where the robots are
arranged uniformly.

Problem 2.2 (CIRCLE FORMATION)
Given a group of n robots r1, r2, . . . , rn with distinct positions and located arbitrarily
on the plane, arrange them to eventually form a non degenerate circle.

Problem 2.3 (UNIFORM TRANSFORMATION)
Given that a group of n robots r1, r2, . . . , rn with distinct positions are located on the
boundary of a non degenerate circle, eventually arrange them at regular intervals on the
boundary of the circle.

2.4 Definitions and Notation

Position Given a robot ri, pi(t) denotes its position at time t, according to some global
x-y coordinate system, and pi(0) is its initial position. P (t) = {pi(t)‖1 ≤ i ≤ n}
denotes the multiset of the positions of all robots at time t. When this is not ambiguous,
we sometimes mention a robot, implicitly referring to its position rather than the robot
itself.

Voronoi diagram The Voronoi diagram Voronoi(P ), also called Dirichlet tessela-
tion, of a set of points P = {p1, p2, . . . , pn} is a subdivision of the plane into n cells,
one for each point in P . The cells have the property that a point q belongs to the
Voronoi cell of point pi, denoted Vcellpi

(P ), if and only if, for any other point pj ∈ P ,
dist(q, pi) < dist(q, pj), where dist(p, q) is the Euclidean distance between p and q. In
particular, the strict inequality means that points located on the boundary of the Voronoi
diagram do not belong to any Voronoi cell. A Voronoi diagram is for instance depicted
on Figure 1(a) (Sect. 3.2). Significantly more details about Voronoi diagrams and their
principal applications are surveyed by Aurenhammer [2].
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Smallest enclosing circle The smallest enclosing circle of a set of points P is denoted
by SEC(P ). It can be defined by either two opposite points, or by at least three points.
The smallest enclosing circle is unique, and can be computed in O(n log n) (e.g., [12]).

3 Algorithm Intuition

Given the Suzuki-Yamashita model [15] (see Sect. 2.1) and an initial configuration
where a collection of robots are located arbitrarily on the plane, the algorithm ensures
that the system converges toward a configuration of robots that is a valid solution to the
Uniform Circle Formation problem (Prob. 2.1).

Informally, the algorithm relies on the fact that the environment observed by all
robots is the same, in spite of the difference in local coordinate system. Besides, the
smallest enclosing circle is unique and depends only on the relative positions of the
robots. So, the algorithm makes sure that the smallest enclosing circle remains invariant
and uses it as a common reference. The invariance is ensured by self-imposing several
constraints on the movement of robots (Sect. 3.2).

The presentation of the algorithm is separated into two distinct parts, each of which
solves a distinct subproblem. The first subproblem consists in placing the robots along
the boundary of a circle, without considering their relative positions. The second sub-
problem consists in starting from there, and arranging robots evenly along the boundary
of the circle. Section 3.1 describes this separation and explains how the parts can be
reconciled.

3.1 Separation

As mentioned earlier, the algorithm is decomposed into solving two different subprob-
lems, each of which is solved by a different algorithm. More specifically, ϕcircle is
the algorithm that solves Prob. 2.2 (Circle Formation), and ϕuniform the one to solve
Prob. 2.3 (Uniform Transformation). Algorithm 1 combines those two algorithms into
one that solves Prob. 2.1 (Uniform Circle Formation).

Algorithm 1 Combining the parts
function ϕ(P, pi)

1: if pi is in the interior of SEC(P ) then
2: {Algorithm 2}

3: ϕcircle(P, pi)
4: else
5: {Algorithm 3}

6: ϕuniform({p ∈ P |p ∈ SEC(P )}, pi)
7: end if
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(a) Restr. 1: The move-
ment of r5 is constrained
by the interior of its
Voronoi cell
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r3

r4

r5

r6

(b) Restr. 2: The move-
ment of r5 is constrained
by the smallest enclosing
circle

r1

r2

r3

r4

r5

r6

(c) Restr. 1–4: r1, r2, r6

move on the boundary of
the enclosing circle (Re-
str. 3–4); r3, r4, r5 move
in the interior (Restr. 1–2)

Figure 1: Illustrating the self-imposed restrictions on movement.

3.2 Self-Imposed Restrictions on Movement

In order to solve the given problems, it is necessary to impose some restrictions on
the movements of robots in addition to those inherent to the system model. Doing so
ensures that (1) no two robots occupy the same position simultaneously (Restr. 1), and
that (2) the smallest circle enclosing all robots remains invariant (Restr. 2–4).

Restriction 1
A robot always moves toward a point that is inside its Voronoi cell.

Restriction 2
No robot ever moves beyond the boundary of the smallest circle enclosing all robots.

Restriction 3
All robots located on the boundary of the smallest enclosing circle remain on that bound-
ary.

Restriction 4
Robots located on the circumference of the smallest enclosing circle do not move unless
there are at least three such robots with distinct positions.

Restriction 5
Let ri be an activated robot located on the boundary of SEC(P ). Let next(ri) ∈
SEC(P ) (resp., prev(ri) ∈ SEC(P )) denote the directmost neighbor of ri clockwisely
(resp., counterclockwisely) that is not colocated with ri. Let θprev i

and θnext i be the
angular distance between ri and the two neighbors. Then, Then, the angular movement
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of ri, denoted αri
, is restricted as follows:

θprev i
− Π

2
≤ αri

≤
Π − θnexti

2

Lemma 3.1
Under Restriction 1, if two robots have distinct positions at some time instant, then they
always have distinct positions afterward.

Proof (sketch) The proof is by induction, where the induction step directly follows
from Restriction 1 and the definition of Voronoi cells. Indeed, according to the definition
of Voronoi cells (see Sect. 2.4), no point on the plane can simultaneously belong to more
than one cell.

Theorem 3.1
Under Restrictions 1–5, the smallest enclosing circle of all robots is invariant.

Proof Let SEC(t) and SEC(t + 1) denote the smallest enclosing circle at time in-
stants t and t + 1 respectively (shortcut for SEC(P (t)) and SEC(P (t + 1))). We prove
that, regardless of the activation schedule, SEC(t) and SEC(t + 1) must be identical,
and the rest follows by induction.

Assume, by contradiction, that there is a time instant t for which SEC(t) and
SEC(t + 1) are different. First, we observe that this cannot be caused by the move-
ment of a robot located at the interior of SEC(t). Indeed, such a robot could change
the smallest enclosing circle only by moving outside of it, which is prevented by Re-
striction 2. Therefore, SEC(t + 1) must be defined by the movement of a robot located
at the boundary of SEC(t). There are three cases left to consider, depending on the
number of robots at the boundary of SEC(t) or their respective position:

1. (2 robots) The smallest enclosing circle SEC(t) is defined by two robots. Those
robots cannot move by Restriction 4 and hence SEC(t + 1) remains identical to
SEC(t).

2. (3 robots; one quits the circle) The smallest enclosing circle SEC(t) is defined
by three robots, one of which moves outside the boundary of SEC(t). This is
disallowed by Restriction 3.

3. (3 robots; two distinct points) The smallest enclosing circle SEC(t) is defined by
three robots, where two of them move to the same location. This is prevented by
Lemma 3.1 and the assumption that all robots have a distinct position initially.

4. (3 robots; angular distance greater than diameter) If the angular distance between
two of the three robots is larger than the diameter, then the circle defined by the
three robots and the smallest enclosing circle for the two robots are different. Since
SEC(t) is the smallest enclosing circle at time t, the angular distance between any
two of the three robots must be no greater than the diameter. By Restriction 5,
the movement of two consecutive robots cannot lead them further away from each
other than Π, regardless of their activation schedule.
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r2

r’5
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(c) Symmetry is broken by
using the local coordinate
system.

Figure 2: Illustration of Algorithm 2, as executed by one robot (in each case, r5 moves
toward r′5).

When there are more than three robots on the boundary of SEC(t), the situation can
always be reduced to one of the four cases mentioned above. It follows that SEC(t) and
SEC(t + 1) cannot be different; a contradiction.

In the sequel, when we say that an active robot ri moves toward a point p, this means
that ri’s next position is the point closest to p (or p itself) which satisfies all restrictions
on movement described in this section, as well as the limitation on distance imposed by
the model.

4 Circle Formation

The algorithm presented in this section constitutes the first part of our algorithm. It takes
an arbitrary configuration in which all robots have distinct positions and, regardless of
the activation schedule, eventually brings the system toward a configuration in which all
robots are located on the boundary of a circle. In other words, the algorithm solves the
Circle property of Section 2.3.

4.1 Algorithm

The intuition behind the algorithm is simple and we briefly describe it here (see Al-
gorithm 2 for details). As mentioned earlier, the smallest enclosing circle is kept as an
invariant. So, all robots are made to move toward the boundary of this circle.5 So, robots
that are already on the boundary do not move, and robots that are in the interior of the
circle are made to move toward the boundary of the circle.

5The problem is trivially solved by doing nothing for cases where there are two robots or less. So, in
the rest of the section, we consider the cases with three or more robots.
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A robot located in the interior of the circle can find itself in either one of three
types of situations. First, as illustrated for robot r5 on Figure 2(a), the simplest situation
occurs when the circle intersects the Voronoi cell of the robot. In this case, the robot
selects a point on the intersection of the circle and the Voronoi cell, and moves toward
it (r′5 on Fig. 2(a)). The second situation arises when the Voronoi cell of the robot does
not intersect with the circle (Fig. 2(b)). In this case, the robot selects the point in its
Voronoi cell which is nearest the boundary of the circle (or farthest its center).6 The third
situation arises when, due to symmetry, there exist several such points (Fig. 2(c)). In this
case, all solutions being the same, one is selected arbitrarily. This is for instance done
by keeping the solution with the highest x-coordinate (and then y-coordinate) according
to the local coordinate system of the robot.

Algorithm 2 Formation of an (arbitrary) circle (code executed by robot ri)
function ϕcircle(P, pi)

1: if pi ∈ SEC(P ) then {ri already on the boundary.}
2: stay still.
3: else if Vcellpi

(P ) ∩ SEC(P ) 6= ∅ then
4: {c.f. Fig. 2(a)}

5: target := Vcellpi
(P ) ∩ SEC(P ) ∩ Voronoi(P − {pi})

6: move toward target . (e.g., r
′

5 in Fig. 2(a))
7: else {Voronoi cell of pi inside circle}

8: {c.f. Fig. 2(b)}

9: compute points in Vcellpi
(P ) closest to SEC(P ).

10: if exactly one candidate exists then
11: move toward that point. (e.g., r

′

5 in Fig. 2(b))

12: else {Several candidates exist}

13: {c.f. Fig. 2(c)}

14: select candidate with greatest x-coordinate, and then y-coordinate (i.e., first in lexical order).

15: move toward that point. (e.g., r
′

5 in Fig. 2(c))

16: end if
17: end if

4.2 Correctness
Lemma 4.1
Under Algorithm 2, all configurations in which the smallest enclosing circle passes
through all robots are stable.

Proof This follows trivially from line 1–2 of the algorithm.
6There is the possibility that two robots in adjacent cells move to the same corner if they are activated

simultaneously. However, because of the definition of Voronoi cells, they can never move to the same
location (see Lemma 3.1).
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Lemma 4.2
No robots moves to a position further away from SEC(P ) (than its current position).

Proof In other words, no robots moves to a position closer to the center of the
circle. Robots move only at lines 2,6,11,15. Let us consider each case for some arbitrary
robot r.

1. At line 2, r stays still, so it obviously does not move toward the center.
2. At line 6, r moves from the interior of the circle toward a point located on the

boundary of the circle. So, r actually progresses away from the center.
3. At lines 11,15, r moves to the point in its Voronoi cell that is closest to the boundary

of the circle. Since a point always belongs to its own Voronoi cell, the new position
must be at least as far from the center as the current one.

The robot r is unable to move away from the boundary of the smallest enclosing circle
in any of the three cases, thus proving the lemma.

Lemma 4.3
There exists at least one robot in the interior of SEC(P ) that can progress a non null
distance toward SEC(P ).

Proof Let us denote by Pin the set of all robots located in the interior of the smallest
enclosing circle, and assume by contradiction that there exist a configuration in which no
robot in Pin can progress a non null distance toward SEC(P ). Consider now a robot r

in Pin such that r is as far as possible from the center of SEC(P ). By assumption, r

cannot progress toward SEC(P ).
If r cannot progress toward SEC(P ), it must be prevented to do so by some other

robot in P . Indeed, r is the robot in Pin farthest from the center of SEC(P ), and so
it belongs to the convex hull of Pin. It results that no robot in Pin can prevent it from
reaching SEC(P ). This is because, if we consider the Voronoi diagram of Pin, the
Voronoi cell of r extends toward infinity (a direct consequence of r belonging to convex
hull of Pin).

Hence, r must be blocked by some points on SEC(P ). To block r, there must be
at least two robots on SEC(P ), say ra and rb. Indeed, with only one single robot on
SEC(P ) to block its way, r will invariably follow a path around the blocking point, thus
avoiding it altogether.7 The robot r and the two robots blocking its way ra and rb are
illustrated on Figure 3. In the figure, r is represented as being located on the bisector
of ra and rb. It is easy to see that, even if r is not originally on the bisector, it will
eventually move toward it as a result of the algorithm (the location selected at line 9 is
always near one of the vertices of the Voronoi cell).

Now, we consider the reachability xr(t), which is the maximal distance that r can
move toward the midpoint of ra and rb during activation step t.8 By assumption, there

7This part of the proof is omitted here due to space limitations, but will appear in an extended version
of this paper.

8Without loss of generality, we chose to ignore here the limitation imposed by the model as it does not
influence the argumentation.
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ra
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rb

∆ab

Dr(t) xr(t)

r’

Figure 3: Progression of a robot toward the boundary of the smallest enclosing circle,
when blocked by two robots.

must be a situation for which this value is zero (it can never be negative because of
Lemma 4.2). So, computing xr(t) yields the following formula:9

xr(t) =
Dr(t)

2 +
(

∆ab

2

)2

2Dr(t)
(1)

where Dr(t) is the distance between r and the segment rarb at activation step t, and
∆ab is the distance between ra and rb. It turns out that, following Equation 1, xr(t) has
the following lower bound when Dr(t) varies,

∀Dr(t), xr(t) ≥
∆ab

2
> 0 (2)

It results that the robot r can always reach a location that is strictly closer to the bound-
ary of SEC(P ), thus contradicting the assumption that r is unable to progress toward
SEC(P ). This hence proves the lemma.

Lemma 4.4
All robots located in the interior of SEC(P ) reach its boundary after a finite number of
activation steps.

Proof By Lemma 4.2 no robot ever moves backward. By Lemma 4.3, there is at
least one robot r in Pin that can reach SEC(P ) in a finite number of steps. Once r has
reached SEC(P ), it does not belong to Pin anymore. So, by Lemma 4.3, there must be
another robot in Pin that can reach SEC(P ) in a finite number of steps. Since there is
a finite number of robots in P , there exists some finite time after which all robots are
located on the boundary of the smallest enclosing circle SEC(P ).

Theorem 4.1
Algorithm 2 solves the problem of Circle Formation (Prob. 2.2).

Proof By Lemma 4.4, there is a time after which all robots are located on the small-
est enclosing circle, and this configuration is stable (Lemma 4.1). Consequently, Algo-
rithm 2 solves the Circle Formation problem.

9The development of the formula is not especially difficult, and so we have decided to omit it here.
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Figure 4: Robot ri moves halfway to-
ward the midpoint (Algo. 3).

Figure 5: Moving to the midpoint
can result in oscillations.

5 Uniform Transformation

Given that all robots are located on the circumference of a circle, the problem consists
in distributing then evenly along that circumference. The algorithm that we propose
in this section converges toward a homogeneous distribution of robots, but it does not
terminate deterministically.

5.1 Algorithm

Algorithm 3 is very simple.10 As illustrated on Figure 4, whenever a robot ri becomes
active, it considers its two direct neighbors prev(ri) and next(ri), and computes the
midpoint between them, midpoint . Then, ri moves halfway toward midpoint , as per-
mitted by the restrictions on the movement of robots, and its own reachability radius.

Algorithm 3 Convergence toward a uniform configuration
function ϕuniform(P, pi)

1: {Assumes all robots are on the boundary of SEC(P ).}

2: prev(pi) := direct neighbor of pi counterclockwise.

3: next(pi) := direct neighbor of pi clockwise.

4: midpoint := midpoint of arc prev(pi), pi, next(pi).

5: target := midpoint of arc midpoint , pi.

6: move toward target

The reason for moving halfway toward the midpoint rather than toward the mid-
point itself is to prevent situations such as the one illustrated in Figure 5, where the
system oscillates endlessly between two different configurations if robots are perfectly

10We have also designed a smarter algorithm with a better convergence rate. We will however keep
its presentation for an extended version of this paper, since time and space constraints do not allow us to
properly develop its description, proofs, and convergence analysis.
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synchronized. The system would get stuck into an infinite cycle, and hence be unable to
progress toward an acceptable solution.

5.2 Correctness
Lemma 5.1
Under Algorithm 3, all configurations in which all robots are uniformly distributed over
a circle are stable.

Proof Consider an arbitrary configuration in which n robots are uniformly dis-
tributed over a circle. The angular distance between any two consecutive robots must

hence be
2Π

n
. Assume that such a configuration is reached at time t. We now show

that, under Algorithm 3, the system remains in the same configuration at time t + 1,
regardless of the activation schedule. Consider a robot ri activated at time t. Since the
distance between ri and either neighbors is the same, it is easy to see that the desti-
nation computed by ri is pi. Thus, ri remains in the same position. It results that no
robot moves, whether activated or not. Hence the configuration is left unchanged and
the lemma follows.

Theorem 5.1
Algorithm 3 converges toward a configuration wherein all robots are arranged at regular
intervals on the boundary of a circle.

Proof (sketch) By Lemma 5.1, we know that any configuration where all robots
are uniformly distributed over the circle is stable. In other words, the angular distance

between a robot and its two direct neighbors is identical for all robots, that is,
2Π

n
.

Second, we consider Θmax (t) (resp., Θmin(t)) the maximal (resp., minimal) angular
distance between two direct neighbors at time t. The proof consists in showing that
Θmax (t) is monotonic decreasing, whereas Θmin(t) is monotonic increasing.

6 Discussion & Future Work

In this paper, we have presented a distributed algorithm by which oblivious mobile
robots move to form a circle. In this section, we briefly discuss possible improvements
to the algorithm, as well as some important research issues for the future.

Transformation in finite time The algorithm presented in this paper can form a (non
uniform) circle in finite time, but only converges toward an even distribution. We conjec-
ture that an oblivious deterministic solution to the second subproblem (Transformation)
does not exist in the Suzuki-Yamashita model for any number of robots, because of
the unpredictability of the activation schedule. We believe that non oblivious solutions
should exist, based on algorithms for the formation of regular polygons [15].
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Weaker models The model considered in this paper [15] is actually stronger than
it seems, and interesting future work will investigate the problem in weaker models.
The first issue is the implicit synchrony of the model. Indeed, at each activation, a
robot consecutively observes, computes, and moves as one single atomic operation.
This introduces some synchrony between the activation schedule of robots. Flocchini
et al. [8] define a weaker model wherein the three actions no longer needs to be atomic.
A second issue is the limitless range of vision. Constraining the range, as done by
Flocchini et al. [9], would make it impossible to determine the smallest enclosing circle,
or count the total number of robots.

Optimizations For the sake of clarity, we have tried to keep the expression of the
algorithms as simple as possible. There are however several straightforward optimiza-
tions that can be easily applied to the algorithms to improve performance, or reduce
computation.

For instance, computing the smallest enclosing circle can be somewhat alleviated if
the robots happen to have the ability of memorizing past actions in spite the assumptions.
The circle is invariant in the absence of external influence, and so needs to be computed
only once, and just verified later on.

Another example would be to combine the two parts of the algorithm in a better
way. Robots could for instance execute the two parts of the algorithm simultaneously
and, in the second part, use their projection on the circle, for robots that are still in the
interior.

Communication models Building on the algorithm and its limitations, we intend to
investigate the power of different augmentations of the model with respect to solving this
problem. For instance, we are currently pursuing a study which consists in augmenting
the system model with the ability to communicate, using several different communica-
tion models.

Complexity The overall computational complexity for a single robot is O(n log n)
for computing the smallest enclosing circle as well as the Voronoi diagram. We did
not determine the space complexity of the algorithm, but we believe it to be linear (due
to the Voronoi diagrams). We intend to investigate these issues more rigorously in the
future.

Convergence Although we prove that the algorithm is correct and thus eventually
converges toward an acceptable solution for the circle formation problem, it would be
interesting to study the convergence quantitatively. To do this, we will try to calculate
an upper bound for the convergence of the first part of the algorithm. We will also try to
study the convergence of the overall algorithm by using simulations.
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Practical issues Our prime motivation for developing the circle formation algorithm
presented in this paper is admittedly theoretical rather than practical. Although we be-
lieve that the algorithm could actually be used in practice, there are several important
issues that must be addressed first. For instance, the hidden synchrony introduced by the
atomicity of activation cycles is a severe practical limitation. In addition, the unlimited
visibility, the infinite precision and accuracy of sensors, as well as the dimensionless
nature of the robots are important points that must be addressed before the algorithm or
similar solutions can be applicable to practical situations. Engineering issues constitute
a very important topic that we leave for future work.

Acknowledgements

We are especially grateful to Michail Markou and Sayan Mitra for their helpful com-
ments.

References

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation, 15(5):818–828, Oct. 1999.

[2] F. Aurenhammer. Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[3] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. On the average and worst-case
efficiency of some new distributed communication and control algorithms for ad-
hoc mobile networks. In Proc. 1st ACM Int’l Workshop on Principles of Mobile
Computing (POMC’01), pages 1–19, Newport, RI, USA, Aug. 2001.

[4] X. A. Debest. Remark about self-stabilizing systems. Commun. ACM, 38(2):115–
117, Feb. 1995. Technical correspondence.
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